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1 Synopsis

A model of Reynolds’ polymorphic lambda cal-
culus is provided, which also allows the recursive
definition of elements and types. The technique
is to use a good class of partial equivalence re-
lations over a certain cpo. This allows the com-
bination of inverse-limits for recursion and inter-
section for polymorphism.

2 Introduction

The ideal model provides an interpretation for a
rich type system, with polymorphism and recur-
sion [12], but not a model of the typed λ-calculus.
In search for a satisfactory semantics for λ-calculi
with recursive and polymorphic types, it seems
natural, then, to consider partial equivalence re-
lations (pers) instead of ideals. As ideals are cer-
tain subsets of a universal domain D, we replace
them with certain pers over D (rather than over
ω, as in [8, 19]). For example, in order to inter-
pret recursion, only the pers over D that satisfy
a completeness axiom should be considered.

This study was begun by Amadio and Car-
done [1, 5]. They left open how to find complete
partial orders on pers so that recursive types
could be obtained by applying the usual inverse-
limit construction [18]. In the case of models
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along the lines of Girard (e.g., see [7]) recur-
sive definitions of elements and types are already
available.

We define a class of “good” pers yielding com-
plete partial orders. The partial orders obtained
are intrinsic (and there are also intrinsic topolo-
gies). The corresponding idea for pers over ω is
considered by many authors. A general setting is
that of Rosolini: a topos with a dominance [15].
Scott has advocated developing the theory in the
internal logic; we have yet to attempt this for
good pers over D—one feature is that it is only
¬¬ true that they are cpos.

We provide a model of an extension of λ2,
Reynolds’ polymorphic λ-calculus. Taking λ2
as in [3], say, we add the type expression
(µX:Tp.T ) for recursive types, the term ex-
pressions (µx:T.e), for recursive elements, and
ηX:Tp.T and η−1X:Tp.T for an isomorphism
ηX:Tp.T : T [µX:Tp.T/X] ∼= µX:Tp.T and its
inverse (see also [6]).

The semantics is presented as a Seely model [3,
17] with extra structure for recursion. We omit
the evident interpretation of the new syntacti-
cal forms. To the usual equations one adds
e[µx: T.e/x] = µx: T.e and two more expressing
the isomorphism.

We represent Amadio’s use of metric-space
methods as another model of the same kind; it
turns out that the two are essentially identical.
However, while one can easily extend the metric
model to deal with subtypes, that does not seem
to be the case for the order-theoretic model.

The axioms for good pers are somewhat re-
strictive, and force the intrinsic partial orders to
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be consistently complete; this has the disadvan-
tage of excluding the convex powerdomain as a
type constructor. We consider partial preorders,
which are pers equipped with a partial order on
their field. We impose weaker axioms (just com-
pleteness and uniformity—see below) and obtain
yet another model of the extended λ2, but now
also allowing the convex powerdomain as a type
constructor.

We would like to extend the order-theoretic
approach further; it seems possible to model the
theory of constructions. Our work began as an
attempt to build on the work of Cardelli and
Longo [4] to model the language Quest, with
its records, subtypes, and powertypes. While
records produce no new problems, and the tra-
ditional view of subtypes as subpers goes a long
way, the combination of recursive types and poly-
morphism with bounded quantifiers has defeated
us. The difficulty is caused by the possibility of
a type recursion going through a bound.

In the next section we describe the cpo that
serves as setting for this work. We study partial
equivalence relations in section 4. In section 5
we define type constructions in an O-category
of pers. In sections 6 and 7 we give an inter-
pretation of types and terms; section 8 describes
the alternative metric approach. We move from
pers to partial preorders in section 9. We as-
sume standard domain-theoretic and categorical
concepts and notation [9, 12, 18].

3 Background Assumptions

We work with the partial equivalence relations
over a cpo D such that:

1. There is an increasing sequence πn: D → D
of continuous projections with least upper
bound the identity and with finite range.
Further, π0 = ⊥.

2. There are strict, continuous retraction pairs:

lO e lO−→ D r lO−→ lO

IN eIN−→ D rIN−→ IN

D ×D
e×−→ D

r×−→ D ×D

D → D e→−→ D r→−→ D → D

Here lO is the two-point cpo {⊥, ∗} and IN
is that of the natural numbers.

3. For all n, the following hold:

πn+1(e lO(∗)) ∈ e lO( lO)

πn+1(eIN(m)) ∈ eIN(IN)

πn+1(e×(〈x, y〉)) = e×(〈πn(x), πn(y)〉)
πn+1(e→(f)) = e→(πn ◦ f ◦ πn)

4. Meet closure holds, meaning that D has all
non-empty meets, that these are preserved
by the πn, and that all the e’s and r’s pre-
serve these meets.

