Theoretical Computer Science 1 (1975) 125-159. © Norta-Holland Publishing Compzny

CALL-BY-NAME, CALL-BY-VALUE AND THE
2-CALCULUS

G. D. PLOTKIN

Department of Machine Intelligence, Schoo! of Artificial Intelligence, University of Edinburgh,
Edinburgh, United Kingdom

Communicated by R. Milner
Received 1 August 1974

Abstract. This papsr e<amines the old question of the relationship between ISWIM and the
A-calculus, using the distinction between call-by-value and call-by-name. It is held that the re-
lationship should be mediated by a standardisation theorem. Since this leads to difficulties,
a new A-calcuus is introduced whose standardisation theorem gives a good correspondence
with ISWIM a; given by the SECD machine, but without the letrec feature. Next a call-by-name
variant of ISWIM is introduced which i3 in an analogous corresporndence with the vsual A-calculus.
‘The relation between call-by-value and call-by-name is then studied by giving simulations of each
language by the other and interpretations of each calculus in the other. These are obtained as
aaother application of the continuation technique. Some emphasis is placed throughout on the
notion of operational equality (or contextual equality). If terms ciin be proved equal in a calculus
they are operationally equal in the corresponding language. Unfortanately, operational zquality
is not preserved by either of the simulztions.

i. Introduction

Our intention is to study call-by-value and call-by-name in the setting of the lambda-
calculus which was first used to explicate programming !anguage ieatures by Lan-
din [5, 6, 7]. To this end, for each calling mechanism we set up a programming lan-
guage and a formal calculus and then show how ecach determines the other. After
that we give simulations of the call-by-value programming language by the call-by-
name one and vice versa — this also prcvides interpretations of each calculus in
the other one.

If the terms of the A-calculus (we have in mind the AK-8 calculus for the momeut)
are regarded as rules, with a recuction relation showing how the; may be carrisd
out and indeed with a norma! order reduction sequence capturing, in deterministic
fashion, all possible normal forms, then we have aiready preity well determined
a programming language.

On the other hand, the larignage can be regarded as giving true ¢quations between
programs {= terms of the calculus). Informaliy, one program equals another, oper-
ationally, if it can be substituted for the other in all contexts vithout “changirg
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the results” (cf. [9, 17]). From this point of view a calculus can be correct with
respect to the programming language.

As primary example of a A-calculus based programming language we consider
ISWIM [5, 7], without the recursion operator or any syntactic sugar. It has an
operational semantics which is given by the SECD machine. As primary example
of a calculus, take the AK-g5 calculus [2] (the d-rules make the comparison easier).

Unfortunately, the two are hardly in accord.

(1) Semetimes the SECD machine stops when it should either go on to give a nor-
mal form or should r.ot terminate, according to normal order reduction. This is be-
cause ISWIM does not simplify procedure bodies.

(2) Sometimes the SECD machine never stops when, according to normal order
reduction, it cught to. This is because ISWIM calls its arguments by value.

So one has to look for other programming language/calculus pairs. Wegner [19]
gives a machine which gives a language corresponding to normal order reduction
for the AK-$ calculus, regarding (1) and (2) as bad points of the SECD machine.
McGowan [8] gives a call-by-value machine and a corresponding altered normal
order reduction sequence (where vaiue = normal form); thus regarding (1) as a bad
point of the SECD machine, but accepting (2). However he does not give & call-
by-value calculus.

Our intention is to study programming mechanisms and so we accept the SECD
machine and look for the corresponding calculus — called 4, in the text. The notion
of value is changed to that induced by the SECD machine, and a normal order
reduction sequence theorem is given, which establiches a good correspondence
between A, and ISWIM. In this way we hope to have shown that ISWIM is more
than a specification of some characterless reduction sequence. Rather, as well as
being computationally natural, it gives rise to an interesting calculus. Its correspond-
ence with this calculus 'shows it to bc less order of reduction dependent than its
definition shows.

To study call-by-name, we define a call-by-name ISWIM, corresponding v a certain
modification of the SECD machine, which keeps the above notion of value, and show
that the usual AK-B6 calculus can be regarded as the call-by-name calculus. This
substantiates folklore.

In both cases the calculi are seen to be correct from the point of view of the pro-
gramming languages.

Finally, as mentioned above, we give simulations of call-by-value by call-by-name
and vice versa. These use the continuation technique as developed in [3, 10, 12, 15].
It turns out that the simulations also give interpretations of each formal system in
the other one, but unfortunately they do not preserve cperational! equality.

From a practical point of view, one can, using 4, look for optimal or improvad
evaluation mechanisms as in [17]. See also [16] for similar work on McCarthy systems
of recursive definitions.

In a future paper we will discuss the relation between the evalua‘ion mechanisms
considered here and some denotational semantics in the style of Scott and Strachey [14].
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2. Technical preliminaries

The set of A-calculus terms is determined by a set of variables x, y, z, ..., a disjoint
set of constants a, b, ... and improper symbols, A, ( ,and).

It is defined inductively by:

(1) Any variable is a term.

(2) Any constant is a term.

(3 If x is a variable and M is a term then (AxM) is a term.

(4) If M and N are terms, so is (MN).

A term of the form (AxM) is an abstraction; one of the form (MN) is a combination.
A term is a value iff it is not a combination. In general the set of variables will be
infinite, although the set of constants need not be. The set of variables is called
Variables. Similar conventions are used throughout. We will also use variables and
censtants as metavariables ranging over variables and constants respectively.
M = N means that M and N are identical terms. We say that M, is in position i
in (M; M,)(i =1, 2).

If M is a term, it has a set FV (M) of free variables ard a set BV (M) of bound
variables. These are defined inductively by:

(1) FV(x) = {x}; FV (MN)) = FV (M) U FV (N); FV ((AxM)) = FV (M)\{x}.
(2) BV (x) = §; BV ((MN)) = BV (M) v BV (N); BV (AxM)) = BV (M) v {x}.
A term is closed iff FV (M) = @, otherwise it is open. The size |M| of a term is
defined inductively by:
|xi ='al = 1; |(AxM)| = |[M|+1; |[(MN)| = |M|+|N|.
Given an infiuite list x,, ... of distinct variables, the substitution prefix is defined
inductively by
[M|x]x=M; [Mjx]y=y(@ifx#y);
[M[x] a = a;
[M|x]} {NN') = ([M|x] N [M|x] N'};
[M]x] (AxN) = (AxN); [M|x] (AyN} = iz [M|x] [z]y] N, if x # ,
where z is the variable defined by:
(1) If x¢ F/(N) cr y¢ FV (M) then z = y.
(2) Otherwise, z is the first variable in the list x,, x,, .. such that z ¢
FV(N) v FV (M).
That this is a good definition is shown in [Z] where cther properties of the sub-
stitution prefix can be found.
The relation, = ,, of alphabetic equivalence, is defined inductively by:
() x=,xand a=_,a.
@QIf M=,M and N =, N then (MN) = ,(M'N’).
(3) f M = ,[x/y] AM’, where either x = y or x ¢ FV (M') then (AxM) = ,(AyM"):
In general we will only be iaterested in proving terms alphabetically equivaient.
For this reason it does not matter which set of variables is used when defining terms
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or which list when defining the substitution piefix. However oa occasion it will
be convenient tc specify these more fully and prove syntactic equality; this will
not result in any loss of generality.

In Section 3, nil will be used for the empty sequence and : for concatentation.
Given a set X, X* is the set of sequences of members of X.

Given sets X and Y, (X 5 Y) is the set of partial functions from X to Y. If fe

(X = Y), Dom (f) is its domain, that is Dom (f) = {xe X|{x,»> € f, for some
y € Y}. Expressions using partial functions are defined iff the functions are defined
at the indicated arguments. They are equal (=) iff they are both undefined, or are
both defined and have the same value. They are alphabetically squivalent (= ,)

under similar conditions.

. . . . +
Given a relation — (usually using an infix notation), — is its nth power (n 2 0), —»

is its transitive closure, and :» is its transitive reflexive closure.

Occasionally we shall prove something by “lexicographic induction” on, say,
" a pair {m, n) of integer indices. The ordering < used is this: {m,n) < (m', n’)
iffm < m' orelsem = m’ and n < n'. Such proofs can be replaced by nested ordinary
inductious.

3. ISWIM

We are going to define ISWIM without letrec, without any syntactic sugar and with-
out any imp<rative features. Abstract syntax will also be ignored. Its set of programs

7+ Jast e set of closed terms, as defined in Section 2, given some infinite set of
wvariables and a set of constants.

Example. The constants are 4,(n > 0), Succ, Pred, and Zero. The variables are,
58Y, X35 X2y sees '

To complete the definition of the programming language, we will specify the

. . P .. .
evaiuation function Eval,: Programs — Programs. This is defined relative to an
interpretation of the comnstants, given by a function:

Constapply: Constants x Constants 5 Closed Values.
Constapply will give the d-rules for A, and it is for this reason that we do not take

Constapply in Constants x Closed Values 5 Closed Values, as does Landin, since
this would not iead to d-rules in the sense of Curry [2]. From a praciical point of
view this seems to lose few possibilities. By making a few alterations we could have
allowed the range of Constapply to be Closed Terms.

- An important special case is when Constants is a disjoint union of {unctiona|]
constants, 7-Consiants, and basic constants, 3-Constants, and Constapply can be

regarded as being in F-Constants x 3-Constants — Closed Values.



CALL-BY-NAME, CALL-BY-VALUE AND THE A-CALCULUS 129

Example. (contd.) With the constants and variables 2s above, set F-Constants =
{Succ, Pred, Zero} and B-Constants = {A,jn > 0} and define Constapply by:

Constapply (Succ, A,) = A4,

Constapply (Pred, Ap+q) = A,

Constapply (Zero, A,) = (Ax (Ayx)) and
(Constapply (Zero, Ay+g) = (Ax(Ayy)) (n = 0).

