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Abstract. We give a fully polynomial-time randomized approximation scheme (FPRAS) for
the all-terminal network reliability problem, which is to determine the probability that, in a
undirected graph, assuming each edge fails independently, the remaining graph is still con-
nected. Our main contribution is to confirm a conjecture by Gorodezky and Pak (Random
Struct. Algorithms, 2014), that the expected running time of the “cluster-popping” algorithm
in bi-directed graphs is bounded by a polynomial in the size of the input.

1. Introduction

Network reliability problems are extensively studied #P-hard problems [Col87] (see also
[BP83, PB83, KL85, Bal86]). In fact, these problems are amongst the first of those shown
to be #P-hard, and the two-terminal version is listed in Valiant’s original thirteen [Val79].
The general setup is that in a given (undirected or directed) graph, every edge (or arc) e has
an independent probability pe to fail, and we are interested in various kinds of connectivity
notions of the remaining graph. For example, the two-terminal connectedness [Val79] asks for
the probability that for two vertices s and t, s is connected to t in the remaining graph, and
the (undirected) all-terminal network reliability asks for the probability of all vertices being
connected after edges fail. The latter can also be viewed as a specialization of the Tutte
polynomial TG(x, y) with x = 1 and y > 1, yet another classic topic whose computational
complexity is extensively studied [JVW90, VW92, GJ08, GJ14].

Prior to our work, the approximation complexity of network reliability problems remained
elusive despite their importance. There is no known efficient approximation algorithm (for
any variant), but nor is there any evidence that such an algorithm does not exist. A notable
exception is Karger’s fully polynomial-time randomized approximation scheme (FPRAS) for
(undirected) all-terminal network unreliability [Kar99] (see also [HS14, Kar16, Kar17] for more
recent developments). Although approximating unreliability is potentially more useful in prac-
tice, it does not entail an approximation of its complement.

In this paper, we give an FPRAS for the all-terminal network reliability problem, defined
below and denoted Reliability.

Name: Reliability
Instance: A (undirected) graph G = (V,E), and failure probabilities p = (pe)e∈E .
Output: Zrel(G;p), which is the probability that if each edge e fails with probability pe, the

remaining graph is connected.

When pe is independent of e, Reliability is an evaluation of the Tutte polynomial. The Tutte
polynomial is a two-variable polynomial TG(x, y) associated with a graph G, which encodes
much interesting information about G. As (x, y) ranges over R2 or C2 we obtain a family of
graph parameters, the so-called Tutte plane. As already noted, the study of the computational
complexity of these parameters has a long history. Reliability with a uniform failure proba-
bility 0 < p < 1 is equivalent to evaluating the Tutte polynomial TG(x, y) on the line x = 1 and
y = 1

p > 1. Our algorithm is the first positive result on the complexity of the Tutte plane since
Jerrum and Sinclair presented an FPRAS for the partition function of the ferromagnetic Ising
model, which is equivalent to the Tutte polynomial on the positive branch of the hyperbola
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(x−1)(y−1) = 2 [JS93]. It also answers a well-known open problem from 1980s, when the #P-
hardness of Reliability was established [Jer81, PB83] and the study of approximate counting
initiated. This problem is explicitly proposed in, for example, [Wel93, Conjecture 8.7.11] and
[Kar99]. We note that many conjectures by Welsh ([Wel93, Chapter 8.7] and [Wel99]) remain
open, and we hope that our work is only a beginning to answering these questions.

Another related and important reliability measure is reachability, introduced and studied by
Ball and Provan [BP83]. A directed graph G = (V,A) with a distinguished root r is said to be
root-connected if all vertices can reach r. Reachability, denoted Zreach(G, r;p) for failure proba-
bilities p = (pe)e∈A, is the probability that, if each arc e fails with probability pe independently,
the remaining graph is still root-connected.

We define the computational problem formally.

Name: Reachability
Instance: A directed graph G = (V,A) with root r, and failure probabilities p = (pe)e∈A.
Output: Zreach(G, r;p).

Exact polynomial-time algorithms are known when the graph is acyclic [BP83] or has a small
number of cycles [Hag91]. However, in general the problem is #P-hard [PB83].

Ball [Bal80] showed that Reliability is equivalent to Reachability in bi-directed graphs.
A bi-directed1 graph is one where every arc has an anti-parallel twin with the same failure
probability. It is shown [Bal80] that Zrel(G;p) = Zreach(

−→
G, r;p′), where −→G and p′ are obtained

by replacing every undirected edge in G with a pair of anti-parallel arcs having the same failure
probability in either direction, and r is chosen arbitrarily. See Lemma 12.

Our FPRAS for Reliability utilizes this equivalence via approximating Reachability
in bi-directed graphs. The core ingredient is the “cluster-popping” algorithm introduced by
Gorodezky and Pak [GP14]. The goal is to sample root-connected subgraphs with probability
proportional to their weights, and then the reduction from counting to sampling is via a sequence
of contractions. A cluster is a subset of vertices not including the root and without any out-going
arc. The sampling algorithm randomizes all arcs independently, and then repeatedly resamples
arcs going out from minimal clusters until no cluster is left, at which point the remaining
subgraph is guaranteed to be root-connected. This approach is similar to Wilson’s “cycle-
popping” algorithm [Wil96] for rooted spanning trees, and to the “sink-popping” algorithm
[CPP02] for sink-free orientations. Gorodezky and Pak [GP14] have noted that cluster-popping
can take exponential time in general, but they conjectured that in bi-directed graphs, the
algorithm runs within polynomial-time.

