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ABSTRACT

We explore ideal models for a programming language with recursive polymorphic
types, variants of the model studied by MacQueen, Plotkin, and Sethi. The use of suitable
ideals yields a close fit between models and programming language. Two of our semantics
of type expressions are faithful, in the sense that programs that behave identically in all
contexts have exactly the same types.
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1. Introduction

Often, a formal semantics assigns different values to programs that behave iden-
tically in all contexts [1, 2, 3]. In other words, the semantics of programming-
language expressions is not fully abstract. This mismatch between model and
programming language elicits diverse reactions. Some propose extensions to the
programming language, while others prefer modifying the semantics. Both of these
attitudes have suggested fruitful lines of research. Yet others point out that the
semantics still serves its purposes fairly well, for example in proving the safety of
evaluation schemes. At any rate, full abstraction is one of the main criteria in
assessing programming-language semantics [4].

A similar situation commonly arises in the semantics of type systems. In its sim-
plest form, a semantics for a type system maps each type expression to a reasonable
subset of the domain of values. Let us call these subsets types. In most semantics,
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some programs that behave identically in all contexts not only may receive different
meanings—they may even belong to different types. Roughly, we call a semantics
faithful if programs that behave identically in all contexts have identical types.

In logical form, the faithfulness problem concerns the soundness of the usual
rule of inference

e : T e′ = e
e′ : T

which says that if e has type T and e′ and e are “equal” then e′ has type T . In the
standard reading of this rule, two expressions are “equal” when they are equal in a
given model. We take two expressions to be “equal” when they behave identically in
all contexts. A faithful semantics should validate the rule under this interpretation.

Clearly, a semantics of type expressions is automatically faithful if the underlying
semantics of expressions is fully abstract. The converse is false, however, and it
seems intriguing (and perhaps easier) to study faithfulness in isolation from full
abstraction.

In this paper, we give semantics for a language with recursive polymorphic
types, like Standard ML [5]. Imitating MacQueen, Plotkin, and Sethi, we adopt
and extend the ideal model [6]. In the ideal model, type expressions are interpreted
as ideals, certain subsets of the universe of values. We place new restrictions on
ideals, defining the classes of generated ideals, coarse ideals, and abstract ideals.
In our variants of the model, type expressions are interpreted as ideals in these
classes. We obtain faithful semantics of type expressions. These semantics validate
the stronger rule of inference

e : T e′ v e
e′ : T

which says that if e has type T and e′ is “less than” e then e′ has type T , with “less
than” interpreted contextually (just as “equal” above).

One danger in tampering with a model is making it mathematically intractable,
for instance by making it too syntactic too soon. We may also simply give up
useful properties. Fortunately, our type systems share many features with the one
explored by MacQueen, Plotkin, and Sethi. In particular, a large family of recursive
type equations have unique solutions.

The departures from the original ideal model are perhaps best illustrated with
an example. Consider the following expression of the untyped lambda calculus:

explode-||-or = λ x.
if x(true, btm)
and x(btm, true)
and not x(false, false)
then wrong
else true

where btm is a divergent expression, such as (λ y. y y) (λ y. y y), and wrong
represents a dynamic type error.

How should we type the expression explode-||-or? The first branch of the
if-then-else is only taken when the input represents the parallel-or function,



which returns true whenever either of its arguments is true, even if the other ar-
gument diverges. In many common models, and in the one considered by MacQueen,
Plotkin, and Sethi in particular, the parallel-or function exists. In these models,
explode-||-or returns wrong with a binary boolean function as input, and hence
it seems ill-typed. On the other hand, it is well-known that the parallel-or function
cannot be expressed in the usual lambda calculus, as studied by Plotkin [2]. There-
fore, whenever explode-||-or is applied to an expression in the language that repre-
sents a binary boolean function, explode-||-or returns true if it terminates. Thus,
intuitively, there seem to be grounds for asserting that explode-||-or should have
type (bool×bool→bool)→bool, the type of functions that map binary boolean
functions to boolean values. This is the case in our semantics.

In the next section we describe the setting for this work: a language, a model,
the semantics of the language in the model, and some useful expressions of the
language. We also define faithfulness precisely. In Section 3 we study the generated
ideals; this section contains analogues to the central results in [6]. In Section 4 we
use the generated ideals to give a semantics to type expressions, and then restrict
our attention to special classes of generated ideals; we prove that two semantics are
faithful. Finally, in Section 5, we consider more syntactic approaches, where types
are sets of terms.

2. The Setting

We work within the ideal model of types, following MacQueen, Plotkin, and Sethi.
The setting is almost exactly identical to theirs. We refer the reader to their paper
for definitions and lemmas that we omit or only sketch, and recommend the study
of their paper as a preliminary for fully understanding the constructions below.

In this section we briefly review a simple programming language, a model, and
the denotational semantics of the programming language in the model. Then we
define faithfulness. We also study some expressions of the programming language
that play a role in the formulation of syntactic counterparts to semantic concepts.

2.1. The Programming Language

The basic programming language is a simple untyped lambda calculus with con-
stants. We start with the following grammar:

e ::= c | x | λx.e | e(e’)

Here, e and e’ range over the set Exp of expressions, c over a suitable set of
constants, and x over the set Var of variables. We insist on having a sufficiently
rich set of constants, such as the one considered in [6]: true, false, cond, 0, z
(test for zero), +1, -1, pair, π1 and π2 (for extracting pair elements), inl and inr
(for forming sums), outl and outr (to recover elements from sums), and isl and
isr (for distinguishing cases in sums). We also use abbreviations, such as and,
if-then-else, and x < m (with m fixed).

The only new feature of our language is an additional cases construct. Intu-
itively, this construct enables us to decide whether esel is a boolean, a natural, a



pair, a sum, or a function, and to return a different result in each of the cases:

cases esel

bool: ebool

nat: enat

pair: epair

sum: esum

fun: efun

end

It can be argued that the addition of cases is natural, and even that cases either
should be definable or ought to have been in the programming language in the first
place. At any rate, we use cases only for writing a limited family of expressions.
It is common to assume that similar expressions are definable [1], and we include
cases only to make their definition straightforward.