"The ofiicial definition of Eval, now requires the SECD machine. It should be
remarked that this is ioo tedious to work with directly and so we will give an equiv-
alent definition of Eval, immediately afterwards, prove it equivalent and from then
on use only the simpler one.

The SECD machine is given by a set, Dumps, of states and a transiuion function =.
Eval.(4f) is obtained hy loading M with a function Load: Programs — Dumps,
runiting the machine till it stops and unloading it with a partial fiinction Unload:

Dumps 5 Programs.

Dumps is specified via definitions of the sets: Closures, Environments, Control-
strings, and Stacks.

Closures and Environments are defined inductiveiy by:

(1) If xy, ..., x, are distinct variables ancl Cl; (i = 1, n) are closures, {{x;, Cl;)|
i = 1,n} is in Environments (n > 0).

(2) If E is an envirorment and M is a term such that FV (M) < Dom (E), then
{M, E)» is a closure.

Our definition differs in a few ways from that of Landin. The main difference is
that in (2) we allow Af t- be any term, rather than just a A-expression; closures of the
forn: {a, @) will perform for us the function the corresponding constants do for
Landin and the other possibiiitics aliow cail-by-name versions of the SECD machine.

E{Cl/x} is the unique environment E’ such that E'(y) = E(y), if y # x and
E'(x) = C1(Cl e Closures).

The function Real: Closures — Terms is defined inductivel!y by:

Real ({M, E)) = [Real (E (x,))/x;] ... [Real (£ (x,))/x.] M,
where
FV (M) = {Xy, e Xp}.
It gives the term “represented” .. a closure, and wili be used to define Unload.
Now, Controlstrirgs = (Terms ' {ap})*, where ap ¢ Terms, and Stacks = Clo-
sures®,
The function FV is extended to Controlst-ings by:

FV(ap) = 0; FV(Cy:..:C) = LJFV(C) (n=0).

. {=1
Finally, Dumps is defined inductively by:
(1) nil is a dump.

(2) If S is a stauuk, E an environment, C a control string such that FV(C) €

Dom (E), and D is a dump then (S, E, C, D) is a dump
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The transition function =, in Dunps 5 Dumps is defined by:
(D) (C': 8, E,nil, {S",E', ', D)) =» (CL: §', E', C", D'), |
(2) {S,E, x:C, D)= (E():5,EC,D),
() {S,E a:C,D) = {a,0): S,E,C,D),
@ (S, E, (AxM); C, D) = {({(IxM), E): S, E, C, D},
(5) {(AxM), E"y: Cl: S, I, ap: C, D) = <nil, E'{Cl{x}, M, {8, E, C, D)),
(6) {a, E")>:{b,E"): S, E, ap: C, D) => {({Constapply (a, b), £>: S, E, C, D),
(N <S,E,(MN):C,D) ==<(S,E,N: M:ap:C, D).
Now Lozd and Unload are defined by:
Load (M) = <nil, g, M, nil>
TJnload ({1, @, nil, nil)) = Real (Ci).
The evaluation function can now be defined by:
Eval, (M) = N iff Load (M) = D,and N = Unload (D) for some dump D.

Example. (contd.) One can now easily define all partial recursive functions. As
recursion operator one should not use ¥ = Af((Axf (xx)) (?x (xx))), but rather,
Z = M (Mxf (Azxxz)) (Axf (izxx2))), [11, 19]. The point is that Eval,(YM) is always
undefined — as can be shown using Theorem 1 — and Z is designed to avoid this
difficulty as the reader will find if he tries, say, to define addition.

. In the light of Section 6, it seems quite possible that ISWIM with letrec can be
translated into ISWIM without letrec.

As remarked above, this definition of Eval, is rather too clumsy to work with
directly and we prefer to use a function eval,: Programs 5 Frograms with a simple
recursive definiticn, which uses substitution rather than closures. This has the in-
formal definition:

evaly(a) = a; eval, (AxM) = IxM

] evaly([N'/x] M’) (if eval,{M) = (AxM’) and eval,,(N) = N’)
~ | Constapply (a, b) (if eval,(M) = a and eval,{N) = b)

Formally, we defire the predicate “M has value N at time ¢” by induction on ¢,
for closed terms M and N.

(1) a has value a at time 1; (AxM) has value (AxM) at time 1.

(2) If M has value (AxM’') at time 7, N has value N’ at time ¢’ and [N'/x] M’ has
value L at time ¢”, then (MN) has value L at time ¢+4+# +2"+1.

(3) If M has value g at time ¢ and N has value b at time ¢’ then, if Constapply (a, b)
is defined, (MN) has value Constapply (a, b) at time ¢+2#'+1.

One then sees that if Af has values N, N’ at time #, t' then N = N’ and ¢ = ¢#".
Consequently this is a good definitior: of a partial function:

evaiy (M) = N if M has value N ai some time.

eval,(MN)
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The ¢ in the above definition will give a good handlz for inductive proofs. "lear'y,
if M = , M', then eval,,(M) has value I at time ¢ ifi for some N’ = , N, M’ has
value N' at time ¢.

it is also clear, from this definition, that, if eval, (M) exists it is a closed value,
waich justifies our value terminology, giver. the naiuralness of including open values
2a g the set of values.

The next theorem states that eval, and Eval, are the same functions to within
alphabetic equivalence.

Thcerzm 1. For any program M, Evaly(M) = , evaly(M).

This theorem justifies our making (after we have proved it) the matkematically
counvenient decision to take the definition of eval, as the definition also of Evaly,
rather than the oue via the SECD machine. Results asserted later for this definition
will then also hold for the one using the SECD machine to within alphabetic equi-
valence which is all that reelly matters.

The proof of Theorem 1 requires three lemrnas.

The notions of a value closure and value environment are defined inductively by:
(1) A closure {M, E) is a value closure iff /4 is an absiraction or a constant,

and E is a value environment.

(2) Anenvironment, E, i, & value environment, iff for every variable, x, in Dom (E),
E(x; is a value closure.

Value closures correspond fairly closely to Landin’s closures.

Lemma 1. Suppose {AyM,E) and {N,E") are value closures, Real ((AyM, E})
= ,(AxM")andeal ({N, E')) = , N'. ThonReal ({(M, E {{N. E'}[y}>) = . [N'[x] M.

We omit the straightforward proof of this lemma.

Lemma 2. Suppose E is a value environment and {M, E is a closure and M" is the
value of Real ((M E>) at time ¢. Then, far all S, E, C and D, with FV (C) < Dom (E)

and some t' 2 t, {S,E,M:C, D) = {M',E"): S,E,C,D) where {M', E") is
a value closure and Real (M',E")) = ,M".

Proof. By induction on 7.
Case 1. M is a constant. Here

Real (ML EY) = M = A" a1 t = 1.
As

{(S,E,M:C,D> = {M, ¥>:8S,E, r'J, D)
we can take {M',E'> = (M, @) and t' =

Case 2. M is an abstraction. Here
M'" = Real (M, E>) and ¢ =: 1.
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As
{(S,E,M:C,D) = {{M,E):S,EC,D)

we can take {(M',E'> = {M,E) and t' = 1.

Casez 3. M is a variable. Here
M'" = Real (E(M)) and ¢ = 1.
{S,E,M:C,D) = {E(M): S,E C,D)
we can take (M',E’) = E(M) and ¢’ = 1.

Case 4. M = (M, M,) is 2 combination. Then
Real ({(M, E}) = Real (M, E}) Real (M, E}) = N\ N, say.

Subcase 1. (AxN) is the value of N, at time ¢, I, is the value of N, at time ¢,, M"’
is the value of [N,/x] N, at time ¢, and ¢ = t,+£,+t3+1.
Then by induction hypothesis there are #; = ¢; (i = 1, 2) such that

(S, E, (M1 Mz): C, D) = <S, E, Mz: Ml: ap:. C, D)
-‘l
={{M}, E}>: S, E, M,: ap: C, D)
= (M}, Efy: (M3, E3): S, E, ap: C, D),
where
Real ({M, E})) = ; AxN3 and Real ({M;, E;)) = , N,,
and the {(Mj, E;) are value closures.
Here M; = AyM; for some Mj, and
Real ((M3, E; {{M3, E3)[y})) = . [Nu/x] N3 (Lemma 1).
Mow, '
KM, Ei): {M;, E;>: S, E, ap: C, D) = (nil, E; {{M3, E3}[y},

M;, S, E, C, D)

%
=>{{M', E"), E1 {{M3, E3)[x},

nil, {S, E, C, D))
= <<M'9 E'}: Sa E, Ca D>>

where, by the induction hypothesis, Real ((M’, E’)) is to within alphabetic equi-
valence the value of Real ((M3, Ef {(M3, E3)[y})) at time 13 < 3 and (M, £")
1s 2 value closure. Taking ¢’ = ¢! +#;+¢3+3 concludes this subcase.

Subcase 2. a is the value of N, at time ¢,, b is the value of N, at time #,, and Con.
stapply (2,6) = M* and ¢ = t,+1,4-1.
By induciion hypothesis there are #{ > ¢, (i = 1,2) and value environments
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E (i=1,2) such that
{S,E,(MyM;):C,D) =<{S,E,M,: M,:ap: C, D>

(Kb, E5y: 8, E, My: ap: T, D)

2<<a, E>: <b, E3: S, E, ap: C, D)
= {{M",0>: S, E,C,D)
and taking ¢’ = t;+#,+2 and {(M’, E') = (M", @) concludes the proof.

If D = D' where D' does not have the form {Cl, @, nil, nil) and D’ #) D" for
aay D", then D is said to kit an error state (viz. D').

Iemma 3. Suppose E is a value environment and {M, E)) is a closure. If Real {{ M, E))
kasno valueatany ¢’ < t, then either for all S, C, >, with FV {C) < Dom (E){S, E, M:
C, D) hits an error state or else {S, E, M:C, D) = D' Jor some D'. (t = 1).

