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Abstract

Given a category C with finite products and a strong monad T on C, we in-
vestigate axioms under which an ObC-indexed family of operations of the form
αx : (Tx)n −→ Tx provides a definitive semantics for algebraic operations added to
the computational λ-calculus. We recall a definition for which we have elsewhere
given adequacy results for both big and small step operational semantics, and we
show that it is equivalent to a range of other possible natural definitions of algebraic
operation. We outline examples and non-examples and we show that our definition
is equivalent to one for call-by-name languages with effects too.

1 Introduction

Eugenio Moggi, in [6,8], introduced the idea of giving a unified category theo-
retic semantics for computational effects such as nondeterminism, probabilis-
tic nondeterminism, side-effects, and exceptions, by modelling each of them
uniformly in the Kleisli category for an appropriate strong monad on a base
category C with finite products. He supported that construction by develop-
ing the computational λ-calculus or λc-calculus, for which it provides a sound
and complete class of models. The computational λ-calculus is essentially the
same as the simply typed λ-calculus except for the essential fact of making
a careful systematic distinction between computations and values. However,
it does not contain operations, and operations are essential to any program-
ming language. So here, in beginning to address that issue, we provide a
unified semantics for algebraic operations, supported by equivalence theorems
to indicate definitiveness of the axioms.

We distinguish here between algebraic operations and arbitrary operations.
The former are, in a sense we shall make precise, a natural generalisation, from
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Set to an arbitrary category C with finite products, of the usual operations
of universal algebra. The key point is that the operations

αx : (Tx)n −→ Tx

are parametrically natural in the Kleisli category for a strong monad T on
C, as made precise in Definition 2.1: in that case, we say that the monad
T supports the operations; the leading class of examples has T being gener-
ated by the operations subject to equations accompanying them. Examples
of such operations are those for nondeterminism and probabilistic nondeter-
minism, and for raising exceptions. A non-example is given by an operation
for handling exceptions.

In a companion paper [11], we have given the above definition, given a syn-
tactic counterpart in terms of the computational λ-calculus, and proved ade-
quacy results for small and big-step operational semantics. But such results
alone leave some scope for a precise choice of appropriate semantic axioms. So
in this paper, we prove a range of equivalence results, which we believe provide
strong evidence for a specific choice of axioms, namely those for parametric
naturality in the Kleisli category as mentioned above. Our most profound
result is essentially about a generalisation of the correspondence between fini-
tary monads and Lawvere theories from Set to a category with finite products
C and a strong monad T on C: this result characterises algebraic operations
as generic effects. The generality of our analysis is somewhat greater than
in the study of enriched Lawvere theories in [12]: the latter require C to be
locally finitely presentable as a closed category, which is not true of all our
leading examples.

Moggi gave a semantic formulation of a notion of operation in [7], with an
analysis based on his computational metalanguage, but he only required nat-
urality of the operations in C, and we know of no way to provide operational
semantics in such generality. Our various characterisation results do not seem
to extend to such generality either. Evident further work is to consider how
other operations such as those for handling exceptions should be modelled.
That might involve going beyond monads, as Moggi has suggested to us; one
possibility is in the direction of dyads [13].

We formulate our paper in terms of a strong monad T on a category with
finite products C. We could equally formulate it in terms of closed Freyd-
categories in the spirit of [1], which provides a leading example for us in its
analysis of finite nondeterminism.

The paper is organised as follows. In Section 2, we recall the definition of
algebraic operation given in [11] and we exhibit some simple reformulations
of it. In Section 3, we give direct equivalent versions of these statements in
terms of enrichment under the assumption that C is closed. In Section 4, we
give a more substantial reformulation of the notion in terms of operations on
homs, both when C is closed and more generally when C is not closed. In
Section 5, we give what we regard as the most profound result of the paper,
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which is a formulation in terms of generic effects, generalising a study of
Lawvere theories. Finally, in Section 6, we characterise algebraic operations
in terms of operations on the category T -Alg, as this gives an indication of
how to incorporate call-by-name languages with computational effects into the
picture. And we give conclusions and an outline of possible future directions
in Section 7.

