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Functional characterizations of thousands of gene products from many species are described in the published
literature. These discussions are extremely valuable for characterizing the functions not only of these gene
products, but also of their homologs in other organisms. The Gene Ontology (GO) is an effort to create a
controlled terminology for labeling gene functions in a more precise, reliable, computer-readable manner.
Currently, the best annotations of gene function with the GO are performed by highly trained biologists who
read the literature and select appropriate codes. In this study, we explored the possibility that statistical natural
language processing techniques can be used to assign GO codes. We compared three document classification
methods (maximum entropy modeling, naïve Bayes classification, and nearest-neighbor classification) to the
problem of associating a set of GO codes (for biological process) to literature abstracts and thus to the genes
associated with the abstracts. We showed that maximum entropy modeling outperforms the other methods and
achieves an accuracy of 72% when ascertaining the function discussed within an abstract. The maximum
entropy method provides confidence measures that correlate well with performance. We conclude that statistical
methods may be used to assign GO codes and may be useful for the difficult task of reassignment as
terminology standards evolve over time.

The remarkably rapid emergence of high-throughput meth-
ods for acquiring information about sequences and function
of genes provides a wealth of valuable new data. These meth-
ods include high-throughput gene expression measurement
(Schena et al. 1995; Chee et al. 1996), yeast two-hybrid
screens (Uetz et al. 2000), genome sequencing (Cole et al.
1998; Adams et al. 2000), randomized gene disruption (Ross-
Macdonald et al. 1999; Tissier et al. 1999; Winzeler et al.
1999), single nucleotide polymorphism detection (Cargill et
al. 1999; Halushka et al. 1999), and bulk biochemical func-
tional assays (Martzen et al. 1999). Efficient interpretation of
these data is challenging because the number and diversity of
genes exceed the ability of any single investigator to track the
complex relationships established by the data sets.

To provide some standards for describing gene function,
investigators have developed controlled vocabularies for an-
notation. The vocabularies include a pioneering classification
for Escherichia coli gene function (Riley 1993), the Munich
Information Center for Protein Sequences (MIPS) classifica-
tion (Mewes et al. 2000), and Gene Ontology (GO) Consor-
tium’s recent widespread effort across multiple organisms
(Ashburner et al. 2000). These vocabularies contain a set of
codes associated with specific genetic attributes and func-
tions. The GO is a hierarchically arranged set of codes that
permits multiple inheritance; it is organized into three broad
components: molecular function, cellular location, and bio-

logical process (see Fig. 1). The vocabulary is fluid and con-
sistently undergoes revision.

Unfortunately, annotating genes with these controlled
vocabulary codes is a labor-intensive task. An expert inspects
the literature (and, in principle, other available data) associ-
ated with each gene to determine the appropriate function
code. It is likely that one-time annotation will not be suffi-
cient; as our knowledge of biology increases and expands into
new areas, the vocabularies will undergo refinement and cod-
ing may need to be repeated.

The emergence of powerful methods for analyzing text
raises the possibility that gene annotation can be facilitated
using natural language processing (NLP) techniques. Investi-
gators have annotated genes with informative keywords (An-
drade and Valencia 1997; Shatkay et al. 2000) and sought out
specific relationships within text, such as macromolecular in-
teractions (Hishiki et al. 1998; Craven and Kumlien 1999; Ng
and Wong 1999; Proux et al. 2000; Thomas et al. 2000; Ste-
phens et al. 2001). Some work has focused on the assignment
of predefined codes to genes. Eisenhaber and Bork (1999) de-
veloped a rule-based system to identify protein localization
from SWISS-PROT records. Tamames et al. (1998) developed a
system to assign three broad terms—Energy, Communication,
and Information—to genes from database annotations.

In this study we developed a method to assign GO codes
to genes using statistical NLP techniques. We built a docu-
ment classifier based on the maximum entropy principle to
associate abstracts with GO codes. Then we annotated each
gene by combining the GO code classifications from all of
their abstracts using a weighted voting scheme. Such a method
should reduce the time and labor necessary for gene annota-
tion.
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The NLP techniques we employed fall under the heading
of supervised machine learning (Manning and Schutze 1999);
the text in the unclassified abstract is compared to training
examples that have been previously identified as relevant to
specific GO codes. The unclassified text is assigned to catego-
ries based on similarities with the training examples. Ideally,
experts should compile the requisite training examples. How-
ever, this is a labor-intensive task. To expedite the process for
the purposes of this study we used human-assigned MeSH
major headings (Hutchinson 1998). Some GO codes corre-
spond well to specific headings; for other codes we devised ad
hoc queries. In general, reliable human annotations will not
be available in analyzing text, thus highlighting the need for
a general purpose method that relies solely on the unanno-
tated text.

Maximum entropy modeling is effective in generic text
classification tasks (Ratnaparkhi 1997; Manning and Schutze
1999; Nigam et al. 1999). Models that classify documents can
be characterized by their entropy. Low entropy models de-
pend on making many distinctions when classifying docu-
ments and can suffer from overinterpretation of the training
data. High entropy models make fewer distinctions but do not
take full advantage of the signal within the training data.
Maximum entropy methods are based on the assumption that
the best models are those with the highest entropy that are
still consistent with the training data.

One advantage of maximum entropy classification is
that in addition to assigning a classification, it provides a
probability of each assignment being correct. These probabili-
ties can be helpful in combining multiple gene annotation
predictions. If they are reliable measures of prediction confi-
dence, they can be leveraged in a voting scheme; the influ-
ence of low confidence predictions can be mitigated when
combined with other high confidence predictions.

We conducted experiments to annotate Saccharomyces
cerevisiae genes with codes from a subset of GO. We chose this
organism because many of its genes have manually curated
GO annotations that can be used as a gold standard. We used
two gene-document sets for testing. One set was a high qual-
ity list of PubMed citations hand-annotated by the curators of
the Saccharomyces Genome Database (SGD; Cherry et al.
1998). The other set consisted of literature associated with
sequence homologs of yeast genes.