Below we omit to write the e’s or r’s and be-
cause of 2 allow ourselves the untyped λ-calculus
as a notation for elements of D. Note that 1 im-
plies πm ◦ πn = πk where k = min(m,n). As-
sumption 1 is equivalent to saying that D is bifi-
nite; in particular πn(x) is always finite. With 4
one has that D is a Scott domain.

To obtain D one can solve an appropriate do-
main equation, such as:

D ∼= lO + IN + (D ×D) + (D → D)

by the usual “limit of a sequence of iterates” pro-
cess (see [18]) and obtain each πn by modify-
ing the maps to the n-th iterate to ensure that
πn(eIN(IN)) is finite.

4 Partial Equivalence Relations

First, some notation. If S is a per then |S| is
the set {x ∈ D | xSx}; if x is in |S| then [x]S is
its equivalence class; [S] is the set of equivalence
classes. If f is in (D → D) and S and T are pers
then we write f : TS to mean that xSy implies
(fx)T (fy) for all x and y. We associate to a
subset X ⊂ D the per {〈x, x〉 | x ∈ X} and may
write it as X.

The partial equivalence relations form a cate-
gory Per with morphisms the set-theoretic func-
tions g: [S] → [T ] such that, for some f :TS , if
x ∈ |S| then g([x]S) = [f(x)]T . We write [f ]S,T
for g as f uniquely determines it; we also write
f ` g (read f realises g) if g = [f ]S,T . Per
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is effective (we should say D-effective) in that,
first, there exists an element comp of D (it is
λpλx.fst(p)(snd(p)(x))) such that if f ` g and
f ′ ` g′ then comp(〈f, f ′〉) ` g ◦ g′ (for compos-
able g, g′), and second, there is an element λx.x
realising every identity idS .

As pointed out by Amadio and Cardone, one
needs a completeness axiom on pers to model
recursion [1, 5]:

Completeness ⊥S⊥ and whenever R ⊂ S is
directed as a subset of D2 then

⊔

R is in S.
It is natural in domain theory to consider ax-

ioms relating infinite elements to finite ones. So
one might try the assumption that if xSy then
there are anSbn with the an, bn finite, x = tan,
and y = tbn. Unfortunately the class of these
pers (even the complete ones) is not closed un-
der intersection. However, the following property
introduced by Amadio and Cardone does yield
closure:

Uniformity If xSy then πn(x)Sπn(y) for
all n.

They termed this property algebraicity or clo-
sure under approximation, but we prefer our
term as the finite elements are found in a uni-
form way for all such pers. Note that uniformity
can be written as πn:SS .

An intrinsic preorder can be defined on any
per by putting, for all x, y ∈ |S|,

x ≤S y iff ∀f : lOS .(f(x) = ∗ ⊃ f(y) = ∗)

This defines a complete preorder on |S| including
v and S (since the functions considered are con-
tinuous, monotone, and respect S). Assuming
S is complete and uniform, we can reverse this.
Let ≺S be the least preorder on |S| containing
v ||S|2 and S.

Lemma 1 1. If a is finite then there is an
f : lOS such that for any y in |S|, a ≺S y
iff f(y) = ∗.

2. For any y and finite a, a ≤S y iff a ≺S y.

Proof
1. Set f(y) to be ∗ if a ≺S z v y (for some z) and
⊥ otherwise. That f is monotone and respects

the per is evident. For continuity, suppose {yλ}
is directed and f(tyλ) = ∗. Then a ≺S z v tyλ
(for some z). Now πn(a) = a for some n, and
then, since S is uniform, a = πn(a) ≺S z v
tπn(yλ) = some πn(yλ) as πn has finite range.
But then a ≺S z v πn(yλ) v yλ, so f(yλ) = ∗.
2. Follows from part 1 immediately. 2

It follows at once from part 2 of Lemma 1 that
≤S is the least complete preorder containing v
and S.

For the rest of this section, only complete, uni-
form pers are considered.

To work with a partial order on [S] we use:
Antisymmetry If x ≤S y ≤S x then xSy.
For x and y in |S|, let [x]S ≤ [y]S iff x ≤S y,

obtaining a well-defined partial order.

Theorem 1 Suppose that S is antisymmetric.
When partially ordered by ≤, [S] is an ω-al-
gebraic cpo. Its least element is [⊥]S; if xλ is
an v-directed set in |S| then [txλ]S is the ≤-lub
of the [xλ]S. The finite elements are the [a]S with
a finite and in |S|.