2 Algebraic operations and simple equivalents

In this section, we give the definition of algebraic operation as we made it
in [11]. In that paper, we gave the definition and a syntactic counterpart in
terms of the computational λ-calculus, and we proved adequacy results for
small and big-step operational semantics for the latter in terms of the former.
Those results did not isolate definitive axioms for the notion of algebraic op-
eration. So in this section, we start with a few straightforward equivalence
results on which we shall build later.

We assume we have a category C with finite products together with a
strong monad < T, η, µ, st > on C with Kleisli exponentials, i.e., such that for
all objects x and z of C, the functor CT (−×x, z) : Cop −→ Set is representable.
We do not take C to be closed in general: we shall need to assume it for some
later results, but we specifically do not want to assume it in general, and we
do not require it for any of the results of this section.

Given a map f : y × x −→ Tz in C, we denote the parametrised lifting of
f , i.e., the composite

y × Tx
st- T (y × x)

Tf - T 2z
µz - Tz

by f † : y × Tx −→ Tz.

Definition 2.1 An algebraic operation is an ObC-indexed family of maps

αx : (Tx)n −→ Tx

such that for every map f : y × x −→ Tz in C, the diagram

y × (Tx)n 〈f † · (y × πi)〉ni=1- (Tz)n

y × Tx

y × αx

?

f †
- Tz

αz

?

commutes.

For some examples of algebraic operations, for C = Set, let T be the
nonempty finite power-set monad with binary choice operations [9,1]; alterna-
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tively, let T be the monad for probabilistic nondeterminism with probabilistic
choice operations [2,3]; or take T to be the monad for printing with printing
operations [10]. Observe the non-commutativity in the latter example. One
can, of course, generalise from Set to categories such as that of ω-cpo’s, for
instance considering the various power-domains together with binary choice
operators. One can also consider combinations of these, for instance to model
internal and external choice operations. Several of these examples are treated
in detail in [11].

There are several equivalent formulations of the coherence condition of the
definition. Decomposing it in a maximal way, we have

Proposition 2.2 An ObC-indexed family of maps

αx : (Tx)n −→ Tx

is an algebraic operation if and only if

(i) α is natural in C

(ii) α respects st in the sense that

y × (Tx)n 〈st · (y × πi)〉ni=1- (T (y × x))n

y × Tx

y × αx

?

st
- T (y × x)

αy×x

?

commutes

(iii) α respects µ in the sense that

(T 2x)n µn
x - (Tx)n

T 2x

αTx

?

µx

- Tx

αx

?

commutes.

Proof. It is immediately clear from our formulation of the definition and
the proposition that the conditions of the proposition imply the coherence
requirement of the definition. For the converse, to prove naturality in C, put
y = 1 and, given a map g : x −→ z in C, compose it with ηz and apply the
coherence condition of the definition. For coherence with respect to st, take
f : y × x −→ Tz to be ηy×x. And for coherence with respect to µ, put y = 1
and take f to be idTx. 2
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There are other interesting decompositions of the coherence condition of
the definition too. In the above, we have taken T to be an endo-functor on
C. But one often also writes T for the right adjoint to the canonical functor
J : C −→ CT as the behaviour of the right adjoint on objects is given precisely
by the behaviour of T on objects. So with this overloading of notation, we
have functors (T−)n : CT −→ C and T : CT −→ C, we can speak of natural
transformations between them, and we have the following proposition.

Proposition 2.3 An ObC-indexed family of maps

αx : (Tx)n −→ Tx

is an algebraic operation if and only if α is natural in CT and α respects st.

In another direction, as we shall investigate further below, it is sometimes
convenient to separate the µ part of the coherence condition from the rest of
it. We can do that with the following somewhat technical result.

Proposition 2.4 An ObC-indexed family

αx : (Tx)n −→ Tx

forms an algebraic operation if and only if α respects µ and, for every map
f : y × x −→ z in C, the diagram

y × (Tx)n 〈st · (y × πi)〉ni=1- (T (y × x))n (Tf)n
- (Tz)n

y × Tx

y × αx

?

st
- T (y × x)

Tf
- Tz

αz

?

commutes.