We employed two types of performance measures in this
study. To evaluate document classification, we used accuracy;
to evaluate gene annotation, we used precision and recall. Ac-
curacy is the percentage of predictions on a document test set
for which the classifier prediction was correct. True positives
are the genes that truly have the function and were correctly
assigned the annotation. Precision is the percentage of anno-
tated genes that are true positives. Recall is the percentage of
genes that truly have the function that are true positives; re-
call is equivalent to sensitivity.

In this study we (1) evaluated the performance of docu-
ment classifiers to obtain genetic functions and (2) evaluated
gene annotation from literature. Because the crux of our an-
notation strategy is a document classifier, we compared its
accuracy against two other types of classifiers. After establish-
ing the effectiveness of a maximum entropy classifier, we
evaluated the classifier’s probabilistic estimates as robust con-
fidence estimates of prediction. Finally we used a voting
scheme to combine document classifications into gene anno-
tations. We estimated precision and recall to evaluate gene
annotations in yeast. Because our classifications of documents

have reliable confidence estimates, our annotations of genes
should also. As we choose higher confidence cutoff values, we
can often achieve better precision because we are more certain
of the predictions we make but at the cost of lower recall
because we likely miss low confidence correct annotations.

RESULTS

Construction of the Training and Test Corpora
We constructed training and test corpora of documents for
the 21 GO codes by searching PubMed for each code’s corre-
sponding MeSH heading and title words (see Fig. 1). The que-
ries and the number of abstracts per GO code are listed in
Table 1A. We split the results into three sets based on publi-
cation date; documents published before 2000 constituted the
training set, documents published in 2000 constituted the
test2000 set, and documents published in 2001 constituted
the test2001 set. A few of the documents are relevant to more
than one GO code (see Table 1B). Table 2 lists the properties
of the two data sets of abstracts associated with S. cerevisiae
genes.

Comparing Document Classification Algorithms
We compared the classification accuracy of two different clas-
sifier families,—naı̈ve Bayes and nearest-neighbor—to maxi-
mum entropy classification. We also examined different pa-
rameter settings for each of the classifiers, such as vocabulary
size. We trained each classifier on the training set described
above and fit their parameters by maximizing performance on
the test2000 data set. The results of the classification trials on
the test2000 data set are summarized in Table 3A. An ideal
classifier would obtain 100% accuracy.

For maximum entropy classification trials, we reported
the highest accuracy over the 200 generalized iterative scaling
(GIS) iterations for different vocabulary sizes. Based on these
results, we chose to stop at iteration 186 with 100 words/code
for maximum entropy classification. Although 500 words/
code perform slightly better, it is less robust than 100 words.
Either doubling to 200 words or splitting to 50 words does not
significantly affect performance; however, going from 500 to
750 words degrades the performance on the test2000 set by
more than a full percent. The best performance for naı̈ve
Bayes is with a vocabulary of 500 words; the best performance
for nearest-neighbor is with 50 neighbors and 5000 words.

Table 3B lists the performance of each of the classifiers
on the smaller held out test2001 data set after parameter op-
timization on the test2000 data set. Maximum entropy has
the best performance (72.12% accuracy) compared to nearest-
neighbor (61.54%) and naı̈ve Bayes (59.62%). Results of maxi-
mum entropy classification for individual categories are re-
ported in Table 4.

Assigned Maximum Entropy Probabilities Can Be
Used to Rank Predictions
In this study we established that although the document clas-
sifier may misclassify a document, the correct class is almost
always assigned a high probability and is contained in the top
four predictions. Maximum entropy classification assigns a
probability to each of the 21 codes for each abstract. A good
classifier would assign the correct classification a high prob-
ability; a perfect classifier would assign the correct classifica-
tion the highest probability. For abstracts in test2000 we
sorted the predicted GO codes by probabilities and calculated
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how often the nth prediction was correct (Fig. 2). The top
prediction was correct 72.8% of the time, as shown in Table 3.
Predictions that were ranked greater than four rarely con-
tained accurate predictions. The accuracy of the prediction
drops off gradually with its rank.

Because some abstracts in the test sets (∼9%) have mul-
tiple relevant GO codes, we were concerned that the accuracy
results were inflated by those abstracts. We eliminated the
abstracts in test2000 with more than a single correct predic-
tion and again calculated how often the nth prediction was
correct (Fig. 2). The accuracy of the top prediction in this case
is reduced slightly to 72.0%. The second and third predictions
are somewhat less accurate. The accuracy of the predictions
are not dramatically altered.

Table 1B.

Corpus

No. articles with N codes
Total

articles1 2 3 4

Training 15444 888 60 9 16401
Test 2000 2682 231 27 1 2941
Test 2001 184 22 2 0 208

Some of the articles within the training set were obtained in more
than one of the queries; thus these articles have more than a single
relevant GO classification. This table lists the number of abstracts
in each data set and the number of abstracts with one, two, three,
and four relevant codes.

