
A TERM MODEL FOR CCS

M.C.B. Hennessy and G.D. Plotkin

Dept. of Computer Science
University of Edinburgh

Edinburgh EH9 3JZ
Scotland

262

I. Introduction

In a series of papers [Hen2, Mill, Mi14-7] Milner and his colleagues have studied a

model of parallelism in which concurrent systems communicate by sending and

receiving values along lines. Communication is synchronised in that the exchange of

values takes place only when the sender and receiver are both ready, and the exchange

is considered as a single event; this kind of communication is also found in Hoare's

model [Hoa]. In these papers, and particularly in [MilS], a notation for

expressing systems is introduced which (as remarked in [Hen2]) can be considered as

a programming language, called here CCS- (Milner's) Calculus of Communicating Systems.

More precisely there will be a family of languages incorporating these ideas and in

this paper we study one such language.

In sections 2 and 3 we give a formal definition of the syntax of our version of CCS

and then give an operational semantics by axiomatising the capabilities of programs

to communicate along lines. A number of laws for behaviours were proposed in

[MilS]. A simpler version of these laws, based on a programming language not

involving recursion or value passing, was justified and shown complete in [Hen2] by

using an operational equivalence relation based on an operational semantics. The

initial algebra for these laws then easily gave a denotational semantics for the

simple language which was fully abstract with respect to the operational semantics.

This meant that, for programs, being operationally equivalent was just the same as

having the same denotation.

In section 4 we tentatively propose a certain operational preorder on programs;

this seems more appropriate than an equivalence. In section 5 we give a formal

proof system for a fragment of our language (excluding recursion but allowing value

passing and nonconvergence). This system provides analogues of all the laws in

[Hen2,MilS] as well as adding some unexpected rules, and it is shown sound and

complete in Theorem 5.1. In section 6 we give a variant of Milner's behaviour

algebras, [Mil5], that enables us to give a denotational semantics for CCS. An

initial fully abstract model is obtained in Theorem 6.7 by employing a term model

construction based on the so-called behaviourally finite terms and our operational

preorder (cf. [Mil3][Ber]). Available models using powerdomains (such as in EMiliO)

are not fully abstract but perhaps such a model could be obtained along the lines of

[Henl].

2. The Syntax of ¢CS

The syntax is parameterised on certain sets and functions as follows:

I. AVar - a given countably infinite set of arithmetic variables, ranged over by

~he metavariable) x.

2. AExp - a given countably infinite set of arithmetic expressions, ranged over by

e, and assumed to contain the set, N, of integers.

263

3. BExp- a given countable set of Boolean expressions ranged over by b, and

assumed to contain the set T = {tt,ff} of truthvalues.

4. ~ - a given countable set of line names ranged over by C~ , ~ and ~.

5. Proe k (one for each integer k) - a given countably infinite set of procedure

names of degree k ranged over by Pk"

In addition it is assumed that all expressions e, b have given finit@ sets FV(e),

FV(b) of free arithmetic variables and that it is possible to substitute arithmetic

expressions, e', for arithmetic variables, x, in expressions e,b to obtain

expressions [e'/x]e, [e'/x]b of the same type. Finally we assume that there are

relations e =~e', b =~ b' of ~-conversion in expressions and that free variables,

substitution and o<-eonversion have the usual properties (see [Cur], [Hinl]).

Now we can give the main syntactic sets:

6. Ren - the set of renamings, ranged over by S, is the set of finite partial

functions from ~ to ~ .

7. Term - the set of terms, ranged over by t, u and v, is given by the grammar:

t: ,= l (t . u) l (t l u) l t[s3 I I (i f h then t else u) }
pk(e I ek) (k 6 N)

Free variables, substitution and ~ -equivalence are extended to terms in the

evident way, the only new binding operators being the (~x.~).