We confirm this conjecture. Let pmax be the maximum failure probability of edges (or arcs).
Let m be the number of edges (or arcs) and n the number of vertices.

Theorem 1. There is an FPRAS for Reliability (or equivalently, Reachability in bi-
directed graphs). The expected running time is O

(
ε−2(1− pmax)

−3m2n3
)

for an (1 ± ε)-
approximation. There is also an exact sampler to draw (edge-weighted) connected subgraphs
with expected running time O

(
(1− pmax)

−1m2n
)
.

We analyze the cluster-popping algorithm [GP14] under the partial rejection sampling frame-
work [GJL17], which is a general approach to sampling from a product distribution conditioned
on avoiding a number of “bad” events. Partial rejection sampling is inspired by the Moser-
Tardos algorithm for the Lovász Local Lemma [MT10]. It starts with randomizing all variables
independently, and then gradually eliminating “bad” events. At every step, we need to find an
appropriate set of variables to resample. We call an instance extremal [KS11, She85], if any two
bad events are either disjoint or independent. For extremal instances, the resampling set can
be simply chosen to be the set of all variables involved in occurring bad events [GJL17], and
the algorithm becomes exactly the same as the Moser-Tardos resampling algorithm [MT10]. In
particular, all three “popping” algorithms [Wil96, CPP02, GP14] are special cases of partial

1There are other definitions of “bi-directed graphs” in the literature. Our definition is sometimes also called
a symmetric directed graph.
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rejection sampling for extremal instances. In case of cluster-popping, the bad events are exactly
minimal clusters.

The advantage of the partial rejection sampling treatment is that we have an explicit formula
for the expected number of resampling events for any extremal instance [KS11, GJL17], which
equals to the ratio between the probability of having exactly one bad event and the probability of
avoiding all bad events. In order to bound this ratio, we use a combinatorial encoding idea and
design a mapping from subgraphs with a unique minimal cluster to root-connected subgraphs.
To make this mapping injective, we record an extra vertex and an arc so that we can recover
the pre-image. This extra cost is upper-bounded by a polynomial in the size of the graph.

Cluster-popping only draws root-connected subgraphs in the bi-directed setting. In order to
sample connected subgraphs in the undirected setting, we provide an alternative proof of the
equivalence between Reliability and Reachability in bi-directed graphs, which essentially
is a coupling argument. This coupling has a new consequence that, once we have a sample of a
root-connected subgraph, it is easy to generate a connected subgraph according to the correct
distribution.

In Section 2 we introduce the cluster-popping algorithm and the partial rejection framework.
In Section 3 we analyze its running time in bi-directed graphs. For completeness, in Section 4 we
include the approximate counting algorithm due to Gorodezky and Pak [GP14]. In Section 5 we
give a coupling proof of the equivalence between Reliability and Reachability in bi-directed
graphs. In Section 6 we use our sampling algorithm to show how to approximately count the
number of connected subgraphs of a fixed size. In Section 7 we conclude by mentioning a few
open problems.

2. Cluster-popping

Let G = (V,A) be a directed2 graph with root r. The graph G is called root-connected if
there is a directed path in G from every non-root vertex to r. Let 0 < pe < 1 be the failure
probability of arc e, and define the weight of a subgraph S to be wt(S) :=

∏
e∈S(1−pe)

∏
e̸∈S pe.

Then reachability, Zreach(G, r;p), is defined as follows,

Zreach(G, r;p) :=
∑
S⊆A

(V, S) is root-connected

wt(S).

Here, p = (pe : e ∈ A) denotes the vector of failure probabilities.
Let πG(·) (or π(·) for short) be the distribution resulting from choosing each arc e indepen-

dently with probability 1 − pe, and conditioning on the resulting graph being root-connected.
In other words, the support of π(·) is the collection of all root-connected subgraphs, and the
probability of each subgraph S is proportional to its weight wt(S). Then Zreach(G, r;p) is the
normalizing factor of the distribution π(·). Gorodezky and Pak [GP14] have shown that ap-
proximating Zreach(G, r;p) can be reduced to sampling from π(·) when the graph is bi-directed.

The cluster-popping algorithm of Gorodezky and Pak [GP14], to sample root-connected sub-
graphs from π(·), can be viewed as a special case of partial rejection sampling [GJL17] for
extremal instances. With every arc e of G we associate a random variable that records whether
that arc has failed. Bad events are characterized by the following notion of clusters.
Definition 2. In a directed graph (V,A) with root r, a subset C ⊆ V of vertices is called a
cluster if r ̸∈ C and there is no arc u→ v ∈ A such that u ∈ C and v ̸∈ C.