2.2. The Model

To give a semantics to this language, we consider a universe V that satisfies the
isomorphism equation

V ∼= T + N + (V×V) + (V + V) + (V→V) + W,

where T is the flat domain of boolean values, N is the flat domain of natural num-
bers, W is the type-error domain {w}⊥, and ×, +, and → represent the usual
product, coalesced sum, and continuous function space operations, respectively
(coalesced sum identifies the least elements of its two arguments). The value w
represents all dynamic type errors.

The universe V can be constructed as the limit of a sequence of approximations
V0, V1, . . . , where

V0 = {⊥}

and, for all i,

Vi+1 = T + N + (Vi×Vi) + (Vi + Vi) + (Vi→Vi) + W.

We omit the details of the construction, which are standard [7, 6].
As usual, we have an ordering v on V; we read x v y as “x is less defined than

y” or “x approximates y.” An element of V is finite if whenever it approximates
the least upper bound of a chain it approximates some element of the chain. The
function µi is the embedding from Vi to V, and µR

i is its inverse projection. The
rank r(a) of a finite element a of V is the least i such that a “appears” in Vi during
the construction of V as a limit; the rank function is only defined on finite elements.
More precisely, r(a) equals the least i such that a = µi ◦ µR

i (a), provided a is finite.

2.3. The Semantics of Expressions

We assign a meaning [[e]] to each expression e of the programming language. The
definition of [[ ]] appears in Fig. 1, with the following notation:

• s in V, where s belongs to a summand S of V, is the injection of s into V;



• wrong is an abbreviation for w in V;

• if v = (s in V) for some s ∈ S then v|S is s, and otherwise it is ⊥;

• v <- S yields ⊥ if v is ⊥, true if v = (s in V) for some s ∈ S (with s 6=⊥), and
false otherwise;

• a mapping in Var→V is called an environment; ρ{x← v} is the environment
obtained from ρ by giving the value v to the variable x.

We omit the equations for constants.

[[ ]] : Exp→(Var→V)→V

[[x]]ρ = ρ(x)
[[λx.ebody]]ρ = (λv.[[ebody]]ρ{x ← v}) in V
[[efun(earg)]]ρ = let v = [[efun]]ρ in

if v <- (V→V) then ([[efun]]ρ|V→V)([[earg]]ρ)
else wrong

[[cases esel bool: ebool ...]]ρ
= let v = [[esel]]ρ in

if v <- T then [[ebool]]ρ
else if . . .
else wrong

Fig. 1: Definition of the meaning function for expressions

In our constructions, we are particularly interested in denotable elements, that
is, the elements in the range of [[ ]]:

Definition 2.3.1. An element v ∈ V is denotable if v = [[e]] for some closed
expression e.

In the rest of this paper, as in this definition, we often do not mention the
environment ρ when it is irrelevant. Specifically, if e is a closed expression then,
informally, we may write [[e]] instead of [[e]]ρ, since [[e]]ρ clearly does not depend
on ρ.

2.4. Faithfulness

At this point, a precise discussion of full abstraction and faithfulness is in order.
Roughly, a semantics of expressions is fully abstract if two expressions that

behave identically in all contexts receive the same interpretation. We could be
interested in different aspects of the behavior of an expression. We find it sufficient
here to “observe termination,” that is, to identify the behavior of e with the set of
all contexts C such that [[C[e]]] 6=⊥—or, equivalently, with the set of all contexts C
such that [[C[e]]] =⊥. In other words, we say that two expressions e and e’ behave
identically if, for all contexts C, we have [[C[e]]] =⊥ if and only if [[C[e’]]] =⊥. For



the definition to make sense, we consider only the contexts such that C[e] and C[e’]
are closed; we leave similar requirements implicit in the rest of the paper.

Other notions of observation are also justifiable; for instance, we might care
about the set of contexts C such that [[C[e]]] is a boolean value. Fortunately, many
reasonable kinds of observation are equivalent to the one we choose (see [4] for an
informal discussion of this point).

Thus, full abstraction requires that, for all e and e’, whenever [[C[e]]] =⊥ if and
only if [[C[e’]]] =⊥ for all contexts C, it must also be the case that [[e]] = [[e’]]. An
interesting refinement of this definition allows the ordering relation v to come into
play. In this refinement, for all e and e’, whenever [[C[e]]] =⊥ implies [[C[e’]]] =⊥
for all contexts C, it must also be the case that [[e’]] v [[e]]. (The converse holds
trivially.)

Let us write e |= C if [[C[e]]] 6=⊥, and e’<∼ e if e’ |= C implies e |= C for all C.
In this notation, the refined definition of full abstraction simply says that <∼ and
v are identical on denotable elements.

Note that, in either case, as in [1], full abstraction is a purely semantic criterion
and does not refer to a particular operational semantics. This is a convenient way
to consider the full-abstraction property as an intrinsic feature of a semantics.

Analogously, a semantics of type expressions is faithful if two expressions that
behave identically in all contexts have identical types. For this, it suffices that each
type be abstract, in the sense that membership in the type does not distinguish
between expressions that behave identically in all contexts. This tentative definition
can also be refined to take the ordering relation into account, and motivates a
stronger definition:

Definition 2.4.1. A set I is abstract if, for all closed expressions e and e’, if
e’<∼ e and [[e]] ∈ I then [[e’]] ∈ I.

In an expanded, symbolic form, a set I is abstract if

∀e, e’.[∀C.([[C[e’]]] =⊥⊃ [[C[e]]] =⊥) ⊃ ([[e’]] ∈ I ⊃ [[e]] ∈ I)].