Proof First, [⊥]S ≤ [x]S for all x in |S|, because
≤S contains v ||S|2 . For completeness, let [xλ]S
be a directed family; let

In = {a | ∀λ∃λ′ ≥ λ.πn(xλ′) = a}

Then In is finite and non-empty and each ele-
ment in In is v an element in In+1. So there
is a sequence bn ∈ In with bn v bn+1. Then
[
⊔

n≥0 bn]S is the lub of the [xλ]S . That [
⊔

xλ]S
is the ≤-lub is because ≤S contains v ||S|2 and
S and is complete. To see that [a]S is finite, sup-
pose [a]S ≤ the lub of {[xλ]S}. Then a ≺S

⊔

bn
with the above notation, so, as in the proof of
Lemma 1, a ≺S some bn and, as bn ∈ In, [a]S ≤
some [xλ]S . Then one completes the proof by not-
ing that every [x]S is the ≤-lub of the [πn(x)]S . 2

We will write
∨

for lubs in 〈[S],≤〉.
There is also an intrinsic topology.

Definition 1 V ⊂ [S] is open in the intrinsic
topology iff V = {[x]S | f(x) = ∗} for some
f : lOS.
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Clearly, if g: [S] → [T ] then g is continuous
with respect to the intrinsic topology.

Theorem 2 Suppose S is antisymmetric. The
intrinsic topology is the Scott topology.

Proof Set Va = {[x]S | a ≤S x}. By Lemma 1,
Va is open in the intrinsic topology. But by The-
orem 1, every Scott open is a union of Va’s, and
so also open in the intrinsic topology. For the
converse, one shows that if V is open in the in-
trinsic topology then V = ∪{Va | [a]S ∈ V }. 2

It follows that any g: [S] → [T ] is continuous
in that it preserves ≤-directed lubs.

In order to relate the intrinsic order on a per
constructed from other pers to the intrinsic or-
der on the latter we use other properties, and
particular a meet-closure property. These prop-
erties are not actually necessary to our construc-
tions, but they help one’s understanding, and
they would play a role in an inequational logic
for λ2.

Meet Closure of Pers Given non-empty
families xλ and yλ, if xλSyλ for every λ then
(uλxλ)S(uλyλ).

The meet-closure condition resembles one sug-
gested by Scott [16], where xλ is kept constant.
It can be shown that the meet-closure property
follows from its restriction to finite families.

It is desirable to avoid this meet-closure prop-
erty for then we can work with bifinite cpos, and
add powerdomains. One way of achieving this
is to move from partial equivalence relations to
partial preorders, as we do in section 9.

If S is meet closed, every equivalence class [x]S
has a least element µS(x) = u{y | ySx}.

Lemma 2 1. For x, y ∈ |S|, if x v y then
µS(x) v µS(y).

2. For x in |S|,

µS(x) =
⊔

{µS(a) | a ∈ |S|, a v x, a finite}

3. For x, y ∈ |S|, x ≤S y iff µS(x) v µS(y).

Proof

1. As µS(x)Sx and µS(y)Sy, we obtain also
(µS(x) u µS(y))S(x u y) = x. So µS(x) v
(µS(x) u µS(y)) v µS(y).

2. By part 1, µS(x) w the lub. As we have
µS(πn(x))Sπn(x), we can use the completeness
of S to get

⊔

n µS(πn(x))Sx and so µS(x) v the
lub.

3. Suppose x ≤S y. If a is finite in |S| and
v x then a ≺S y so µS(a) v µS(y) by part 1.
Then µS(x) v µS(y) by part 2. The converse is
trivial. 2

Part 3 shows that for such S, the intrinsic or-
der coincides with one of the preorders consid-
ered by Amadio in [1] and also that complete-
ness, uniformity, and meet closure imply anti-
symmetry.

Now set

πS(x) =
⊔

{µS(a) | a ∈ |S|, a v x, a finite}

for all x in D. The lub exists by consistent com-
pleteness

Theorem 3 1. πS is a continuous projection
extending µS.

2. If x, y ∈ |S| then x ≤S y iff πS(x) v πS(y)
iff ∃z.xSz v y.

3. If [xλ]S is ≤-consistent then
∨

λ

[xλ]S = [
⊔

λ

πS(xλ)]S

4. For any non-empty family xλ in |S|,
∧

λ

[xλ]S = [uλπS(xλ)]S

Proof Omitted. 2

The last property we shall consider says that
the equivalence classes are convex:

Convexity If x v y v z and xSz then xSy.

A per is good iff it is complete, uniform, meet
closed, and convex.
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5 Constructions and an O-Category of
Pers

We need a variety of constructions to build up
types. To start we have lO and IN ; then we need
products and function spaces to get simple types;
then we need intersections to get polymorphism;
then finally we need certain inverse limits to in-
terpret recursive equations for types. The in-
verse limits are taken in an O-category of good
pers, available once we have considered function
spaces.

Basic types

The pers lO and IN are good, and the intrinsic
order on them is v.