Table 1. The Training and Testing Corpus

Category GO code Training
Test
2000

Test
2001 PubMed query

Autophagy GO:0006914 177 22 1 (autophagy [TI] OR autophagocytosis [MAJR]) AND (Proteins) [MH] OR
Genes [MH]) AND 1940 : 1999 [DP]

Biogenesis GO:0016043 1023 132 4 (biogenesis [TI] OR ((cell wall [MAJR] OR cell membrane structures
[MAJR] OR cytoplasmic structures [MAJR]) AND (organization [TI] OR
arrangement [TI]))) AND (Genetics [MH]) AND 1984 : 1999 [DP]

Cell adhesion GO:0007155 1025 133 5 (cell adjesion [MAJR]) AND (genetics [MH]) AND 1993 : 1999 [DP]
Cell cycle GO:0007049 1085 303 19 (cell cycle [MAJR]) AND Genes [MH] AND 1996 : 1999 [DP]
Cell death GO:0008219 1154 434 28 (cell death [MAJR]) AND Genes [MH] AND 1997 : 1999 [DP]
Cell fusion GO:0006947 740 20 0 (cell fusion [MAJR] OR (mating [TI] AND Saccharomyces Cerevisiae

[MAJR]) AND (Genetics [MH]) AND 1940 : 1999 [DP]
Cell motility GO:0006928 1094 269 23 (cell movement [MAJR]) AND (Genetics [MH]) AND 1995 : 1999 [DP]
Cell proliferation GO:0008283 394 0 0 (cell proliferation [TI]) AND (Genes [MH]) AND 1940 : 1999 [DP]
Cell–cell signaling GO:0007267 237 41 0 (synaptic transmission [MAJR] OR synapses [MAJR] OR gap junctions

[MAJR]) AND (Genes [MH]) AND 1940 : 1999 [DP]
Chemimechanical

coupling
GO:0006943 1011 147 6 (contractile proteins [MAJR] OR kinesins [MAJR]) AND (Genes [MH])

AND 1993 : 1999 [DP]�

Intracellular
protein traffic

GO:0006886 1107 322 28 (endocytosis [MAJR] OR exocytosis [MAJR] OR transport vesicles [MAJR]
OR protein transport [MAJR] OR nucleocytoplasmic [TI] AND
(Genetics [MH]) AND 1994 : 1999 [DP]

Invasive growth GO:0007125 492 52 4 ((invasive [TI] AND growth [TI]) OR neoplasm invasiveness [MAJR]) AND
(Genetics [MH]) AND 1940 : 1999 [DP]

Ion homeostasis CO:0006873 424 64 5 ((na [TI] OR k [TI] OR ion [TI] OR calcium [TI] OR sodium [TI] OR
hydrogen [TI] OR potassium [TI] OR pH[TI] OR water [TI] AND
(concentration [TI] OR senses [TI] OR sensing [TI] OR homeostasis [TI]
OR homeostasis [MAJR]) AND (genetics [MH]) AND 1940 : 1999 [DP]

Meiosis GO:0007126 1003 151 7 ((meiosis {MAJR])) AND (Genes [MH] OR Proteins [MH]) AND
1986 : 1999 [DP]

Membrane fusion GO:0006944 317 58 4 (membrane fusion [MAJR]) AND (Genetics [MH]) AND 1940 : 1999 [DP]
Metabolism GO:0008152 1005 225 30 (metabolism [MAJR]) AND Genes [MH] AND 1989 : 1999 [DP]
Oncogenesis GO:0007048 1043 168 15 (cell transformation, neoplastic [MAJR] AND Genes [MH] AND

1994 : 1999 [DP]
Signal

transduction
GO:0007165 1168 302 25 (signal transduction [MAJR]) AND Genes [MH] AND 1995 : 1999 [DP]

Sporulation GO:0007151 847 49 0 (sporulation [TI] AND (genetics [MH]) AND 1940 : 1999 [DP]
Stress response GO:0006950 1068 253 22 (Wounds [MAJR] OR DNA repair [MAJR] OR DNA Damage [MAJR] OR

Heat-Shock Response [MAJR] OR stress [MAJR] OR starvation [TI] OR
soxR [TI] OR (oxidation-reduction [MAJR] NOT Electron-Transport
[MAJR])) AND (Genes [MH]) AND 1996 : 1999 [DP]

Transport GO:0006810 1022 84 8 (biological transport [MAJR] OR transport [TI]) AND (Genes [MH]) AND
1985 : 1999 [DP]

This table lists the category name in the first column, the corresponding gene ontology code in the second column, and the PubMed query
used to obtain abstracts in the final column. For the training dataset, the articles were obtained by using the query as listed in the table. Within
a PubMed query the [MAJR] label specifies MeSH major headings, [MH] specified MeSH headings, [TI] specifies title words, and [DP] species
publication data ranges. The test2000 and test2001 datasets were obtained by modification of the publication date limit to restrict articles to
those published in 2000 and 2001, respectively. Titles were omitted from the test data sets. The table lists the number of articles obtained for
each category for the training and test sets.
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Accuracy of Prediction Tracks with
Confidence Scores
To define a reliable voting scheme, it was critical to establish
robust confidence estimates for correct document classifica-
tion. We tested the probability of the predicted GO code as a
measure of confidence for the prediction. With reliable con-
fidence scores, we expect that document classifications with
high confidence scores are likely to have been classified cor-
rectly. To assess whether the reliability of the classifier pre-
diction tracked with the confidence score, we separated the
test2000 predictions into 10 groups by confidence score. For
those predictions with the highest confidence scores (ranging
from .9 to 1) the classifiers prediction was correct 92.89% of
the time (see Fig. 3). For predictions with lower confidence
scores, the accuracy was proportionately less; the algorithm
appears to estimate low confidence predictions conserva-
tively.

Predicting Gene Function from Curated Abstracts
We evaluated our efforts to annotate yeast genes based on
abstracts from SGD. With the voting scheme described in
Methods, the maximum entropy classifier predicted gene
function for the 835 genes with three or more associated ab-
stracts and relevant true assignments from the GO Consor-
tium. Even though many of the 21 categories we studied do
not apply to yeast, we still included them in our calculations.
Different thresholds of confidence can be used as a cutoff to
assign an annotation to a gene. Typically, higher confidence
values obtain higher precision at the cost of a lower recall. We
computed the precision and recall for different confidence
thresholds for each of the categories and plotted them in Fig-
ure 4. Ideally, precision remains 100% at all levels of recall.
Table 5A lists the sensitivity (or recall) for each of the different
GO codes.