We say C is a minimal cluster if C is a cluster and for any proper subset C ′ ⊂ C, C ′ is not
a cluster.

If (V,A) contains no cluster, then it is root-connected. For each vertex v, let Aout(v) be the
set of outgoing arcs from v. We also abuse the notation to write Aout(S) =

∪
v∈S Aout(v) for

a subset S ⊂ V of vertices. Notice that Aout(S) contains edges between vertices inside S. To
“pop” a cluster C, we re-randomize all arcs in Aout(C). However, re-randomizing clusters does
not yield the desired distribution. We will instead re-randomize minimal clusters.

2It is easy to see that in a undirected graph, reachability is the same as all-terminal reliability.
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Claim 3. Any minimal cluster is strongly connected.

Proof. Let C be a minimal cluster, and v ∈ C be an arbitrary vertex in C. We claim that v can
reach all vertices of C. If not, let C ′ be the set of reachable vertices of v and C ′ ⊊ C. Since C ′

does not have any outgoing arcs, C ′ is a cluster. This contradicts to the minimality of C. □
Claim 4. If C1 and C2 are two distinct minimal clusters, then C1 ∩ C2 = ∅.

Proof. By Claim 3, C1 and C2 are both strongly connected components. If C1 ∩ C2 ̸= ∅, then
they must be identical. □

For every subset C ⊆ V of vertices, we define a bad event BC , which occurs if C is a minimal
cluster. Observe that BC relies only on the status of arcs in Aout(C). Thus, if C1∩C2 = ∅, then
BC1 and BC2 are independent, even if some of their vertices are adjacent. By Claim 4, we know
that two bad events BC1 and BC2 are either independent or disjoint. Thus the aforementioned
extremal condition is met. Moreover, it was shown [GJL17, Theorem 8] that if the instance
is extremal, then at every step, we only need to resample variables involved in occurring bad
events. This leads to the cluster-popping algorithm of Gorodezky and Pak [GP14], which is
formally described in Algorithm 1.

Algorithm 1 Cluster Popping
Let S be a subset of arcs by choosing each arc e with probability 1− pe independently.
while There is a cluster in (V, S). do

Let C1, . . . , Ck be all minimal clusters in (V, S), and C =
∪k

i=1Ci.
Re-randomize all arcs in Aout(C) to get a new S.

end while
return S

The correctness of Algorithm 1 is first shown by Gorodezky and Pak [GP14]. It can also be
easily verified using [GJL17, Theorem 8].

Theorem 5 ([GP14, Theorem 2.2]). The output of Algorithm 1 is drawn from πG.

An advantage of thinking in the partial rejection sampling framework is that we have a closed
form formula for the expected running time of these algorithms on extremal instances. Let Ωk

be the collection of subgraphs with k minimal clusters, and

Zk :=
∑
S∈Ωk

wt(S).

Then Z0 = Zreach(G, r;p), since any subgraph in Ω0 has no cluster and is thus root-connected.

Theorem 6 ([GJL17]). Let T be the number of resampled events of the partial rejection sampling
algorithm for extremal instances. Then

ET =
Z1

Z0
.

In particular, for Algorithm 1, T is the number of popped clusters.

Theorem 6 can be shown via manipulating generating functions. The less-than-or-equal-to
direction of Theorem 6 was shown by Kolipaka and Szegedy [KS11], which is the direction we
will need later. The other direction is useful to show running-time lower bounds, but that is
not our focus in this paper.

3. Running time of Algorithm 1 in bi-directed graphs

Gorodezky and Pak [GP14] have given examples of directed graphs in which Algorithm 1
requires exponential time. In the following we focus on bi-directed graphs. A graph G is
called bi-directed if u → v is present in G, then v → u is present in G as well, and the failure
probabilities are the same for these two arcs. We use Bi-directed Reachability to denote
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Reachability in bi-directed graphs. For an arc e = u → v, let e := v → u denote its reverse
arc. Then in a bi-directed graph, pe = pe.

Lemma 7. Let G = (V,A) be a root-connected bi-directed graph with root r. We have that
Z1 ≤ maxe∈A

{
pe

1−pe

}
mnZ0, where n = |V |, and m = |A|.

Proof. We construct an injective mapping φ : Ω1 → Ω0 × V × A. For each subgraph S ∈ Ω1,
φ(S) is defined by “repairing” S so that no minimal cluster is present. We choose in advance
an arbitrary ordering of vertices and arcs. Let C be the unique minimal cluster in S and v be
the first vertex in C. Let R denote the set of all vertices which can reach the root r in the
subgraph S. Since S ∈ Ω1, R ̸= V . Let U = V \ R. Since G is root-connected, there is an arc
in A from U to R. Let u→ u′ be the first such arc, where u ∈ U and u′ ∈ R. We let

φ(S) := (Sfix, v, u→ u′),

where Sfix ∈ Ω0 is defined next. Figure 1 is an illustration of these objects.

(V, S)

r

RU

u
u′

Figure 1. An illustration of R, U , and u→ u′.

Consider the subgraph H = (U, S[U ]), where
S[U ] := {x→ y | x ∈ U, y ∈ U, x→ y ∈ S}.

