4

Building-in Equational Theories

G. D. Plotkin

Department of Machine Intelligence
University of Edinburgh

INTRODUCTION
I let loose, resofution theorem-provers can waste time in many ways. They
can continwally rearrange the multiplication brackets of an associative
multiplication operation or replace terms ¢ by ones like f{f{(f(#, ¢), €),)
where f is a multiplication function and ¢ is its identity. Generally they
continually discover and misapply trivial lemmas. Global heuristics using
term complexity do not help much and ad hoc devices seem suspicious.

On the other hand, one would like to evaluate terms when possible, for
example we would want to replace 5+4 by 9. More generally one would like
to have liberty to simplify, to factorise and to rearrange terms. The obvious
way to deal with an associative multiplication would be to imitate people, and
just drop the multiplication brackets. However used or abused the basic facts
involved in such manipulations form an equational theory, T, that is, a
theory all of whose sentences are universal closures of equations.

Under certain conditions, we will be able to build the equational theory
into the rules of inference. The resulting method will be resolution-like, the
difference being that concepts are defined using provable equality between
terms rather than literal identity. Therefore the set of clauses expressing the
theory will not be among the input clauses, so no time will be wasted in the
misapplication of trivial lemmas, since the rules will not waste time in this
way.

Such devices as evaluation, factorisation and simplification consist of the
application of a recursive function, N, from terms to terms with the property:

Fpt=N{t).
For example, given an associative function fin 7, N might rearrange ¢ with
alt the f’s as far to the right as possible; for an arithmetic expression 7, N(¢)
might be the value.

The simplification function can be extended to one from literals and
clauses to, respectively, literals and clauses by:

73

COMPUTATIONAL LOGIC

N{(E£)P(t1, - - -, £))=(L)P(N (&), . . ., N(%,))
N(C)={N(L)|Le C}
and similarly to other expressions.

We shall look for a complete set of rules ry, .. ., r, such that rie N, ...,
r, o N is also a complete set. (If r is a rule, r o ¥ is the rule which outputs
N(C) iff r outputs, with the same inputs, C). So the required facilities can be
used, but incorporated in a theoretical framework.

While one could just drop the brackets of an associative operation, and
make appropriate changes, such a procedure could not be systematic. Instead
note that the set of terms in right associative normal form is in a natural I-1
correspondence with the set of ‘terms’ in which the multiplication brackets
and symbols, and the commas are dropped. So the bracketless terms will be
considered simply as an abbreviation for the normal form. This situation
seems to be quite common. Another example: if T is the theory of Boolean
algebra, terms can be represented as sets of sets of literals, being in 1-1
correspondence, according to convention, with terms in either a suitable
disjunctive or conjunctive normal form.

Normal forms will be considered to be given by a simplification function,
N, which in addition satisfies the postulate:

If b t=u then N(?) is identical to N(u).

A theory T has a normal form iff it is decidable.

This does not cover all uses of the phrase. For example in the untyped
J-calculus, not all terms have one and N is only partial recursive. And of
course things other than terms can have normal forms. As defined, normal
form functions give less redundancy than any other simplification
function.

The special characteristic of resolution-like methods is the unification
algorithm. In our case, unification is defined relative to the theory T. A
substitution, ¢, T-unifies two terms ¢ and u iff F 6 =uo. The exact generalisa-
tion of the notion of most general unifier will be given later; in general
rather than a single most general unifier, there will be an infinite set of
maximally general ones.

Define an N-application and composition operator, *, by:

t+o=N(to)
oxp=N(op)

It can be shown that = possesses properties analogous to ordinary applica-
tion and composition independently of the particular T and N chosen (sce
Robinson 1965).

For each equational theory one must invent a special unification algorithm
with these equations built in. If we know a normalising function for the
theory we are likely to get a more efficient algorithm. The purpose of this
paper is not to display such algorithms, although we will give a couple of
examples to fix ideas. Qur purpose is to show how, given any such unification
algorithm satisfying certain conditions, the usual resolution techniques can

74

PLOTKIN

be carried through using the more sophisticated algorithm, and without
losing completeness.

Now as an example, consider the case where T is the theory of an associa-
tive function, f, whose language may include other function symbols, and
N(t) is the right associative form of .

How can we unify f(x, y) with f(a, f(b, ¢)) which is equal to f(f(a, b), ¢)?
There are two T-unifications: x=a, y=f(b, ¢) and x=f(a, b), y =c. The first
is straightforward. The second can be obtained in two steps:

(1) Put x=f(a, x') where x" is a new variable.
(2) Unity f(f(a, x'), y) with f(a, f(b, c)).

In step (2) we should normalise both expressions before unifying, so we
actually unify f(a, f(x', y)) with f(a, f(b, ¢)). Thus x'=5 and y=c, giving
us the second unification.

In practice it is simpler to reuse the variable x instead of introducing a new
variable x’.

The unification algorithm is non-deterministic; a substitution is in the
maximally general set of T-unifiers it defines iff the substitution can be output
by the algorithm. That this set has the correct properties, and the correctness
of the other algorithm given in this introduction is proved in Plotkin (1972).
Terms are, temporarily, regarded as strings of function symbols, brackets,
commas and variables. The disagreement pair of two terms ¢ and u is the
rightmost pair of distinct terms ¢ and #’, such that ¢ and « have the forms
Xt'Y and Xu'Z respectively, for suitable strings X, ¥ and Z.

(1) Set ¢ equal to .
(2) If ¢ is identical to u, stop with success and output ¢.