Predicting Gene Function from SWISS-PROT
Abstracts Obtained by BLAST
Similarly, we assigned functions to yeast genes based on the
abstracts obtained from SWISS-PROT records of homologs
found with BLAST. Table 5B describes the prediction results
for all 695 genes with three or more associated abstracts and
relevant GO annotations. Table 5C describes the prediction
results for all 353 genes with 3 to 24 abstracts and GO anno-

tations. We noted improved performance when considering
those genes with fewer abstracts. We calculated and plotted
precision and recall for the genes described in Table 5C for
selected codes in Figure 5.

DISCUSSION

Document Classification Is Successful
We experimented with three different classifiers and found
that maximum entropy is the most effective method, with an
accuracy of 72.8%. Our findings are consistent with recent
reports within the statistical natural language processing lit-
erature (Nigam et al. 1999; Rosenfeld 2000). Frequently in
statistical natural language modeling tasks, there is insuffi-
cient data to estimate adequately the large number of param-
eters involved. Naı̈ve Bayes compensates for this limitation by
making a strong independence assumption that the words are
associated with codes independent of each other (Manning
and Schutze 1999). This is untrue in text classification tasks,
in which many dependencies exist between words. Maximum
entropy relaxes this assumption by allowing differential
weights for different word–code associations, as in equations
2 and 3.

Maximum entropy assigned 72.8% of codes correctly
over 21 categories. Moreover, the correct classification is pres-
ent consistently in its top four choices (Fig. 2) and perfor-
mance is reasonably consistent across all categories (Table 4).
The performance is reproducible on the held-out test2001
data set; this indicates we did not overoptimize parameters
(see Table 3B).

It should be recognized that the classification of docu-
ments is not exact; there are often ambiguities. Funk and Reid
(1983) examined 760 biomedical articles that had been as-
signed MeSH headings by two experts. They found that the
major MeSH headings, controlled vocabulary terms that rep-
resent the central concepts of the document, were assigned
with only a 61.1% consistency. This study illustrates the sub-
jective nature of document classification; the same sort of
inconsistency may fundamentally limit performance on
documents analyzed in our study.

Maximum Entropy Classifies Documents with
Reasonable Estimates of Classification Accuracy
When classifications are imperfect, it is important that they
be associated with confidence scores. The maximum entropy
classifier assigns probabilities to each possible prediction. Af-
ter sorting predictions by probability score, we observe that a
code’s prediction accuracy matches its probability rank (Fig.
2). Thus, the probability of the predicted code can be used as
a measure of confidence on the prediction (see Fig. 3).

Gene Annotation Success Depends Critically on
Training Set Quality
Annotation efforts of genes from the curated set of abstracts
yielded uneven results. The precision–recall performance for
some of the GO codes is reliable (Fig. 4A), whereas others are
passable (Fig. 4B) and some are poor (Fig. 4C). At one extreme,
for the code meiosis, we obtained the ideal precision–recall
plot; a 100% precision was achieved at all levels of recall. In
other words, all of the correct genes were annotated. Invasive
growth (16.7% precision at 100% recall), sporulation (100%

Table 2. Description of Articles Associated with Genes

Article set
Unique
articles

Genes
with

aticles

Articles/Gene

mean median

SGD-curated articles 20101 4205 12.0951 4
BLAST-obtained articles 23496 3160 58.7316 16

Articles were associated with genes via two mechanisms. In one
dataset articles were associated with genes manually by experts
(SGD-curated articles); in the other dataset, articles were associ-
ated with genes by collecting references from similar non-yeast
protein sequences obtained by BLAST search (BLAST-obtained
articles). The second column lists the number of unique articles in
each dataset; the third lists the number of genes with one or more
article. The fourth and fifth columns describe the mean and me-
dian number of articles associated with each gene.
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precision at 11.1% recall), and stress response (9.1% precision
at 76.9% recall) were the three codes that were difficult to
annotate genes with.

Because the classifier performs consistently across all cat-
egories when the testing and training sets were similar (Table
4), the discrepant performance is explained by how well a
training set represents the biological processes. In general, the
availability of a major MeSH heading corresponding to the
code ensures the quality of our PubMed search-based training
set. Three of the four reliably predicted codes, plotted in Fig-
ure 4A, had a single corresponding MeSH term; two of the five
codes plotted in Figure 4B had a single corresponding MeSH
term. Of the three codes in Figure 4C, one code—invasive
growth—had only a single gene and thus a biased sample of
text. For the other two codes, sporulation and stress response
there were no corresponding MeSH terms for either, and ad
hoc strategies were fabricated to create the article sets. These
strategies may not have been effective.

An ideal training set should be constructed by experts.
The National Library of Medicine relies on experts to read the
articles to assign MeSH headings (Bachrach and Charen
1978). These headings are likely to have a low false-positive
rate (high specificity) but may suffer from false negatives (low
sensitivity) since experts assign some correct headings but

may miss others. Our reliance on MeSH terms therefore as-
sures that we get good training data when a MeSH heading
corresponds directly to a GO code. However, the query strat-

Table 3A. Document Classification Performance of Different Supervised Machine Learning Algorithms

Maximum entropy
No. of words/code 10 50 100 250 500 750 1000 2000 4000
Iteration 83 109 186 104 169 104 199 65 69
Accuracy 68.62 72.73 72.8 72.56 72.83 71.54 71.44 69.47 67.66

Naı̈ve Bayes
No. of words 100 500 1000 5000 All
Accuracy 63.89 66.92 66.88 65.59 63.79

Nearest neighbor

Neighbors

No. of words

100 500 1000 5000 All

1 58.04 54.06 52.84 53.28 52.19
5 60.52 57.53 57.84 58.38 56.82

20 59.71 59.91 60.8 61.88 61.24
50 59.23 60.39 61.85 62.9 62.26

100 58.76 60.29 61.41 62.77 61.54
200 56.65 59.16 60.08 61.31 60.05

Document classification performance for three different algorithms on the Test 2000 dataset for a series of param-
eters. For maximum entropy classification, we attempted different numbers of word-features/code; also we tested the
accuracy at each iteration of the GIS optimization algorithm. Here we report in each column the number of words/
code used, the highest accuracy obtained, and the first iteration obtaining that highest accuracy. For naı̈ve Bayes
classification, we calculated accuracy on different vocabularies. The size of the vocabulary and the accuracy is
reported in each column. For nearest-neighbor classification we calculated accuracy for different numbers of neigh-
bors and different vocabularies. The accuracy data is reported in a grid, with different numbers of neighbors for each
row, and with different vocabularies for each column. The best performance achieved for each method is underlined.