Proof. By induction on ¢. For ¢ = 1, the result is obvious. Otherwise, Real ((M, E)),
and so M, must be a combination, (M, M,), say.
Then

¢S, E, (M M,): C, D> =S, E,M,: M,: ap: C, D).

If Real ({(M,, E)) has no value at any time < (¢—1), the result follows by applying
the induction hypothesis to {M,, E).

Otherwise, suppose M3 is the value of Real ((M., E)) at time ¢, < (t—1). By
Lemma 1,

(S, E, My: My: ap: C, D) = (M3, E>: S, E, M,: up: C, D>

where t; > t,, (M3, E;) is a value closure, and Real ((M;, E3)) = , M5. If 15 >
(t—1) we are finished and so we may suppose that 5 < {t—1).

If Real ({M,, E>) has no value at any time < (r—1-73) the result follows by
applying the induction hypothesis to {M,, E).

Otherwise, suppase My is the value of Real ({M,, E)) at time #; < (¢+—1--13).
By Lemma 1,

M3, E3»: S, E,M,:ap: C, D) 3 My, Ey): M3, E>: S, E, ep: C, DY,
where 1] > ty, (M3, E;) is a value closure and Real ((M3, E1)) = , M. If t] >
2 (t—1-13) we are finished and so we may suppose that ¢; < (¢—1 -¢;). The argu-
ment now splits into three cases.

Case 1. My = (AxM ).
Now,
(AxM s, EY: (M}, ESY: S, E, ap: C, D) =
(nil, Ef {KM3, E3)[x}, M3, (S, E, C, D).

If t == (t;+12+2) we are finished.
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Supposing otherwise and letting E} == Ei {{M3, E3;/x}. if Real ({(M}, E})) has
no value at any time < (¢#—t;—13—2), the rcsult follows from the induction hypo-
thesis. Otherwise, if it has a value at such a time, that value must be to within alpha-
betic equivalence the value of Real ((M, E)) (as in the proof of Lemma 2), which
therefore has a value at time #,+¢,+#;+2 < 3+t +(t—t{~t{—2)+2 = ¢ con-
tradicting the original assumption.

Case 2. My and M), are constants and Constapply (M3, M3) is defined. Here
Real ({M, E)) has a value a time #;+#,+2 < (1 +12+2) < ¢, contradicting the
original assumption.

Case 3. For all other possibilities for M; and M an error stop occurs.

Proof of Theorem 1. Suppose e‘valV(M) = M'. Then, at some time ¢, M" is the
value of M at time ¢. By Lemma 2,

¢nil, g, M, nily = (KM, E'>, @, nil, nil),

where Real ({M', E')) = , M". So Eval,(M) =, M".
Suppose, on the other hand, that M has no value at any time. Then by Lemma 3,
either {mil, @, M, nil) hits an error state or else for every # there is a D such that

<nil, g, M, nil) = D. In either case Eval,(M) is also not defined, concluding the
proof.

4. The AV celculus

A suitable A, calculus is obtained by simply restricting the # rul - in the AK-Bé cal-
culus induced by Constapply. Fxplicitly the 4, calculus has foi. wlae of the form

M = N where M and N ar. -erms. Given a function Constapply, its rules are as
follows:

I. (AxM) = (Ay [y/x] M) (y ¢ FVM)). (a-rule)
2. (AxM)N = [N/x] M (if N is a value). (f-rule)
3. (ab) = Constapply (a, b) (if this is defined). (5-rule)

Hi. M=N
s M=NN=L
- =L
; M=N
T N=M
aiy, M=N_ M=N

MZ =NZ’ZM = ZK

_M=N
AxM = AxIV
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Ay F M = N means that M = N is provable by the above ruies.
Ay k{4 > N means that M = N is provable by the above rvies without usiug II3.

In [4] Goodman develops what seems to be the corresponding call-by-value
combin: tory logic.
First we develop some elementary theory for the A, calculus.

Theorem 1. If Ay - M = N and L is a value then 2, [L|x]M = [L/x] N.

Proof. By induction on the number of steps in the proof of M = N. The proof
splits into cases according to the last rule used in the proof of M = N, and is similar
to the proof of Theorem 3 in § 3.E of [2].

The supposition that L is a value is necessary. For example, if L = (Axxx) (Axxx),
M = (Ax (Axx)) (x) and N = (Axx) then 4, F M = N, by a f-reduction, but it is
not the case that 4, F[L/x]M = [L/x] N, as can be seen from: the Church-Rosser
theorem (to be proved) as [L/x] M can rcduce only to an o-zquivaleat term and
[Z/x] N = N is in 4, norma! form (i. e. has no call-by-value B-redex or J-redex
(see below)) and is not a-equivalent to [L/x] M. So free variables should be thought
of as ranging; over values and not arbitrary terms; in 2 model one would expect
that they wculd be interpreted as being universally quantified over a restricted
domain.

Theorem 2. (Church-Rosser theorem). If A, F M, > M, (i = 2, 3) then for some M,,
)‘V l' [‘li 3 M4\i = 2, 3).

Proof. The mai: tool is the parallel reduction relation, > |, aefined below. It is
easily shown that A, F M > N iff there are Ny, ..., N, such that M = Ny, 1, +
My 2 Nqg (1 i< (n-1)) and N, = ,N. Then using Lemma 5, a straight-
forward case analysis proves that if M, > ,i, (i = 1, 2) then for some M,, M,
M, 2 My M3 > Mg and M, = ;M. Then the theor:m follows by a sinple
induction. This is the method of Tait [1]. T1e details are both routine and omitted.

As usual this theorem "ias the consequence that 4, + M = N iff there is a Z such
that 4, FM > Z and A, F N > Z. A call-by-value normal form is a term with
no call-by-value f-redex and no é-redex, where such a B-redex is a term of the
form (AxM) N, with N a value ard a é-redeu is a term of the form (ab) with Constepply
(a, b) defined. It is casy to see thatif A, + M > N and M is in call-by-value ncrmal
form then M = , N.

Alterations to 2, generally result in the Churchi-Rosser theorem failing. This
happens if, for example, one changes the definition of value to normal form, in
the wsual AK-B5 sense, as would be natiral with the kind of reduction sequence
used by McGowan [8]. Then the the lerima analogous to Lemma 5 below faiis
as the property of having a normal form is not preserved under substituiion. For
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a counterexample to the Churcki-Rosser theorem take 4, = (Ax (Ayz) (x (Axxx)))
{Axxx), M, = z and M; = (yz) ((Axxx) (Axxx)).

Similarly if an # rule is added the theorem fails as the rule does not preserve
the property of being a value and so the appropriate version of Lemma 5 does not
hold. A counterexample to the Church-Rosser theorem is given by takizg A, =
= (Axy) (Ax ((Axxx} (Axxx)) x), M, = y and M; = (Axy) (Axxx) (Axxx)).

Next comes our analogue of the Curry stancurdisation theorem. This gives a normai
order raduction sequence and ties in with Eval,. To this end, definitions of left
reduction, parailel reduction and standard reduction sequences (s.r. sequences)
are needed. Our proof will avoid expiicit mention of redexes.

Left reauction, = is the least relation between terms such that:

1. GaM) N g [N/x] M, (when N is a value).

2. (ab) " Constapply (a, b) (when defined).

3. If M—: M' then (MN)-; (M'N).

4. If M r M’ then (NM)-—; (NAM'), when N is a vaiue.

Note tﬁat = is a partial fuaction and if M ps N then M is not a value. Informally

if M pes N then N is gotten from M by reducing the leftmost redex, not in the scope
of a A

Lemma 1. If M = , M’ P N’, then there is an N such that M-;» N=,N'.

We omit the proof, which is quite straightforward.
To define parallel reduction, we use a little formal system, whose formulae have
the form M > (N, where M and N are terms and whose rules are:

M2>2 M'N 2z N’ (if N is a value)
(AxM)N > [N'|x] M’

2. (ab) = ; Constapply (a, b) (when defined)
. M> M
MM
(AxM) > (AxM’)
M>2MN>.N
(MN) = (M'N’y

1.

3.

Ay F M > (N means that M > (N can be proved using the above rules; when
no confusion arises we just write M > ,N instead.

We introduce a size measure on proofs, corresponding to the “implicit” number
-of B and 6 reductions. The definition is by induction on the evident “number of proof
steps” measure and is divided into cases according to the last rule applied. We
set n (x, M) to be the number of free occurrences of x in M.
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I1. I the proof of M > M’ has reduction size p,, and that of NV = |N’, py
then the proof has reduction size g, +# (x, M') py+1i.

I2. "he proof has reduction size 1.

i1, The proof has reduction size 0.

II2. The proof has the same reduction size as the proef of M > M’,

II3. If the proof of M > M’ has reduction size gy, and of N > N’ has reduction
size py, the proof has reduction size py +py.

Note that if a proof of M > ;N has reduction size O then Af = N.
Eemma 2. If M = , ' 2 N’ then there is an N suck that M > N = <N

Lemma 3. Ay F 1> N iff there are My, .., M, such that M =M, >, ..
= 1 Mk = a N.

We omit the quite straightforward prcofs of these lemmas. '
Standard reduction seguences (s.r. sequences) are defined inductively by:

1. Any variable, x, or constant, a, is a s.r. sequence.
2. If N,, ..., N, is a s. 1. sequence and N, = N, tken Ny, ..., N, is a s. 1. sequernce.
3. If Ny, ..., N is a s.r. sequence, so is (AxN,), ..., (AxNy).

4. If M,,...,M; and Ny, ..., N, are s.r. sequences, so is (M, N;), ..., (M; N,), ...,
(M; N)).

Lemma 4. If Ny, ..., N, is a s.i. sequence und My = , Ny, iken there is a s.t. sequence
Ml’ ceey Mk such that M, = aNk'

i
Again, the proof is both straightforward and omitted.
We are aiming to prove:

Theorem 3. (Standardisation theorem) A, F M > N iff there is a s.r. sequence
N"_, ooy Nk such that M = llvrl and Nk =4 N.

