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At first sight, type theory and recursion are com-
patible: there are many models of the typed lambda
calculus with a recursion operator at all types. How-
ever the situation changes as soon as one considers
sums. By a theorem of Huwig and Poigné, any carte-
sian closed category with binary sums and such a gen-
eral recursion operator is trivial. Domain theory pro-
vides the category of cpos and continuous functions.
It is cartesian closed and has a general recursion oper-
ator — the least fixed-point operator. It (necessarily)
does not have binary sums, but the closely associated
category of cpos and strict continuous functions does.

We propose an analysis in terms of intuitionistic lin-
ear logic, or, better, intuitionistic linear type theory.
This is compatible with a general recursion operator
for the intuitionistic functions. The category of cpos
and strict continuous functions provides a very simple
model of the combination of the type theory with such
a general recursion operator. The continuous func-
tions appear as the intuitionistic, not necessarily lin-
ear, ones. There are many other interesting models
available arising from other notions of computation or
variant categories of domains. As the cpo model al-
lows contraction, relevant type theory is more appro-
priate for it than linear type theory. However other
models do not permit contraction; an example is the
category of complete semilattices and completely ad-
ditive functions. This is also the category of algebras
of the Hoare powerdomain which assigns to every cpo
the collection of all non-empty Scott-closed subsets.

Another concern of semantics has been polymor-
phism. Various models of Girard’s System F and re-
lated calculi have been developed. Of particular in-
terest are those where polymorphism is treated para-
metrically (uniformly). Various notions of parametric-
ity arise, such as the relational one of Reynolds or
the dinatural one of Bainbridge, Freyd, Scedrov and
Scott. With Reynolds’ relational parametricity, one

has derivable in System F finite products and sums,
second-order existential quantification and initial and
final algebras (of definable covariant functors). It is
both interesting — and necessary for the development
of the semantics of programming languages — to con-
sider the interaction of polymorphism and recursion.
However as the parametric models have categorical
sums, a now familiar difficulty arises.

We consider instead a second-order intuitionistic
linear type theory whose primitive type constructions
are linear and intuitionistic function types and second-
order quantification. In the presence of a suitably
modified form of Reynold’s parametricity the usual
operators of propositional linear logic can be derived
by formulae very similar to the Prawitz-Scott formu-
lae familiar from the intuitionistic case; categorically,
one obtains a model in Seely’s sense. One also ob-
tains initial and final algebras for definable covariant
functors over the category of linear maps. As before,
one can consistently add a general recursion operator.
One can then show compactness, in Freyd’s sense, and
obtain canonical solutions to arbitrary recursive type
equations of the form X ∼= T (X, X) (where now T
is a bifunctor contravariant in its first argument and
covariant in its second).

It is convenient to work in a suitable second-order
logic rather than consider directly the various possi-
ble categorical structures. The logic is formed from
the equational formulae of an appropriate type theory
by adding sufficient logical apparatus to enable the
formulation of a schema for relational parametricity.
Within the logic various induction and co-induction
principles can be defined for initial and final algebras;
corresponding means of reasoning are available for the
other derivable type constructs. The logic can be con-
sidered as a logic of programs in the same spirit as the
Logic of Computable Functions, originated by Scott
and further developed by Milner et al.