Informally, the abstract sets are “closed downwards” in <∼ . This requirement fol-
lows from common intuitions on the structure of types, the same intuitions that
underlie the use of ideals (we come back to this point in Section 3).

Finally, we can define faithfulness. The definition implies the one we have been
using informally.

Definition 2.4.2. Given a set of well-formed type expressions, a semantics is
faithful if the meaning of each well-formed type expression is abstract.

In logical terms, then, we require the soundness of the rule

e : T e′ v e
e′ : T

with v interpreted as <∼ .



2.5. Projection Functions

The following expressions are useful in establishing correspondences between syntax
and semantics. In particular, they are related to the rank function. We use these
expressions and some of their properties (given in Lemma 2.5.1) in the main proofs
below.

First we define a sequence of expressions pm
n :

pm
0 = btm

pm
n+1 = λ x.

cases x
bool: x
nat: if x < m then x else btm
pair: pair(pm

n (π1 x), pm
n (π2 x))

sum: if isl(x) then inl(pm
n (outl x))

else inr(pm
n (outr x))

fun: pm
n ◦ x ◦ pm

n

end

where, as before, btm is a divergent expression, that is, an expression that represents
⊥, such as (λ y. y y) (λ y. y y). Intuitively, each pm

n is a projection that maps
an object to an approximation with smaller rank.

We also define a sequence of expressions pn:

p0 = btm

pn+1 = λ x.
cases x
bool: x
nat: x
pair: pair(pn(π1 x), pn(π2 x))
sum: if isl(x) then inl(pn(outl x))

else inr(pn(outr x))
fun: pn ◦ x ◦ pn

end

Intuitively, each pn is the limit of the expressions pm
n as m grows, and is also a

projection. The limit of the expressions pn as n grows is the identity function.

Lemma 2.5.1. Let id be the identity function in V; for all m and n,

1. [[pm
n ]] has a finite range;

2. [[pm
n ]] v id;

3. [[pm
n ]] ◦ [[pm

n ]] = [[pm
n ]];



4. all elements in the range of [[pm
n ]] are finite;

5. [[pm
n ]] v [[pm+1

n ]] and [[pm
n ]] v [[pm

n+1]];

6. [[pn]] =
⊔

m[[pm
n ]];

7. [[pn]] = µn ◦ µR
n ;

8. id =
⊔

n[[pn]] =
⊔

n[[pn
n]];

9. [[pn]] ◦ [[pm
n ]] = [[pm

n ]].

Proof We prove the claims in order.

1. [[pm
n ]] has a finite range: The proof is by induction on n. The case n = 0 is

trivial. Assume that the proposition holds for some n, to check it for n+1. The
range of [[pm

n+1]] consists of numbers less than m, pairs and sums of elements
in the range of [[pm

n ]], and functions into the range of [[pm
n ]] and determined by

their values on the range of [[pm
n ]]. By the induction hypothesis, this set must

be finite.

2. [[pm
n ]] v id: Again, we use induction on n. The base case is trivial. The

inductive step follows immediately from the monotonicity of all functions.

3. [[pm
n ]] ◦ [[pm

n ]] = [[pm
n ]]: Once more, we use induction on n. The base case is

trivial. The inductive step follows from the remarks in 1 on the nature of
[[pm

n+1]]’s range.

4. All elements in the range of [[pm
n ]] are finite: Suppose that for some e and for

some chain 〈yl〉 we have [[pm
n (e)]] v

⊔

l yl. Then [[pm
n (e)]] v

⊔

l [[p
m
n ]](yl) (by

the continuity of [[pm
n ]] and 3). Hence [[pm

n (e)]] v [[pm
n ]](yk) for some k (by 1),

and, finally, [[pm
n (e)]] v yk for some k (by 2).

5. [[pm
n ]] v [[pm+1

n ]] and [[pm
n ]] v [[pm

n+1]]: The two propositions are proved separately,
by induction on m and n, respectively. Both arguments are trivial

6. [[pn]] =
⊔

m[[pm
n ]]: First,

⊔

m[[pm
n ]] is defined, by 5. Furthermore, it is simple to

prove by induction on n that [[pn]] v
⊔

m[[pm
n ]] (using continuity) and

⊔

m[[pm
n ]] v

[[pn]] (using monotonicity).

7. [[pn]] = µn ◦ µR
n : The proof is by induction on n and requires elementary

properties of the embeddings µn. Specifically, it requires that µ0 ◦µR
0 is totally

undefined, that µn+1 ◦ µR
n+1 is the identity function on boolean values and

numbers, that if f is a function then µn+1 ◦µR
n+1(f) = (µn ◦µR

n ) ◦ f ◦ (µn ◦µR
n ),

and similar properties for pairs and sums. The argument is straightforward.

8. id =
⊔

n[[pn]] =
⊔

n[[pn
n]]: The former equality follows from 7 while the latter

one follows from 6.

9. [[pn]] ◦ [[pm
n ]] = [[pm

n ]]: This follows directly from 3 and 6, which implies that
[[pm

n ]] v [[pn]] v id. 2



These properties can now be used to prove the following lemma, which explains
how to reduce the rank of a denotable value [[e]] while remaining “above” a given
lower bound a.

Lemma 2.5.2. If r(a) = n and a v [[e]] then there exists m such that a v
[[pm

n (e)]] v [[e]] and r([[pm
n (e)]]) ≤ n.

Proof This follows easily from Lemma 2.5.1.
Because a has rank n, [[pn]](a) = a, and hence the monotonicity of [[pn]] guarantees

that a v [[pn]][[e]]. In addition, since [[pn]][[e]] =
⊔

k[[pk
n]][[e]] and a is finite, there exists

m such that a v [[pm
n ]][[e]], that is, a v [[pm

n (e)]]. Furthermore, [[pm
n (e)]] v [[e]], since

[[pm
n ]] is a projection.
Finally, [[pm

n (e)]] is finite; Lemma 2.5.1 yields that [[pn]][[pm
n (e)]] = [[pm

n (e)]], and
hence r([[pm

n (e)]]) ≤ n. 2

3. On Tying Ideals to Language

In the original ideal model, two different ideals may contain exactly the same deno-
table elements. Hence these ideals cannot really be distinguished from the point of
view of the programming language; their distinction may be regarded as irrelevant,
or even bothersome. Analogous situations arise in other typical semantics.