J(x,2)
Sfla, f(y, b))

fa, z) A, f(x, 2))
fa, f(y, b)) Sfla, f(y, b))

F(a, (3, b)) ﬂm;jz?::;%;IEISSEfﬁéﬂn@)

J
fa, f(y,8)) fAaf(3, b)) fla,f(y, b)) fa, f(x, f(3,)

suceess Sfailure
Sfla, f(y, b)) Sa, f(x, f(y, 8)))
fla, f(y, b)) Sa, f(x,/(y, b))
Suceess suceess
Figure 1
75

COMPUTATIONAL LOGIC

(3) Find the disagreement pair, ¢’, #’ of # and u.

(4) If ¢" and ' begin with different function symbols, stop with failure.

(5) If t" and «' are both variables, change ¢, u and o to z * 4, u * Aand o * A
where A is either {u'/¢'}, {f(¢,#)[t'} or {f(¢',0')[u'}.

(6) If ¢’ is a variable and #' is not, then, if ¢* occurs in ', stop with failure;
otherwise change 7, u and o to £ A, u * /. and o = A where A is either {«'/t'}
er{fs,)1y

(7) If « is a variable and 7’ is not, then, if #’ occurs in ', stop with failure;
otherwise change #, u and o to ¢+ A, u + A and ¢ * A where 1 is either {#'/u'},
or {f(t',u)u'}.

(8) Go to 2.

Figure 1 gives an example which traces the values of 7 and u through the
execution tree of the algorithm when t=f(x, z) and u=f(a, f(y, b)), giving
all the successful and some of the unsuccessful searches.

The set of unifiers is {{a/x,f(»,b)/z}, {f(a,y)|x,b]z}, {f(a,x)]x,
S(x,)9, f(,8)]2}}

One can have infinitely many successes, as illustrated in figure 2, where
we are now using the abbreviation mechanism, writing xy for f(x, y); g is
some other function. In this case, the set of unifiers produced is

{{a"|x,a"[y}|n>0}.

Infinite failures are also possible: for example, take

t=g(x, xa) and u=g(y, by).

g(x, xa)
gy, ay)
\
g(y,|ra) !J(_m.\'a)
gy |ar)| < gy, ay) g (xy, axy)

~ . . .
~ Jailure Jfailure
~

~

gla, aa) glaysa|ya)
g(a, aa) g(ay, alay)

sueeess

Figure 2

We conjecture that it is possible to decide whether two terms have a
unifier — this is essentially the same problem as deciding whether a set of
simultaneous equations in a free semigroup has a solution.

As a second example, we give an ‘arithmetical evaluation’ theory. Among
its function symbols are two binary ones + and x and infinitely many

76

FLUIRNILIN

constants — the numerals A,(n>=0). The axioms are:
(1) a5 (Am: An) =Am+rx (m’ 1‘120)
(2) x(A,, A)=Anxn (m, n=0).
These are just the addition and multiplication tables.

N(?) is obtained from ¢ by continual application of the reduction rules:
(1) Replace an occurrence of +(A,, A,) by one of A, (m,n=0)
(2) Replace an occurrence of x (A, A,) by one of Anyn (m,n=0)

A term, #, is a number term iff the only function symbols occurring in ¢
are +, x or numerals.

Suppose Eq is a set of equations and Ineq is a set of sets of inequations and
all terms in Eq or Ineq are number terms. A substitution, o, solves Eq and
Ineq iff:

(1) If x is a variable in Eq and Ineq then xo is a numeral and otherwise xo
is x.

(2) If t=uis in Eq then ¢ % o is identical to u * .

(3) Every member of Ineq has a member, ¢5#u, such that = ¢ is distinct
from u * G.

For example, {3/x} solves ({x+2=5}, {{x#0}}).

In general {g'|o solves Eq and Ineq} is a partial recursive set, being the set
of solutions of a certain set of Diophantine equations and inequations,
effectively obtainable from Eq and Ineq.

The algorithm for producing a maximally general set of unifiers for two
normal terms 7 and u is:

(1) Set Unify to {#=u}, Eq and Ineq to (J and ¢ to &.
(2) Remove equations of the form #=¢ from Unify.
(3) If Unify is empty, let u be a substitution which solves Eq and Ineq,
change ¢ to ¢ * p and stop with success.
(4) Remove an equation, ¢ =u, from Unify.
(5) If t and u are variables, replace Unify, Eq, Ineq and ¢ by Unify = 4, Eq = 4,
Ineq * A and o * A respectively, where A ={r/u}.
(6) Suppose ¢ is a variable and u is a number term. If 7 occurs in u, put
t=u in Eq; otherwise replace Unify, Eq, Ineq and ¢ by Unify = 4, Eq = 4,
Ineq * A and o * 1 respectively where A={u/t}.
(7) Suppose ¢ is a variable and u is a term, but not a number one. If 7 occurs
in u, stop with failure; otherwise replace Unify, Eq, Ineq and ¢ by Unify = 4,
Eq * 4, Ineq * 2 and ¢ * A respectively, where Z={u/t}.
(8) If u is a variable and ¢ is not, proceed as in steps 6 and 7, but reverse the
roles of ¢ and .
(9) If z and u begin with distinct function symbols then if either of them are
not number terms stop with failure, otherwise put 7=u in Eq.
(10) If # and u begin with the same function symbol, f, say, and one of them
is not a number term, then add

ti=u, . . ., t,=u, to Unify where t=f(t1, .. ., t,) and u=f(u1, . . ., t,)
(11) If ¢ and u have the forms g(#, #2) and g (ui, u2) respectively and both

il

COMPUTATIONAL LOGIC

are number terms, where g is either + or x, then either add 7=u to Eq and
{#1#uy, h#1u2} to Ineq or else add #;=u; and f2=u, to Unify.
(12) Go to 2.

In the above, steps 3 and 11 are non-deterministic. The equation removed
in step 4 is to be chosen in some fixed way. The algorithm always terminates,
and can be implemented efficiently (apart from the difficulty of having to
solve arbitrary Diophantine equations!). It uses no special properties of +
or x and so can be adjusted to suit any similar evaluation theory.