We consider the directed acyclic graph (DAG) of strongly connected components of H, and
call it Ĥ. (We use the decoration ̂ to denote arcs, vertices, etc. in Ĥ.) To be more precise,
we replace each strongly connected component by a single vertex. For a vertex w ∈ U , let [w]
denote the strongly connected component containing w. For example, [v] is the same as the
minimal cluster C by Claim 3. We may also view [w] as a vertex in Ĥ and we do not distinguish
the two views. The arcs in Ĥ are naturally induced by S[U ]. Namely, for [x] ̸= [y], an arc
[x]→ [y] is present in Ĥ if there exists x′ ∈ [x], y′ ∈ [y] such that x′ → y′ ∈ S.

We claim that Ĥ is root-connected with root [v]. This is because [v] must be the unique sink
in Ĥ and Ĥ is acyclic. If there is another sink [w] where v ̸∈ [w], then [w] is a minimal cluster
in H. This contradicts S ∈ Ω1.

Since Ĥ is root-connected, there is at least one path from [u] to [v]. Let Ŵ denote the set of
vertices of Ĥ that can be reached from [u] in Ĥ (including [u]), and W := {x | [x] ∈ Ŵ}. Then
W is a cluster and [u] is the unique source in Ĥ[Ŵ ]. As Ĥ is root-connected, [v] ∈ Ŵ . Define

Sflip :=
{
x→ y

∣∣ [x] ̸= [y], x, y ∈W, and x→ y ∈ S
}
,

which is the set of edges to be flipped. Notice that S[W ] is different from Sflip, namely all arcs
that are inside strongly connected components are ignored in Sflip. Now we are ready to define
Sfix. We reverse all arcs in Sflip and add the arc u→ u′ to fix the minimal cluster. Formally, let

Sfix := S ∪ {u→ u′} ∪ {y → x | x→ y ∈ Sflip} \ Sflip.

Figure 2 is an example of these objects we defined.
Let Ĥfix be the graph obtained from Ĥ by reversing all arcs induced by Sflip. Observe that

[u] becomes the unique sink in Ĥfix[Ŵ ] (and [v] becomes the unique source).
We verify that Sfix ∈ Ω0. For any x ∈ R, x can still reach r in (V, Sfix) since the path from

x to r in (V, S) is not changed. Since u → u′ ∈ Sfix, u can reach u′ ∈ R and hence r. For any
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r

u′
u

v

R

U

Figure 2. An example of Sflip (red arcs) in the subgraph (V, S). Dashed arcs are
to be added to Sfix. The underlying graph has more arcs than are drawn here.

y ∈ W , y can reach u as [u] is the unique sink in Ĥfix[Ŵ ]. For any z ∈ U \W , z can reach
v ∈W since the path from z to v in (V, S) is not changed.

Next we verify that φ is injective. To do so, we show that we can recover S given Sfix, u→ u′,
and v. First remove u→ u′ from Sfix. The set of vertices which can reach r in (V, Sfix\{u→ u′})
is exactly R in (V, S). Namely we can recover U and R. As a consequence, we can recover all
arcs in S that are incident with R, as these arcs are not changed.

What is left to do is to recover arcs in S[U ]. To do so, we need to find out which arcs have
been flipped. We claim that Ĥfix is acyclic. Suppose there is a cycle in Ĥfix. Since Ĥ is acyclic,
the cycle must involve flipped arcs and thus vertices in Ŵ . Let [x] ∈ Ŵ be the lowest one under
the topological ordering of Ĥ[Ŵ ]. Since Ŵ is a cluster, the outgoing arc [x] → [y] along the
cycle in Ĥfix must have been flipped, implying that [y] ∈ Ŵ and [y] → [x] is in Ĥ[Ŵ ]. This
contradicts to the minimality of [x].

Since Ĥfix is acyclic, the strongly connected components of Hfix := (U, Sfix[U ]) are identical
to those of H = (U, S[U ]). Hence contracting all strongly connected components of Hfix results
in exactly Ĥfix. All we need to recover now is the set Ŵ . Let Ŵ ′ be the set of vertices reachable
from [v] in Ĥfix. It is easy to see that Ŵ ⊆ Ŵ ′. We claim that actually Ŵ = Ŵ ′. For any
[x] ∈ Ŵ ′, there is a path from [v] to [x] in Ĥfix. Suppose [x] ̸∈ Ŵ . Since [v] ∈ Ŵ , we may
assume that [y] is the first vertex along the path such that [y] → [z] where [z] ̸∈ Ŵ . Thus
[y] → [z] has not been flipped and is present in Ĥ. However, this contradicts the fact that Ŵ

is a cluster in Ĥ.
To summarize, given Sfix, u→ u′, and v, we may uniquely recover S. Hence the mapping φ

is injective. Moreover, flipping arcs does not change the weight as pe = pe, and only adding the
arc u→ u′ would. We have that wt(Sfix) =

1−pu→u′
pu→u′

wt(S). The lemma follows. □

We remark that an alternative way of repairing S in the proof above is to reverse all arcs
in S[W ] without defining Sflip. The key point is that doing so leaves the strongly connected
components intact. However this makes the argument less intuitive.