8. Dec - the set of declarations, ranged over by d, and including all sequences of

the form:
I ,. pl

Pk(1)(x11 Xlk(1)) <: tl " ' ' k(1)(Xll Xlk(1)) <= 91

- - ... pl
I)' ' k(1) are all different and include any procedure name where 1 > O, and Pk(1

occurring in any of the ti, and FV(t i) is a subset of {xil Xik(i)} for i = I, k.

In other words we impose the usual restrictions on simultaneous recursive definitions.

9. Prog - the set of proKrams, ranged over by p, q and r, whose elements have the

form:

letree d in t

where any procedure name occurring in t also occurs in d and where FV(t) = ~.

The present version of CCS differs from what is expected in the light of [Mil5] in

that integers are the only type of values considered, terms and programs are not

sorted on the names of the lines on which they input and on which they output, and

restriction and relabelling have been replaced by the more general renaming.

Notationally we have replaced ~?x:t) and ~e:t) by the more neutral (~x.t) and

o((e,t); we might also have allowed a more flexible form of procedure definition

than the present two-level one. None of these variations should materially affect

our results.

3. ODerational Semantics

Following the intuitions in [Mill,Mild--7] we understand the behaviour of programs in

264

terms of their capabilities. These include the capability to input a value off a

line or to output a value on a line or to make some internal communication.

Further the recursive definitions allow computation to proceed forever without any

communication occurring. For any given program none, one or several of each of

these kinds of possibilities may obtain. It is presumably possible to invent an

abstract machine with these capabilities, following [Lan, Weg] but we prefer the

more direct, if more abstract, method of axiomatising them. This method could be

called axiomatic operational semantics and has also been pursued in [Hen1,Hen2].

For the communication capabilities we need the following binary relations:

Input Here we have the relations, p o(?m)q, (one for each o(in~ and m in N)

meaning that program p has the capability of inputting m off o< and q represents

the remaining capabilities of p after this communication.

Output Here we have the relations, p ~lm)q, (one for each ~ in ~and m in N)

meaning that program p can output m on o(and q represents the rest of p.

Internal Commuuicatio n Here we have the relation, p-~-~q, meaning that program p

can perform an internal communication and q represents the rest of p. (We do not

need any detailed knowledge about which internal communication took place as we

intend to treat all the possibilities as indistinguishable.)

For the possibility of infinite computation without communication we axiomatise the

property:

Convergence The property, p & , means that program p cannot compute forever without

any communication occurring.

To understand programs it is necessary to understand expressions and terms (the

latter in the context of declarations). For the first we just assume that any

expressions e and b have values ~e~and ~b~in, respectively, N and T prow[ded they

are closed (have no free variables). For the second we introduce a little

axiomatic system. Let Com be the set of communication capabilities where:

Corn = k?m J~A,m c N } U ~mj~cA ,me N } U {?}

It is ranged over by the variable c. The formulae of our axiomatic system have

the form, t d-~U or % ~ d where t and u are closed and where d is the context of

declarations in which the communication c is made or the convergence occurs. The

rules have the form F I F m => G I G n (m>_O,n>O) meaning that if F I F m

are theorems so are GI, ,G n (where the F. and G are formulae). The relations

that hold are to be just those whose corresponding formulae are provable.

Rules

NULLITY

1. => (NIL & d)

2 6 5

Although NIL cannot communicate it converges.

AMBIGUITY

C , (t+u)- - -~d t , (u + t) ~ t ' t . t-T-,t => c ,

The capabilities of (t+u) are those of t and u, with commitment to whichever is

exercised.

COMPOSITION

I. t---~#t' => (t~u)--~--~d (t'lu) , (ult)--~-~ult,)

3. t &d, u~d => (tin) &d

The capab i l i t i es of (t l u) are those of t and u, but without commitment, together
with a~ internal communication. This is handshake or synchronised communication.