Table 4. Document Classification Accuracy for Different
Categories for Test 2000 with Maximum
Entropy Classification

Category Number
Exact
match

Partial
match

Autophagy 22 59.09% 68.18%
Biogenesis 132 58.33% 61.36%
Cell_adhesion 133 66.17% 70.68%
Cell_cycle 303 45.87% 68.65%
Cell_death 434 75.81% 79.72%
Cell_fusion 20 65.00% 75.00%
Cell_motility 269 71.38% 74.35%
Cell_proliferation 0 – –
Cell-cell_signaling 41 73.17% 92.68%
Chemi-mechanical_coupling 147 79.59% 82.31%
Intracellular_protein_traffic 322 68.63% 72.67%
Invasive_growth 52 69.23% 71.15%
Ion_homeostasis 64 79.69% 81.25%
Meiosis 151 77.48% 82.78%
Membrane_fusion 58 48.28% 53.45%
Metabolism 225 67.56% 74.22%
Oncogenesis 168 63.10% 70.83%
Signal_transduction 302 59.93% 67.55%
Sporulation 49 73.47% 81.63%
Stress_response 253 64.82% 73.52%
Transport 84 60.71% 70.24%

For each code listed in the first column we list the number of
articles for which that code is relevant in the second column. The
“Exact Match” column lists the percentage of articles for which
the classifier predicts the code listed. Because some abstracts have
multiple correct codes, the “Partial Match” column lists the per-
centage of articles for which the classifier assigned any correct
code to the article, even if its is not the listed code.

Table 3B.

Classifier Accuracy

Maximum entropy (100 words/category) 72.12
Naı̈ve Bayes (500 words) 59.62
Nearest neighbor (5000 words, 50 neighbors) 61.54

For each classification algorithm, we fix the optimal parameters
based on the data in Table 3A. The classifier is run with optimal
parameters on Test 2001; the accuracy is reported in this table.
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egy is limited when there are no appropriate MeSH terms.
Better training sets consisting of more specific paragraphs
from whole-text articles and abstracts selected under expert
supervision would address many of these difficulties.

Granularity of Code May Be an Issue
In this study we chose an arbitrary level in the GO hierarchy
to test. We found that although some of the categories are
quite specific at this level, others, such as metabolism are
quite general. For such categories, our approach would be
more successful had we further broken down such large cat-
egories into smaller more specific ones.

Using BLAST to Rapidly Annotate Sequences
The strategy shown in this study has promise for whole-
genome annotation. We filtered out all yeast sequences so the
annotations are based only on sequences from other species.
This strategy may be applied for rapid first-pass annotation of
recently sequenced genes.

The limitation of this approach is that the references
associated with protein sequences are often uninformative.
We observed that the predictions on those genes with fewer
references are actually more reliable (Table 5C) and this may
be related to a diversity of language and topics associated with
large sets of articles that obscure the more basic functions of

a gene. As more resources such as the articles manually asso-
ciated and maintained by SGD are made available, it will be-
come possible to exploit a better set of references for se-
quences.

Annotation Is a Challenging Recurring Problem
Although a careful one-pass annotation is useful, it is certain
that as our knowledge of biology develops, controlled vocabu-
laries such as GO will grow and change. In fact, during this
study, GO underwent considerable structural alterations. In
addition, entirely new controlled vocabularies may emerge to
serve the specific needs of specialized scientific communities
as genomic-scale methodologies become more prevalent. For
these reasons, annotation should not be considered a one-
time task. We anticipate that genes will be annotated repeat-
edly. The key is to maintain an organized, machine-readable
repository of articles for each gene so that they may be mined
and annotated as necessary. This underscores the wisdom of
the approach taken by SGD to maintain a set of high quality
curated references (Cherry et al. 1998). We anticipate that
larger corpuses of full text in the future will become available
for analysis (through efforts such as PubMed Central, for ex-
ample [Roberts et al. 2001]). We anticipate that the data sets
will provide further useful information for extraction using
techniques based on statistical and linguistic analysis.

Figure 1 The gene ontology. The gene ontology is divided into three major parts: biological process, cellular component, and molecular
function. In this study we worked with gene functions within the biological process subtree. We focused on children of cell communication and
cell growth and maintenance.
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METHODS

Functional Classifications from Gene Ontology
Our work focused on the biological process codes from the
GO. Prediction of gene process from literature seemed to be
most critical, as sequence signals in the gene product might be
directly predictive of molecular function (Krogh et al. 1994;
Huang and Brutlag 2001) and cellular localization (Horton
and Nakai 1997; Emanuelsson et al. 2000). We chose gene

functions that were the direct descendants of cellular main-
tenance and growth and cell communication, the biological
process categories most relevant to single-cell organisms (see
Fig. 1).

In total we used 21 gene function categories (see Table
1A). We omitted some categories due to difficulties in pre-
cisely defining the associated literature. These included cell
recognition, budding, cell-size and -shape control, cell-
volume regulation, pseudohyphal growth, and pH regulation.
We included the response-to-external-stimulus category with
the related stress-response category.

Creating Data Sets for Functional Annotation

Construction of a Training Corpus for Document Classification
We sought to create a corpus containing �1000 PubMed ab-
stracts relevant to each functional category. These comprised
training sets for the classification algorithms. The best ap-
proach to this would be careful examination of many articles
by qualified experts. However, obtaining a large volume of
abstracts in this manner is very difficult. Instead, we used
MeSH term headings and title words to query PubMed for
relevant abstracts (Bachrach and Charen 1978; Hutchinson
1998). For each code we found relevant MeSH terms that were
semantically similar to the code or one of its children in GO.