For example, suppose 7 is X (x, x) and u is x (A, X (y, ¥)), then, at the
beginning of the algorithm, we have Unify ={x (x, x)=x (A4, X (3, N}
Eq=Ineq=(J and ¢=¢. Next, the execution sequence splits at step (11)-
Either Unify becomes &, Eq becomes { x (x, x)= x (A4, X (3, ¥N}, Ineq
becomes {{x#A4, x# % (¥,¥)}} and o still has the value ¢, or else Unify
becomes {x=A4, x= % (»,¥)}, Eq and Ineq remain at & and o at . In the
first case, the algorithm stops successfully at step (3), via a p of the form
{Ag,[x, A,/y}, where n=0 and n#2, and then o=p. In the second case,
supposing x=A4 to be chosen at step (2), after step (6) we have Unify=
{As=x(»,¥)}, Eq=Ineq=J and o={A4/x}. After steps (9) and (3), this
execution path terminates with 6 ={A4/x, Az/ y}. If the commutativity and
associativity of x were also built-in, one would expect here the single result,
X=X (Az, y)

As a final example, the theory of an associative, commutative, idempotent
binary function also has a unification algorithm - although we only know an
extremely inefficient one. In this theory every pair of terms has a finite
maximally general set of unifiers. This can be considered as building in sets,
to some extent.

We believe most common algebraic systems admit unification algorithms.
In particular we believe one can build in bags, lists and tuples in this way
(Rulifson 1970). Group theory seems difficult. In general, the problem of
finding a maximally general set of unifiers resembles, but is easier than the
problem of solving in a closed form, equations in the corresponding free
algebra. Other people have designed unification algorithms (Bennett, Easton,
Guard and Settle 1967, Gould 1966, Nevins 1971, Pietrzykowski 1971,
Pietrzykowski and Jensen 1972) but have not demonstrated that their methods
satisfy the independence condition or, with the exception of Pietrzykowski
et al., the completeness one (see later). Cook (1965) seems to be the first
person to notice the usefulness of normal forms in the theorem-proving
context.

FORMAL PRELIMINARIES
The formalism is that of Robinson (1965) and Schoenfield (1967). The two
are compatible with some minor adjustments. Clauses should be regarded as
abbreviations for a corresponding sentence. Schoenfield omits brackets in
his terms; these should be put back.

78

FLULNILIN

We use the equality symbol in infix mode and regard ¢=u and u=¢ as
indistinguishable, thus building-in symmetry. Although the logic is not sorted,
only minor adjustments are necessary to accommodate disjoint sorts.

The letters 7, u, . . . range over terms. An occurrence of ¢ in v is indicated
by v(z); v(u/t) indicates the term obtained from v(z) by replacing that
distinguished occurrence of # in v by one of u.

The letters L, M, . .. range over literals. The general form of a literal is
(+) P(ty, ..., 1,). L is like L, but has opposite sign.

The letters C, D, ... range over clauses. By convention, Cv L represents
the clause C U {L} and implies L is not in C. Similarly Cv D represents Cu D,
and implies C N D= and D# . Equations are unit clauses, {f=u};
{ts£u} is the general form of an inequation. The clause C is {L|L in C}.

The letter S varies over sets of clauses and Eq varies over sets of equations.
The letter & stands for a set of sets, each member of which is either a finite set
of terms or a finite set of literals. Greek letters g, y,. . . range over substitutions:
¢ is the empty substitution. If ¢ ={y1/x1, . . ., ¥,/ X, } and the y; are all distinct
then & is invertible and &1 is defined to be {x;1/y1, . . ., X,/ ¥, }. The letter &
is reserved for invertible substitutions. With each pair of clauses C and D,
an invertible substitution &¢ ; is associated in some standard way, and is
such that C&. , and D have no common variables and if x does not occur
in C, x{¢ p is x.

The letter V" ranges over finite sets of variables. Var(---) is the set of
variables in the syntactic entity - - -, which can be a term, literal, clause or
sets of sets of . .. such; substitutions may be applied to such entities in the
natural fashion. The restriction of ¢ to V, oV is the substitution p such that
if x isin V, xu=x0 and otherwise xp=x.

From now on we discuss a fixed equational theory T with language L.
In order to allow for Skolem function symbols we make:

Assumption 1. L contains infinitely many function symbols of each degree,
none of which occur in 7. :

Suppose L has the form (%) P(#,. . ., #,) and M has the form (£) O(u,

.., Uy). Then if P is not the equality symbol, b L=M iff P and Q are
identical, L and M have the same sign and, 1 #;=u;, (1<i<n).

Simplification and normal-form functions have been defined in the intro-
duction. They can be applied in the natural way to literals, clauses, and sets of
sets of . . . such.

GROUND LEVEL
We will formulate a set of rules, complete at ground level.
Define an equivalence relation, ~, between literals by:
If the equality symbol does not occur in L, then L~ M iff b L=M.
If it occurs with the same sign in both, L is (+)¢#=u and M is
(£)v=w, then L~M iff by (¢=0)A(u=w) or b (2=w)A (u=0).
Otherwise, L~ M.

79

COMPUTATIONAL LOGIC

A set of literals is a T-unit iff L~ M for any L, M in the set.

If C" v D" is a T-unit containing no occurrence of the equality symbol,
then C’ w D’ is a ground T-resolvent of C=C’"v C" and D=D"v D"

IEC=Ehafi=in V., « o L=uas0), D=Diywe DTy (1) P(vis o, O,
.. w0y)isin D7, {#;=u;|i=1,n} and D" are T-units and k1 vj,=w(#) then

ChwiD v {(i)P(Ug, e o Ujo—1, W([B) Diot 15 1 U,,,)}
is a ground T-paramodulant of C and D.