In this section we study a notion of type with closer ties to the programming
language. Each type can be obtained from the set of its denotable elements. Since
these types are ideals, we call them denotably-generated ideals, or generated ideals
for short. We define functions on generated ideals and prove that these functions
share many of the desirable mathematical properties of the corresponding functions
on arbitrary ideals.

3.1. Generated Ideals

As is commonly argued, types consist of sets of values with a common structure.
Intuitively, the structural criteria embodied by type distinctions should be preserved
“downwards” and “under limits” in the v ordering. This principle underlies the
identification of types with ideals:

Definition 3.1.1. A set I is an ideal if

• I 6= ∅;

• for all x and y, if x v y and y ∈ I then x ∈ I; and

• for all increasing sequences 〈xn〉, if xn ∈ I for all n then
⊔

n xn ∈ I.

Using Lemma 2.5.1, one can easily show that there is a least ideal containing
any given non-empty set of values, X. It is

Id(X) = {x | for all n, [[pn
n]](x) v some element of X}.

Generated ideals are ideals obtained from their denotable elements, as follows:

Definition 3.1.2. I is a generated ideal if



• I is an ideal; and

• if x ∈ I then there exists an increasing sequence of denotable values 〈xn〉 such
that xn ∈ I for all n and x v

⊔

xn.

Analogously to the case of ideals, one has:

Theorem 3.1.3. If X is a set of denotable elements, then Id(X) is generated.

Proof Certainly Id(X) is an ideal. Suppose that x is an element of it. Set

Rn = {z ∈ [[pn
n]](V) | z is denotable, z ∈ Id(X), and [[pn

n]](x) v z}.

By Lemma 2.5.1 this set is finite. It is also non-empty as for any n there is a y in
X such that [[pn

n]](x) v y. But then as y is denotable, and using Lemma 2.5.1 again,
[[pn

n]](y) is in Rn. Finally, for every z′ in Rn+1 there is a z in Rn such that z v z′

(take z = [[pn
n]](z

′) and use Lemma 2.5.1). We can therefore apply König’s Lemma
to the Rn to find an increasing sequence 〈zn〉 (zn in Rn), and using Lemma 2.5.1
one sees that this sequence verifies the second condition for Id(X) being a generated
ideal. 2

It follows that the set of generated ideals, GIdl, is a complete lattice, with for
any collection Iλ (λ ∈ Λ) of generated ideals:

tIλ = Id({x ∈ ∪Iλ | x is denotable}),
uIλ = Id({x ∈ ∩Iλ | x is denotable}).

It is worth remarking that I tJ is I ∪J , that tIλ has the same finite denotable
elements as ∪Iλ, although not, in general, the same denotable ones, and that uIλ

has the same denotable elements as ∩Iλ.
Ideals are mathematically tractable in part because they are determined by their

finite elements: indeed if I is an ideal then

I = Id({x ∈ I | x is finite}).

Analogously, generated ideals are mathematically tractable in part because they
are determined by their finite denotable elements, as we show in Proposition 3.1.4
and Theorem 3.1.5. (But, not surprisingly, constructions with generated ideals
sometimes require more work and care than their analogues with arbitrary ideals.)

Proposition 3.1.4. Every denotable value is the limit of a chain of finite de-
notable values.

Proof Every denotable element [[e]] is the limit of an increasing sequence
〈[[pn

n(e)]]〉 of finite denotable elements, by Lemma 2.5.1. 2

Theorem 3.1.5. Let I be a generated ideal. Then

I = Id({x ∈ I | x is finite and denotable}).

Proof In one direction, I = Id({x ∈ I | x is finite}) ⊇ Id({x ∈ I |
x is finite and denotable}). In the other direction, by Proposition 3.1.4 every deno-
table element of I is in Id({x ∈ I | x is finite and denotable}), and then the second
condition for I to be generated ensures that every element of I is in this set. 2



3.2. Operations and Metric

In this subsection we define some operations and a metric on generated ideals. Most
of the typical operations on ideals are unchanged for generated ideals; we define new
versions of intersection and exponentiation. The metric is also new. Some symbols
in the definitions below represent both functions on generated ideals within V and
functions on domains such as V; the intended meaning of the symbols should be
clear from context.

Definition 3.2.1. Let I, J , J1, . . . , Jn be generated ideals, K a collection of
generated ideals, and f a function from GIdln+1 to GIdl.

• T and N are the generated ideals of boolean values and natural numbers,
respectively.

• I × J is the product of I and J .

• I + J is the coalesced sum of I and J (+ identifies the least elements of its
two arguments).

• I→J is a special sort of exponentiation of I and J : the smallest generated
ideal that contains {[[e]] ∈ (V→V) | if [[a]] ∈ I then [[ea]] ∈ J}.

• (∀Kf)(J1, . . . , Jn) = uI∈Kf(I, J1, . . . , Jn).

• (∃Kf)(J1, . . . , Jn) = tI∈Kf(I, J1, . . . , Jn).

• (µf)(J1, . . . , Jn) is the unique I such that I = f(I, J1, . . . , Jn), provided that
f is contractive, in the sense defined below.

It is simple to check that all the definitions are proper, with the exception of
the definition of µ. That the definition of µ is proper follows from the Banach
Fixpoint Theorem [8], stated below as Theorem 3.2.5. It is worth pointing out that
our definition of I→J differs from the usual one even on denotable elements.

The usual metric on arbitrary ideals does not suit our purposes; in particular,
we cannot exploit it to demonstrate the existence of solutions to recursive type
equations. Generated ideals call for a different metric.