R~AMING

1. t ~ t ' => t E S] ~ t ' [S] (i f S is defined at ~)

2. t--~-~t' => t [sI---~m t'Es] (if s is defined at ~)
h

3. t- t t,[s]
~. t~d => t[S]&d

Renaming serves to relabel or remove communication capabilities.

I~UT

x ~ ?m i. => ~ . t) - - ~ [~ / x] t , ~(~.t)~d

The term @(x.t) can input any integer off ~ and the rest is obtained by binding x

to m i~, t.

OUTPUT

I . = > l ~ (e , t) ~ t , ~ (e , t)~d

The te~ml ~(e,t) can output the value of e on ~(and t is the rest.

C ONDITI 0NAL

1. t - - ~ t '

c I 2. u--q--~u

3. (~d) :>

~. (~) =>

PROCEDURE CALL

-> (if b then t el~e ~)--~t' (if Ib~ = tt)

=> (if b then t else u)---~d u' (if Eb~ = ff)

(if b then t else u)&d (if Eb~ = tt)

(if b then t else u)~d (if Eb~ = ff)

i t =>pk(e I

(i f Pk(x 1 xk) <= t i s i n d)

2. [~el ~ 1]° " ' [~ / X k] t ~ d => pk(el ek)~d
(i f Pk(x 1 x k) <: t is in d)

I t is now easy to define the behaviour of programs by s im i la r ru les:

266

PROGRAMS

I. t--~t' :> (letree d in t)--2-~letree d in t')

2. (t~) :> (~strso d i~ t)

As in [Hen2] we take the view that internal communication is not observable and so

wish to define observable communication opabilities, p ~> q, and convergence p &

by the rules:

OBSERVABLE COMMUNICATION

I. :> (p ~> p)

2. (p S> p'), (p' C)q'), (q' ~> q) => (p ~> q)

Note that this defines p ~> q which, unfortunately, does not seem to correspond to

anything observable.

0BSERV~BLE C0NVER~mCE

I. p$, q~ (for all q such that ~ T}q) => p~

~his looks like an infinita~y ~le but it can be show~ that if p ~ then {qlP'~q}

is finite; p~ means that p cannot compute forever without an input or output

communication occurring.

We will be interested in such properties of programs as are determined by the trees

of communication capabilities and conver@ences issuing from them. The issue of

fairness will be neglected; in the present context that might mean ruling out

certain infinite branches of the tree as unfair. From the point of view of Petri

and his followers ([Pet]) the capabilities correspond to possible events and there

is a structure of concurrency and conflict on these events which we are also ignoring.

4. An 09erational Preorder for Programs

An operational equivalence relation on a simpler kind, Prog', of programs than ours

was introduced in [Hen2]; here we introduce an operational preorder on our kind.

It should be admitted that our definition is just something that works, being based

on the ideas in [Hen2] and intuitions about powerdomains [Plo,Smy] and Scott-

Strachey semantics generally.

In the case of [Hen2] a simpler kind, Cem', of communication capabilities was

appropriate and there all programs converged. The function, E, on relations on

programs was defined by putting, for any p,q in Prog':

pE(~)q ~ (Vo,p'.p ~> p' = 3q'.q ~> q' ^ p'N q') ^

(Ve,q'.q ~> q' ~ 3P''P ~> P' A p'~ q').

Then the operational equivalence relation, ~, was defined as0~,nwhere "~0 is the

universal relation on programs and, for any n, "~'n+1 = E('Vn)" As it happened the

communication relations, ~>, obeyed the imaKe finiteness condition that for all p,

the set {qlP 2> ql is finite; this can be used to prove that Iv is the maximal

fixed-point of E.

267

All this can be understood, to some extent, in terms of an operational difference

relation # on programs, which we take to be generated by the following rules:

I Symmetry p#q => q~ p

II Communication p ~> p', p'~q' (whenever q ~> q') => p#q (for any e).

The complement of # is the maximal fixed-point of E and so, by image-finiteness, it

must ben. Image-finiteness ensures the rules are finitary and so differences

between programs can somehow be detected from a finite amount of information about

their behaviour.