Lemma 5. If there is a proof of M > (M’ of reduction size py and o7 N = (' of
reduction size py where N is a value then there is one of |IN(x|iM = L, where L
=, [N'[x] M’ of reduction size < py+n(x, M')py.

Proof. By induction on the size of M and by cases eccording to the last rule applied
in the proof.

11. Here M = (AyM,) M,, there is a proof of M, > M with reduction size p,

one of M, > M; of reduction size py,, Py = Py, +12(y, M) py,+1 and M’
= [Ma[y] M.
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Svbcase 1. x = y. By induction hypothesis, there is a proof of [N/x] M, > ,L,
of reduction size < py, +n(x, M3) py Where L, = [N'[x] M;.
Hence there is a proof of [N/x] M > ; [L,/x] M; of reduction size

< Pug, 0 (%, M1) (ppr,+0 (x, M3) py) +1 = py +n(x, My) n(x, M3) pys
== pp+1 (x, [M3jx] M1) py = pa+n (%, M’) py.

Finally,
[N'[x] M’ = [N'|x] [M3/x] M}
= . [[NV'[x] M3[x] M}
=a [Lz/x] M;.

so we can take L = [L,[x] M.

Subcase 2. x # y. Let z be the variable such that either y ¢ FFV(N) and - = y or,
otherwise x ¢ FV{M,) and z = y or, otherwise, z is the first variable in the list
X4, X3, ... Such that z¢ FV(N) U FV(M,). One easily sees from the induction
hypothesis that for some L, [z/y] M, > (Lo has a proof of reduction size p,,
wherz L, = , [z/y] M. Therefore, by anothzr application of the induction hypothesis,
forsome Ly, [N/x] [z/[y] M, > {L, has a proof of reduction size < py,+n(x, Lo) py
where Ly = [N'[x] [z[y] M;.

Next, by the induction hypothesis, for some L, there is a proof of [N/x] M, > ,L,
of reduction size < py,+n(x, M3) py where L, = [N'/x] M;.

Putting all this together, we find that (Az [N/x] [z/y] M,) ([N/x] M,) > ([L,/z] L,
has a proof of reduction size

P € (py,+n(x, Lo) px) +n(z, Ly) (P, +n (x, M3) py)+1.

But
[N/x] M = (Az [N]x] [z/y] M) ([N/x] M),
[La/z] Ly = [[N'[x] M3/z) [N'[x] [z[y] M}
= [[N'[x] [M3/z] [z]y] M,
= J[N'[x] [M3]y] M;
= [N'ix] M'.
and

Pag, 0 (X, Lo) py+n (2, Ly) (Dpr,+n (x, M3) py) +1
= (Ppr,+7 (2, L) prg,+ 1) -+ (n (x, Lo)+n (2, L)) n (x, M) py
== (P, +1 (2, [N'[5] [2[y] MD)pag, 2 D+ (n (x, [z/y] M7)+n (2, L) %
xn(x, M3)) px
= (pyr, +0(z, [2]y] M1) ppg, + D+ (n (x, MD+n(2, Ly) 1 (x, M3))s,
= Py, +1 (v, M) oy, + )0 (x, M1)+0(p, M1) n (x, M3)) py
== py+n (x, [M3[y] M) py
= Py +n (x, M') py.
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Taking L = [L,/z] L,, this subcase is concluded.
12. Here M = (a, b), M’ = Constapply (a, b), and since FV (M’') = @, the conclu-
sion is immediste.
ITi. Here M’ == M and p,, = 0. We proceed by induction on the structure of M.

Subceie 1. M s x and M is a variable or constant. Immediate.
Subcase 2. M = x. Immediate with Z = N’ = [N’[x] x as then n (x, M) = 1.

Subcase 3. M = (M, M,). By induction hypothesis, there are for some L, proofs of
[N/x] M, > 1L, = J[N'[x] M,

of reduction size
Sn(x,M)py fori=1,2,

The conclusion is iramediate, taking L = (L, L,).

Subcase 4. M = ‘AyM,). If y = x the conclusion is immediate. Otherwise, with z
as in case 11, subcase 2, there is by induction hypothesis, a proof for some L, of
[N/x] [zly] M, > (L, = [N/x] [y/z] M,
of reduction size
< n(x, M}) px. = n(x, M) py.
The conclusion follows, taking L = (1zL;).

I12. Here M = (AyM,), M’ = (AyM;) and M, > .Mj has a proof of reduction
size py. If y = x, the conclusion is immediate. Otherwise the proof is like II1,
subcase 4.

113. Here M = (M, M,), M’ = (Mi M3), and M, > M, hes a proof of reduction
size py, for i = 1, 2. So, by induction hypothesis, there are proofs for some L, of
[N/} M, > (L, = [N'[x] M;
of reduction. size
<pM(+n (xs M:)pN (l = ls 2)
Taking L = (L, L,), we find a proof of
[N/x]1M 2 (L = [N'[x] *'
of reduction size

< (pu,+n(x, M) p)+ (P, +n (x, M3) py) = pp+n(x, M') py.
This concludes the proof.

Lemma 6. If M > (N where M is a combination ond N is a constant or variable
+
then M = N.

Proof. By induction on the reduction size p,, of tie proof of M = |N. If the last
rule applied in the proof is 12 the result is immediite, otherwise it must be I1 and
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so M = (AixM,) M,, M, > M, has a proof of reduction size py, (i = 1,2), N =
[Mi/x] Mi and py == pp +n (%, M1) pyy,+1.
By Lemma 4, for some L, there is a proof of [M,/x] M; > ,L of reduction size
< pu,+n (%, M1) pyr, < Pyss
where L = JM;/x] M; = N (and so L = N). Hence,
M = [M,/x] M, —» N (by induction hypothesis),

if [M,/x] M , is a combmatlon, and otherwise [M,/x] M; == N when the result
is immediate.

Lemma 7. If M > M’ has a proof of reduction size py,, where M is a combination
and M’ is an abstraction, then for some abstractions L, L', M -> Land L > L' has
a proof of reduction size {py and L' = ,M'.

Proof. By induction on the reduction size, p,,, of the proof of M > ,M'. If the
last rule applied in this proof is 12 we are finished, otherwise it must be I1, then much.
as in the proof of Lemma 5, we fmd an N, L” such that M = N, N > ,L" has
a proof of reduction size < p,, and ' = M'. f Nis an abstractlon, we are finished..

Otherwise, by induction hypothesis, there are L, L' such that N —> L,L> L has

a proof of reduction size {p,, and L' = ,L" = M’, concludxng the proof.
Lemma 8. If M > M’ = M'', then there are K, K' such that M i:,» K2z ,K'=M".

Proof. By lexicographic induction on {p;,, |M|> where p,, is the reduciion size of’
the proof of M > ; M’ and divided into cases according to the last rule used in
that proof.

I1. This case is straightforward and is quite similar {o that of Lemma 6.

I2. This case is impossible.

il1. This case is trivial.

I12. This case is impossible.

113. Here M = (M, M,), M' = (M: M5), M; > M; has a proof of reduction
§iZ€ Py, fOr i = 1,2 and py = py +py,. The proof divides into cases according.
tc why M' — M "

1. Here M’ = (AxM3) M3, M" = [M}/x] M} and M} is a value.

Since M, >, (AxM3) we find in all cases, using Lemma 7, abstractions N and N~
such that My = N > (N' = M;.

Since M,>:;M;, a value, we find in all cases, using Lemmas 6 and 7, values L.
and L' such that ﬁa(;} L2z (L = ,M; It can be seen that putting N = AyN,,.
for some K, NL-V» [LIyl| Ny 2 K = ,M".
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Hence, taking [L/y] N, = K.
(My My)~; (NMy) S (NL) > K > (K’ = M,
as reguired.

2. Here for some constants @ and b. M| = a and M, = b.
So % Lemma 6,

(M, i) 3 (alMy) 5 (ab) Constapply (2, ),
and we can take K = XK' = M".
3. Here M; = MY and M’ = (MY Af,).
By induction hypothesis there are K, K; such that
My 3 Ky > 1K) = MY
Therefore (M; M,) > (K, M) > ,(K; M3) = M, and taking K = (X; M),
K' = (Ki M) conciudes this case.

4. Here, M; is a value, M} > M 5 and M" = (M{ M3). By Lemmas 6 and 7 there
are values L, L' such thsat

My 3 L3> L = M.
By induction hypothef,?is there are K,, K; such that
M3 K, > 1K§,{,= M3
Therefore, Yo
(M, My) 3 (LM3) 3 (LK) > (L'K3) = M,
and taking X = (LK,) and K’ = (L'K3) concludes the: proof.

Lemma 9. If M, ..., M, is a reduction sequence and M > M, then there is ¢ s.r.
sequence Ny .... Ny such this M = N, and N, = ,M,.

Proof. By lexicographic induction on <j, py, |M|) (where p, is the reduction size
of the proof of M >: ;M,) and by cases on the last rule used in the proof.

Il. Here M = (AxK,) K,, K, > ,K] has a proof of reduction size py,,, fori = 1,2,
M, = [K}|x] K1 ard py = pp,+n(x, K5) ppr, + 1.

Now for some L. [K,/x] K, > L has a proof of reduction size < py +n (t, K3) X
XPm, < Py @and L = ,M,.

By Lemma 4, there is a reduction sequenct L, ..., L, such thav L == L, and
L, = ,M;. By induction hypothesis, therz ic a s. r. sequence N, ..., N such ihat
N, = [K,/x] K,, and N, = ,L; = ,M,. The result follows immediately, taking
N; = M.