Cartesian closure

As is well-known, Per is Cartesian closed. As
terminal object we can take 11 = {〈⊥,⊥〉}, and
the unique S → 11 is [λx.⊥]S,11. For products
take

S × T = {〈〈x, y〉, 〈x′, y′〉〉 | xSx′, yTy′}

The two projections are [λx.fst(x)]S×T,S and
[λx.snd(x)]S×T,T , and the pairing of [f ]R,S and
[g]R,T is [λx.〈f(x), g(x)〉]R,S×T . For function
spaces take

TS = {〈f, g〉 | f, g : TS , ∀x ∈ |S|.(fx)T (gx)}

Evaluation is [λw.fst(w)(snd(w))]T S×S,T and the
currying of [f ]R×S,T is [λx.λy.f(〈x, y〉)]R,T S .
Note that we have a bijection φ : [TS ] ∼=
Per(S, T ) where φ([f ]T S ) = [f ]S,T .

Let us see how these constructions preserve the
axioms. First 11 is good. Next S × T and TS are
complete and uniform if S and T are [1].

Proposition 1 1. S × T and TS are meet-
closed if S and T are.

2. S × T and TS are convex if S and T are.

Proof We just consider function spaces. For
part 1, one uses the fact that for any family fλ
in (D → D),

(ufλ)(x) =
⊔

{uλfλ(a) | a v x, a finite}

For part 2, suppose T convex, f v g v h, and
f(TS)h. Take x in |S|. Then fxThx and fx v
gx v hx. So gxTfx showing gTSf , as f is in
|TS |. 2

The induced order on 11 is the evident ⊥ ≤11 ⊥.

Proposition 2 1. 〈x, y〉 ≤S×T 〈x′, y′〉 iff both
x ≤S x′ and y ≤T y′.

2. If f ≤T S g then for any x in |S|, fx ≤T gx.
The converse holds if S is complete, uni-
form, and meet closed.

Proof
1. The implication from left to right holds as
the projections are monotone. The implication
from right to left holds as f = [λz.〈z, y〉]S,S×T
and g = [λz.〈x′, z〉]T,S×T are monotone and so:
[〈x, y〉]S×T = f([x]S) ≤ f([x′]S) = [〈x′, y〉]S×T ≤
[〈x′, y′〉]S×T , similarly. (This idea is the inven-
tion of Paul Taylor.)
2. The implication from left to right holds as the
function [λh.h(x)]T S ,S is monotone. In the other
direction we have for x in |S|, (πT ◦ f)x v gx,
and fTS(πT ◦ f), so fTS(πT ◦ f) v g. 2

Intersection

Amadio showed the uniform complete pers closed
under intersection. The preservation of meet clo-
sure and convexity are both easy.

Proposition 3 Let Sλ be a family of complete
uniform pers and set S = ∩Sλ. If x ≤S y then
x ≤Sλ y. The converse holds if the Sλ are also
meet closed and convex.

Proof The implication from left to right holds
by the monotonicity of [λx.x]S,Sλ . Conversely
assume x ≤Sλ y. Then πSλx v y. Set z =
⊔

λ πSλx. Then as πSλx v z v x we get xSz.
But z v y so x ≤S y. 2
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An O-Category of Pers

Take the full subcategory Q of Per consisting
of the good pers. The morphisms are partially
ordered by ≤, where for g, h: S → T

g ≤ h iff ∀x ∈ |S|.g([x]S) ≤ h([x]S)

With this, the bijection from [TS ] to Q(S, T )
is an isomorphism of partial orders by Proposi-
tion 2. So we obtain an O-category in the sense
of [18], that is, there is a least element, [λx.⊥]S,T ,
lubs of chains (even all directed sets) exist, and
are defined pointwise, composition is continuous
and left-strict.

To get uniformity preserved by the limits
used to solve domain equations we consider uni-
form morphisms, those g:S → T such that
g ◦ [πn]S,S = [πn]T,T ◦ g. Note that all uniform
morphisms are strict.

To get meet closure preserved we consider
the multiplicative morphisms, those preserving
meets of non-empty families. This is equiva-
lent to preserving binary meets, for uniform mor-
phisms. The combination of uniformity and mul-
tiplicativity is preserved by products and func-
tion spaces.

Take R to be the subcategory of Q of all uni-
form multiplicative morphisms; it is a sub-O-
category of Q. Also RD is the category with
the same objects as R and as morphisms pairs
S

f−→ T
g−→ S. It inherits an O-category struc-

ture from R by: 〈f, g〉 ≤ 〈f ′, g′〉 iff f ≤ f ′ and
g ≤ g′. We set 〈f, g〉† = 〈g, f〉.

Colimits

We construct colimits in RD of certain ω-co-
chains of embedding-projection pairs. Let 4 =
〈Sm, 〈fmn, gmn〉〉 be a cochain of embedding-
projection pairs. Suppose too that αm ` fmn
and αm ` gmn for all m,n ≥ 0 and also that
αm v αm+1 for m ≥ 0.