3 Equivalent formulations if C is closed

For our more profound results, it seems best first to assume that C is closed,
explain the results in those terms, and later to drop the closedness condition
and explain how to reformulate the results without essential change. So for
the results in this section, we shall assume C is closed.

Let the closed structure of C be denoted by [−,−]. Given a monad <
T, η, µ > on C, to give a strength for T is equivalent to giving an enrichment
of T in C: given a strength, one has an enrichment

Tx,y : [x, y] −→ [Tx, Ty]

given by the transpose of

[x, y]× Tx
st- T ([x, y]× x)

Tev - Ty
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and given an enrichment of T , one has a strength given by the transpose of

x - [y, x× y]
Ty,x×y- [Ty, T (x× y)]

It is routine to verify that the axioms for a strength are equivalent to the
axioms for an enrichment. So, given a strong monad < T, η, µ, st > on C, the
monad T is enriched in C, and so is the functor (−)n : C −→ C.

The category CT also canonically acquires an enrichment in C, i.e, the
homset CT (x, y) of CT lifts to a homobject of C: the object [x, Ty] of C acts
as a homobject, applying the functor C(1,−) : C −→ Set to it giving the
homset CT (x, y); composition

CT (y, z)× CT (x, y) −→ CT (x, z)

lifts to a map in C

[y, Tz]× [x, Ty] −→ [x, Tz]

determined by taking a transpose and applying evaluation maps twice and each
of the strength and the multiplication once; and identities and the axioms for
a category lift too.

The canonical functor J : C −→ CT becomes a C-enriched functor with a
C-enriched right adjoint. The main advantage of the closedness condition for
us is that it allows us to dispense with the parametrisation of the naturality,
or equivalently with the coherence with respect to the strength, as follows.

Proposition 3.1 If C is closed, an ObC-indexed family

αx : (Tx)n −→ Tx

forms an algebraic operation if and only if

[x, Tz]
(−)n · [Tx, µz] · Tx,Tz- [(Tx)n, (Tz)n]

[Tx, Tz]

[Tx, µz] · Tx,Tz

?

[αx, T z]
- [(Tx)n, T z]

[(Tx)n, αz]

?

commutes.

The left-hand vertical map in the diagram here is exactly the behaviour
of the C-enriched right adjoint T : CT −→ C to the canonical C-enriched
functor J : C −→ CT on homs, and the top horizontal map is exactly the
behaviour of the C-enriched functor (T−)n : CT −→ C on homs. So the
coherence condition in the proposition is precisely the statement that α forms
a C-enriched natural transformation from the C-enriched functor (T−)n :
CT −→ C to the C-enriched functor T : CT −→ C.
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Proof. Given a map f : y × x −→ Tz in C, the transpose of the map gives
a map from y to [x, Tz]. Precomposing the coherence condition here with
that map, then transposing both sides, one obtains the coherence condition
of the definition. For the converse, given a map g : y −→ [x, Tz], taking its
transpose, using the coherence condition of the definition, and transposing
back again, shows that the above square precomposed with g commutes. So
by the Yoneda lemma, we are done. 2

The same argument can be used to give a further characterisation of the
notion of algebraic operation if C is closed by modifying Proposition 2.4. This
yields

Proposition 3.2 If C is closed, an ObC-indexed family

αx : (Tx)n −→ Tx

forms an algebraic operation if and only if α respects µ and

[x, z]
(−)n · Tx,z- [(Tx)n, (Tz)n]

[Tx, Tz]

Tx,z

?

[αx, T z]
- [(Tx)n, T z]

[(Tx)n, αz]

?

commutes.

This proposition says that if C is closed, an algebraic operation is exactly
a C-enriched natural transformation from the C-enriched functor (T−)n :
C −→ C to the C-enriched functor T : C −→ C that is coherent with respect
to µ.