Unfortunately in our case image-finiteness fails. For example consider the program7

: letrec l(y) <: ~x.~(y,NIL)) + l(y + I) in I(O)

Then P~--~?0~(m,NIL)- - for any integer m. Further we have also the possSbility of

nonconvergence, which suggests using a preorder, ~ , instead of an equivalence.

After some experimentation we were led to defining maps, QF on preorders which

employed some finiteness ideas (hence the superscript); we hope later to give a

properly justified map of this kind. Now, define p$c by:

For any finite subset, F, of Com define a function QF on relations over Prog by:

pQ~)q:~ (I). (~/c c F,p'.p ~> p' ~q'.q ~> q' A P' ~ q') A

(2). (Vc F.p,l].c A
(h) 'Vq'.q q' :) =tP'.P S> P'^ P' q'))

~ to be the universal relation over Prog and for all n, put DF Next take
n + l =

QF(~) and define the operational preorder, ~0' by:
~F

P q iff VF,n. p ~n q

Following the ideas in [Hen2] we regard p as less than q not just when p is oper-

ational]y less than q, but when p is less than q in all contexts of possible use.

A term context is just a term u[-] with a "hole" in it (a formal definition is

omitted); it can be filled in with a term t to give a term u[t] which is of use

as part of a program if it is closed. For programs we are also interested in

adding extra recursive definitions. We take a program context to be of the form,

v['] = letrec [.], d' in u[.], (where u['] is a term context); it can be filled

in with the program p = letrec d in t to give v[p] =def letreo d,d' inn[t] which

is of use if it is a program (this means that u[t] must be closed and there should

be no s}mtaetic difficulties with the declarations). The contectual preorder, ~,

on programs can now be defined:

p !g q i f f Vr['].(r[p] ^ r[q] are programs)~ rip] Uor[q]

The slightly awkward notion of program context seems appropriate in the light of the

two-level structure of programs.

268

5. A Proof System

We would have liked here to present a complete proof system characterising the

operational preorder on programs; instead we consider a fragment of the language

without procedure calls, but with terms for internal communication and noncon-

vergence. The set, BT~rm, of basic terms is given by:

t::= NIL l(t+u) I (flu) I t[S] [(~.t)Io((e,t) I (if b then t else u) l~(t) I

For the operational semantics of closed basic terms we define t c~t' (c e Com) and

t $. The rules NIL, AMBIGUITY, COMPOSITION, RENAMING, INPUT, OUTPUT, CONDITIONAL

are like those for terms, just dropping the component for declarations. The new

rules are:

INTERNA~ C0~IOATI0~
~. => ~(t) t~t 2. => r(t)

CONVERGENCE

There are no rules for ~ and so it has no communication behaviour and (unlike NIL)

does not converge.

Next~=~ , & and tO on closed basic terms are defined as before. Taking

contexts, v['], as basic terms, with a hole, a natural contextual preorder, ~ for

open basic terms is:

t u iff VvE.l, V'p nv.p(vEtl) ofVE)
using the obvious extension of arithmetic environments (rote that AEnv = AVar -> N).

The next job is to characterise the operational preorder on basic terms by giving

an axiomatic system for proving formulae of the forms t ~ u and t = u. This

continues the work in [Hen2] but because of the variable binding mechanism we

follow the usual pattern for ~-calculus systems rather than an algebraic style of

giving universally valid equations. However the main differenc~ from [Hen2] is

that we need conditional rules, such as VIII 3, and even an infinitary rule, the

W@rule, X.