Definition 3.2.2. Given two generated ideals I and J , their closeness c(I, J)
is the least rank of a denotable x such that x ∈ I but x 6∈ J , or vice versa. We call
such an x a witness for I and J . As usual, this determines a distance function:
d(I, J) = 2−c(I,J).

Theorem 3.2.3. The generated ideals together with the distance function d
form a complete metric space.

Proof Theorem 3.1.5 guarantees that c(I, J) = ∞ if and only if I =
J . In addition, it is obvious both that c(I, J) = c(J, I) and that c(I,K) ≥
min(c(I, J), c(J,K)). It remains to show that every Cauchy sequence converges.
The proof of this is almost identical to the one for arbitrary ideals (Theorem 3



in [6]). Let 〈In〉 be a Cauchy sequence. Let Io be the set of finite denotable mem-
bers of almost all In. Then the limit of 〈In〉 is the generated ideal I that has the
members of Io as its denotable finite values. 2

As in the complete metric space defined by MacQueen, Plotkin, and Sethi, the
notion of contractiveness and the Banach Fixpoint Theorem are the basic tools for
proving that recursive type equations have unique solutions in this complete metric
space.

Definition 3.2.4. The function G is contractive if there exists a real number
0 ≤ s < 1 such that, for all X1, . . . ,Xn,X′1,. . . ,X

′
n, we have

d(G(X1, . . . ,Xn), G(X′1, . . . ,X
′
n)) ≤ s ·max{d(Xi,X′i) | 1 ≤ n}.

The function G is nonexpansive when 0 ≤ s ≤ 1 instead.

Theorem 3.2.5 (.) Banach If F is a contractive function on a complete metric
space then the equation X = F (X) has a unique solution.

As could be expected, this unique solution is constructed by choosing an arbi-
trary X0 and finding the limit of the sequence X0, F (X0), F (F (X0)), . . . .

In order to apply the Banach Fixpoint Theorem, it remains to prove that the
operations defined above are contractive in the new metric, or at least nonexpansive
in the new metric.

Theorem 3.2.6. The operations u and t are nonexpansive. The operations ×,
+, and → are contractive.

Proof The general structure of the proof is taken from Proposition 6 and
Theorem 7 of [6]. (A slightly more direct proof, which never mentions nondenotable
elements, is easy to derive, but we prefer to imitate the previous proof in order to
make similarities obvious.) Only → requires a new argument; we omit discussion
of the other operations.

Let I, J , I ′, and J ′ be generated ideals. We want to show that c(I→J, I ′→J ′) >
min(c(I, I ′), c(J, J ′)). Consider a witness [[e]] of least rank for the difference between
I→J and I ′→J ′.

Without loss of generality, we assume that [[ex]] ∈ J for all [[x]] ∈ I, but [[ex]] 6∈ J ′

for some [[x]] ∈ I ′. In fact, we can even take this [[x]] to be finite, since every deno-
table value is the limit of a chain of finite denotable values (by Proposition 3.1.4),
application is continuous, and ideals are closed under approximations and limits.

Since [[e]] must be a non-bottom function, Proposition 4 of [6] gives us [[e]] =
⊔

(ai ⇒ bi) for some finite, non-zero number of ai and bi. Let a =
⊔

{ai | ai v [[x]]}.
Then a v [[x]] and [[e]](a) = [[ex]] =

⊔

{bi | ai v [[x]]}. Immediately, a and [[ex]] have
rank smaller than [[e]].

Two cases should be considered.
If a ∈ I then we can take [[ex]] as a witness for J and J ′. To show this, we first

observe that [[e]](a) ∈ J : a is less than the limit of a denotable chain of elements of
I, which [[e]] maps to denotable elements of J because [[e]] ∈ I→J ; then [[e]](a) ∈ J



by continuity and the definition of ideals. Since [[e]](a) = [[ex]], we can take [[ex]] as
a witness for J and J ′.

If a 6∈ I, we would hope to take it as a witness for I and I ′. Unfortunately, a
may not be denotable! On the other hand, [[x]] is denotable, but its rank may be
too large. We need to find a witness that combines the virtues of [[x]] (denotability)
and a (small rank).

To do this, we reduce the rank of [[x]] with an application of a projection function:
if r(a) = n, we let w = pm

n (x), as described in Lemma 2.5.2.
Obviously, [[w]] is denotable and its rank is no greater than the rank of a, which

is less than the rank of [[e]]. Furthermore, a v [[w]]. Hence [[w]] 6∈ I. On the other
hand, [[w]] v [[x]] and hence [[w]] ∈ I ′. Thus, [[w]] is a denotable witness of smaller rank
than [[e]] for I and I ′. 2

Theorem 3.2.7. If K ⊆ GIdl and f is contractive (nonexpansive) in its last n
arguments then so are (∀Kf) and (∃Kf). If f is contractive (nonexpansive) then so
is µf .

Proof The arguments are identical to those for Theorems 8 and 9 in [6]. 2

4. Semantics for Type Expressions

We can use the results on the complete metric space of generated ideals and on
the operations in this space to give a semantics to a large class of type expressions.
This class is the same one treated in [6] and suffices as the core of the type system
for rich programming languages, such as Standard ML.

The generated-ideal semantics of type expressions is more accurate than the
usual ones. Despite the features of generated ideals, however, the semantics is not
quite faithful. Therefore, we restrict ourselves to subsets of the generated ideals. We
define two subsets, the coarse ideals and the abstract ideals; they are rich enough
for providing models for recursive polymorphic types. In both cases, the semantics
of type expressions is faithful.

4.1. A Model Based on Generated Ideals

Often, one can determine that a function is contractive by examining the sym-
bols used to express it. This motivates the definition of formally contractive
type expressions—type expressions for functions that are “obviously” contractive.
Roughly, formally contractive type expressions are those built up from bool, int,
contractive operations, and nonexpansive operations followed by contractive oper-
ations.