Define S∞ by: xS∞y iff ∀n∀∞m.πnxSmπny
(here ∀∞ means “for almost all”). Then S∞
is a good per and αm realises R morphisms
im : Sm → S∞ and jm : S∞ → Sm. Further

〈im, jm〉 is a cone of embedding-projection pairs
from 4 to S∞ such that im ◦jm is increasing and
has lub the identity on S∞. So, much as in [18],
〈im, jm〉 : 4 → S∞ is colimiting in RD. As re-
gards the intrinsic order one has that x ≤S∞ y iff
∀m.αm(x) ≤Sm αm(y) iff ∀n∀∞m.πnx ≤Sm πny.

6 Interpreting Types

In the usual Per-based models of λ2, one inter-
prets types as functions over the set of pers and
universal quantification as intersection. We wish
to use the partial order structure on morphisms
to solve recursive domain equations and so one
needs a category, perhaps that of embedding-
projection pairs in R, following [18]. To make in-
tersection yield a functor one then needs to have
functors be effective. But then one can generalise
to the category RD of all pairs of morphisms.
The advantage of this is that the effective func-
tors are automatically locally continuous in the
sense of [18].

Let us say that x ` 〈f, g〉 when x is 〈y, z〉 and
y ` f and z ` g. A functor F : (RD)m → (RD)n

is effective iff there are φj (j = 1, n) in D
such that if xi ` hi (i = 1,m) then φj(x̂) `
F (ĥ)j (j = 1, n), using an evident vector no-
tation. (We say φ̂ realises F .) Note that ef-
fectiveness is a condition on the behaviour of a
functor on arrows. Local continuity then arises
from the continuity of the realisers. We say
the functor is symmetric iff F (h†1, . . . , h

†
m)j =

(F (h1, . . . , hm)j)† (j = 1, m). Then we say φ̂
realises F symmetrically if φj(x1, . . . , xm)? =
φj(x?

1, . . . , x
?
m), where ? = λx.〈snd(x), fst(x)〉

(for j = 1, n). If φ̂ realises a symmetric F then ψ̂
realises F symmetrically if ψj(x1, . . . , xm) equals
〈fst(φj(x1, . . . , xm)), fst(φj(x?

1, . . . , x
?
m))〉. Sym-

metric (covariant) functors on RD arise natu-
rally from functors on R which are covariant
in some arguments and contravariant in others.
Locally monotonic symmetric functors automat-
ically preserve embedding-projection pairs, and
we take advantage of this for finding recursively
defined types.

So, building up a model of λ2 in the sense of
Seely, we take as global category, E, that with
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the Ωm as objects, where Ω is RD, and as mor-
phisms from Ωm to Ωn the effective symmetric
functors (these will interpret type expressions).
This category has all finite products, and Ωm is
the m-fold product of Ω. We write

∏m
i : Ωm → Ω

(0 < i ≤ m) for the projection functors.
For products and functional types we use ef-

fective, symmetric functors × and → defined on
good pers as their product and function spaces,
and by 〈f, g〉 × 〈f ′, g′〉 = 〈f × f ′, g × g′〉 and by
〈f, g〉 → 〈f ′, g′〉 = 〈g → f ′, f → g′〉 on mor-
phisms, where on the right we are using the cor-
responding functors over Per.

For universal quantification, suppose we have
F : Ωm+1 → Ω, symmetric and realised by φ.
We define (∀mF ): Ωm → Ω on objects to be
⋂

T F (Ŝ, T ). As for morphisms, assume that
xi ` hi: Si → S′i in Ω. Set ip = 〈λx.x, λx.x〉.
This is an element of D which realises every
identity in Ω. So we get an element φ(x̂, ip)
which realises F (ĥ, idT ):F (Ŝ ,T ) → F (Ŝ ′,T )
for every T and so φ(x̂, ip) realises a morphism
from (∀mF )(Ŝ) to (∀mF )(Ŝ′) which we take to
be (∀mF )(ĥ). (Unfortunately, bounded universal
quantification does not seem to work. On ob-
jects, one would define (∀⊂mF ) : Ωm+1 → Ω by:
(∀⊂mF )(Ŝ, T ) =

⋂

T ′⊂T F (Ŝ, T ); but there is no
evident definition for morphisms.)