Let pmax = maxe∈A pe. Combining Theorem 6 and Lemma 7, we have the following theorem.
Notice that for each popping, we resample only a subset of arcs.

Theorem 8. Let T be the expected number of popped clusters in Algorithm 1. For a root-
connected bi-directed graph G = (V,A), ET ≤ pmax

1−pmax
mn, where n = |V |, and m = |A|. The

expected running time is asymptotically at most pmax

1−pmax
m2n.

4. Approximate counting

We include the approximate counting algorithm of Gorodezky and Pak [GP14] for com-
pleteness. Let G = (V,A) be an instance of Bi-directed Reachability with root r and
parameters p. We construct a sequence of graphs G0, .., Gn−1 where n = |V | and G0 = G.
Given Gi−1, choose two arbitrary adjacent vertices ui and vi, remove all arcs between ui and vi
(in either direction), and identify ui and vi to get Gi = (Vi, Ai). Namely we contract all arcs
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between ui and vi, but parallel arcs in the resulting graph are preserved. If one of ui and vi
is r, the new vertex is labelled r. Thus Gn−1 = ({r}, ∅). Since Ai is always a subset of A, we
denote by pi the parameters p restricted to Ai.

For i = 1, . . . , n− 1, define a random variable Ri as follows:

Ri :=

{
1 (Vi−1, Si−1) is root-connected in Gi−1;
0 otherwise,

where Si−1 ⊂ Ai−1 is a random root-connected subgraph drawn from the distribution πGi(·),
together with all arcs e between ui and vi added independently with probability 1 − pe. It is
easy to see that

ERi =
Zreach(Gi−1, r;pi−1)

Zreach(Gi, r;pi)
,

and

Zreach(G, r;p) =

n−1∏
i=1

ERi.

Let pmax = maxe∈A pe and s = ⌈5(1 − pmax)
−2(n − 1)ε−2⌉ where s is the desired precision.

We estimate ERi by the empirical mean of s independent samples of Zi, denoted by R̃i, and
let Z̃ =

∏n−1
i=1 R̃i and Z = Zreach(G, r;p). Gorodezky and Pak [GP14] showed the following.

Proposition 9 ([GP14, Section 9]). Pr
(∣∣∣Z − Z̃

∣∣∣ > εZ
)
≤ 1/4.

In order to sample Zi, we use Algorithm 1 to draw independent samples of root-connected
subgraphs. Theorem 8 implies that each sample takes at most pmax

1−pmax
m2n time in expectation.

We need O
(

n
ε2(1−pmax)2

)
samples for each Zi. Putting everything together, we obtain the

following theorem.

Theorem 10. There is an FPRAS for Bi-directed Reachability. The expected running
time is O

(
ε−2(1− pmax)

−3m2n3
)

for an (1± ε)-approximation.

A natural question is what if 1−pmax is close to 0. We can answer this in the case of uniform
failure probabilities, i.e., when pe = p for all e ∈ A. Let p∗ = 1 − 1/(3m). If p ≤ p∗ then run
Algorithm 1 as usual, to produce a sample in time O(m3n). Otherwise, run the algorithm with
modified weights pe = p∗ for all e ∈ A, and let the output be S, so that (V, S) is a root-connected
subgraph. Suppose n − 1 ≤ k < m. Note that any root-connected subgraph with k edges can
be augmented to one with k + 1 edges in at most m ways. Also, any root-connected subgraph
with k + 1 edges can be obtained by augmentation from at least one with k edges. Thus,

Pr(|S| = k + 1) ≤ m(1− p∗)

p∗
Pr(|S| = k) < 1

2 Pr(|S| = k).

It follows that Pr(|S| = n − 1) ≥ 1
2 , i.e., there is a significant probability of observing an

arborescence or directed tree. Of course, the output distribution is not quite the one we want,
but we can deal issue with that by (usual) rejection sampling: simply retain S with probability[

p∗(1− p)

p(1− p∗)

]|S|−n+1

,

and otherwise run Algorithm 1 again to produce a fresh sample. Note that the rejection proba-
bility is at most 1

2 , so the expected overall running time is still O(m3n). This deals with exact
sampling. Since the number of arborescences can be computed exactly in polynomial time, an
FPRAS for the case p > p∗ follows easily. It is not clear whether this method can be adapted
to varying failure probabilities p.
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5. Coupling between reliability and bi-directed reachability

In this section, we give an alternative proof of Ball’s equivalence between Reliability and
Bi-directed Reachability [Bal80, Corollary 1]. Our proof constructs a coupling, between the
(edge-weighted) distribution of connected subgraphs in the undirected setting, and the (edge-
weighted) distribution of root-connected subgraphs in the bi-directed setting. This coupling,
together with Algorithm 1, yields an efficient exact sampler for connected subgraphs.