12. Here one takes Ny = M, N, = M, (( =2, +1) and k =j+1.

M. Take j=k and N, = M,.

II2. Here there is a s. 1. sequence M}, .., M) and M, = (AxM}) (for i = 1,j) acd
for some M', M = AxM' and M’ > M.
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By induction hipothesis, there is a s.r. sequence Nj ... N; such that M’ = N}
and N.= ,M). The result follows with N, = (AxNy) (i = 1, k).
II3. There are two subeases; either M,, ..., M, is a s.r. sequence and M, s M,
or else there are s.r. sequences Kj ...K;, L, ..L; such that M,, ..., M, is just
(Ly K9, vy (L1 Ky), ooy (L K3). In the first subcase, the proof is similar to that in
Case I1, using Lemma 8 and then Lemma 4 and the induction hypothesis. In the
second subcase, the proof is similar to that in Case II2, but uses the induction
hypothesis twice.

Proof of Theorem 3. Clearly if there is a s.r. sequence N,; ..., N such that M = N,
and N, = N, Ay b M > N. Conversely, suppose Ay F M > N, then by Lemma 3,
there are Ly ... L, suchthat M = L; >, ... 2L, = ,N. We proceed by induction on/,

If I = 1, we are finished. Otherwise, there is a s.r. sequence K, ... K such that
L, = K, and K, = ,L; = ,N.As M > ;K,, the result follows at once from Lemma .

One can now define a normal order reduction sequence and show that this reaches
a (call-by-value) normal form, iff one exis:s, just as in [2]. It is more relevant, how-
ever, to note this corollary:

Corollary 1. For any term M, Ay, + M > N for some value N iff M -:-:» N' for some
vaiue V',

Proof. “arly if M -’5 N’ for some value N’ then iy + M > N'. In the other di-

rectici - ppose Ap b M > N for a va'ue N. By the Standardisation Theorem
there is 4 s.r. sequenc: N; ..., N; such tiat M = N; and N, = N'. Let N' be the
first val:. in the sequence. Then M -+ N’ as required.

The rext theorem, dy tying Eval, in with =, allows us to see the connections
beiween 1, and Eval;.

Theorem 4. Eve'y(M) = N iff M —:—} N, (for closed M and a value N).

Proof. First, suppose M has value IV at time 7. If M is a constant or an abstraction,
the result is immvcdiate. Otherwise, M == (M; M,) and either M, and M, have
values @ and b at times ¢, and ¢,, respectively, N = Constapply (a, b) and ¢ =
= ty+1,+1, or, ;therwise, M, has value (ixM}) at time ¢,, M, has value M; at
time 1,, [M3/x] M} has value N at time ¢; aind ¢ = ¢, +17,+12;-+1. In the first case,
by induction hypothesis, M, {:7 a, M, % b and so M 5 (aM,) 5 (ab) -+ N. In the
zzcond case, by the induction hypothesis, Y Y Y

M1 = > (AxM;). M, iMé, [Mé/x] M} 5 N and so Mf-:-;
(Ax]W )Mz "") [Mz/a] Ml —'P N.
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Second, suppose that A7 % N. We proceed by inducticn on the (unique) » such

that M -:-; N. The case n = 0 is easy; so suppose n > 0 and there is a sequence
(Ky Ly), ..., (Ky L,), N where M = (K; Ly), (K, L)) 4 (Ki+; Lyyy) (for 7= 1,n)
and (K, L,) - N. Let K, be the first value in the sequence K|, ..., X, — there must
be ore since N is a value and so K, must be one too. Then L, = L, (if 1 < i < ny),
and K -3» K, . Next lei L, be the first value in the sequence i, ..., L, — certainly L,
'is a value, so L, exists. Then L, % L,. .

If K, = (AxK}) then if no < i < ny, K, = K,, and, furtser, [L, [x] K}, % N.
Then by the induction hypothesis

Evaly(K,) = (AxK, ), Evaly(L,) = L, and Eval,([i,[x] K;) = N.
Therefore,
Eval, (M) = N. ‘
If, on the othe:r hand, K, is a constant, so it L,, n = n;, and N = Constapply
(K,, L,). Then, by the induction hypothesis,
Evaly(K;l) = Kn, Evaly(Ll) = L,. and so Eva!;:(;ll) = N,
concluding the proof.
Thus our clipped version of the programmiag language ISWIM is indeed deter-
—~ined by a standard reduction sequence as outlined in the iatrcduction. Asa coroliary,

we will give some weaker relations between A, and ISWIM, not involving the concept
of a s.r. sequence.

Corollary 2. 1. Th: e is a value N such that A, + M = N 'ff BEval,(M) is defired, for
closed M.

2. Suppose Constants = F-Constants L |3-Constants as mentioned above. With
each closed M we may associate two partial binary {say) fur:cticns fy and g, in )3-Con-
P
stants® — B-Consrants by:

fu(a, b) == ¢ iff Eval,(Mab) = ¢, for any 13-Constant c,
and gula, b) = ¢ iff Ay + Mab = ¢, for any P-Constant c.
Then fy = gu-

Proof 1. From Theorem 4 i, F M = Eval, (M when Eval, (4" iz defined. Con-
versely, suppose 1y F M = N for some value N. Then, by the Church--Rosser
theorem there is a term. L such that 4, F M > Land Ay F N > L. As N is a value,
so musi L be. So by Corollary 1, M -5 K for some value K and sc, by Theorem 4,
Eval, (M) is defined.

2. First, note that it follows from the Church-Rosser theorem that g, is a weli-
defined partial function. Using Theorem 4, we see that

fula, b) = ¢ implies Evaly(Mab) = ¢ implies 4;; + Mab = c.
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Conversely, using the Church-Rosser theorem, Corollary 1 and Theorem 4,
we see that:

gula, b) = ¢ implies Ay + Mub = ¢ implies A, + Mab > c¢ implies
Eval,(Mab) = ¢,

concluding the proof.

The second part of the Corollary says that 4, and Eval,, assign the same functions
of basic constants (to basic constants) to closed terms. If, as seems reasonable, one
regards ISWIM as being given by such assignments rather than Evaly, then we
see that it is completely determined by A, without any reference w0 s. r sequences.

Next we consider in what sense those equations provable in 4, are true (for Eval,).
V¢ assume that the constants are divided up into basic and functional ones.

learly if M = IV is true, then M and N are equal in any context, that is, with
an obvious notation, for any context C[ ], C[M] = C[N] is true. Also, if M =N
i; true and both M and N are closed either Eval, (M) and Eval,(N) are both unde-
frned or else they are both defined and one is a given basic constant iff the other is.

‘We are going to take these necessary conditions as being also sufficient; the
emphasis on basic constants seems appropriate, for one would want, for example,
(Ax succ x) to equal succ. The notion of context can safely be kept informal, C[ ]
can be regarded as a term with 1 “hole”, C [N] is the term obtained by filling the
hole with N. Note that 4, + M =: N implies 4, F C[M] = C[N].

Definition. M = N iff for any context C [ ] such that C [M] and C [N] are closed,
Eval,(C [M]) and Eval,(C [N]) ar¢ either both undefined, or else are both defined
and one is a given basic constant iff the other is.

One can check that = is indeed the largest relation satisfying the above conditions,
and is an equivalence relation. Further, if M a N, for closed terms M and N,
then with the notation of Corollary 2.2 f, = gy.

Theorem 5. If Ay + M = N then M =~N.

Proof. Supnose iy F M = N and C[M] and C[N] are closed.
If Eval,(C[M]), say, is defined, and so is a value,

Ay F C[N] = CIM] = Eval,(C[M]),

and so Eval,(C'[N]) is defined by Corollary 2.1.

Suppose Eval,(C [M]) and Eval,(C [N]) are both defined and the former, say,
is a basic constant. As 1, F Eval,(C[M]) = Eval,(C[N]), the result follows
from the Church-Rosser theorem, concluding the proof.

So we can regard Ay as being consistent. It is, however, not complete. Let us
say that M has order zero if it is closed and has nc (call-by-value) value. Then if M
and N are of order zero, M ~ yN. We outline the proof. Let us say that terms M
and M' correspond iff they are identical, apart from occurrences of order zero terms
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at homologous positions. Then, if M and M’ correspend and M’ > N, either M
anc N’ correspornid or else, for some N, M = N end N and N’ correspond. The result
ie then immediate.

In a similar way, one can show that Axx (Ayxy) =~ pAxxx. This is an instance of
a vaiid restricted form of n-reduction which it would be interesting to add to A,.

4. Call-hy-name

n this section we proceed at a raiher rapid rate through results for call-by-name
quite analogous to those of the previous section.

The language of our call-by-name calculus is that of ISWIM. Since simple lambd.
calculus based progiamming languages, such as PAL [19], GEDANKEN [11],
etc. all use call-by-value, we feel free to define Evaly directly, in anralogy to the re-
cursive definitior of Evaly,. It is an interesting exercise to define an appropriate
version of the SECD machine, and prove the result analogous to Theorera 3.1.

Assuming a Constapply as given, Evaly has this informai definition:

Evaly(a) = a; Evaly(AxM) = (AxM).
Evaly(MN) = Eval\([N/x] M’) (if Evaly(M) = (AxM)).
Evaly(MN) = Constapply (a, b) (if Evaly(3) = a and Evaly(N) = b).

We leave to the reader the formal definition of Evaly via a definition of “M has
(call-by-name) value N at time #”. Clearly, if it exists, Evaly(M) is a value.

Our Ay calculus is just the appropriate AK-86 calculus. Explicitly, its formulas
have the form M = N, where M and N are terms. Its rules are:

I1. (AxM) = (Ay [y/x] M)(y ¢ FV (M)) (¢-reduction).
2. (AxM) N = [N/x] M (B-reduction).
3. (ab) = Constapply (a, b) (if this is defined) (6-reduction).

m. M=M

, M=N1N=1

' M=L

3, M=N

" N=M
mi, o a =X M=N

© (MZ)=WNZ)’ (ZM) = (ZN)
N M=N

(AxM) = (AxN)

Ay F M = N means that M = N is provable by the above rules.
Ay F M > N means that M = N is provable using any of the above rules except I13.
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From [2], we know that if Ay F M = N then Ay F[L/x] M = [L|x] N, for
any term L, and so the free variables can be interpreted as universaily quantified;
we also know that the Church-Rosser theorems holds. Next we proceed to a formu-
lation of the standardisation theorem, again without any reference to redexes..