If C=C'vti#uv...v ty,#u(n>0)and {7;#u;|i=1,n} is a T-unit and
Frt, =u,, then C’ is a ground T-trivialisation of C.

These rules are, in general, semi-effective; they are clearly consistent. If,
in an application of one of the above, # (C")=4# (D")=n=1 (4 is the
cardinality function) the application has degree 1.

Given a set, Eq, of ground equations, write 7~ u iff there is a term w(v)
and another v’ such that k1 t=w(v), {v=v"} is in Eq and u=w(v'/v). Note
that if #~,u and F u=uv then for some w, vaw and by w=¢, thatif by t=u
and u;~w then r=w, and if ;= u then f(#,..., Yyt - on it n,

e A ¢)
Jjtis »*n
Now define ~ by: r~u iff there are 7,(n> 1 and 1<i<n) such that
t=t =y ... &, and F £,=u.

Lemma 1. t~u iff Frugq t=1u, if £ and u are ground terms.
Proof. Evidently ¢~u implies Frogq #=u. Conversely, the properties of =~
ensure that &~ is a congruence relation. With the usual square bracket
notation for congruence classes, define an interpretation, 2/, whose domain
is the set of congruence classes and whose operations are given unambiguously
by:

&f(f)([lf]], vis 5y [rn])=[f(t1= AR tr:)]'

Every equation in T u Eq is true under this interpretation, so as Frugq £ =1,
then [¢]=o7 (1) =7 (1) =[u]; that is, = u.

Theorem 1. Suppose S is a non-empty set of non-empty ground clauses such
that S U T has no model. Then there is a derivation of the null clause from §
using the rules given above, in which all applications of the rules have degree 1.
Proof. The proof is by induction on the excess literal parameter
I(S)=Y (% (C)—-1)=0.
CeS

When /(S)=0, S is a set of unit clauses. Let EQ< S be the set of equations
in S. If every set of the form Eq u {z#u} u T ({¢u} in S) or the form
Equ {{L}{M}} UT({L}, {M} in S) is satisfiable, then it can be shown
that S u T is satisfiable. Consequently a set with one such form is unsatis-
fiable.

In the first case, Fgqut #=u and so, with & as in lemma 1, ¢ = u. So, by
successive ground T-paramodulations from Eq into ¢, one can obtain a
clause t'#u such that 1 ¢t'=u. From this the null clause is obtained by a
ground T-trivialisation of degree I.

The second case is similar but uses a ground T-resolution.

80

PLOTKIN

If I(5)>0, there is a literal L in a non-unit clause C in S. Applying the
induction hypothesis to S'=(S\{C}) v (C\{L}), we obtain a derivation
of the null clause, by the above rules, from S§’. So either there is a derivation
of the null clause from S by the rules or there is one of { L} by them, from S.
In the second case, we obtain, by induction, a refutation of $”"=(S U {L})\
{C} and the proof is concluded.

Notice that in the above if S contains no occurrences of the equality symbol,
then a refutation of S can use only ground T-resolution; similar results hold
for other grammatical possibilities.

A clause C, is a ground N-T-resolvent of D and E iff C=N(C") for some
ground T-resolvent of D and E. Ground N-T-paramodulation and trivialisation
are similarly defined.

A partial order < is defined between clauses by:

CZ D iff there is a function ¢p: C— D such that L~ ¢ (L) for every
LinC.
Note that N(C)< C, for any clause C

One can check that if CSC’, DS D’ and E’ is a ground T-resolvent of C’
and D’ then either CTE’, DSE’, or ESE’ for some ground T-resolvent E
of C and D; similar results hold for the other two rules.

From these remarks, it follows that if S has a refutation by the T rules, it
has one by the N-T ones; further remarks analogous to those made im-
mediately after theorem 1 also apply. (Actually only degree 1 applications of
the rules are necessary).

Greater freedom in the application of N is permissible. One can allow N
to depend on the derivation of the clause to which it is being applied ; perhaps
N could even depend on the state of execution of the algorithm searching for
a refutation.

UNIFICATION

A substitution, o, is a T-unifier of & iff when ¢, u are terms in the same set in &,
brte=uc and if L, M are literals in the same set in &, Lo~ Mo.

An equivalence relation between substitutions is defined by:

o~ (V) iff, for all variables, x, in ¥V Frxe=xu.

Note that, if 6~ u (V) thenov~pv(¥) and if 6 ~ p (Var(¥v)) then ve ~vu (V)
for any v.

A set, T, of substitutions is a maximally general set of T-unifiers (MGSU) of
& away from V iff:
(1) (Correctness). Every ¢ in I" T-unifies &.
(2) (Completeness). If ¢ T-unifies &, then there is a ¢ in I" and a 1 such that
o' ~al (Var(&)).
(3) (Independence). If ¢ and ¢’ are distinct members of I', then for no A
does ¢’ ~gl (Var(&)).
(4) For every o in I" and x not in Var (&), xo=x.
(5) Foreveryo in I', Var(8o) n V=(7.

81

COMPUTATIONAL LOGIC

Conditions 4 and 5 are technical: from every set satisfying the first three
conditions one can effectively and, indeed, efficiently construct one satisfying
them all. Note that conditions 2 and 3 use relative equivalence rather than
equality. These conditions can be satisfied in cases where the corresponding ones
with equality cannot, and we know of no example of the opposite situation.

We also know of no example of a theory T and an & and V for which there
is no such T, although we expect that one exists.

However we make:

Assumption 2. There is a partial recursive predicate P(&, 0, V) such that
(&, V)= {c|P(&,0, V)}is a MGSU for & apart from V.