Definition 4.1.1. The expression σ is a formally contractive type expression in
the variable t if one of the following conditions holds:

• σ has one of the forms bool, int, t′ (with t′ 6= t), σ1×σ2, σ1 +σ2, or σ1→σ2.

• σ has one of the forms σ1 ∩ σ2 or σ1 ∪ σ2, with both σ1 and σ2 formally
contractive in t.



• σ has one of the forms ∀t′.σ1, ∃t′.σ1, or µt′.σ1, with either t = t′ or σ1

formally contractive in t.

The definition of formally contractive type expressions naturally leads to the
definition of well-formed type expressions:

Definition 4.1.2. The expression σ is a well-formed type expression if one of
the following conditions holds:

• σ is bool, int, or t.

• σ has one of the forms σ1 × σ2, σ1 + σ2, σ1→σ2, σ1 ∩ σ2, or σ1 ∪ σ2, with
both σ1 and σ2 well-formed.

• σ has one of the forms ∀t.σ1 or ∃t.σ1, with σ1 well-formed.

• σ has the form µt.σ1, with σ1 well-formed and formally contractive in t.

TExp is the set of well-formed type expressions.

[[ ]] : TExp→(TVar→Idl)→Idl

[[bool]]ρ = T
[[int]]ρ = N
[[t]]ρ = ρ(t)
[[σ1 ∩ σ2]]ρ = [[σ1]]ρ u [[σ2]]ρ
[[σ1 ∪ σ2]]ρ = [[σ1]]ρ t [[σ2]]ρ
[[σ1×σ2]]ρ = [[σ1]]ρ×[[σ2]]ρ
[[σ1 + σ2]]ρ = [[σ1]]ρ + [[σ2]]ρ
[[σ1→σ2]]ρ = [[σ1]]ρ→[[σ2]]ρ
[[∀t.σ]]ρ = ∀K(λI ∈ Idl.[[σ]]ρ{t ← I})
[[∃t.σ]]ρ = ∃K(λI ∈ Idl.[[σ]]ρ{t ← I})
[[µt.σ]]ρ = µ(λI ∈ Idl.[[σ]]ρ{t ← I})

Fig. 2: Definition of the meaning function for type expressions

Imitating MacQueen, Plotkin, and Sethi, we can define a semantics for well-
formed type expressions. The meaning function [[ ]]G associates a generated ideal
with each well-formed type expression under each type assignment for the free type
variables in the expression: if TVar is the set of type variables, then

[[ ]]G : TExp→(TVar→GIdl)→GIdl.

We define the semantics in Fig. 2. There, we use Idl to refer to the collection of ideals
under consideration, in this case GIdl, and K to refer to {I ∈ Idl | wrong 6∈ I}
(the same semantic templet reappears below, and Idl refers to other sets of ideals).

We can prove:



Theorem 4.1.3. The generated-ideal semantics is well defined.

Proof The proof is straightforward, given the machinery of the previous section.
It resembles the proof of Theorem 10 in [6]. 2

What is the type of the explode-||-or function, according to this seman-
tics? Whenever [[explode-||-or]] is given a denotable argument in the gener-
ated ideal T×T→T, it yields a result in T. Thus, explode-||-or is of type
(bool×bool→bool)→bool, as we originally suggested.

We may also notice that the expression

ignore-||-or = λ x.
if x(true, btm)
and x(btm, true)
and not x(false, false)
then true

else true

behaves identically to explode-||-or in all contexts, and, as we would desire, also
has type (bool×bool→bool)→bool.

These observations indicate that the semantics fits reasonably well with the
programming language. The fit is also confirmed by the remarks in Section 5 on
the isomorphism between generated ideals and sets of terms.

However, the fit is not as close as it could be. The generated ideals in V may
distinguish two expressions with identical behavior. As a trivial example,

[[explode-||-or]] ∈ {v | v v [[explode-||-or]]}

while
[[ignore-||-or]] 6∈ {v | v v [[explode-||-or]]}.

Since a free type variable can take {v | v v [[explode-||-or]]} as meaning, the
generated-ideal semantics fails to be faithful. (It is an open question whether the
generated-ideal semantics is faithful when restricted to type expressions with no free
type variables.) In order to guarantee a perfect fit between syntax and semantics,
a more finely tuned concept of type is needed.

4.2. Two Faithful Models

In this subsection we consider concepts of type rich enough as a basis to a semantics
for recursive polymorphic types, yet coarse enough not to make irrelevant distinc-
tions between expressions that behave identically. The crucial observation is that
we do not need all of GIdl to define a semantics. We restrict our attention to two
subsets of GIdl, the coarse ideals, CIdl, and the abstract ideals, AIdl.

The subset CIdl is close to the minimum needed for a suitable semantics for
recursive polymorphic types. For instance, T is in CIdl while (we conjecture)
{⊥, 3} is not; this seems acceptable, since T is useful as the meaning of bool, while
{⊥, 3} is of no use at all as a programming type.

Definition 4.2.1. CIdl is the smallest subset of GIdl that contains T and N,
and is closed under binary and infinitary u and t, under ×, +, and →, and under
limits of Cauchy sequences.



The closure conditions on the set of ideals CIdl are monotone (with respect to
set inclusion), hence Definition 4.2.1 is proper.

We can reproduce the semantics of type expressions using coarse ideals instead
of generated ideals. We define

[[ ]]C : TExp→(TVar→CIdl)→CIdl.

The semantics is given by Fig. 2 (with CIdl playing the role of Idl). We apply the
Banach Fixpoint Theorem as usual, to prove that the semantics is well defined.

Theorem 4.2.2. The coarse-ideal semantics is well defined.

Proof Again, the proof is straightforward, given the machinery of the previous
section. It resembles the proof of Theorem 10 in [6]. 2

It remains to show that this semantics is faithful. For this purpose, we use
AIdl, the class of abstract generated ideals—for short, abstract ideals. (Abstract
sets were defined in Subsection 2.4.)