The relation, - of left reduction is the least relation such that:

(1) AxM)N = [N/x] M

(2) (ab) - Constapply (a, b) (vhen defired)

NI M - M' then (MN) = (M'N)

(4) If M is a constant or variable and N = N’ then (24N) e (MN").
Clearly left reduction is a partial function. If M > N thea M is not a value.
Standard reduction sequences (s.r. sequences) are defined inductively by:

1. A variable or a constant is a s.r. sequence.
2. If N,, ..., Ni is a s.r. sequence and N, r N, then Ny, ..., N, is a s.r. sequence.
f

3. 1f Nyy .y N is @ siI. sequence, 0 is (AxNy), ..., (AxN}).

4. If M,, ..., M; and Ny, ..., N are s.r. sequences, so is (M, Ny), ..., (M, N,), ...,
(M, N,).

Theorem 1. (Standardisation theorem). Ay + M > N iff there is a s.r. sequence N, ...,
N, such that M = N; and Ny == ,N.

We omit the proof. As rema-ked by Morris [9], it can be obtained by modifying
the proof in Curry [2] to consider the d-rules too. It can alsc be obtained by analogy
with our method for /.

The groofs of al! following theorems and remarks are omiited. They are analogous
to those of the corresponding ones in the previous secticn.

Corollary 1. For any term M, Ay + M > N for some value N iff M 7; N’ for some
value N'.

Theorem 2. Bvaly(M) = N iff M > N, for closed M.

Corollary 2. 1. There is a value N such that 1, + M = N iff Evaiy(M) is defined.
2. If the constants are divided into basic and functional constants, and we associate
partial binary (say) functions f,, and g,, wiih a closed terin, M, by:

Sula, b) = c iff Evaly(Mab) = ¢, for any basic constant c,
and

gula, b) = ¢ iff Ay + Mab = ¢, for any basic constart c,
t%en fM = ng(

Assume now that the constants are divided into basic and functional ones.



CALL-BY-NAME, CALL-BY-VALUE AND THE A-CALCULUS 147

Definition. M ~ yN iff for every context, C[] where C[M] and C[N] are
cloied, Fvaly(C[M]) and Eval,(C [N]) are either both defin d or both undefined
&ad in ik former case either bothare the same B-constant or both are not B-consiants.

Theorem 3. Jf Ay ¥ M = N then M == yN.

Again, although consistent, Ay is by no means complete. If we say a closed term A
is of order zero iff it has no call-by-name value then if M and N are order zero
terms, M =~ yN. It is also true that Ax (» (Ayxy)) = y xxx, and a more general
form of n-reduction is valid.

§. Simulations and translations

Qur object here is to show that call-by-value can be simulated by cali-by-name,
and vice versa. It is known that some aspects of call-by-name can be fairiy easily
simulated by call-by-value; for example the call-by-name conditional can be sim-
ulated by the call-by-value cae [7] and the term Z, mentioned previously, provides
a good recursion operator, | 19]. However these “protecting by a A” techniques do
not seem extendable to a complete simulation aad it is fortunate that the technigue
of continuations is available. These have been used to provide denotational semantics
for languages wih call-by-value [15], to give definitional interpreters whose cefined
languages are independent of the order of evaluation of the defining language [ 10, 12
and to show that a deietion implementation strategy does not reduce the nossible
functions [3]. It turns out that this work easily provides us with a simu'ation of
cali-by-value by call-by-name. Some modification is required for a simulation in
the other direction, which is based on a definitional interpreter, of the above sort,
for a call-by-name larguage [13].

We begin with a simulation of call-by-value by call-by-name. Given a call- by-value
language with its Constapplyy, Eval, and 1, we consider the call-by-name 'anguage
whose variables are these of the given language together with three others, », o and f
say, and whose list of variables for the substitution prefix is that of the given language.
Its Constapply will be given in a little while. First the term :imulation map M - M
sending terms in the call-by-value language to the call-by-name languags is given
by the recursive definition:

a = Ax» (za)
X = Az (%x)
AxM = Ax (» (\xM))
MN = As: (M (JaN (ABafx))).
Constapplyy is given by:

Constapplyy(a, b)) = Constapply,(a, b)
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Let £ be the call-by-value language under consideration, .2’ be the call-by-name
one and 2" be the call-by-value language whose constants, variables, variable
list and Constapply are those of /2. On occasion use cf the .2’s as superscripts or
prefixes will avoid ambigiuty.

An auxiliary function, ¥ sending values to values is defined by:

¥ (a) = a; ¥ (x) = x; ¥ (AxM) = (AxM).
We intend to prove the following three theorems:

Iheorem 1. (Indifference). Evaly(M (Axx)) = Eval,(M (1xx)). for any program M.

Theorem 2. (Simulation). ¥ (Eval,(M)) = Evaly(M (Axx)), for any program M.

Theorem 3. (Translation) If v M=Nthenil v 3 = Nandthen iy v M=N.
The second but not the first implication is reversible.

Notice that thc simulation maps used for programs, that is closed terms, in Theo-
rem 2 are different from that used for terms in general.

The first theorem is just a reworking of the “defining-language-order-of-evaluation-
independent” definitional interpreter. The second is, essentially, due to Fischer,
modified by an application of Theorem 1. The following corollary, shows that Evaly
gives ail the functions (on basic constants) Eval, dces.

Corollary 1. If f£ is the fumction assigned a closed term M as in Cerollary 4.2.2 and

24 — 2’
TS the function assigned N = AxAy (Mxy (Axx))as in Corollary 5.2.Z then f‘s =fy-
{Assuming the constants are divided into basic and functional cnes.)

Proof. = (a, b) = ¢ iff Evaly(Nab) = ¢
iff Evaly(Mab (Axx)) = ¢ (by Lemma 1 below)
iff ¥ (Evaly(Mab)) = ¢ (by Theorem 2)
iff 75 (a,b) = c.

Notice that since Constapplyy # Constapplyy, our simulations are not interpre-
tation independent. It would be interesting to find gencral conditions on Constapply,
which would allow an interpretation independent simulation.

Unfortunately, although operational inequality is preserved, equality is not:

Covollary 2. 1. For any terms, M, N, if_;n? ~ yN then M = .N.
2. Forany closedterms M, N, if MI ~ yNI then M ~ N, where I = (Axx).
3. Neither of the converses of 1 or 2 hold.

Proof 1. Svppose M # ,N. Then there are closed terms, C [M ] and C [N] such that
either one of Evaly{C [M]), Eval,(C [N]) is defined and the other not or else both




CALL-BY-NAME, CALL-BY-VALUE AND THE A-CALCULUS 149

are defined, one is a basic constant and the other is not, or else they are both defined
but are different basic constants. Now there is a context D [ ] such that C [M] I=
= D[M] and C[N]J = DTN], where 7 = (Axx). Then it foilows that M ~ yN
by applying Theorem 2 to the terms C[M] and C[N].

2. Suppose M = ,N. If one of Eval; (M), Eval,(N) is defined and the other not
then, by Theorem 2, the same applies to Evaly(MI) and Eval N(IVI yand then MI # yNI;
otherwis> .oth are defined and, as we have Axx (MI) ~ yM and similarly for N, we
carnot have MI & NNI as otherwise we would have M =~ NN contradJctmg 1.

3. T."e M= Aylxx (rx), N = Apdxx (y (Axxz)). Then M = yN but Mi % yNI and
so we also have M # yN, concluding the proof.

If the reader examines some examples of programs M, and the sequences M, ->
= M, 5> ...and My I = Ny - Ny — ... he will find that the ' consist of a sequence

of “sdministrative” reducticns followed by a “proper” reduction cerresponding
to a — followed by more administrative reductions and so on. The term I does not
figure in any reductions until an N, has been reachea corresponding to an M,, which
is a value. So we will define an infix operation: such that M:K is the result of per-
forming all the administrative reductions on MK, and so MK :ﬁ) M:K as is shown
ty Lemma 2 below. With the help of Lemma 1 it can be seea that the result, N,
of the proper reduction M;:J = N, corresponding to M, > M, is itself the result
of some administrative reductions on M, I and so in general we will expect that
if M > M'then M: K f» M':K, as shown in Lemma 3 below. One now has a good
picture of the sequence Ny > Ny — ... in terms of M, 5> M, — ... and this, together
with some information on error stops, given by Lemma 4 below, gives a proof of

theorem 2. Since all the ?'s are also ?’s we also have one of Theorem 1.

Lemma 1. [¥ (N)/x] ¥ = [N/x] M (if N is a value and x ¢ {x, a, B}).

Proof. By incuction on the size of M.
Case 1. If M is a constant a, then

[P (N)/x] 3 = [P (N)/x] (ixxa) = (Axxa) = [N]x] a

Case 2. M = x.
L. S. = [¥ (Ny/x] dxxx = deexW (N) ( ¢ FV(N))
= N = [N/x] x.
M = y. Trivial.

Case 3. M is a combination, (M, M,).
L.S. = [V (N)/x] (MM, (oM p(ABep))).
= (Ax [ (N)/x] My(da [¥ (N)/x] M,(ABeBx))) (as x ¢ {, «, B}
* and a, x ¢ FV (¥ (N)),
= (Ax [N/x] M,(la [N/x] Mz(Aﬁozﬁx))) (by induction hypothesis),
= [N/x] M,[N|x] M,
= R.S.
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Case 4. M is an abstraction, (AyM,). When y = x, the result is immediate, Other-
wise,
L.S. = [P (N)/x] (Axx (AyM,))
= A (#hz ([ (N)/x] [/y] My))  (x # =, ¢ FV(N), and with the
usual conditions on z)

= Az (uaz [P (N)/x] [zly] M)  (by induction hypothesis)

= Ax (waz [N]x] [zly] M) (by induction hypothesis)

- EIEI GO,

= [N/x] AyM;, concluding the proof.

