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Abstract

We study the complexity of approximately evaluating the Ising and Tutte partition func-
tions with complex parameters. Our results are partly motivated by the study of the quantum
complexity classes BQP and IQP. Recent results show how to encode quantum computa-
tions as evaluations of classical partition functions. These results rely on interesting and deep
results about quantum computation in order to obtain hardness results about the difficulty
of (classically) evaluating the partition functions for certain fixed parameters.

The motivation for this paper is to study more comprehensively the complexity of (classi-
cally) approximating the Ising and Tutte partition functions with complex parameters. Par-
tition functions are combinatorial in nature and quantifying their approximation complexity
does not require a detailed understanding of quantum computation. Using combinatorial
arguments, we give the first full classification of the complexity of multiplicatively approxi-
mating the norm and additively approximating the argument of the Ising partition function
for complex edge interactions (as well as of approximating the partition function according to
a natural complex metric). We also study the norm approximation problem in the presence
of external fields, for which we give a complete dichotomy when the parameters are roots of
unity. Previous results were known just for a few such points, and we strengthen these results
from BQP-hardness to #P-hardness. Moreover, we show that computing the sign of the
Tutte polynomial is #P-hard at certain points related to the simulation of BQP. Using our
classifications, we then revisit the connections to quantum computation, drawing conclusions
that are a little different from (and incomparable to) ones in the quantum literature, but
along similar lines.

1 Introduction

We study the Ising and Tutte partition functions, which are well-known partition functions arising
in combinatorics and statistical physics (see, for example, [26]). Early works which studied the
complexity of (exactly) evaluating these partition functions [17] considered both real and complex
parameters. Applications in statistical mechanics actually require consideration of complex num-
bers because the possible points of physical phase transitions occur exactly at real limit points of
complex zeroes of these partition functions (see Sokal’s explanation in Section 5 “Complex Zeros
of ZG: Why should we care?” [26]). However, given the difficulty of completely resolving the com-
plexity of the approximation problem, most works which comprehensively studied the complexity
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of approximately evaluating these partition functions [13, 15, 18] restricted attention to real pa-
rameters. A notable counter-example is the paper of Bordewich et al. [4] which studied normalised
additive approximations for #P functions including these partition functions. Bordewich et al.
were motivated by a result of Freedman et al. [9] showing that an approximate evaluation of the
Jones polynomial associated with a particular complex parameter (a 5th root of unity) can be used
to simulate the quantum part of any algorithm in the quantum complexity class BQP, which is
the class of decision problems solvable by a quantum computer in polynomial time with bounded
error. The relevance of this result to the partition functions that we study follows from a result of
Thistlethwaite [27], showing that the Jones polynomial is essentially a specialisation of the Tutte
partition function.

Recently, there have been several papers showing how to encode quantum computations as
evaluations of partition functions. These results rely on interesting and deep results about quantum
computation to obtain hardness results about the difficulty of (classically) evaluating Ising and
Tutte partition functions. For example, Kuperberg [20] used three results in quantum computation
(a density theorem from [10], the Solovay-Kitaev theorem (see [22]), and PostBQP=PP [1])
to demonstrate the #P-hardness of a certain kind of approximation of the Jones polynomial.
His theorem is repeated later as Theorem 36, where it is discussed in more detail. He also
derived related results about multiplicative approximations of the Tutte polynomial for certain
real parameters.

IQP stands for “Instantaneous Quantum Polynomial time”. It is characterised by a class of
quantum circuits introduced by Shepherd and Bremner [25]. Fujii and Morimae [11] showed how
to encode IQP circuits as instances of the Ising model. Thus, they were able to use a quantum
complexity result of Bremner et al. [5, Corollary 3.3] (showing that weakly simulating IQP with
multiplicative error implies that the polynomial hierarchy collapses to the third level) to obtain a
result about the approximation of the Ising model — namely that an FPRAS for the Ising model
with parameter y = exp(iπ/8) would similarly entail collapse of the polynomial hierarchy. (As
they mention, a similar result applies for other parameters that are universal for IQP.) This result
is further discussed in Section 4.1. Other examples include [8, Result 2], [16, Theorem 6.1], and
[21, Theorems 2 and 3] which give BQP-hardness of certain Ising model approximations, enabling
the conclusion that certain efficient algorithms for approximating these partition function up to
additive error are unlikely to exist. Ilblisder et al. [16] point out that some instances that they
prove hard do have multiplicative approximations, due to Jerrum and Sinclair [18], emphasising
the difference between additive and multiplicative approximation. Matsuo et al. [21, Theorem 4]
also relate the simulation of IQP circuits to Ising model approximations with real parameters.