A few abbreviations will make the presentation of the rule for composition much

easier. We write ~ t for the sum, (t I + (t 2 + °.. t .)) A basic
i=1,n i " n

term is atomic iff it has one of the forms, ~x.t, c~(m,t), ~(t) or~, Binary

functions, li, (for i=1,3) on basic terms are defined by:

(t = o(x.t')

(t = ~(m,t))
(t I~u)

and

~x.(t'lu)
l (m t

~I u)

/N IL
2 is defined symmetrically and,

(t-- ~(t0)
(t =S1)
(otherwise)

269

(tl3u)
It(([mA]t ') I ~')

I [m/x]u')
I NZL

Rules

I PARTIAL ORDER

I. => t_~t

3. t ~- u, u _~t => t = u

II SUBSTITUTIVITY

(t = ~ . t , , u = ~,(~,~,))
(t = ~ ((m , t ') , u = # (x . u ')

(otherwise).

2. t ~u, u~v=> t ~v

4. t = u => t ~u, u~t

I . t U t ' => t[S] m t ' [S] , ~ . t) g (~ . t ') , ~ (e , t) _ C e (e , t ') , t (t) ~ ~ (t ')
2. t ~ t', u ~u' => (t+u) g (t'+u'),(tlu) ~ (t'[u'),(if b then t else u)

(if b then V else u')

3. => ~(e,t) =~(m,t) (if FV(e) = ~ and ~e~= m)

4. => (if b then t else u) = (if tr then t else n) (if FV(b) = ~ and ~b~= tr)

III AMBIGUITY

1. => (t + U) + V = t + (u + v) 2. => (t + u) = (u + t)

3. => (t + t) = t 4. => (t + NIL) = t

IV COMPOSITION

(if all the t. and u. are atomic) z j
V REHAEING

I. => NIL[S]

2. ::> (~ . t)
3. => ~=.t)

VI~-,oo,m/,~.SION

1. = > ~ x . t = ~ y . [y / x] t (if y # FV(t))

VII CONDITIONAL

I. => (if tt then t else u) = t, (if ff then t else u) = u

viii CmmImNENm
1. ::> ~ (~ (t)) = ~ (t) , t + ~ (t) = t (t) 2 . ~ r (t + ~) = t + - ~

IX OMEn[

i . :=>_q E t.
X ~-RULE

I. [m/x]t ~ [m/x]u (all m in N) => t ~ u

Allowing for the differences in the nature of the proof systems, we have or can

derive analogues of all the laws in [Hen2], [Mil4], An example due to B. Mayoh

shows a typical use of the ~-rule in conjunction with VIII 3. To show:

~x.t +@tx.u ~o(x. (if x=O then t else u) +~x. (if x=O then u else t)

it is enough by VIII 3 to show:

= NZL, (t + ~)[s] = (t [S] + n[S]) , ~ (t) [S] = r (t [s]) , D J] s] =.Q
Is] = 9 ~ . t [s]) , ~ , (e , t) [s] = # (e , t [s]) (i f s(~) = #)
[s] = NIL, ~ (e , t) [S] = ~IL (i f S is not defined at 0{)

270

~t +~u E ~(if x=O then t else u) + ~iff x=-O then u else t)

and by the ~-rule, X, it is enough to show for every m that:

~t +~u ~(if m=O then t else u) + ~(if m=O then u else t)

and that will follow by I, II, VII and III 2 (if m~O).

Clearly this proof system is far from providing a complete, practical proof system

for programs. It may be possible to make a complete one for programs by adding

suitable formulae for programs and handling recursion by a Scott fixed-point rule

(like the rules FIXP, INDUCT in [Nil23). Perhaps one could then eliminate the

~-rule to obtain a finitary relatively complete system (see [Apt]) which could be

a first step towards a practical one. In the meantime we have the following

completeness theorem showing we have at least characterised ~ :

Theorem 5.1 (Completeness) For all basic terms t,u: t ~ u iff t ~ u is a theorem

of the above axiomatic system.

Hopefully, th~ ~esu~t will increase the reader's confidence in our definition of the

preorder,~_ .