On this basis, semi-effective proof procedures can be developed. Of course
in each case we should look for efficient algorithms for generating T'.

We conjecture that if Z; and L, are any two languages, not necessarily
satisfying assumption 1 and L; is the language of T then if there is a (partial
recursive, recursive, effectively obtainable, efficiently obtainable) MGsu for
any &, whose vocabulary is in Ly and any ¥ then there is a (partial recursive,
recursive, effectively obtainable, efficiently obtainable) MGsU for any whose
vocabulary is in L; U L. This would eliminate the necessity for assumption 1
and would as a special case, yield unification algorithms for evaluation
systems like the arithmetical one in the introduction. Indeed if we consider
theories Ty, T» whose languages are Ly, L, respectively, such that L; 0 L=,
it may be the case that MGsu’s for T; U T always exist (and are partial
recursive, etc.) if the same holds for T; and T individually.

The algorithms given in the introduction do not quite conform to the
specifications in that they do not give unifiers for an arbitrary & and, further,
violate condition 5, in general. However, this is easily corrected. Interestingly,
instead of condition 5, they satisfy:

(5") For every ¢ in T, Var (o) < Var (&).

This condition allows the subsequent theory to proceed with some modifica-
tions, but can’t be fulfilled for some T’s for which 5 can.

MGSU’s are essentially unique. If T, I are MGsU’s for § away from ¥ and
V7, say, there is a bijection ¢: =TI such that for all ¢ in T there are 1, 2’
such that o~ ¢ () A(Var(&)) and ¢ (o) ~ad’ (Var (£)).

Again, if & and & have the same set of T-unifiers and variables, I' is a
MGsU for & away from Viff it is for &”. This holds, in particular, if " =N(&).

A change of variables in & causes a corresponding one in I'. If I' is a
MGsU for & away from V then if & maps distinct variables of & to distinct
variables, {(&-10)[Var (6¢)|o e T'} is a MGsU for §¢ away from V.

Before defining suitable generalisations of resolution and so on, one should
decide between formulations with or without factoring. Usually the difference
is one, merely, of efficiency; the justification lies in a theorem of Hart (1965)
(see also Kowalski (1970)), that if ¢ is a m.g.u. of & and ¢” is of &’a then oo’ is
of & U &’. Unfortunately the generalisation of this theorem fails. We can prove:
Theorem 2 (Weak Refinement Theorem). Suppose I' is a MGSU for & apart

82

PLOTKIN

from Var (&,) u ¥V and for each ¢ in T, Iy is a MGSU for &»0, apart from
Var(&io) u V.

Then, I'={oulVar(&1 U &)|ce T, uel,} satisfies conditions 1, 2, 4
and 5 for being an MGsu for &; U &, away from V.

Proof. Conditions 1, 4 and 5 may be straightforwardly verified. To establish
condition 2, suppose 0 T-unifies &; U &2. Then by condition 2 on T, there is a
o in I" and a 2 such that:

O~ai(Var(&r)).

It can be assumed, without loss of generality, that 2=.AVar(&6). Now
Var(&2) 0 Var(&10) = by hypothesis and condition 5 on I'. So /'=1u
(0]Var(&2)) is a substitution. Now:

O~ol (Var(&; U &2)).

For if x is in Var(&1) then Var(xe) n Var(&2) =, so xei' =xcl and
Fo xad=x0.1f x is in Var(&>) but not in Var (&) then xe¢ =x, by condition 4
on I' and xA=x by assumption. So xA'=x(0] Var(&>))=x0.

Therefore ¢4 T-unifies &1 U &>, 1 T-unifies >0 and so by condition 2 on
I's, there is a p in T'; and a § such that:

A ~ud (Var(&20))

It can be assumed without loss of generality that 6] Var(&20u) =38. Now,
Var(&10) n Var(&20u)=f, by hypothesis and condition 5 on I,. So
(51;=(S w (AT Var(&10)) is a substitution and one can show much as above
that:

A~ps” (Var((81 v 62)0))
Then oA ~oud (Var(&; v &2)) and:

O~c2 ~a(ud")~(opl Var(&; u &2))8 (Var (&) v &2)),
concluding the proof.

When T is the theory of an associative, commutative idempotent function,
one can find examples where condition 3 fails. We will therefore formulate
the rules without using factoring. (Factoring would still result in complete-
ness, but would cause redundancy which although eliminable by a sub-
sumption-type check would probably cause more trouble than it was worth.)
Condition 3 does hold, however, in the associative and evaluation examples
given in the introduction.

Gould (1966) has defined, in the context of w-order logic, the concept of
a general matching set.

In our terms, a literal, M, is a T-unification of L and L' iff for some o,
Lo~M~L'o.

.ﬂ‘Then, A is a general matching set of literals for L and L' away from V
iff:

(1) Every member of A is a T-unification of L and L'.

(2) If M" is a T-unification of L and L’, then there is a A and an M in A such
that MA~M'.

(3) If M, M' are distinct members of A then for every A, MA~ M".

(4) If Misin A, Var(M) n V=¢.

G 83

In our opinion, this concept cannot, in general, be made the basis of a
complete inference system; a counterexample will be given later.

GENERAE LEVEL
We begin with the rules.

Suppose ¢ is in T({C"p w D"}, Var (C&; p U D)) where C=C" v (7,

D=D" v D" and the equality symbol has no occurrence in C”. Then,
C'éc po © Do is a T-resolvent of C and D.

A variable-term pair is special iff it is of the form (x, x} or else {x, f(xi,
e Kty By Xisls - - o %) p(1>0) and (x, t) is special and the x; are distinct
and not in .

Given an occurrence of a term u in another v there is a unique, to within
alphabetic variance, special pair {x,) and a substitution 7 such that:

(1) v=t{u/x}m,

(2) {u/xIn=n{u/x},

{3) x has the same occurrence in f as u in v, and
(4) Var($) m Var(v)=0.