For recursive types, now suppose we have
F : Ωm+1 → Ω realised symmetrically by φ, and
wish to define (µmF ): Ωm → Ω. First we de-
fine iterates F (n): Ωm → Ω taking the constantly
11 functor for F (0), realised by φ(0) = λx̂.⊥
and taking F (n+1) = F ◦ 〈

∏m
1 , . . . ,

∏m
m, F (n)〉 re-

alised by φ(n+1) = λx̂.φ(x̂, φ(n)(x̂)). Note that
φ(n) v φ(n+1). Next natural transformations
νnn′ :F (n) → F (n′) (n ≤ n′) can be defined by
setting (ν0n′)Ŝ to be 〈⊥,⊥〉 and (ν(n+1)(n′+1))Ŝ =
F (idŜ , (νnn′)Ŝ ). Set ν̄0 = ⊥ (in D) and ν̄(n+1) =
φ(îp, ν̄n). Then ν̄n realises (νn,n′)Ŝ , for any Ŝ
and ν̄?

n = ν̄n v ν̄n+1.
This yields an ω-cochain of embedding-pro-

jection pairs 4Ŝ = 〈F (n)(Ŝ), (νn,n′)Ŝ〉, as above
with αn = fst(ν̄n). We can therefore construct
a colimiting cone ρŜ :4 → (µmF )(Ŝ) (defining
the object part of µmF ) with 〈ν̄n〉 realising ρŜ .
For the morphism part suppose ĥ: Ŝ → Ŝ′ then

one takes (µmF )(ĥ) =
∨

(ρŜ′)n ◦ F (n)(ĥ) ◦ (ρŜ)†n.
This is realised by

⊔

(ν̄n •φ(n)(x̂)• ν̄n) (if xi ` hi)
where • is the realiser for composition in RD;
note this is a continuous function of x̂.

Since F is locally continuous one has that

F (Ŝ, ρŜ): F (Ŝ,4) → F (Ŝ, (µmF )Ŝ)

is also colimiting. It follows from the “basic
lemma” in [18] that the initial F (Ŝ,−) algebra
is 〈(µmF )Ŝ, αŜ〉 where

αŜ :F (Ŝ, (µmF )Ŝ) → (µmF )Ŝ

is the mediating morphism from F (Ŝ, ρŜ) to
(ρŜ)−. This is just

∨

n≥0(ρŜ)n+1 ◦ F (Ŝ, (ρŜ)n)†.
It has inverse α†

Ŝ
, and

⊔

n≥0(ν̄n+1 • φ(îp, ν̄n)) re-

alises it, independently of Ŝ.

7 Interpreting Terms

To interpret terms we need an indexed category,
G:Eop → Cat . The objects of G(Ωm) have to be
E(Ωm, Ω), the symmetric effective functors. For
the morphisms ν:F → G we take the families
νŜ : F (Ŝ) → G(Ŝ) in Q such that there is a θ in D
which realises every νŜ (we say θ realises ν). For
example, the first and second components of αS
(defined above) provide the morphisms needed to
interpret the terms ηX:Tp.T and η−1X:Tp.T .

Given an H: Ωn → Ωm in E we get a functor
G(H):G(Ωm) → G(Ωn) which acts by compo-
sition on the objects and if ν:F → G in G(Ωm)
then G(ν):F ◦H → G ◦H is νH(Ŝ′) at Ŝ′ in Ωn.

Each fibre is Cartesian closed, the structure
being preserved on the nose. The terminal ob-
ject in G(Ωm) is the “constantly 11” functor
tm: Ωm → Ω. The unique !m:F → tm is that
realised by λx.⊥.

For binary products, given F and G in G(Ωm)
their product is given by composition: F×mG =
(× ◦ 〈F, G〉). The projections are realised by fst
and snd. If we have ν: H → F and µ: H → G (re-
alised by θ and ϑ) then their tuple 〈ν, µ〉m:H →
F ×m G is realised by λx.〈θx, ϑx〉.

The exponentiation of F and G is given by
F →m G = (→ ◦〈F, G〉). The evaluation mor-
phism eval: (F →m G)×m F → G is realised by
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λx.fst(x)(snd(x)). Given ν: H ×m F → G, re-
alised by θ, curry(ν): H → (F →m G) is realised
by λxλy.θ(〈x, y〉).

For universal quantification, we need to de-
scribe ∀ as a functor ∀:GΩ → G of indexed
categories, with ∀ right adjoint to the diagonal
4:G → GΩ. Here GΩ is the indexed cate-
gory G(− × Ω). We have to define for every
m ≥ 0 a functor ∀m:G(Ωm+1) → G(Ωm). For
objects F : Ωm+1 → Ω we can take ∀m(F ) as
above. For morphisms ν: F → F ′, realised by
θ, say, we have νŜ,T :F (Ŝ, T ) → F ′(Ŝ, T ) so then
θ realises νŜ,T for every T and we take ∀m(ν)Ŝ
to be [θ](∀mF )T,(∀mF ′)T .

Finally, to interpret term expressions for re-
cursive elements, given F and G in G(Ωm) and
ν : F ×m G → G we need fix (ν) : F → G.
At Ŝ in Ωm this is the least g : F (Ŝ) → G(Ŝ)
such that g = νŜ ◦ 〈idF (Ŝ), g〉. It is realised
by λx.Y (λy.f(〈x, y〉)), where f realises ν and
Y : (D → D) → D is the usual least fixed-point
operator.