6. Natural Interpretations

When constructing term models it clarifies matters if it is known in what sense they

are models and so we look for a class (even category) of possible interpretations for

CCS. A reasonable choice would be some class of algebras, but the binding operators,

~x.--), present difficulties and we do not follow a strictly algebraic treatment -

at least in the usual narrow sense of algebra. What we do is treat the binding

operators in a natural way: if terms have type A then for each ~ we use a function

of type (N -> A) -> i to interpret e(x.t. Note that this does not amount to the

same thing as an algebraic treatment along the lines, say, of the treatment of SAL

in [ADJ 3 - that would result in a wider class of semantics. Much attention has

been paid to this kind of problem in the case of the k-calculus ([Bar 1, [Hin2],

[0bt D.

Our natural interpretations of CCS are ~-continuous algebras with some extra

structure; see [ADJ] for a definition of strict ~-eomplete partial orders

(called ~ -cpos here), ~-continuous funet*ons, /4 -continuous algebras and strict

~-continuous homomorphisms.

Definition 6.1 The one-sorted signature, ~ , has one operator symbol, NIL, of

arity 0 and one, IS], of arity one, for each S, and two, + and ~ , of arity two.

Definition 6.2 A natural interpretation, ~, of CCS is an ~-continuous ~-algebra,

A, together with functions:

In~,~: (N -> A) -> i (one for each ~W~ in A)

@at ~: (N xA) -> A (one for each 0(in ~)

where In~,~ is ~-continuous (taking N -> A as the g*d-cpo of all ftuuctions from N

to A under the pointwise ordering) and where 0ut~,~is continuous in its second

argument.

271

Definition 6. 3 A homomorphism h:~-> ~' of natural interpretations is a strict

@-continuous homomorphism of the underlying ~-algebras, A and A', such that for

all ~ in A :

i. Vf ~ (N -> A).h(In~,~(f)) = In~,~l(h, f)

2, Vm ~ ",a ~ A.h(0ut~,#m,a)) = 0ub,~.(~,h(a))

Natural interpretations are closely related to Milner's behaviour algebras [MilS].

The differences are:

I. Behaviour algebras allow other value sets than the integers.

2. Certain differences regarding renaming.

~. Natural interpretations have an order structure.

4. Behaviour algebras are many-sorted (on finite subsets of port labels).

The first two differences are trivial, reflecting what we have already discussed:

the difference between our definition of CCS and what might be expected from

[Mil5]. The third difference is needed for the treatment of recursion (or any

linguistic device permitting infinite behaviours). We do not understand the

significance of the last difference.

Any natural interpretation, ~ , of CCS gives rise to a denotational semantics for

CCS. There are two kinds of environments, arithmetic and ~rocedural, ranged over

by # and ~ , and given by:

AEnv = (AVar -> N) PEnv = k~]PrOCk -> (N k -> A) respectively. Updating

environments and applying environments to expressions is defined as usual; we

write K 0 for the trivial arithmetic environment Am ~ N.O.

The denotational semantics of CCS is now given by three functions all of which are

also called ~ :

~: Term -> (AEnv x PEnv -> A), ~: Dee -> PEnv, ~: Prog -> A.

For the denotation of terms we just give enough equations to make the rest of the

definition obvious:

3. ~tlu~,~) = ~Et~,~)l~ ~Eu~,~)
4. ~x.t~,~) = In~m c N. ~t~Em/x],T))

5. ,9~(e,t)?~,,~)=out~ (EAe)?,~Et?~,m)

~. ,~b-> t,u?7,~)=l~{u?~,,~,) (y(b)?= ff)
~. ~ V e ~ e k) ~ ' ,~) = ~ k ~ Z (~ (e ~) ? 9(o~) ~)

I t easy to show)0 ~ t ~ , ~) is ~-cont inuous in Jr . i s

Given a procedure environment, g , any term t defines a function of its free

variables and so if FV(t) ~ Ix I Xkl we define:

272

2Et;~ ~k~(~ = k~ 1 ~ ~ N. ~'n-t]]C:o[m/~].. .E~/~k],Tr)
Now the denotation of declarations is defined by