We assume available a function, Sp, from finite sets of variables to special
pairs such that:

(1) There is an alphabetic variant of every special pair in Sp{¥).
(2) No two distinct members of Sp(V') are alphabetic variants.
(3) If {x, ty is in Sp(¥), Var (1) n V'=(.

Suppose C=C'vty=u,v...v b,=u n>0), D=D'v D", (%) Plus, ...
Djos + + o D) IS 0 DY, {x, £ is in Sp(Var (CZ; p u D)) and that & ={ { #:{¢ pl
i=1, ”}a {ui&,‘,Di i=1, n}s D, {UJ'Oa t{héC,D/x} }}

Then, if ¢ is in T(&, Var (CZ; p w D)),

Céepo v Do {(£IP(vio, . ., 0j0-10, t{tnlc p/ X}0, 050418, . . ., Up0)
is an assisted primary T-paramodulant from C into D.

Suppose that C=C’ vty #uy... v LFu(n>0)andeisin T({{f,]i=1,n} U
{v;ii=1,n}}, Var (C)}; then, C'o is a T-trivialisation of C.

These three rules are evidently consistent and semi-effective.

For completeness a lifting lemma is needed.

Lemma 2

(1) Suppose £’ is a ground T-resolvent of ground clauses Cu and Dv. Then
there is a T-resolvent, E of € and D and a A such that EATE".

(2) Suppose E’ is a ground T-paramodulant from the ground clause Cy into
the ground clause Dv. Then there is an assisted primary T-paramodulant, E,
from C into D and a A such that EASE".

(3) Suppose E’ is a ground T-trivialisation of the ground clause Cp. Then
there is a T-trivialisation, E, of C and a A such that EASE".

Proof. Only the proof of part 2, the hardest one, will be given.

Let o' = (&g put Var(Céc p)) w (v[Var(D)).

Then C&; po' =Cp and Do’ =Dv. So, as E” is a ground T-paramodulant of
(Céc.p)o’ and Do’ there are subsets C’, D" and D" of Cand D, respectively,

84

PLOTKIN

.and terms t, u; {{=1, n), t, u, vh, ¢’ (tyand aliteral () P(v4, . . ., Vs - - v
i D%’ such that:
Cée p6' =C'8e po’ v{(t=u)c po'ti=1, n},

De'=D'¢"v D'¢’,
l‘]éc,DJ'=t
e po’ =u

bg 05 =0"(2), .

B =Ccpo’v D"V (E) PV, -y U1, V(0] 1), Ujgwn, - . oy 00,),
{(t;=u)lcpo'li=1, n} and D"’ are T-units,
C=C'vHh=mv...V ,=u,

D=D'v D",

Fotiée po’ =t {i=1,n) and

Frude po’ =u (i=1, n).

As 7 1s a subterm of ', there is a unique {x, w) in Sp(Var ((Cé. wD))
and an % such that: ’

v'=w{t/x}n, {t/x}n=n{t/x} and x has the same occurrence in w
as the distinguished occurrence of ¢ in v".

All the above equations hold if ¢* is replaced by ¢ =a"y, as Cu and Dy are
ground.

Now, let (£) P(v1, . . ., v,) be a literal in D" such that (+) P(vy, .. ., v,)c
=) P{v}, ..., v,). We have,

00" =0,

Fovie=0v'(t) and

V() =wit/xtn=w{tilc 0 [x}n
=w{tiZcp/x}on (aso'] Var(w)=¢)
=w{tcp/xjc"

Therefore, b1 v;,6"=w{t;¢¢c p/x} 6", and we have proved that ¢ T-unifies
Cf:{{tjéc,l)li:“la]’l}, {u;'fc,}ﬂ i= 17 ”}: D”: {Uio: W{IIEC,D/‘Y} }} So thereisa
g in I'(&, Var((CE. p, v D)) and a 1’ such that:

g ~gl (Var(£)).
One then finds, as in the proof of theorem 2, a A such that
o"~ol (Var((Céc p v D))
Now E=C"¢cpo v D'o U {{£)P(v10, . . ., vjo10, Winic p/x)0, vjor 10,
- U,0) }, Is an assisted primary T-paramodulant from € into D.
Since w{ue p/x}o” =w{wée p/x o'y
=wimicpo'ix}n (as o' Var(w)=2)
=wi{ufx}n
= v'(uft),
EL=C'cpod 0 D'ai v {(£)P(06h, . . ., vjo- 104, w{mée p/x o),
- Dior 104, oo o, DuoA) }
R CCe o W D' O {((R)P(vs0”, . . ., vjg-10", wiule p/x)67,
Uj(,+10‘”, . U,,,U'”)}
=Ce po” O D'6” O {{E)P(V, . oy Do 1, V(H/ 1), Vot 1, - - - v),)}
=£", concluding the proof.

g5

T COMPUTATIONAL LOGEC

Theorem 3. If § is a non-empty set of non-empty clauses such that §« T has

no model, there is a derivation of the nuil clause from S using the rules given

above. .)

Proof. First it is shown by induction on derivation size (that is, the number of

applications of rules) that if there is a derivation of a clanse £ from a'set

of ground clauses of the form U (Sw;), using the ground rules, then there is a
i

general derivation of a clause £ from S and a A such that EASE'.
When the derivation has size zero this is immediate.
Otherwise either there is a derivation of a ground clause €’ from a set of
clauses of the form | j(Se;) and another of a ground clause D from a set of
L

the form | j(Se¢?), each derivation having strictly smaller size than the main
j : i ?
derivation under consideration and E is a ground T-resolvent of C’" and D',

or a corresponding statement involving one of the other two ground rules 1s
true.