We use {u, v} to denote an undirected edge, and (u, v) or (v, u) to denote a directed one
(namely an arc). Let G = (V,E) be an undirected graph, and p = (pe)e∈E be a vector of
failure probabilities. Let −→G = (V,A) be the bi-directed graph obtained by replacing every edge
in G with a pair of anti-parallel arcs. Namely, A = {(u, v), (v, u) | {u, v} ∈ E}. Moreover, let
p(u,v) = p(v,u) = p{u,v} and denote these failure probabilities by p′. For S ⊆ E (or S ⊆ A), let
wt(S) :=

∏
e∈S(1− pe)

∏
e∈E\S pe (or wt(S) :=

∏
e∈S(1− pe)

∏
e∈A\S pe).

Consider the following coupling between the product distribution over edges of G and the one
over arcs of −→G . We reveal edges in a breadth-first search (BFS) fashion in both graphs, from
the same “root” vertex r. If an edge {u, v} is present in the subgraph of G, we couple it with
the arc (u, v) or (v, u), whose direction is pointing towards r in the subgraph of −→G . The arc in
the other direction is drawn independently from everything else. The key observation is that
to decide the set of vertices that can reach r, at any point, only one direction of a bi-directed
edge is useful and the other is irrelevant. One can verify that in the end, the subgraph of G is
connected if and only if the subgraph of −→G is root-connected. We will formalize this intuition
next.

Fix an arbitrary ordering of V , which will be used for the exploration, and let the first vertex
be a distinguished root r. Let P(S) denote the power set of S for a set S. Define a mapping
Φ : P(E)→ P(A) as follows. For S ⊆ E, we explore all vertices that can reach r in (V, S) in a
deterministic order, and add arcs to Φ(S) in the direction towards r. To be more specific, we
maintain the set of explored and the set of active vertices, denoted by Ve and Va, respectively.
At the beginning, Ve = ∅ and Va = {r}. Given Ve and Va, let v be the first vertex (according
to the predetermined ordering) in Va. For all u ∈ V \ Ve, if {u, v} ∈ S, add (u, v) to Φ(S) and
add u to Va (u may be in Va already). Then move v from Va to Ve. This process ends when
all vertices that can reach r in (V, S) are explored. Let σS be the arriving order of Ve. We will
call σS the traversal order. We remark that if {u, v} ∈ S then exactly one of the arcs (u, v) and
(v, u) is in Φ(S), and otherwise neither arc is in Φ(S).

Strictly speaking, the exploration above is not a BFS (Va may contain a newly added vertex
that is lower in the predetermined ordering than all other older vertices). To perform a BFS
we need to in addition maintain a layer ordering, which seems unnecessary. The key properties
of the exploration are: 1) all edges incident to the current vertex are processed together, as a
group; 2) Ve is always connected (or root-connected for Ψ below).

Similarly, define Ψ : P(A) → P(E) as follows. For S′ ⊆ A, we again maintain Ve and Va,
and initialize Ve = ∅ and Va = {r}. Given Ve and Va, let v be the first vertex in Va. For all
u ∈ V \ Ve, if (u, v) ∈ S′, add {u, v} to Ψ(S′) and add u to Va. Then move v from Va to Ve.
This process ends when all vertices that can reach r in (V, S′) are explored. Analogously, let
σS′ be the arriving order of Ve. We remark that if (u, v) ̸∈ S′, and v is visited before u, then
{u, v} ̸∈ Ψ(S′), even in case of (v, u) ∈ S′.

Let Ω := {S ⊆ E | (V, S) is connected}, and correspondingly−→Ω := {S ⊆ A | (V, S) is root-connected}.
We have the following lemma.

Lemma 11. Let Φ, Ψ, Ω, and −→Ω be defined as above. Then the following holds:

(1) if S ∈ Ω, then Φ(S) ∈
−→
Ω ;

(2) if S′ ∈
−→
Ω , then Ψ(S′) ∈ Ω;

(3) if S ∈ Ω, then Ψ(Φ(S)) = S;
(4) Ψ(

−→
Ω) = Ω;
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(5) for any S ∈ Ω,

wt(S) =
∑

S′∈Ψ−1(S)

wt(S′).

Proof. (1) It is easy to verify that, at any point of the construction of Φ, all vertices in Ve

can reach r, in both (V, S) and (V,Φ(S)). If S ∈ Ω, then Ve = V at the end of Φ. Hence
(V,Φ(S)) is root-connected, and Φ(S) ∈

−→
Ω .

(2) This item is completely analogous to item (1).
(3) If {u, v} ∈ S and u is processed first during the exploration, then (v, u) ∈ Φ(S). The tra-

versal orderings σS and σΦ(S) are the same. Hence, during the construction of Ψ(Φ(S)),
u is still processed first, and {v, u} ∈ Ψ(Φ(S)). On the other hand, if {u, v} ̸∈ S, then
neither (u, v) nor (v, u) is in Φ(S) and thus {u, v} ̸∈ Ψ(Φ(S)).

(4) This item is a straightforward consequence of items (1), (2), and (3).
(5) By item (3), we have that Φ(S) ∈ Ψ−1(S). Let

Φc(S) :=
{
(u, v) | (u, v) ̸∈ Φ(S) and v < u in the traversal order σΦ(S)

}
.