Next we define the convenient infix operation, :, in 2-Clesed Terms x 2'-Terms

- L’-Terms.

N:K=K¥PN) (N is a closed value)
MN:K = M: (JaN (ApafK)) (M is not a value)
MN:K = N: (AB¥? (M) BK) (M, but not N, is a value)
MN:K=Y(M)YP{N K (M and N are values).

In vhe following, results asserted for —. are intended to be asserted for both
——;and e I the former case we mean £,

Lemma 2. If X is a closed value then MK > M:K, Jor any term M, (2, B, x ¢ FV (X))

Proof. By induction. on the size of M and cases on the definition of :.
1. M is a value.

MK = (Lex'P (M)) K

—+ KV (M)
= M:K.

2. M = (M M)).
Subcase 1. M, is not a value.
MK = (heM (AaM,(ABapx))) K
= M, (Bl (2apK)
— M,y :(laM,(Ap=BK)) (by induction hypoth:sis)
= M:K
Subcase 2. M, is a value and M, is not.

MK 5 M,y : (b, (BuK)) = b, (AfaBi)) ¥ (M)
- M,(AB¥ (M,) BK) 3 M:K (by induction hypothesis).
Subcase 3. M, and M, are values.

ME S FM,:(ABY (M) BK) (as in Subcase 2)
S P(M) V(MK
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Lemina 3. If M . N then M:K 5 N:K (if K is a closed valuc and M and N are

terms).

Preo?. By induction on the size of M and by cases according to the definition of =,
t. #{ = (ab) and N = Constapply (a, b) _
M:K = abK — Constapplyy(a, b) K = NK
SNK (by Lemma 2).
2. M= (MMI) M'z and N = [Mz/x] Ml and Mz is a value.
M:K = Y’(IIXM-‘) ?'-S_Mz) K= (lxﬂ—l,) W(Mz) K
*E(Mz)/x] MK
= [lex] Ml K = NK
5 N:X, (by Lemma 1).
3. M=M, M, M, is a value, M, -;»Nz and N = (M, N,).
M:K = M,:(Ap¥ (M,) BK)
- N,:(ABY (M,) pX) (by induction hypothesis)
= L, say.
If N, is not a value then, L = N:K. Otherwise,
L = (ABY (M,) BK) ¥ (N>)
- N:K.
4. M = Ml Aflz, 1:/[1 ';’ Nl and N = (Nl Mz)
M:K = M,:(AaM,(ApapK))
+ —
= N, :(AaM,(ApapK))
= L, say.
If N, is not a value, L = N:K. Otherwise,
L35 M,(\B¥ (N) K) = L, say.
If M, is not a value, L = N:K. Otherwise,
L'3SYWN)P(V,) K = N:K,

concluding the proof.

One can see that, in any call-by-value language, if M + N, for any term N and M

is not a valve and M is closed, then M is in the set Sticks, defined inductively by:

1. If Constapply (a, b) is not defined, (ab) € Sticksy.

2. For any term N, (a {AxN)) € Sticksy.

3. If N e Sticksy, then ((AxM) N) e Sticksy, for any term M.

4. If M e Sticksy, then (MN) e Sticksy, for any term N.

Similarly, in any call-by-name language, if M + N for any term N, M is not a value
and M is closed then M is in the set Sticksy defined inductively by:

1. If Constappiy {a, b) is not defined (ab) € Sticksy.
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2. For any term N, (a (AxN)) e Sticksy.
3. If M e Sticksy, (MN) € Sticksy, for any term N.
4. If N e Sticksy, then al e Sticksy.

Clearly, if the two languages have the same constants, variables and Constapply
then Sticksy < Sticksy.

Lemma 4. If M e Sticks, then M:K e Sticksy < Sticksy .

Proof. By induction on the size of M and cases according to the definition of Sticksy.
1. (ab):K = abK e Siicksy(Constapply;(a, b) not defined).
2. Like case 1.

3 Me Sticks“f/}, (AxM,) M,:K = M,:(AB¥ (M,) BK) € Sticksy {by induction hy-
pothesis).

4. M, e Sticks'g, (M,, M,):K = M,:(AaM(APapK)) € Sticksy (by induction hy.
pothesis)

Proof of Theorems 1 and 2
1. Eval'g (M) is defined and is N, say. By Theorem 4.4, M —:> N. So by Lemmas 2, 3
M (Jxx) % M:(xx)
5 N:(x)
— ¥ (N){as N is a value)
= W (Evalt (M)).
Therefore, in this case
Evaly(# (Axx)) = Evaly (M (Axx))
= ¥ (Eval,(M)),
by Theorems 4.2 and 5.2.

2. Eval‘;p(M') is not defined. By Theorem 4.4, either M t;,’ Ne :Sticks'g or else
there is an infinite series M,, M,, ..., such that
M= Ms '*;Mz _‘;)'Mz > e

<y

In the first case
M (Axx) > M:(Axx)
3 N:(Axx)
e Sticksy. (by Lemma 4).

Then neitker Eval, (M (Axx)) nor Eval';? (M (Axx)) are defined by Theorems 4.4
and 5.2,

In the second case, we have
M (xx) S M:(xx) = My:(Axx) 5 My:(0xx) S ...,

with the same recult, ~oncluding the proof.
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Preof of Theorem 3. We omit the straightforward proof that 115 F M > N implies.
1‘3 - Af > N, from which it follows immediately by the Church-Rosser theorem

tha it A M = Nthen A7 F M = N. It is then clear that Jy + M = N.
Conversaly suppose Ay F M = N. Note that M and N have this property:
¥f L, .. L,is asubterm and L, is a value so are L, ... L,. Any call-by-name redex
in » :2rm with this property is also a call-by-value one, and if L has the property
and .y FL > L', then L' also has the prcperty. It follows fiom these remarks

that 15 F M= N.
Finally, if M = ((Axxx) (Axxx))y and N = ('xxy) {(Axxx) (Axxx)) then Af

F & = N but ,1'3 H M = N. Note that M ~ ,N.

Fi ving congleted our treatment of the simulation of call-by-velue by call-by-name,
we rass next to the simulation of call-by-name by call-by-value. So suppose we are
given a call-by-name language 2, with some Constapplyy. Consider that call-by-value
lang.iage 2’ whose coastants are those of .2, whose variables are those of .2, plus »
and «, whose variable-list is that of .2 and whose Constapply, wili be given later
via 2 function M & M from 2 terms to £’ terms which also helps to specify
the simulation map. It is convenient to let .2’ be the language which, apart from
its being call-by-name, is idzatical to 2. We will use the .£2’s as superscripts or
prefixes as beforc. We will only consider the case where the constants of .2 are
diviled into basic and functional classes. This allows a simple simulation map.

The map M M is dciined recursively by:

x=2x
2 = Ax (% (A (aI))) (a € F-coastants)
b = Ax (»b) (b € B-constants)

(AxM) = Joex (AxM)
(MN) = AxM (AxoNx).

Here, and below, I is the term (Axx).
Then, Constapplyy(a, b) = 4.cConstapply,(a, ), and it is also convenient to
.define a map , from £L-values to .2'-terms by:

D (x) = (xi); ©(0) = lna(al); D () = b; T (AxM) = AxM.

We intend 1o prove these three theorems:

Theorem 4. ([adifference). Eval, (#T) = Evalfl(MI), Jor any term M.
Theorem 5. (Simulation). @ (Eval',,,(2 (M)) = Eval,(MI).

“Theorem 6. (Translation). 25 + i = N iff A + M = N iff

?

i v MI=NIffdy v M=N iy bMI= AL
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As before, it follows that Eval, gives all the functions Evaly does; but once again
the simulation is not perfect:

Corollary 3. 1. For ary terms M, N, if M ~ yN then M & yV.
2. For any closed termis M, N, if MI = yNI then M =~ yN.

3. Neither of the converses of 1 or 2 hold.

Proof. ‘This is similar te that of Corollary 2. As a counter>xample one can take
M = Axxx and N = Axx (Ayxy).

We omit the proofs of the first few lemmas, as they are quite similar to the proofs
of the corresponding lemmas for the previous simulation.

Lemma 5. [M/xIN = [M/x]N. (x¢ {=, a}).
Now the infix cperator : , in L-Closed Terms x L£'-Terms — £2'-Terms, is de-

Jined by:
a:K = K (Ao (al))
b:K = Kb
(AxM):K = K (AxM)
(MN):K = M:(AaaNK) (4 not a value)
@aN):K =a®(N)K (N a value)
(@N):K=a(N:HK (N not a value)
{ON}):K = BNK
(AxM)N.K = (AxM)NK.

Lemma 6. If K is a value then MK 5 M:K (M closed).

Lerama 7. If M s N then M:K 5 N:Kif M is not of the formb L, ...L, (M closed).
Lemma 8. If Me Sticks;ve then M:K e Stick:sf" c Sticksf’.

Theorems 4 ard 5 now follow just as Theciems 1 and 2 did.

The proof of Theorem 6 is, as it were, a non-determinisiic analogue of the proof
of Theorems ¢ and 5.

Consider a term A and the corresponding terms M and M 1. Once again reductions
on M and MI can be either administrative or proper, but since we are considering >
rather than — we need relations rather that a function hike :. So M ~ M’ will meaan
that M’ can be obiained from M by adminisirative reductions and M 2 M’ means
that A’ can be ottainzd from M7 by administrative reductions. Lemma 9 below
corresponds to Lerumas 1 and 5 above. Lemma 11 corresponds to Lemmas 2, 3, 5
and 7 above, and is expected if we have the right definitions of ~ and 2. Itis then
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straightforward to show that if 22"  MI = NI then MI and NI reduce to terms
in the relation 2 to alphabetically equivalert terms and one ther uses the rather

technical Lemma 10. In this way one shows that A-E" F MI = NI implies /’L}?