Figure 2 Performance on test2000 of maximum entropy classifier
for ranked classifications. The maximum entropy classifier assigns for
each code a probability of its relevance to the unclassified document.
We ranked each code by its probability for the documents in test2000
and have calculated accuracy for each rank (light gray bars). Some of
the documents in test2000 have multiple correct classifications. The
articles with more than a single correct classification were removed
and accuracy was recalculated for each rank (dark gray bars). Al-
though the accuracy of the highest-rank prediction is only slightly
reduced from 72.8% to 72.0%, the accuracy of the second- and
third-ranked classes is somewhat more reduced from 17.7% to 13.7%
and 6.2% to 4.2%, respectively.

Figure 3 Confidence scores are reliable indicators of accuracy. For
the test2000 data set we binned the maximum entropy predictions
by confidence score, the estimated probability of the predicted code
given the document, and calculated accuracy on each subset. Each
data point has an x-error bar indicating the size of the bin and a 95%
confidence interval on the accuracy estimate. As the confidence score
increases along the x-axis, the accuracy of the prediction increases.

Figure 4 Predicting gene annotation from curated articles. Plot of
precision versus recall for gene predictions from curated articles
within the Saccharomyces Genome Database. Predictions were at-
tempted on all genes with three or more associated articles; correct-
ness of the prediction was verified with annotations from the Gene
Ontology constortium. (A) Plot for categories for which predictions
are reliable. (B) Plot for categories for which predictions are less ac-
curate but still informative. (C) Plot for categories for which predic-
tions are poor. The quality of the predictions appear to correlate with
the quality of the training set.
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Then we used those terms to construct a PubMed query for
each GO code; most queries included specific MeSH terms as
a major heading for the article and also the genes or genetics
MeSH headings (see Table 1A). For many categories, such as
signal transduction, a MeSH term was available; other catego-
ries required use of an appropriate combination of title words
and MeSH terms. To balance the size of the training sets, we
adjusted the publication date so that ∼1000 abstracts could be
obtained. Also abstracts from January 1, 2000, or after were
not used in training.

Test Sets to Validate Document Classification
To examine the ability of the document classification strat-
egy, we constructed two independent test sets using the same
queries as above but with later publication dates. Abstracts
from the year 2000 made the test2000 test set; abstracts from
2001 made the test2001 test set. Because the titles were some-
times used to select the articles, we omitted the title from the
document when testing. The test data sets are described in
Table 1.

Test Sets to Simulate Genome-Scale Annotation
We created two data sets of abstracts, summarized in Table 2,
associated with S. cerevisiae genes. Each gene was linked to a
small set of abstracts using two strategies. The first strategy
took advantage of the curated abstracts for S. cerevisiae genes
maintained by the Saccharomyces Genome Database at Stan-
ford University (courtesy of Kara Dolinski, SGD; Cherry et al.
1998). The second strategy associated abstracts to genes indi-
rectly through homology searching. We use each translated
yeast gene in a BLAST search of SWISS-PROT (Altschul et al.
1990; Bairoch and Apweiler 1999), and we took the abstracts
from all nonyeast hits significant to e-value 10–6. Because they
are manually chosen, the first method consists of abstracts
that are more relevant to the genes. However, the second
method is more representative of abstracts that would be ob-
tained by rapid automated genome search and annotation.

Document Preprocessing
We used the abstracts and title fields from the PubMed records
for all data sets except for test2000 and test2001. From these

Table 5. Assigning Annotations to Genes from Articles

Table 5A. Performance on Genes Using SGD: Curated Articlesa

Category Num

Exact match Partial match

Rank Rank

1 2 3 1 2 3

Metabolism 648 24.69% 22.22% 13.89% 47.22% 31.02% 20.83%
Cell_cycle 135 71.11% 17.04% 8.15% 79.26% 37.04% 25.93%
Signal_transduction 38 28.95% 34.21% 10.53% 50.00% 36.84% 26.32%
Meiosis 5 100.00% 0.00% 0.00% 100.00% 80.00% 20.00%
Intracellular_protein_traffic 66 33.33% 39.39% 13.64% 60.61% 59.09% 43.94%
Sporulation 9 11.11% 0.00% 0.00% 66.67% 44.44% 55.56%
Cell_fusion 27 55.56% 18.52% 14.81% 100.00% 59.26% 37.04%
Stress_response 26 11.54% 26.92% 23.08% 57.69% 46.15% 34.62%
Biogenesis 192 48.96% 18.23% 15.10% 75.52% 45.31% 37.50%
Invasive_growth 1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Transport 37 43.24% 18.92% 27.03% 72.97% 64.86% 64.86%
Ion_homeostasis 13 0.00% 7.69% 84.62% 61.54% 46.15% 84.62%

aOnly those genes with three or more articles were annotated.

Table 5B. Performance on Genes Using BLAST Obtained Articlesa

Category Num

Exact match Partial match

Rank Rank

1 2 3 1 2 3

Metabolism 557 33.21% 22.44% 14.18% 42.73% 28.01% 16.52%
Cell_cycle 97 37.11% 21.65% 7.22% 54.64% 32.99% 16.49%
Signal_transduction 36 41.67% 25.00% 8.33% 47.22% 27.78% 13.89%
Meiosis 1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Intracellular_protein_traffic 38 23.68% 13.16% 13.16% 55.26% 26.32% 31.58%
Sporulation 9 0.00% 0.00% 0.00% 11.11% 55.56% 22.22%
Cell_fusion 20 0.00% 0.00% 0.00% 40.00% 30.00% 10.00%
Stress_response 19 5.26% 0.00% 15.79% 26.32% 42.11% 21.05%
Biogenesis 130 18.46% 13.85% 9.23% 46.15% 27.69% 20.00%
Invasive_growth 0 N/A N/A N/A N/A N/A N/A
Transport 26 69.23% 7.69% 11.54% 76.92% 19.23% 30.77%
Ion_homeostasis 12 8.23% 0.00% 0.00% 25.00% 16.67% 8.33%

aOnly those genes with three or more articles were annotated.
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documents, we found 63,992 unique tokens by tokenizing on
white space, punctuation, and common nonalphanumeric
characters, such as hyphens and parentheses. From these, we
excluded stopwords, which we defined as tokens that ap-
peared in �4 or �10,000 documents. This left a total of
15,741 unique words. Then we represented all documents as
15,741 dimensional vectors of word counts.