4 Algebraic operations as operations on homs

In our various formulations of the notion of algebraic operation so far, we have
always had an ObC-indexed family

αx : (Tx)n −→ Tx

and considered equivalent conditions on it under which it might be called an
algebraic operation. In computing, this amounts to considering an operator on
expressions. But there is another approach in which arrows of the category CT

may be seen as primitive, regarding them as programs. This was the under-
lying idea of the reformulation [1] of the semantics for finite nondeterminism
of [9]. So we should like to reformulate the notion of algebraic operation in
these terms. Proposition 3.1 allows us to do that. In order to explain the
reason for the coherence conditions, we shall start by expressing the result
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assuming C is closed; after which we shall drop the closedness assumption
and see how the result can be re-expressed using parametrised naturality.

We first need to explain an enriched version of the Yoneda lemma as in [4].
If D is a small C-enriched category, then Dop may also be seen as a C-enriched
category. We do not assume C is complete here, but if we did, then we
would have a C-enriched functor category [Dop, C] and a C-enriched Yoneda
embedding

YD : D −→ [Dop, C]

The C-enriched Yoneda embedding YD is a C-enriched functor and it is fully
faithful in the strong sense that the map

D(x, y) −→ [Dop, C](D(−, x), D(−, y))

is an isomorphism in the category C: see [4] for all the details. It follows by
applying the functor C(1,−) : C −→ Set that this induces a bijection from the
set of maps from x to y in D to the set of C-enriched natural transformations
from the C-enriched functor D(−, x) : Dop −→ C to the C-enriched functor
D(−, y) : Dop −→ C.

This is the result we need, except that we do not want to assume that C
is complete, and the C-enriched categories of interest to us are of the form
CT , so in general are not small. These are not major problems although they
go a little beyond the scope of the standard formulation of enriched category
theory in [4]: one can embed C into a larger universe C ′ just as one can embed
Set into a larger universe Set′ when necessary, and the required mathematics
for the enriched analysis appears in [4]. We still have what can reasonably be
called a Yoneda embedding of D into [Dop, C], with both categories regarded
as C ′-enriched rather than C-enriched, and it is still fully faithful as a C ′-
enriched functor. However, we can formulate the result we need more directly
without reference to C ′ simply by stating a restricted form of the enriched
Yoneda lemma: letting FunC(Dop, C) denote the (possibly large) category of
C-enriched functors from Dop to C, the underlying ordinary functor

D −→ FunC(Dop, C)

of the Yoneda embedding is fully faithful.
We use this latter statement both here and in the following section. Now

for our main result of this section under the assumption that C is closed.

Theorem 4.1 If C is closed, to give an algebraic operation is equivalent to
giving an ObCop ×ObC family of maps

ay,x : [y, Tx]n −→ [y, Tx]

that is C-natural in y as an object of Cop and C-natural in x as an object of
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CT , i.e., such that

[y, Tx]n × [y′, y]
〈comp · (πi × [y′, y])〉ni=1- [y′, Tx]n

[y, Tx]× [y′, y]

ay,x × [y′, y]

?

comp
- [y′, Tx]

ay′,x

?

and

[x, Tz]× [y, Tx]n
〈compK · ([x, Tz]× πi)〉ni=1- [y, Tz]n

[x, Tz]× [y, Tx]

[x, Tz]× ay,x

?

compK

- [y, Tz]

ay,z

?

commute, where comp is the C-enriched composition of C and compK is C-
enriched Kleisli composition.

Proof. First observe that [y, Tx]n is isomorphic to [y, (Tx)n]. Now, it fol-
lows from our C-enriched version of the Yoneda lemma that to give the data
together with the first axiom of the proposition is equivalent to giving an
ObC-indexed family

α : (Tx)n −→ Tx

By a further application of our C-enriched version of the Yoneda lemma,
it follows that the second condition of the proposition is equivalent to the
coherence condition of Proposition 3.1. 2

As mentioned earlier, we can still state essentially this result even without
the condition that C be closed. There are two reasons for this. First, for the
paper, we have assumed the existence of Kleisli exponentials, as are essential
in order to model λ-terms. But most of the examples of the closed structure of
C we have used above are of the form [y, Tx], which could equally be expressed
as the Kleisli exponential y ⇒ x. The Kleisli exponential routinely extends to
a functor

− ⇒ − : Cop
T × CT −→ C

Second, in the above, we made one use of a construct of the form [y′, y] with no
T protecting the second object. But we can replace that by using the ordinary
Yoneda lemma to express the first condition of the theorem in terms of maps
f : w × y′ −→ y.