8 The Metric-Space Approach

Amadio introduced uniformity in order to solve
type equations by the Banach fixed-point theo-
rem. The method in fact allows one to give a
Seely-style model of λ2 extended with recursive
types and elements, and it turns out that the
closed types are interpreted as above; one can
even go on to interpret bounded quantification.
It is (still) not clear, however, how to extend this
to Fω. So, one defines a complete metric on the
set R of good pers by: d(S, T ) = 0 if S = T ,
and d(S, T ) = 2−c if c is the least natural num-
ber such that πc(S) 6= πc(T ). If Sn is a Cauchy
sequence its limit S∞ is given as in section 5:
xS∞y if ∀n∀∞m.πnxSmπny.

For the Seely-style model take as global cat-
egory, M, that with the Rm as objects and
as morphisms tuples 〈F1, . . . , Fn〉 : Rm → Rn

where each Fi is either contractive or a projec-
tion. Take Ω to be R. Both × and → act con-
tractively on R. Taking (∀mF ) : Ωm → Ω to be
defined by (∀mF )(Ŝ) = ∩T F (Ŝ, T ), we obtain a
contractive function if F : Ωm+1 → Ω is con-

tractive or projects its last element, and a pro-
jection otherwise. Similarly, for recursive types
(µmF ) : Ωm → Ω, we define F (n) : Ωm → Ω on Ŝ
as above. Then, in all cases, F (n)(Ŝ) is a Cauchy
sequence, we take (µmF )(Ŝ) to be its limit,
and find an actual equality: F (Ŝ, (µmF )(Ŝ)) =
(µmF )(Ŝ).

For the indexed category G : Mop → Cat we
proceed as before taking the objects of G(Ωm)
as M(Ωm, Ω) and as morphisms ν : F → G the
families νŜ : F (Ŝ) → G(Ŝ) in Q realised by a
single element of D. In the case of recursive
types, for example, one can interpret ηX:Tp.T
and η−1X:Tp.T by the identity. Then the fibres
are Cartesian closed, as before, and ∀ : GΩ → G
is also defined as before, as is fix (ν).

In fact, this is essentially a re-presentation of
our previous model: the interpretation of types is
the object part of the previous one and the inter-
pretation of terms is exactly the same. What we
have gained is the knowledge that the morphisms
used to interpret ηX:Tp.T and η−1X:Tp.T are
identities and the recursive types are initial alge-
bras.

To show all this, one, as it were, combines
both models into a single one which also has
contractiveness restrictions at the level of mor-
phisms. (Most of the proofs are omitted.) First,
for a good S, metricise [S] by: dS([x]S , [y]S) =
2−c([x]S ,[y]S), where c([x]S , [y]S) is the least n such
that [πnx]S 6= [πny] (and ∞ when x = y). This
yields a complete ultra-metric (and it is compact
and metricises the Lawson topology on [S]—
see [11]). One can show that f : [S] → [T ] is
nonexpansive iff πT

n ◦ f = πT
n ◦ f ◦ πS

n (where,
for example, πS

n ([x]S) = [πnx]S). One then takes
the sup ultra-metric on functions from [S] to [T ]
by dS,T (f, g) = supx∈|S| dT (f([x]S), g([x]S)).

Now take EM to be the subcategory of E with
the same objects, and as morphisms those func-
tors F : Ωm → Ωn such that each (Πn

i ◦F ) either
is a projection, or is contractive in that it acts
contractively on both objects and morphisms
(see [2]); for RD(S, T ) we take d(〈f, g〉, 〈f ′, g′〉) =
max(dS,T (f, f ′), dT,S(g, g′)). Then EM inherits
its finite product structure from E and the ef-
fective symmetric functors ×,→: Ω2 → Ω are
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also contractive. Further, universal quantifica-
tion can be defined as in E, as it preserves con-
tractiveness.

The metric structure on morphisms is put to
use when considering recursive types, (µmF ) :
Ωm → Ω, defined as before. As with M we
find that (µmF )(Ŝ) is the limit of the Cauchy
sequence F (n)(Ŝ) and obtain an actual equal-
ity F (Ŝ, (µmF )(Ŝ)) = (µmF )(Ŝ), and we also
get (as in [12]) that (µmF ) acts contractively
on objects. Now consider the action of F (Ŝ,−)
on Ω(F (Ŝ, (µmF )(Ŝ)), (µmF )(Ŝ)). One sees by
the above equality that id(µmF )(Ŝ) is a fixed-
point. But one can show, by considering realis-
ers, that αŜ is another fixed-point, and so αŜ is
the identity by contractiveness. One has then
to show that (µmF ) acts contractively on mor-
phisms. Finally, the indexed structure on EM
is again inherited from E and the evident func-
tors E ← EM → M provide the needed relation
between the three models.