= ~(,x~-.[~ Etl; x~ X~k(~) ~ ~)/P~J~]...[2'1I~_; ~l~ ~lk(1)II(~)/Pk(1)] ~)
Finally the denotation of whole programs is given by:

~E~tr~c d in t~ = ~lIt]](K o, ~lZd]])

Definition 6.4 A natural interpretation, ~ , of CCS is a mode], for COS iff for all

programs p,q:

a model, ~ , for COS is fully abstract iff for all ~rograms p,q:

~ p ~ => p ~ q.

Finally, we turn to the construction of a fully abstract term model, ~ ° The idea

is to base ~ on the completion of a preorder, <F,4-> of basic terms. The terms in

F will all represent finite behav ours and the preorder will just be ~ .

Def.init:Lon 6. 5 The b-finite (behay~iourally .finite) terms are the least set, F, of

closed basic terms, t, such that:

If {<c,t'>It c> t' ~} is finite and also t' is in F whenever t c> t', for any c,

then t is in F.

For example, for any m, ~(x.(if x < m then NIL else ~) is b-finite but ~x.NIL) is not.

As we have already remarked, F is a preorder under ~ (restricted to P). Note

that the least element of F is ~ . Further NIL is b-finite and so are t[S],

(t + u) and (t~u) if t and n are; therefore we can turn F into a ~-algebra if we

define:

NIL F = NIL; [S]F(t) = tKS]; t +F u = (t + u); t~F u = (t~u)

and indeed F is even a preordered ~-algebra in that all the operations are

monotonic.

Now N, the underlying continuous ~-algebra of ~ , iS taken to be the completion

by directed ideals of F. Note the natural monotonic [.]: F -> N, where [u] =

It It 4 u}. The operations on M are defined in the evident element-wise way so

that, for example,

(By the way, we have used the countability of F in that if F were not countable the

correct definition of M would use countably generated directed ideals.)

It remains to define In~,~ and Out~,~. For this purpose we assume from now on that

for all m there is a condition, x = m, with one free variable x and the obvious

meaning (i.e. ~[~x](x = m)~ = tt iff n equals m). Now just define for any

f: N -> M and X ~ N:

273

~n~,~(f)., = U{[~=. i_f= = o the~ +0~'' e~e else (-__~ =,,= m t~n t <~j,' el s~ ll)

...]Jm z o, t <iJ ~ f(i) (~or i = O,m)}

o~t~,~(m,X) = U{~(m,t)] b ~ x}
The closure properties of F ensure these definitions are correct and it is easy to

show that In~,~and Out~,~have the required continuity properties, making ~ a

natural interpretation.

Note that the definition of ~ does not use the characterisation of ~ presented in

section 5. However we do use it to prove:

Theorem 6.7 (Full Abstraction) The natural interpretation, ~ , is a fully abstract

model of CCS and, indeed, is initial in the category of models of CCS and their

homomorphisms.

It is possible to construct other fully abstract models, showing that the second

part of this theorem has point; it may also be the case that ~ ~s initial in a

wider class of models includAng "unnatural" interpretations.

AcknowledKements

This research was carried out with the aid of SRC grant GR/A/75125.

R. Milner, K. Apt and the referees for their helpful suggestions.

References

[ADJ]

[Apt]

[Bar]

[Ber]

[Henj

[Hen~

[Hinl]

[Hin~

[Lan]

[Mill]

We thank

(Goguen, J.A., Thatcher, J.W., Wagner, E.G. and Wright, JOB.) (1977) Initial
algebra semantics and continuous algebras. JACM, Vol. 24, No. I, 68-95.

Apt, K.R. (1979) Ten years of Hoare's logic, a survey. To appear.

Barendregt, H. (1977) The type-free lambda calculus. Handbook of Mathematical
(ed. J. Barwise), pp. 1092-1131, Amsterdam: North Noliand.