Let us suppose the first case holds. Then, by induction there are general
derivations of clauses € and D from S and, substitutions p and v such Ctl}aIt
CuSC and DyvS D', By a remark made after theorem 1 either C,uEE,,
DvS E’ or there is a ground T-resolvent E” of Cu and Dv such that E'ZE.
111 the first two subcases, we are finished with this case. In the third, by lemma
7.1 there is a T-resolvent, £, of Cand D and a [such that ELZ E”, concluding
this case.

A similar proof works in the other two cases. ‘

Now, as S v T has no model, there are, by Herbrand’s Theorem, substuu—
tions o, such that {) (So;) is ground and U (So;y w T has no model. Hence

I £

by theorem 1, there is a ground derivation of the null-clause from U (So)).

By the above, there is a general derivation of a clause £ from S and a 2 such
that E2S . Then E=5, concluding the proof. .
Kowalski (1968) proved that, when T = {J one need only paramodculate into
the functional reflexivity axioms, not from them, and all other pgramoduia-
tions can be primary. Theorem 3 strengthens this result: spe(l:ial. pairs take the
place of the functional reflexivity axioms. One can also {ns1st on Pi and
A-ordering restrictions, analogous to Kowalski’s, without losing completeness.
Other refinements are possible. For example one can define an £-T-
resolution tule and a corresponding E-T-trivialisation one analogous to
E-resolution (Morris, 1969). These two rules form a complete set, If one
regards an E-T-resolution as a many-input rule, rz_tther than a c_leductlon
using several T-paramodulations and a T-resolution (aifzd. similarly for
E-T-trivialisation), and says that a clause has suppors if it is in t?le _support
set or is obtained by a rule application with a clause with support in its input
set, the resulting set of support strategy is complete. (Anderson (1970)
showed that a stronger one is incomplete). Presumably, although we have

36

PLOTKIN

not checked, one can obtain systems analogous to the other ones for
gquality.

As in the ground case, when there is no occurrence of the equality symbol
in S, there is a refutation using only T-resolution, with similar things holding
for the other grammatical possibilities. When there are no equality symbols
oceurring in S, refinements analogous to all the usual refinements of the
resolution principle hold,

Again, using a simplification function N, one can define N-T-resolution
and so on and obtain N-T-versions of all the above, by methods like those
used in the ground case.

We do not know how to formulate the paramodulation conjecture, as the
cbvious way fails.

HC=CvCandoisin ['({C}, Var (C)), then if Lisin C”, C'o u {Lo}
is a T-factor of C, with distinguished literal Ls.

If C'=C"vi=uis a T-factor of C with distinguished literal t=u, D' =
DV (£)P(v1, . . 0oy - . ., 0,) i & T-factor of D with distingaished literal
E2)Pv, . .., 0,), w(') is a term such that by v =w(#') and ¢ is in T({{s,
I} 1), Var (C'éep v DY) then

C'éepo v D'e U ({£)P(or, ..o wlue p/t'), .. . 0,)0)
is a F-paramoduiant from C into D.

However, suppose T is the theory of an associative function, then if S=
H(bx, x)#fxa, caa), be=ca}, T is unsatisfiable but has no refutation by
T-resolution, T-trivialisation and T-paramodulation.

A clause C, is a T-tautology iff by C. We don’t know if any deletion
strategies work, even when T=(F. If there are non-equality literals £, M in C
such that L~ M, or a literal 7==u in C such that F, f==g, then C is a weak
T-tautology. The usual deletion strategies altered to take account of the extra
rules work in this case.

A clause C={L;} T-subsumes another D={M,} iff there is a & such that
Fr(V Lig)=(V M;). We do not know if any deletion strategies work, even

i i

when T=. If Co < D for some o then C weakly T-subsumes D. Appropriate
alterations of the usual deletion strategies work in this case.

Here is an example showing why we do not consider that the concept of a
seneral matching set of literals (or whatever) can be made the basis of a
complete system of inference.

Consider the rule:

Let C'=C"vL and D'=D"v L be T-factors of clauses C and D, with
distinguished literals L and L’ respectively. If M is in a general matching set
of literals for Lé¢ p, and L' away from Var (C'éep v D"y, ¢ 1s such that
Licpo~M~L'c, and the equality symbol does not occur in L, then
C"¢epro 0 Do can be deduced from C and D by the rule.

But if T is the theory of an associative binary function, recursive effectively
obtainable general matching sets for L and L’ away from Vexist, for all L, L

87

COMPUTATIONAL LOGIC

and V, and furthermore the required ¢’s in the definition of the rule can be
calculated from Léc,p, M and L.

However, if S={P(ax, aa), Q(aa, ax), P(yz, x)v Q(», xw)} then SUT
is unsatisfiable but S has no refutation by the above rule.

EFFICIENCY
The most obvious difficulty is that there can be infinitely many T-resolvents,
etc., of two clauses. This does not cause any difficulty as far as the Hart-
Nilsson #heory is concerned (Kowalski 1972). It may be possible in some
cases to represent the infinite set by using terms with parameters. These have
already been used informally in the introduction.

Sometimes, as when T is the theory of an associative function, the unifiers
are generated as successful nodes in a search tree. In this case the unification
search tree can be incorporated in the general search space and one can save
the unused parts.

However, we would like to advance the thesis thatin general these large num-
bers of unifiers are present in the usual search spaces — we have just brought
them to the surface. Indeed we believe that our method can have advantages
over the standard resolution one precisely analogous to those obtained by
the resolution method over the Davis-Putnam one. We will defend our
method in the case where the theory is that of an associative function; the
T-search space will be compared to that generated by resolution, para-
modulation and trivialisation.