Summarising, we have
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Corollary 4.2 To give an algebraic operation is equivalent to giving an ObCop×
ObC family of maps

ay,x : (y ⇒ x)n −→ (y ⇒ x)

in C, such that for every map f : w × y′ −→ y in C, the diagram

(y ⇒ x)n × w × y′
(f ⇒ x)n × w × y′- ((w × y′) ⇒ x)n × w × y′

(y ⇒ x)× y

ay,x × f

?

ev
- x

ev · (aw×y′,x × w × y′)

?

commutes, and the diagram

(x ⇒ z)× (y ⇒ x)n 〈compK · ((x ⇒ z)× πi)〉ni=1- (y ⇒ z)n

(x ⇒ z)× (y ⇒ x)

(x ⇒ z)× ay,x

?

compK

- (y ⇒ z)

ay,z

?

commutes, where compK is the canonical internalisation of Kleisli composi-
tion.

5 Algebraic operations as generic effects

In this section, we apply our formulation of the C-enriched Yoneda lemma to
characterise algebraic operations in entirely different terms again as maps in
CT , i.e., in terms of generic effects. Observe that if C has an n-fold coproduct
n of 1, the functor (T−)n : CT −→ C is isomorphic to the functor n ⇒ − :
CT −→ C. If C is closed, the functor n ⇒ − enriches canonically to a C-
enriched functor, and that C-enriched functor is precisely the representable C-
functor CT (n,−) : CT −→ C, where CT is regarded as a C-enriched category.
So by Proposition 3.1 together with our C-enriched version of the Yoneda
lemma, we immediately have

Theorem 5.1 If C is closed, the C-enriched Yoneda embedding induces a
bijection between maps 1 −→ n in CT and algebraic operations

αx : (Tx)n −→ Tx

This result is essentially just an instance of an enriched version of the
identification of maps in a Lawvere theory with operations of the Lawvere
theory. Observe that it follows that there is no mathematical reason to restrict
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attention to algebraic operations of arity n for a natural number n. We could
just as well speak, in this setting, of algebraic operations of the form

αx : (a ⇒ −) −→ (b ⇒ −)

for any objects a and b of C. So for instance, we could include an account
of infinitary operations as one might use to model operations involved with
state. For specific choices of C such as C = Poset, one could consider more
exotic arities such as that given by Sierpinski space.

Once again, by use of parametrisation, we can avoid the closedness as-
sumption on C here, yielding the stronger statement

Theorem 5.2 Functoriality of − ⇒ − : Cop
T × CT −→ C in its first variable

induces a bijection from the set of maps 1 −→ n in CT to the set of algebraic
operations

αx : (Tx)n −→ Tx

We regard this as the most profound result of the paper. This result shows
that to give an algebraic operation is equivalent to giving a generic effect,
i.e., a constant of type the arity of the operation. For example, to give a
binary nondeterministic operator for a strong monad T is equivalent to giving
a constant of type 2, and to give equations to accompany the operator is
equivalent to giving equations to be satisfied by the constant. The leading
example here has T being the non-empty finite powerset monad or a power-
domain. Given a nondeterministic operator ∨, the constant is given by true∨
false, and given a constant c, the operator is given by M ∨N = if c then M
else N . There are precisely three non-empty finite subsets of the two element
set, and accordingly, there are precisely three algebraic operations on the non-
empty finite powerset monad, and they are given by the two projections and
choice.

The connection of this result with enriched Lawvere theories [12] is as fol-
lows. If C is locally finitely presentable as a closed category, one can define a
notion of finitary C-enriched monad on C and a notion of C-enriched Lawvere
theory, and prove that the two are equivalent, generalising the usual equiv-
alence in the case that C = Set. Given a finitary C-enriched monad T , the
corresponding C-enriched Lawvere theory is given by the full sub-C-category
of CT determined by the finitely presentable objects. These include all finite
coproducts of 1. So our results here exactly relate maps in the Lawvere theory
with algebraic operations, generalising Lawvere’s original idea. Of course, in
this paper, we do not assume the finiteness assumptions on either the category
C or the monad T , but our result here is essentially the same.