Berry, G. (1979) ModUles Compl~tement Ad~quats ~t Stables des Lambda-Calculus
Ty])eSs. Th~se de doctorat d'~tat. Universite Paris VII.

Curry, H.B., Feys, R° and Craig, W. (1968)Combinatory Logic, Volume I.
Amsterdam: North Holland.

Hennessy, M.C.B. and Plotkin, G.D. (1979) Full abstraction for a simple
parallel programming language. MFCS '79, 01omouc. Springer-Verlag
Lecture Notes in Cpmguter Science , Vol. 74, pp. 108-120.

Hennessy, M.C.B. and Milner, R. (1980) On observing nondeterminism and
concurrency. ICALP'80, Noordwijkerhout. SDringe ~ Verlag Lecture NotBs in
Co_mpute ~ Science. To appear.

Hindley, J.R., Lercher, B. and Seldin, J.P. (1972) Introduction to combin-
atory logic. Cambridge: Cambridge University Press.

Hindley, J.R. and Longo, B. (1978) Lambda calculus models and extensionality.
Universita degli Studi di Pisa, Istituto di Scienze dell'Informazione.
No__.%eScig~%ifiche S-7~T~ ,.

Landin, P.J. (1966) A lambda-calculus approach. Chapter 5. Advances in
Programming and Non-NumericalCpmputation. Pergamon Press.

Milne, G.J. and Milner, R. (1979) Concurrent processes and their syntax.
JA_._/(~, Vol. 26, No. 2, 302-321.

274

[Nil2]

[Mil3]

[M~14]

[Mil5]

[Mil6]

[Mil7]

[Obt]

[Pet]

[Plo]

[Smy]
[Weg]

[~oa]

Milner, R. (1976) Models of LCF. Mathematical Centre Tracts, 82, pp. 49-63.
Amsterdam.

Milner, R. (1977) Fully abstract models of typed A.calculi. Theoretical
Computer Science, Vol. 4, 1-22.

Milner, R. (1978) Algebras for communicating systems. Proc. AFCET/SMF
Joint Colloquium in Applied Mathematics (Palaiseau, France). Also
available as CSR-25-78, Computer Science Department, University of Edinburgh,
1978.

Milner, R. (1978) Synthesis of communicating behaviour. Proc. 7th MFCS
Conference, Zakopane, Poland. Springer Verlag Lecture Notes in Computer
Science, Vo~.64, pp. 71-83. Berlin: Springer Verlag.

Milner, R. (1979) An algebraic theory for synchronisation. Theoretical
Computer Science 4th Gl Conference , Aachen. Springer Verlag Lecture Notes
Computer Science, Vol. 6~, pp. 27-35. Berlin: Springer Verlag.

Milner, R. (1979) Flowgraphs and flow algebras. JACM, VQl# 26, No. 4, 794-
818.

Obtulowicz, A. (1977) Functorial semantics of the type free calculus.
Fundamentals of Computation Theory. Springer Verlag Lecture Notes in Computer
Science, Vol. 56, pp. 302-207. Berlin: Springer Verlag.

Petri, C.A. (1976) Nichtsequentielle Prozesse. Arbeitsberichte des IMMD, Bd.
9, Heft. 8, p.57 ff. Universit~t Erlangen-Nurnberg. Also Non Sequential
Processes, Translation by P. Krause and J. Low. Internal Report GMD-ISF-77-05,
Bonn (1977).

Plotkin, G.D. (1976) A powerdomain construction. SIAM Journal on Computing,
Vol. 5, No. 3, 452-487.

Smyth, M. (1978) Powerdomains. JCSS, Vol. 16, No. I.

Wegner, P. (1972) The Vienna definition language. Computing Surveys, Vol. 4,
No. 1.

Hoare, C.A.R. (1978) Communicating sequential processes. CACM, Vol. 21, No. 8,
666-677.