Definition 4.2.3. AIdl is the set of abstract generated ideals.

Abstract ideals serve in the study of coarse ideals, and also give rise to a natural
semantics of type expressions, of independent interest. It turns out that CIdl is
a subset of AIdl. Hence, a semantics based on CIdl benefits from the features of
AIdl.

To guarantee that CIdl and AIdl both suffice as the basis for a faithful seman-
tics, we prove that they share each other’s features. AIdl enjoys the same closure
properties as CIdl. Hence CIdl, the smallest set with these closure properties, must
be a subset of AIdl. In other words, all coarse ideals are abstract (and probably
not vice versa: {⊥, 3} is abstract but apparently not coarse).

Lemma 4.2.4. AIdl contains T and N, and is closed under binary and infini-
tary u and t, under ×, +, and →, and under limits of Cauchy sequences. If f
is a function from AIdln+1 to AIdl then so are (∀Kf), (∃Kf), and, provided f is
contractive, (µf).

Proof We consider each of the closure conditions in turn. We assume that the
arguments (if any) to an operation are abstract, to prove that the result is abstract
as well. The cases vary in difficulty.

• The proposition is trivial for T. Suppose that e’<∼ e, that is, e’ yields ⊥ in
all contexts where e does. This must be true, in particular, for the context
if ( or not ) then btm else wrong, hence if [[e]] ∈ T then [[e’]] ∈ T.

• The proposition is also trivial for N. Suppose that e’<∼ e, that is, e’ yields ⊥
in all contexts where e does. This must be true, in particular, for the context
if (z( ) or not z( )) then btm else wrong, and hence if [[e]] ∈ N then
[[e’]] ∈ N.



• The cases of binary u and t, infinitary u, and × and + are solved with
simple applications of the hypothesis. (When considering binary u and t
and infinitary u, one should recall that they coincide with the corresponding
set-theoretic operations on denotable elements.)

• For →, suppose that I and J are abstract, and that e’<∼ e and [[e]] ∈ (I→J).
The definition of <∼ yields that e’(a)<∼ e(a), for all a. Furthermore, if
[[a]] ∈ I then [[e(a)]] ∈ J and, since J is abstract, [[e’(a)]] ∈ J . By the
definition of →, it follows that [[e’]] ∈ (I→J), as we wanted to show.

• The case for infinitary t requires a slightly more elaborate argument. Assume
that e’<∼ e. We consider chains 〈[[pn

n(e)]]〉 and 〈[[pn
n(e’)]]〉 of finite denotable

elements with limits [[e]] and [[e’]], respectively (see Proposition 3.1.4). The
definition of <∼ yields pn

n(e’)<∼ pn
n(e) for all n. Since each of the ideals

coming into the union is abstract by the hypothesis, for all n, each ideal must
contain [[pn

n(e’)]] if it contains [[pn
n(e)]]. If [[e]] is a limit point of the union

of the ideals then [[pn
n(e)]] is in the union, for all n. Then [[pn

n(e’)]] is in the
union too, for all n, and finally [[e’]] is a limit point of the union as well.

• Closure under limits of Cauchy sequences requires an argument similar to
the previous one. Assume that e’<∼ e. We consider chains 〈[[pn

n(e)]]〉 and
〈[[pn

n(e’)]]〉 of finite denotable elements with limits [[e]] and [[e’]], respectively
(see Proposition 3.1.4). The definition of <∼ yields pn

n(e’)<∼ pn
n(e) for all

n. Since each of the ideals in the sequence is abstract by the hypothesis, for
all n, each ideal must contain [[pn

n(e’)]] if it contains [[pn
n(e)]]. If the limit

contains [[e]] then it must contain [[pn
n(e)]]. Therefore, since the sequence is a

Cauchy sequence, all sufficiently late terms in the sequence contain [[pn
n(e)]]

(only finitely many terms can differ from the limit on elements of rank n).
In turn, it follows that all sufficiently late terms in the sequence must also
contain [[pn

n(e’)]], and then the limit of the sequence must contain [[pn
n(e’)]].

Finally, the limit of the sequence must also contain [[e’]].

• Similarly, if f is contractive and maps abstract ideals to abstract ideals then so
do (∀Kf) and (∃Kf): this follows immediately from their definition, together
with the closure of AIdl under infinitary u and t.

• If f maps abstract ideals to abstract ideals then so does (µf): this follows
immediately from the definition of µ, together with the closure of AIdl under
limits of Cauchy sequences (since fixpoints are obtained as limits of Cauchy
sequences). 2

To finish, we define an abstract-ideal semantics and prove that both the coarse-
ideal semantics and the abstract-ideal semantics are faithful.

We define the abstract-ideal semantics using the templet of Fig. 2 (with AIdl
playing the role of Idl):

[[ ]]A : TExp→(TVar→AIdl)→AIdl.

Theorem 4.2.5. The abstract-ideal semantics is well defined.



Proof First we should point out that AIdl is closed under the necessary type
operations, as shown in Lemma 4.2.4. Then the argument is the usual one. 2

Theorem 4.2.6. Both the coarse-ideal semantics and the abstract-ideal seman-
tics are faithful.

Proof Both semantics map type expressions to elements of AIdl, which
are all abstract by definition. (For the coarse-ideal semantics, this follows from
Lemma 4.2.4.) 2

This result is fairly robust with respect to changes in the interpretation of terms.
Consider an interpretation more abstract than ours, that is, an interpretation that
identifies the meanings of more programs. If the interpretation is sound, some
meanings of programs will be identified within abstract sets, but not across the
boundaries of abstract sets. Therefore, we can map the abstract ideals of our
semantics for type expressions to ideals over the more abstract model, and obtain
the corresponding faithful semantics.