9 A Partial Preorder Model

Good pers yield intrinsic partial orders with use-
ful properties, which we have exploited in the
construction of a model for λ2, and which would
also be relevant in giving a logic for λ2. It is not
necessary to start with pers, however: the same
results can be obtained directly from preorders.
In fact, the use of preorders is preferable in
some respects, because it does not require meet-
closure assumptions. Hence, preorder models are
compatible with convex-powerdomain construc-
tions on bifinite cpos. (There should be no diffi-
culty, even in the original Scott-domain setting,
in adding the Hoare and the Smyth powerdo-
mains.)

Here we outline the main features of a model
based on preorders. We drop assumption 4 (and
no longer require that D be a Scott domain, but
only a bifinite cpo). A binary relation S on D
is a partial preorder (ppo) if it is a preorder on
|S| = {a | aSa}. It is a good partial preorder if it
satisfies the axioms of completeness, uniformity,
and if it extends the underlying partial order v
(on |S|):

Extensiveness If a, b ∈ |S| and a v b then
aSb.

We do not require antisymmetry, convexity, or
meet-closure properties.

Naturally, a partial equivalence relation 'S is
associated with every S: a 'S b iff aSb and bSa.
Furthermore, if S is good then 'S is complete
and uniform. However, the intrinsic order ob-
tained from 'S is not necessarily identical to S,
but possibly stronger. It is identical to S when
S is meet-closed. In the other direction, if S is
a per then ≤S is a complete, extensive partial
preorder; it is uniform if S is.

Let S be a ppo. We write [x]S for the equiva-
lence class under 'S of any x in |S|; we write
[S] for the set of such, partially ordered by:
[x]S ≤ [y]S iff xSy. We define f : TS as for
pers. The category Ppo has the ppos as objects
and as morphisms the monotonic g : [S] → [T ]
such that for some f : TS and for all x in |S|,
g([x]S) = [f(x)]T . We write [f ]S,T for g and also
f ` g (f realises g). Ppo is effective in the same
sense and the same way as Per. The analogue
of Theorem 1 holds for a good ppo S, that is,
[S] is an ω-algebraic cpo. (Actually it is even
bifinite as πS

n : [x]S 7→ [πnx]S is an increasing
sequence of projections with finite range and lub
the identity.) The intrinsic topology is defined,
as before; it is the Scott topology (for good ppos)
and so Ppo morphisms between good ppos are
Scott continuous.

We have lO and IN as good ppos. Ppo
is Cartesian closed with products and function
spaces defined as before (and now the analogue of
Proposition 2 is trivial for any ppo). These con-
structions preserve each of extensiveness, com-
pleteness, and uniformity. The intersection of a
family of ppos is also one, and it is extensive
(respectively, complete, uniform) if each ppo in
the family is. Ordering the morphisms of Ppo
pointwise we get an isomorphism φ : [RS ] ∼=
Ppo(R, S). The full subcategory pQ of good
ppos is then an O-category; we take pR to be the
further subcategory of the uniform morphisms
(as defined before). Colimits in pRD work out
as before, and then so too does the definition
of a Seely model allowing the interpretation of
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recursive elements and types. The material on
metric spaces should also extend, but we have
not investigated this.

Turning to the powerdomains, we add to as-
sumption 2 the existence of a strict retraction
pair, P(D)

ep−→ D
rp−→ P(D), and to assump-

tion 3 that πn+1(ep(X)) = ep((πnX)∗) (in the
notation of [14]—Y ∗ is the least convex Lawson-
closed set containing Y ). We identify any X
in P(D) and ep(X). Restricting, for brevity, to
good ppos R, we define the “power-ppo” by:

P(R) = {〈X, Y 〉 ∈ P(D)2 |
(∀x ∈ X∃y ∈ Y.xRy) ∧ (∀y ∈ Y ∃x ∈ X.xRy)}

obtaining a good ppo. Useful lemmas in showing
this are that each πn is Lawson continuous and
good ppos are closed under limits in the Lawson
topology.

There are many associated functions. The
union function on P(D) can be considered over D
by using the retractions and for any R it realises
a binary morphism over P(R) turning it into a
semilattice; however, this does not seem to be
the free such semilattice (as in [10]) and there
may not be one. The other associated functions
can be organised as a strong monad, following
Moggi [13]. The unit is realised by the single-
ton function in D → P(D), the multiplication is
realised by the “big union” in P2(D) → P(D),
and the strength is realised by t : D × P(D) →
P(D ×D) where t(x, Y ) = {x} × Y .

There arises the question of the appropriate
extension of λ2. One course is to add a “pow-
ertype operator” to obtain types P(T ) together
with polymorphic constants for the associated
functions. One can then ask how such a lan-
guage can be given an operational semantics (for
which our model is adequate) and so can be con-
sidered as a programming language; the power-
types present some difficulties.
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