Note that Φ(S) ∪ Φc(S) covers all unordered pairs of vertices as S ∈ Ω. Moreover,∏
e∈Φ(S)

(1− pe)
∏

e∈Φc(S)

pe = wt(S).(1)

Call S′ consistent with Φ(S) if Φ(S) ⊆ S′ and S′ ∩ Φc(S) = ∅.
We claim that S′ ∈ Ψ−1(S) if and only if S′ is consistent with Φ(S). Suppose S′ is

not consistent with Φ(S). Consider the exploration of Φ(S) and S′ in the construction
of Ψ simultaneously. Since S′ is not consistent with Φ(S), either Φ(S) \ S′ ̸= ∅ or
S′ ∩ Φc(S) ̸= ∅. Let v be the first vertex during the exploration so that there is an arc
(u, v) ∈ Φ(S) \ S′, or (u, v) ∈ S′ ∩ Φc(S) for some u ̸∈ Ve. Since S ∈ Ω, all vertices will
be processed, and such a v must exist. (In the latter case, since (u, v) ∈ Φc(S), v is
active first.) If (u, v) ∈ Φ(S) \ S′, then {u, v} ̸∈ Ψ(S′) but {u, v} ∈ Ψ(Φ(S)). If (u, v) ∈
S′ ∩ Φc(S), {u, v} ̸∈ Ψ(Φ(S)) but {u, v} ∈ Ψ(S′). In either case, Ψ(S′) ̸= Ψ(Φ(S)) = S
(by item (3)).

On the other hand, if Φ(S) ⊆ S′ and S′ ∩ Φc(S) = ∅, then we can trace through the
construction of Ψ(Φ(S)) and Ψ(S′) to verify that Ψ(S′) = Ψ(Φ(S)) = S.

The claim together with (1) implies that∑
S′∈Ψ−1(S)

wt(S′) =
∑

S′ is consistent with Φ(S)

wt(S′)

=
∏

e∈Φ(S)

(1− pe)
∏

e∈Φc(S)

pe = wt(S).

□

Lemma 12. Zrel(G;p) = Zreach(
−→
G, r;p′).

Proof. First notice that

Zrel(G;p) =
∑
S∈Ω

wt(S)

and

Zreach(
−→
G, r;p′) =

∑
S∈

−→
Ω

wt(S).
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By item (4) of Lemma 11, Ψ(
−→
Ω) = Ω, implying that

(
Ψ−1(S)

)
S∈Ω is a partition of −→Ω . Com-

bining this with item (5) of Lemma 11,∑
S∈Ω

wt(S) =
∑
S∈Ω

∑
S′∈Ψ−1(S)

wt(S′)

=
∑
S′∈

−→
Ω

wt(S′).

The lemma follows. □

Lemma 12 is first shown by Ball [Bal80, Corollary 2] via modifying edges one by one. Instead,
our proof is essentially a coupling argument and has a new consequence that Algorithm 1
can be used to sample edge-weighted connected subgraphs. Recall our notation πG(·), and
generalise it to undirected graphs. Thus, for an undirected (or directed) graph G, πG(·) is the
distribution resulting from drawing each edge (or arc) e independently with probability 1− pe,
and conditioning on the graph drawn being connected (or root-connected).

Lemma 13. If a random root-connected subgraph S′ is drawn from π−→
G
(·), then Ψ(S′) has

distribution πG(·).

Proof. Since S′ ∈
−→
Ω , by item (2) of Lemma 11, Ψ(S′) ∈ Ω. Moreover, for any s ∈ Ω,

Pr[Ψ(S′) = s] =
∑

s′∈Ψ−1(s)

Pr[S′ = s′]

=
∑

s′∈Ψ−1(s)

wt(s′)

Zreach(
−→
G, r;p′)

=
wt(s)

Zrel(G;p)
= πG(s),

where we used item (5) of Lemma 11 and Lemma 12 in the last line. □

There is also a coupling going the reversed direction of Lemma 13, by drawing a random
connected subgraph S from πG(·), mapping it to Φ(S), and excluding all arcs in Φc(S). All
other arcs are drawn independently. The resulting S′ has distribution π−→

G
(·). Its correctness

is not hard to prove, given Lemma 11, but it is not the direction of use to us and we omit its
proof.

Theorem 10 and Lemma 12 imply the counting part of Theorem 1. Theorem 8 and Lemma 13
imply the sampling part of Theorem 1.

6. Counting connected subgraphs of a specified cardinality

In this section, we show that the sampling algorithm in Theorem 1 also leads to an FPRAS
for the number of connected subgraphs of any fixed size.

For a connected (undirected) graph G = (V,E), as usual let n = |V | and m = |E|. For
n − 1 ≤ t ≤ m, let Ht ⊂ E be the set of connected (and spanning) subgraphs of size t, and
Nt = |Ht|. Notice that Nm = 1, and Nn−1 is the number of spanning trees, which can be
computed in polynomial time exactly due to Kirchhoff’s matrix-tree theorem.

The complements of connected subgraphs are independent sets of the co-graphic matroid
associated with G, and co-graphic matroids are representable [Oxl92]. Hence, by a breakthrough
result of Huh and Katz [HK12] (see also [Len13] for a detailed derivation), (Nt)t is a log-concave
sequence.