Theorem 5.2 extends with little fuss to the situation of finitely presentable
objects a and b; one just requires a suitable refinement of the construct (T−)n

to account for a and b being objects of C rather than finite numbers. This
follows readily by inspection of the work of [12], and, in a special case, it
seems to provide an account of some of the operations associated with state,
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as suggested to us by Moggi.

6 Algebraic operations and the category of algebras

Finally, in this section, we characterise the notion of algebraic operation
in terms of the category of algebras T -Alg. The co-Kleisli category of the
comonad on T -Alg induced by the monad T is used to model call-by-name
languages with effects, so this formulation gives us an indication of how to
generalise our analysis to call-by-name computation or perhaps to some com-
bination of call-by-value and call-by-name, cf [5].

If C is closed and has equalisers, generalising Lawvere, the results of the
previous section can equally be formulated as equivalences between algebraic
operations and operations

α(A,a) : U(A, a)n −→ U(A, a)

natural in (A, a), where U : T -Alg −→ C is the C-enriched forgetful functor:
equalisers are needed in C in order to give an enrichment of T -Alg in C.
We prove the result by use of our C-enriched version of the Yoneda lemma
again, together with the observation that the canonical C-enriched functor
I : CT −→ T -Alg is fully faithful. Formally, the result is

Theorem 6.1 If C is closed and has equalisers, the C-enriched Yoneda em-
bedding induces a bijection between maps 1 −→ n in CT and C-enriched nat-
ural transformations

α : (U−)n −→ U − .

Combining this with Theorem 5.1, we have

Corollary 6.2 If C is closed and has equalisers, to give an algebraic operation

αx : (Tx)n −→ Tx

is equivalent to giving a C-enriched natural transformation

α : (U−)n −→ U.

One can also give a parametrised version of this result if C is neither closed
nor complete along the lines for CT as in the previous section. It yields

Theorem 6.3 To give an algeberaic operation

αx : (Tx)n −→ Tx

is equivalent to giving an Ob(T -Alg)-indexed family of maps

α(A,a) : U(A, a)n −→ U(A, a)

such that, for each map

f : x× U(A, a) −→ U(B, b)
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commutativity of

x× TA
x× Tf- x× TB

x× A

x× a

?

x× f
- x×B

x× b

?

implies commutativity of

x× U(A, a)n 〈f · (x× πi)〉ni=1- U(B, b)n

x× U(A, a)

x× α(A,a)

?

f
- U(B, b)

α(B,b)

?

7 Conclusions and Further Work

For some final comments, we note that little attention has been paid in the
literature to the parametrised naturality condition on the notion of algebraic
operation that we have used heavily here. And none of the main results of [11]
used it, although they did require naturality in CT . So it is natural to ask
why that is the case.

For the latter point, in [11], we addressed ourselves almost exclusively
to closed terms, and that meant that parametrised naturality of algebraic
operations did not arise as we did not have any parameter.

Regarding why parametrised naturality does not seem to have been ad-
dressed much in the past, observe that for C = Set, every monad has a
unique strength, so parametrised naturality of α is equivalent to ordinary nat-
urality of α. More generally, if the functor C(1,−) : C −→ Set is faithful, i.e.,
if 1 is a generator in C, then parametrised naturality is again equivalent to
ordinary naturality of α. That is true for categories such as Poset and that
of ω-cpo’s, which have been the leading examples of categories studied in this
regard. The reason we have a distinction is because we have not assumed that
1 is a generator, allowing us to include examples such as toposes or Cat for
example.

Of course, in future, we hope to address other operations that are not
algebraic, such as one for handling exceptions. It seems unlikely that the ap-
proach of this paper extends directly. Eugenio Moggi has recommended we
look beyond monads. We should also like to extend and integrate this work
with work addressing other aspects of giving a unified account of computa-
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tional effects. We note here especially Paul Levy’s work [5] which can be used
to give accounts of both call-by-value and call-by-name in the same setting,
and work on modularity [13], which might also help with other computational
effects.
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