The motivation for our paper is to study more comprehensively the complexity of approxi-
mating the Ising partition function at complex parameters, and also to go the other way around,
working from the combinatorial model to quantum computation. Partition functions are combi-
natorial in nature and classifying the difficulty of approximating these partition functions should
not require a detailed understanding of quantum mechanics or quantum computation. Hence,
we undertake a detailed classification of the complexity of the partition function problems, us-
ing combinatorial methods. We focus mainly on the Ising model since this model is particularly
relevant in statistical physics (Section 3). This model is also connected to IQP (as explained in
Section 4.1). We also consider the more general Tutte polynomial at any point (x, y) where x = −t
and y = −t−1 for a root of unity t (this is connected to BQP, as will be explained in Section 5).

Our main result for the Ising model (Theorem 1) is a classification of the complexity of ap-
proximating the partition function with complex edge interactions. This result is illustrated in
Figure 1.3. As the figure shows, there are very few parameters (edge interactions) in the complex
plane for which the approximation problem is tractable. For most edge interactions, it is extremely
intractable (#P-hard to approximate the norm within any constant factor and to approximate
the argument within ±π/3). Theorem 2 extends these results to a more relaxed setting in which
approximation algorithms are unconstrained (allowed to output any rational number) if the cor-
rect output is zero. We emphasise that the goal of our work is to classify the difficulty of the
problem for all fixed parameters in the complex plane. The proofs of our theorems are elementary
and combinatorial. The main idea (see Lemma 15) is an extension of a bisection technique of
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Goldberg and Jerrum [15] showing how to use an approximation for the norm of a function to get
very close to a zero of the function. Our result for the Tutte polynomial (4) is also proved using
bisection. It shows that, for any relevant parameters, it is #P-hard to determine whether the sign
of the polynomial is non-negative or non-positive (with an arbitrary answer being allowed when
it is zero).

Using our classifications, we then revisit the connections to quantum computation, drawing
conclusions that are a little different from (and incomparable to) the ones in the papers mentioned
earlier, but along similar lines, as we now explain. Theorem 3 shows that strong simulation of
IQP within any constant factor is #P-hard, even for the restricted class of circuits considered by
Bremner et al. [5]. Our result is incomparable to their hardness result [5, Corollary 3.3]. Both
results show hardness of multiplicative approximation. However, their result is for weak simula-
tion (sampling from the output distribution of the circuit) whereas ours is for strong simulation
(estimating the probability of a given output). In general, hardness results about weak simulation
are more desirable, however multiplicative approximation is less appropriate for weak simulation,
where total variation distance is more important. Also, our results (unlike those of [5]) are not sen-
sitive to the behaviour of the algorithms when the correct value is zero. Moreover, our complexity
assumption (that FP ̸= #P) is implied by and therefore milder than theirs (that the polynomial
hierarchy does not collapse to the third level). These results are discussed further in Section 4.1.

It seems that a result similar to our IQP result could also be obtained via Boson sampling [2].
In particular, Aaronson and Arkhipov [2, Theorem 4.3] have used a bisection technique similar
to the one of Goldberg and Jerrum [15] to show that approximating the square of the permanent
of a real-valued input matrix within a constant factor is #P-hard. Any such input [2, Lemma
4.4] can be turned into a unitary matrix which can be viewed as a “Boson Sampling” input. The
output of the Boson sampling problem is essentially the square of the permanent of the matrix
(so is hard to approximate). Furthermore, the Boson sampling problem can be simulated by
BQP circuits and adaptive IQP circuits (in the strong sense). Thus, while it is interesting to
see that our Ising-model results have IQP applications, the important point concerning our result
is the comprehensive classification of the Ising complexity, rather than the particular quantum
applications.

As we explain in Section 1.5.2, classical simulation of the complexity class BQP is related
to (but not directly a consequence of) determining the sign of the Tutte polynomial at a certain
point (−t,−t−1). Theorem 4 shows that this problem is #P-hard (even when the algorithm is not
required to handle the case in which the output is zero), answering a question raised by Bordewich
et al. [4]. This is related to (but incomparable to) a result (Theorem 36) of Kuperberg [20]. These
results are discussed further in Section 5.