Proposition 14. For any n ≤ t ≤ m− 1,

Nt−1Nt+1 ≤ N2
t .
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We remark that log-concavity of such a sequence has now been established for all matroids
[AHK18], but here we only need the case of representable matroids.

Once we have the log-concavity and the sampling algorithm in Theorem 1, we can apply
a technique of Jerrum and Sinclair [JS89, Section 5] to efficiently approximate Nt for any
n− 1 ≤ t ≤ m.

Theorem 15. For any n− 1 ≤ t ≤ m, there is an FPRAS for Nt.

Here we sketch the outline of the algorithm. We will only consider a uniform failure proba-
bility p over all edges in the following. Also, we make no attempt to optimise the exponent in
the polynomial running time. The basic idea is to tune p in the sampler of Theorem 1 so that
connected subgraphs of the desired size show up frequently enough. First notice that Propo-
sition 14 implies that the ratios Nt−1

Nt
is monotonically increasing. It is straightforward to see

that
Nn−1

Nn
≥ 1

m
, and Nm−1

Nm
≤ m.

Let rt =
Nt−1

Nt
. Hence,

1

m
≤ rn ≤ rn+1 ≤ · · · ≤ rm ≤ m.(2)

We will use r = 1−p
p to denote the edge weight when the failure probability of an edge is p.

With a little abuse of notation, let πr(·) be the distribution over connected subgraphs when each
edge is removed with probability p = 1

1+r independently. (So πr(·) is a product distribution on
the edges, conditioned on the result being connected.) It is easy to see that for a connected
subgraph R ⊂ E, πr(R) ∝ r|R|. We note that πrt(Ht−1) = πrt(Ht), and for any i < t,

πrt(Ht)

πrt(Hi)
= rt−i

t · Nt

Ni
= rt−i

t ·
t∏

j=i+1

Nj

Nj−1
= rt−i

t ·
t∏

j=i+1

r−1
j ≥ rt−i

t ri−t
t = 1,

where we used (2). Similarly, for any i > t, πrt(Ht) ≥ πrt(Hi). Note that
∑m

i=n−1 πrt(Hi) = 1.
We conclude that

πrt(Ht−1) = πrt(Ht) ≥
1

m
.(3)

Thus, if we run the sampling algorithm of Theorem 1 with pt = 1
1+rt

, there is a significant
probability to see subgraphs in Ht.

To utilise the argument above, we need to know rt. This can be done inductively, since

πrt(Ht−2) =
rt−1

rt
· πrt(Ht−1) ≥

1

m3
,

where we used (2) and (3). Rewrite Nt as

Nt = Nm ·
t+1∏
i=m

Ni−1

Ni
=

t+1∏
i=m

ri,

and our estimator of Nt will be the product of estimators for ri where i ∈ [t+1,m]. A complete
description is given in Algorithm 2. We should set T to be a sufficiently large number (but still
polynomial in n) so that the variances of the estimators are small enough. Notice that Nm−1 is
easy to compute since it is just the number of edges in G that are not bridges.

The analysis of Algorithm 2 is identical to the proof of [JS89, Theorem 5.3] and thus omitted.
Theorem 15 is a direct consequence of Algorithm 2.
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Algorithm 2 Approximately count connected subgraphs of a fixed size t ∈ [n,m− 2]

Let r̃ ← Nm−1

Nm
and Ñ = Nm−1.

for i = m− 2,m− 1, . . . , t do
if r̃ ̸∈ [1/2m, 2m] then

return 0 {Note the bounds in (2)}
end if
Draw T samples from πr̃(·) using Algorithm 1, yielding a set Y .
if |Y ∩Hi| = 0 or |Y ∩Hi+1| = 0 then

return 0
end if
Let r̃ ← r̃ · |Y ∩Hi|

|Y ∩Hi+1| and Ñ ← Ñ/r̃.
end for
return Ñ

7. Concluding remarks

In this paper we give an FPRAS for Reliability (or, equivalently, Bi-directed Reach-
ability), by confirming a conjecture of Gorodezky and Pak [GP14]. We also give an exact
sampler for edge-weighted connected subgraphs with polynomial running time in expectation.
The core ingredient of our algorithms is the cluster-popping algorithm to sample root-connected
subgraphs, namely Algorithm 1. We manage to analyze it using the partial rejection sampling
framework.

Reliability is equivalent to counting weighted connected subgraphs, which is the evaluation
of the Tutte polynomial TG(x, y) for points x = 1 and y > 1. An interesting question is about
the dual of this half-line, namely for points x > 1 and y = 1, whose evaluation is to count
weighted acyclic subgraphs. It is well known that for a planar graph G, TG(x, 1) = TG∗(1, x)
where G∗ is the planar dual of G [Oxl92]. Hence, Theorem 1 implies that in planar graphs,
TG(x, 1) can be efficiently approximated for x > 1. Can we remove the restriction of planar
graphs?

Another interesting direction is to generalize Algorithm 1 beyond bi-directed graphs. What
about Eulerian graphs? Is approximating Reachability NP-hard in general?
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