5. Syntactic Solutions

While generated ideals have close connections with the world of expressions, they
still belong to the world of values. In some situations, a more syntactic model,
where types are certain sets of expressions, may seem desirable. (In fact, this work
originated in just such a situation; the preference for a syntactic model was simply
a matter of taste.)

In this section we take advantage of the properties of generated ideals to discuss
models of recursive polymorphic types where sets of expressions are used instead of
sets of values. Finally, we speculate on a totally syntactic model.

5.1. Term Ideals

A simple way to obtain a model where types are sets of expressions is to induce
these sets from the abstract ideals.

Definition 5.1.1. If I ⊆ V then the representation of I is the set of all closed
expressions e such that [[e]] ∈ I.

Definition 5.1.2. I is a term ideal if it is the representation of some abstract
ideal. TIdl is the set of term ideals, and R is the one-to-one function that maps
abstract ideals to their representations.

Immediately, we can define a semantics of type expression using term ideals,

[[ ]]T : TExp→(TVar→TIdl)→TIdl,

thus
[[σ]]Tρ = R([[σ]]AR−1◦ρ).

Actually, the term ideals can be characterized directly, rather naturally.

Theorem 5.1.3. I is a term ideal if and only if



• I 6= ∅; and

• for all sequences e1 <∼ e2 <∼ . . . of elements of I, for all e, if for all C such that
e |= C there exists i such that ei |= C, then e ∈ I.

Proof Assume that I is a term ideal, that e1 <∼ e2 <∼ . . . is a sequence of elements
of I, and that for all C if e |= C then ei |= C for some i. We wish to show that
e ∈ I. Trivially, it suffices to argue that each pn

n(e) ∈ I. As the range of [[pn
n]] is

finite, the sequence 〈pn
n(ei)〉 contains infinitely many times the same element (up

to semantic equality). Let pn
n(em) be such an element. Suppose that pn

n(e) |= C.
Then there exists k such that pn

n(ek) |= C, and the assumption that e1 <∼ e2 <∼ . . .
yields pn

n(ej) |= C for all j ≥ k. In particular, pn
n(em) |= C, since pn

n(em) arises
infinitely often in the sequence 〈pn

n(ei)〉. Then we have pn
n(e)<∼ pn

n(em)<∼ em ∈ I
and, therefore, pn

n(e) ∈ I.
Conversely, suppose that I is a non-empty set that satisfies the given closure

condition. We have to find an abstract ideal J such that I = R(J). Let

J = Id({[[e]] | e ∈ I}).

By Theorem 3.1.3 this is a generated ideal.
Evidently, we have I ⊆ R(J). In order to show the converse, suppose that

[[e’]] is in R(J). Then for every n, [[pn
n(e’)]] v [[e]] for some e ∈ I. The closure

condition, applied to the constant sequence e<∼ e<∼ . . . , yields pn
n(e’) ∈ I. Finally,

we consider the sequence p1
1(e’)<∼ p2

2(e’)<∼ . . . , and conclude that e’ ∈ I.
As for abstraction, suppose e’<∼ e and [[e]] ∈ J ; again, we consider the constant

sequence e<∼ e<∼ . . . , to derive that e’ ∈ I and, therefore, that [[e’]] ∈ J . 2

The proof of Theorem 5.1.3 suggests a useful formula for the inverse of R:

R−1(I) = Id({[[e]] | e ∈ I}).

The operations on term ideals have direct definitions, and for example we can
write

I u J = I ∩ J

and
I→J = {e | [[e]] ∈ (V→V) and ∀e’ ∈ I. e(e’) ∈ J}.

These definitions correspond with those for AIdl, in the sense that, for example

I u J = R(R−1(I) ∩R−1(J))

and
I→J = R(R−1(I)→R−1(J)).

With their aid we can easily cast the definition of [[ ]]T in a homomorphic form, as
in Fig. 2.



5.2. Operational Ideals

We have not defined a reduction relation for expressions in the programming lan-
guage, or for that matter any kind of operational semantics for the programming
language. To finish, we speculate on an alternative, even more syntactic develop-
ment of our theory. This development requires the use of a well-behaved reduction
relation. (However, we do not propose a particular reduction relation.)

We imagine that we have distinguished a set of “canonical” closed expressions.
For example, the canonical boolean expressions are true and false. Similarly, some
set F of canonical expressions are distinguished as functions. We write e⇒ e’ for
“the closed expression e reduces to the canonical expression e’.”

An operational definition for T seems reasonable in this setting:

T = {e | if e⇒ e’ then e’ ∈ {true, false}}.

We may define function types similarly:

I→J = {e | if e⇒ e’ then e’ ∈ F and if a ∈ I then ea ∈ J}.

For suitable notions of reduction, these definitions should coincide with the previous
ones. Proving that these definitions do coincide, however, may pose a hard adequacy
problem; see [4, 9] for a discussion of adequacy. For instance, one has to show that
[[e]] ∈ T if and only if e ⇒ e’ implies e’ ∈ {true, false}, and similarly that
[[e]] ∈ (V→V) if and only if e⇒ e’ implies e’ ∈ F.

In the end, we obtain a class of “operational ideals.” This approach, though
laborious, provides totally syntactic solutions to recursive type equations.

6. Conclusions

Recursive polymorphic types can be modeled with various degrees of accuracy.
MacQueen, Plotkin, and Sethi have defined a pure ideal semantics, with no reference
to the syntax of the programming language considered; some type-inference rules
for the language are semantically sound, but the correspondence between syntax
and semantics goes not much further. We have introduced some simple syntactic
notions into our ideal semantics, obtaining first the generated ideals and then the
coarse ideals and the abstract ideals. The coarse-ideal semantics and the abstract-
ideal semantics are slightly more complex than the original ideal semantics, but as
accurate as possible, that is, faithful.

It remains unclear how to extend our methods to other type systems, for example
to systems with explicit polymorphism. It seems clear, however, that faithfulness
is a generally relevant issue in the semantics of type systems.
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