It can be shown that the associative unification of two literals, say, may
be simulated by successive paramodulations of the axiom of associativity
into these literals followed by an ordinary unification. The complexity of the
simulation is about the same as that of the unification, using a symbol count.
So the T-search space is included in the usual one.

The resolution method has smaller redundancy and avoids more irrele-
vancies than the Davis-Putnam method. For example, if L and M are unifiable
then in general {L, M} has exactly one resolution refutation, but infinitely
many Davis-Putnam ones. The crudest resolution search procedure produces
no irrelevancies but the Davis-Putnam will, in general. If L, M are not
unifiable, this will be detected by the resolution method, but not by the
Davis-Putnam one. These phenomena are manifestations of the most general
unifier method.

Similarly, if L and M have T-unifications, {L, M} can have many fewer
T-resolution refutations than the comparison system. For example {P(ax),
P(yb)} have two T-unifiers ({a/y, b/x} and {ay|y, yb/x} but there are
infinitely many standard refutations of {P(ax), P(yb)}, which essentially
produce the T-unifiers, {ay1 .../, ¥1- .. Yub /x|m=0}. Each of these
unifiers can be produced in many different ways, involving arbitrarily long
detours of bracket swapping.

As another example, consider {P(x,y, xy), P(z, w, wz)} which has an

88

FLUILNNILIN

infinite set of refutations involving the T-unifiers { { w™ [z, w" [x, w" [y, w" [w}|
m and n positive integers with greatest common divisor unity}. The standard
method essentially produces the denser set:

{{w™ [z, w™[x, w" [y, w"|w}|m, n>0}.

Sometimes if L and M have no T-unifier, the T-unification algorithm will
stop, when the standard procedure does not — for example, if L=P(xa) and
M=P(yb); but generally it will also generate useless structures (though not
SO many).

We believe that these informal remarks can be converted into a rigorous
proof of increased efficiency.

On the other hand, the associative unification procedure can certainly be
greatly improved, and we have no practical experience at the moment. It is
surely not the case that these methods will by themselves make a practical
theorem-prover, of course. We have only removed one of many exponential
explosions.

PROBLEMS

There are many obvious problems concerning particular axiom systems and
how to combine different unification procedures.

However, what does one do with only partial knowledge? Suppose one
has a simplification method, but no unification algorithm as is the case, at
the moment, with group theory or with integration algorithms (Moses 1967)?
Or, what use can be made of a one-way unification procedure? How and
when does one simplify (Moses 1971)? Answering such questions might
produce more efficient systems closer to normal human practice.

Acknowledgements

I [)ave had many helpful discussions with Rod Burstall. Jerry Schwarz found some
mistakes in a draft. The work was supported by the Science Research Council.

REFERENCES

Anderson, R. (1970) Completeness results for E-resolution. Proc. A FIP.S 1970 Spring
Joint Comp. Conf. Washington, pcC.

Bennett, J.H., Easton, W.B., Guard, J.R. and Settle, L.G. (1967) C.R.T.-aided semi-
automated mathematics. Final report. AFCRL-67-0167. Princeton: Applied Logic
Corporation.

Cook, S.A. (1965) Algebraic techniques and the mechanisation of number theory.
RM-4319-pr. California, Santa Monica: RAND Corporation.

Gould, W.E. (1966) A matching procedure for w-order logic. Sci. Rep. No. 4. AFCRL
66-781. Princeton, New Jersey: Applied Logic Corporation.

Hart, T.P. (1965) A useful property of Robinson’s unification algorithm. A.1. Memo 91.
Project MAc. Cambridge, Mass.: MIT.

Kowalski, R.A. (1968) The case for using equality axioms in automatic demonstration.
Lecture Notes in Mathematics, vol. 125. (eds Laudet, M., Nolin, L. and
Schiitzenberger, M.) Berlin: Springer-Verlag.

Kowalski, R. (1970) Studies in the completeness and efficiency of theorem-proving by

resolution. Ph.D. Thesis. Department of Computational Logic, University of
Edinburgh.

89

COMPUTATIONAL LOGIC

Kowalski, R.K. (1972) And-or graphs, theorem-proving graphs and bi-directional
search. Machine Intelligence 7, paper 10 (eds Meltzer, B. & Michie, D.). Edinburgh:
Edinburgh University Press.

Morris, J.B. (1969) E-resolution: extension of resolution to include the equality relation.
Proc. First Int. Joint Conf. on Art. Int. Washington, DC.

Moses, J. (1967) Symbolic integration. Report MAC-TR-47. Project MA c. Cambridge,
Mass.: MIT.

Moses, J. (1971) Algebraic simplification: a guide for the perplexed. Proc. Second
Symp. on Symbolic and Algebraic Manipulation, pp. 282-303. (ed. Petrich, S.R.).
New York: Association for Computation Machinery.

Nevins, A.J. (1971) A human-oriented logic for automatic theorem proving. TM-62789.
George Washington University.

Pietrzykowski, T. (1971) A complete mechanisation of second-order logic. Science
Research Report (CSRR 2038). Department of Analysis and Computer Science, Uni-
versity of Waterloo.

Pietrzykowski, T. & Jensen, D.C. (1972) A complete mechanisation of w-order logic.
Science Research Report csrR 2060. Department of Analysis and Computer Science,
University of Waterloo.

Plotkin, G.D. (1972) Some unification algorithms. Research Memorandum (forth-
coming). School of Artificial Intelligence, University of Edinburgh.

Robinson, J. A. (1965) A machine-oriented logic based on the resolution principle.

J. Ass. comput. Mach., 12, 23-41.

Rulifson, J.F. (1970) Preliminary specification of the Qa4 language. Artificial Intelligence
Group. Technical Note 50. Stanford Research Institute.

Schoenfield, J.R. (1967) Mathematical logic. Reading, Mass.: Addison-Wesley.