Machine Learning Approaches
We compared performance of maximum entropy classifica-
tion to two standard document classification approaches: na-
ı̈ve Bayes and nearest-neighbor algorithms. All algorithms
were trained on the same training set. We optimized the pa-

rameters from the classification algorithms based on the per-
formance on the test2000 corpus and reserved the test2001
corpus for an unbiased evaluation.

Maximum Entropy Classification
The motivation behind this classification strategy is to model
training data with a probability distribution that satisfies cer-
tain constraints while remaining as close to a uniform distri-
bution as possible. A full description of the method is outside
the scope of this paper but has been provided elsewhere (Rat-
naparkhi 1997; Manning and Schutze 1999).

In maximum entropy classification, the user defines cat-
egory-specific features. Each feature fi (d,c) is a binary function
of any document d and any class (or code) c. In this applica-
tion, each feature fi is defined relative to a specific word wi and
class ci. The feature fi (d,c) is unity only if d contains wi and c
is ci. For example, one feature fexample might be

fexample �d,c� = �1 if “cell”∈ d; c = ‘metabolism’
0 otherwise � (1)

where wexample is “cell” and cexample is ‘metabolism’.
The probability of each class for a test document is cal-

culated with an exponential model:

P�cj |d� =
1

Z�d�
exp��i�ifi�d,cj�� (2)

where c is a class, d is a document, �i’s are feature weights, and
Z(d) is a normalization constant:

Z�d� = �
c

exp��i�ifi�d,c�� (3)

Each �i weight is selected so that the following constraint on
the probability density is satisfied: the expectation of fi must
equal its observed frequency in the training data. This expec-
tation should be calculated over the true distribution of docu-
ments. However, this distribution is unknown, so we estimate

Table 5C. Performance on Genes Using BLAST Obtained Articlesa

Category Num

Exact match Partial match

Rank Rank

1 2 3 1 2 3

Metabolism 286 24.48% 15.73% 19.58% 32.87% 20.98% 21.68%
Cell_cycle 47 40.43% 29.79% 4.26% 57.45% 31.91% 14.89%
Signal_transduction 10 70.00% 20.00% 0.00% 70.00% 30.00% 0.00%
Meiosis 0 N/A N/A N/A N/A N/A N/A
Intracellular_protein_traffic 20 45.00% 15.00% 10.00% 80.00% 20.00% 15.00%
Sporulation 3 0.00% 0.00% 0.00% 0.00% 33.33% 0.00%
Cell_fusion 6 0.00% 0.00% 0.00% 0.00% 50.00% 0.00%
Stress_response 6 0.00% 0.00% 16.67% 66.67% 16.67% 16.67%
Biogenesis 60 21.67% 15.00% 10.00% 50.00% 28.33% 18.33%
Invasive_growth 0 N/A N/A N/A N/A N/A N/A
Transport 12 66.67% 0.00% 16.67% 75.00% 25.00% 33.33%
Ion_homeostasis 6 16.67% 0.00% 0.00% 16.67% 16.67% 16.67%

aOnly those genes with more than three but less than twenty-five articles were annotated.

For each table we list only the categories for which there was at least one gene with it as its annotation by the GO
Consortium. Each row focuses on only the genes for which the category in the first column is a GO Consortium
annotation. The “Num” column indicates the number of genes annotated by GO Consortium that we attempted to
classify. The exact match columns are specific to a ranked prediction and list the percentage of times that the category
in the first column was predicted with the rank. Partial match is similar, except we include other categories that are
correct predictions for the gene in the percentage.

Figure 5 Predicting gene annotation from BLAST-obtained articles.
Plot of precision versus recall for gene predictions based on articles
obtained from SWISS-PROT records of BLAST hits. Predictions were
attempted on all genes with 3 or more associated articles but fewer
than 25; correctness of prediction was verified with annotations from
the Gene Ontology Consortium.
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the expectation for the feature empirically with the training
documents D.

�i

1
|D|�d∈D

fi�d,cd� =
1

|D|�d∈D
�

c
P�c |d�fi�d,c� (4)

The above is the formal definition of the constraint. Here cd is
the correct classification of document d specified in the train-
ing set, and P is the probability calculated from the statistical
model, and |D| is the number of instances in the training set.
The left-hand side is the fraction of times fi is observed within
the training data; the right-hand side is the estimate of the
expectation of fi from the model.

We used the GIS algorithm to pick �is that satisfy equa-
tion 4 (Ratnaparkhi 1997). Because the GIS algorithm is sub-
ject to overfitting, we conducted 200 iterations. We picked an
optimal stopping iteration among the first 200 based on per-
formance of the parameters at each iteration on the test2000
set.

We defined the features as specific words co-occurring
with a specific code. We experimented with different num-
bers of features per code: 10, 50, 100, 250, 500, 750, 1000,
2000, and 4000 words/code. We selected the features by
choosing pairs of categories and the words most correlated to
them independently based on the �2 measure described be-
low.