FAf =« N and the rest of Theorem 6 is straightforward. It should be remarked

that it ¢ analogre of Lemma 10, for the simulation in the other direction. fails.
We set
[N/x] M, (T M is {AxHM)))
(M; N} = def{ . . !
(MN) (otherwise)
(M|N) will be used, ambiguously, to abbreviate (MN) and (M; N). The 1eiations ~
and -~ are now defincd by means of a forraal system whose formulae are of the
torm M ~ M’ or M R M’, where M is an L-term and M’ is an 2’-term.

I x~x

IIl. a ~ Axx (Ao {(al)) 2. a R (Aua (al))
IIIl. & ~ Axxb 2.b2b
iVL. M~M 2. M~M
(AxM) ~ (Axx (AxM")) (xM) £ (AxM’)
V. M~ M'N~ N’
(MN) ~ Ax (M'|(AaoN %))
VIL. N~ N’ _ 2. N ~ N’
(aN) ~ Ax ((Aca (uI)) N'K (aN) ~ AxaN'x
VII. N~ N
(bN) ~ 2% (bN'%)
VIIL N~NM~M

"(AXM)N ~ A% (AxM") N'x
IX. M~ M

TMRMD
X M~M

M~ AxM'

We will also use M ~ M’ (M R M’') to mean that the formula M ~ M' (M <~ M')
is provable by the above rules. Notice that if M ~ M’ or M < M’ then FV (M) =
= FV(M').If M ~ M' = AxM", then % occurs in positicn 1 of M"' iff M is a value,
other than a variable; occurs in position 2 of M" iff M ~ M’ follows from an
appiication of one of rules VI, VII, VIII or X.

Lemma 9. 1. If M ~ M’ and N ~ N' then for some L,
[N'xX]M ~ L = [N'|x] M.

2.If M < M' and N ~ N' then for some L,

[NIxX] M R L= [N[x]M. (x¢{xa}).
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'‘We omit the proof, which is a simple induction on the size of M.

Lemma 10. 1. If M ~ M’ and N ~ N’ = M’ then M = N.
LIMA2M and NS N = M then M= N.

Proof. 'We define sets X,, J,(n > 0) by:
Ko = {¢}; W+1 = {Aaal’K,JL ~ L’ for some L and K,€K,} (n = 0).
G = U, u {{I/x] KK, € Kp} (n = 0).

We use K, K, etc. to vary over °K, and I, etc. to vary over J,. Then K, = K,
implies n = n’ and [I,/x]1 K,, is in Ty,

In the following, V is some constant, or has the form Aaa (xf) or AxL; where
L; ~ L for some Ly, and L' will be some term such that L ~ L' for some L.

A term is of type A if it has the for.a AxxV.

A term is of type B if it has the form AxVL'x.

A term is of type C if it has the form AxL’K,,, with m >. 0.

A term is of type D if it has the form AxVL'K,, with m > 0.

A term is of type E if it has the form AxK,, V, with m > 0.

It is not hard to show that if M ~ M’ then M’ is of type A iff the last rule used
in the proof of M ~ M’ was cne of II1, III1 or IV1; of type B iff it was one of VI,
VII or VIII; and of one of types C, D or E iff it was V.

Let (@), be the statement that if M ~ M’, N ~ N’ have proofs of total size (= no.
of steps) n then :f M’ = ,N', M = ,N.

Let (b), be the statement that if M < M’, N & N’ have proofs of total size n thern
if M'=_,N', M :=,N.

Let (¢}, be the statement that if M ~ M’, N ~ N’ have proofs of combined size n
then if M'|I, = N'|I, (for some I, I, € G, then M = ,N and I, = I,

We will prove that if (c), then (a),, that if (a),, and (c), for all m < n then (b),,
and if (@), and (b), and (c),, for all m < n then (c),. The Lemma is then immediate.

(1) Suppose (c), and that M ~ M’, N ~ N’ have proofs of total size # and M’
= N'. Then (c), applies with M'|I, = (M'x) and (N'|I)) = (N'x).

(ii) Suppose (a),, and (¢), for all m < n, M < M', and N & N’ have proofs of
total size n, and M’ = ,N'. We divide the proof into cases according to the last
rule used in the proof of M < M'.

I12. Here M = g and M’ = Jaw («I) for some a. The last rule used in the proof
of N = N’ clear’y cannot be IIIl or IV2. If it is IX then we must have N ~ N*
and N':= (N";!) where the last rule in the proof of N ~ N” was V as N’ is an
abstraction. A comparison of the positions in M’ and N’ of a shows that this is
impessible. Lastly, if it is 112 the result is immediate.

112, IV2. This is similar but IV2 uses (a),—,.

IX. By symmetry, we need only consider the case where the last rule used to
prove N 2 N'is also IX. Then, for some M", N’ M ~ M"” and N ~ N" have
proofs of total size n—2, M’ = (M"|I) and N’ == (N"'|I). By (c),—, it follows that
M"” = N",
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(ii1) Suppose (a),, and (b),, and (c),, for all m < n, M ~ M’, N ~ N' have proofs
of coa ined size n and M'|I, = ,N'|I, for some I,, I, in some I,

First ve assume that nelther M~ M’ nor N ~ N’ follows from X.

Supp.se, M'|I, = M'I, and N'|i, = N';I,. If N ~ N’ follows from I, the result
is ir.. "ediate, If N” is of type 4, then M'I, = I, V, with a V as above. This is a con-
tradiction as I, = .V is impossible. The same objection rules out type E.

If ¥’ is of type B then M'I, = ,VL'I, which is impossible as M’ is a value. This
also rules out type D. Lastly, if N'is of type Cthen M'/, = ,L'[I,/x] K,, = L'I,4, for
sorie I,,, and then I, = ,I,, a contradiction, as m > 0.

The case M'|l, = M'* T, and N'|I, = N'I, is similar.

Suppose M'|I, = M'; I, and N'|I, = N'; I,. If either M ~ M' or N ~ N' follows
from I the result is immediate; otherwise, the proof splits into cases according to
the type of M'.

A. Here M' = AxxV for some V, as above, and M ~ M' follows by one of IIi,
III1 o IV]1 and M'I, =1, V.

If N’ is of type A we see that N ~ N’ follows from whichever of 111, IlI1 or IV1,
M ~ M’ does and the result is immediate, possibly using (@),—.

If N’ is of type B we have I, V = ,V'L'I, for suitable ¥, L', contradicting the fact
that 7, is a value.

If N’ is of type C we have 1, V = ,L'I,., for some I+, which is impossible.

If N’ is of type D. the argument is the same as for type B.

if N'is of type E, we get I, V = I+, V' for some I+, V' which is a contradiction
as m > 0.

B. Here M’ = AxVL'x and M';I, = VL'I,. The proof divides according to the
type of N'.

A. By symmetry from the case AB above. ‘

B. Here N ~ N’ fcllows from whichever of VI, VII, VIII proves M ~ M' and
the result is immedia:e using either {@),-, or (b),—,-

C. Here VL'i, = /I, for evitable L', I, +,, a clear contradiction.

D. Here VL'I, = ,V'L'l,+,, for suitable V', L', I,,+,, a contradiction as m > 0.

E. Here VL', = ,I,,,+,, V', for suitable I,.+,, a contradiction.

C, D, E. If N~ N’ does not follows from V, the result follows by symmetry.
Otherwise, M = (M, M,), and the last step in the proof of M ~ M’ has the form:
M, ~M;{ M, ~M;
(M My) ~ Ax (Mi| dao M%)
and similarly for N.

Then M; I, = M{|(ba M3 I,) and N; I, = Ni|(AaeaV3 I) and so by hypothesis.
M| = _N; and daaM} I, = JauN5 I,. Then by hypothesis. M; = ,N;, so M = ,N.
and I, = I, concluding this part of the proof.

Finally, suppose M'|I, = M'I, and N'|I, = N'I,. Then I, = I, is immediatc
and M’ = N'. So M’; % = ,N'; » and by the previous part of the proof, M = N.

It only remains to consider the nossibility that one of M ~ M’ or N ~ N’ follows
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from X. Suppose, w.l.o.g. that M ~ M’ does and so M’ = AxM; » where M ~ M;.
If M’|", = M’'; I, the result follows by the induction hypothesis. Otherwise, if N'|I, =
(N'I;) then I, = I, and M’ = ,N'. Therefore M{x = M'; % = ,N'; % and so, by
induction hypothesis, M = ,N. So the remaining case is M'|l, = M'I, and N'|I, =
== N'; I.. Inspection of thke various types rules them all out leaving only the possibility
that N ~ N’ follows by X which is handled by the induction hypothesis, concluding
the proof.

Lemmsa 11. Suppose M ~ M’ and N' is obtained from M' by contracting one f- or
d-redex. Then for some L either M ~ L = ,N' or else N ~ L = N', where N is ob-
tained from M by contracting one p-redex, or 5-redex. The same statement holds with ~
replaced by ~

We omit the proof which is a straightforward induct:on on the number of steps
in the proof of M ~ M’', or M R iM'.

Proof of Theorem 6. It is straightforward to prove that AN ' M = N implies
2%t M = N from which it follows immediately that ¥ F MJI = NI and A% F

F M = N and then that ).N £ MI = NI

Conversely suppose AN 2 F MI = NI. Then there is a term Z such that ).N F

FMI > Z and ).N FNI>Z. As M R MI, by Lemma 11 there is a term M,
such that }.N FM > M, and M, R M; = ,Z for some term Mj. Similarly, there
are terms M, and M3 such that A}s' FN 2 M,and M, R M5 = _Z. By Lemma 10,
M, = ,M,. Therefore ,15 F M = N concluding the proof.

A rather more complex simulation of call-by-name by call-by-value works in the
general case where the constants are not divided up into basic and functional ones.
It results from the following mappirg M - M

= Axx (AniKa)

=x

xM = Aux (Ann (KT) (AxM))

MY = AxM (o (2 (KD) ((K) (23 (NI) (KD)) (AON) I) %)

where K = AxAyx and I = Axx.
We have only checked the analogues of Theorems 4 and 5.

a» W W
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