Naı̈ve Bayes Classification
We perform naı̈ve Bayes classification as a comparison bench-
mark. In naı̈ve Bayes, the probability of each word appearing
in a document of a certain class is estimated directly from the
training data (Manning and Schutze 1999). For this study we
calculated the conditional probability of each word given the
document class

P�w|c� =

s + �
d∈C

I�w,d�

s + Nd∈C
(5)

In this equation, c is a specific class, d is a document within
the class c, Nd∈C is the number of documents within the class
c, and s is a pseudocount to compensate for unseen events.
I(w,d) is an indicator function that is 1 if the word w is in the
document d, 0 otherwise. Here we set s = 0.4. Once all of these
probabilities are obtained, we can estimate the probability
that an unknown document belongs to a class

P�c|d� � P�c�P�d|c� ∼ P�c��
w∈d

P�w|d� (6)

where P(c) is a prior probability estimated directly from the
training data. The class c with the highest value for the un-
classified document d is assigned as the classification of the
document.

We experimented with different vocabulary sizes for na-
ı̈ve Bayes classification, including the full 15,741 words and
also with reduced vocabularies of 100, 500, 1000, and 5000
words selected by �2 criteria described below.

Nearest-Neighbor Classification
We also performed nearest-neighbor classification as a bench-
mark. In nearest-neighbor classification, a distance metric is
employed to calculate the distance between the word vector
of an unclassified abstract in the test set and each of the ab-
stracts in the training set (Manning and Schutze 1999). We
then classify the unknown article as the most prevalent cat-
egory among a prespecified number of the closest training

abstracts. In this study we determine distance using a cosine-
based metric:

dist�a,b� = 1 −
a�b

||a||||b||
(7)

where a and b are vectors of word counts. We varied the pre-
specified number of neighbors, trying 1, 5, 20, 50, 100, and
200 neighbors. We also experimented with different vocabu-
laries, including the full vocabulary of 15,741 words and
smaller vocabularies of 100, 500, 1000, and 5000.

Feature Selection: Choosing Words for Vocabularies
In all the above descriptions, we experimented with different
vocabulary sizes. For the naı̈ve Bayes and nearest-neighbor
classifiers, we used a �2 distribution test to identify the words
whose distribution is most skewed across all 21 GO codes in
the training set (Manning and Schutze 1999). We took only
the words with the highest scoring �2 values.

Because of its formulation, we used a slightly different
strategy for the maximum entropy classifier. As discussed
above, features were defined relative to a code and a word. We
use the �2 test to find the words that are most unevenly dis-
tributed when comparing abstracts relevant to a code to other
abstracts. A word that scores high against a code is used with
that code to define a feature. We took only the words with the
highest scoring �2 values.

Voting Scheme
The voting scheme takes classifications of individual abstracts
associated with a gene and combines them into a single gene
classification. Maximum entropy classification provides the
probabilities of a document’s relevance to each of the 21
codes. The ad hoc parameter fr is the expected fraction of
associated abstracts that should discuss a function if it is rel-
evant to the gene. Here we selected a value of one-third for fr
in all experiments; ideally a specific fr should be selected for
each function separately depending on its prevalence in the
literature. If N is the number of abstracts associated with the
gene, analysis of each abstract with maximum entropy clas-
sification obtains N probability values for each GO code. We
averaged the top ceil(fr*N) probabilities for each code to score
the code’s relevance to the gene. This score ranges between 0
and 1; higher code scores indicate greater relevance to the
gene. Genes with scores above a predetermined cutoff are as-
signed the code; the cutoffs were varied to create precision–
recall plots.

Validation
Validation consisted of comparing performances on three
tasks. The first, and most straightforward, is the classification
of the test2000 and test2001 data set documents. The second
is gene annotation based on the corpus of curated abstracts
hand chosen to be descriptive of yeast genes. The final, and
most indirect test, consists of gene annotation based on ab-
stracts referenced with sequences homologous to yeast genes.

Document Classification
We applied the different document classifiers described above
trained on the same training set to predict the subject matter
of the documents in test2000 and test2001. Accuracy of clas-
sification was calculated for the different classifiers using dif-
ferent parameters. The test2000 set was used to optimize pa-
rameters; performance was measured on the test2001 set to
insure that overfitting did not occur.

Annotating Yeast Genes with Curated Articles
Using the maximum entropy classifier we assigned GO codes
to each gene, based on the gene’s curated abstracts from SGD.
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We made predictions only on those genes with three or more
associated abstracts. To validate our predictions, we used the
annotations assigned by the GO Consortium (Ashburner et al.
2000). If an annotation was more specific than 1 in our set of
21, we mapped it back to a relevant ancestor based on the GO
hierarchy. A total of 991 genes were annotated with GO codes
relevant to this study by the consortium. In total, 835 genes
were annotated and also had the requisite number of ab-
stracts. We calculated the precision and recall at various
thresholds for each of the annotations using the GO Consor-
tium assignments as a gold standard.

Annotating Yeast Genes with Articles Obtained by BLAST Search
We annotated genes based on the maximum entropy classi-
fications of the abstracts obtained by BLAST. We made pre-
dictions only on those genes with three or more abstracts. To
validate our predictions we also used the annotations as-
signed by the Gene Ontology Consortium here. In total, 695
genes were annotated by the GO Consortium and also had the
requisite number of abstracts. This procedure was repeated
eliminating those genes with >24 abstracts. There were 353
such genes annotated by the GO Consortium. We calculated
the precision and recall at various thresholds for each of the
annotations using the GO Consortium assignments as a gold
standard.

Computation
We conducted all computations on either a SUN Ultra 4 server
with four 296 MHz UltraSPARC-II processors or a SUN Enter-
prise E3500 server with eight 400 MHz UltraSPARC-II proces-
sors. PubMed database queries and data preprocessing were
implemented using perl (Schwartz and Christianson 1997), C
(Kernighan and Ritchie 1988), Python (Lutz and Ascher 1999),
and the biopython toolkit (www.biopython.org). All math-
ematical computations were performed with Matlab (Math-
works).
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