Finally, we study Ising models with external fields. De las Cuevas et al. [8, Result 2] showed that
with edge interaction i and external field eiπ/4 an additive approximation of the partition function
is BQP-hard. Motivated by such connections, we focus on the problem of (multiplicatively)
approximating the norm of the partition function when both the interaction parameter and the
external field are roots of unity. We extend our hardness results to show that, for most such
parameters, including the one studied by De las Cuevas et al., the approximation problem is
#P-hard (for an exact statement, see Theorem 6). For the remaining parameters, the partition
function can be evaluated exactly in polynomial time, and thus we get a complete dichotomy
(Theorem 6). This extension relies on some lower bounds from transcendental number theory,
which allow us to convert additive distances into multiplicative ones. The lower bound results are
given in Section 6.1 and our hardness results are in Section 6.2.

As we have already mentioned, there are many papers encoding quantum simulations as Ising
models, including especially the result of Fujii and Morimae [11]. We could use this encoding
(along with our Theorem 2) to derive our quantum application (Theorem 3). In order to make
the paper self-contained, and to make it accessible to readers from outside the area of quantum
computation we instead give our own, more combinatorial, presentation of how to encode IQP
circuits as Ising instances. This is given in Section 4.1.
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1.1 The Ising model

The main partition function that we study is the partition function of the Ising model. Let y
(called the edge interaction) and λ (called the external field) be two parameters. The partition
function is defined for a (multi)graph G = (V,E) as

ZIsing(G; y, λ) =
∑

σ:V→{0,1}

ym(σ)λn1(σ), (1)

where m(σ) is the number of monochromatic edges under σ (that is, the number of edges (u, v)
with σ(u) = σ(v)) and n1(σ) is the number of vertices v with σ(v) = 1. We write ZIsing(G; y) to
denote ZIsing(G; y, 1).

We will consider complex parameters y and λ from the set Q of algebraic numbers. Thus,
the real and imaginary parts of y and λ will be algebraic. We use arg(z) to denote the arg of
a complex number z. For fixed y and λ, we study several computational problems. The first of
them is approximating the norm of ZIsing(G; y, λ) within a factor K > 1.

Name Factor-K-NormIsing(y, λ).

Instance A (multi)graph G.

Output A rational number N̂ such that N̂/K ≤ |ZIsing(G; y, λ)| ≤ KN̂ .

We also consider the problem of approximating the argument of the partition function within
an additive distance of ρ ∈ (0, 2π). Here we have to treat the zero case exceptionally since the
argument is undefined.

Name Distance-ρ-ArgIsing(y, λ).

Instance A (multi)graph G.

Output If ZIsing(G; y, λ) = 0, then 0. Otherwise, a rational number Â such that

|Â− arg(ZIsing(G; y, λ))| ≤ ρ.

We drop the argument λ when it is equal to 1, so Factor-K-NormIsing(y) denotes the prob-
lem Factor-K-NormIsing(y, 1) andDistance-ρ-ArgIsing(y) denotesDistance-ρ-ArgIsing(y, 1).

1.2 Approximating Complex Numbers

It makes sense that we approximate the norm of a complex number relatively, whereas we approx-
imate the argument additively. This is natural because multiplying complex numbers multiplies
norms and adds arguments, so it preserves the usual property that if you can approximate two
numbers, you can approximate the product.

Other notions of approximation have been proposed. Most notably, Ziv [29] has proposed that
the distance between two complex numbers y and y′ should be measured as

d(y′, y) =
|y′ − y|

max(|y′|, |y|)
,

where d(0, 0) = 0. We also study the following approximation problem.
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Figure 1: An illustration of Theorem 1 for Factor-K-NormIsing(y). The five white points cor-
respond to the easy evaluations described in Item 1. The green line segment (1,∞) corresponds to
a region where approximation is in RP— See Item 2. The blue line segment (−∞,−1) corresponds
to a region where approximation is equivalent to approximately counting perfect matchings. See
Item 4. The red points on the axes (the imaginary axis and the segment (−1, 0)) and on the unit
circle correspond to regions where approximation is #P-hard. See Items 5, 6, and 7. Elsewhere
the points are coloured grey, and approximation is known to be NP-hard (Items 3, 9 and 10) and
sometimes to be #P-hard (Item 8, not pictured).

Name ComplexApx-Ising(y, λ).

Instance A (multi)graph G and a positive integer R, in unary.

Output If |ZIsing(G; y, λ)| = 0 then the algorithm should output 0. Otherwise, it should output
a complex number y such that d(y, ZIsing(G; y, λ)) ≤ 1

R .

As with the other problems, we use the notation ComplexApx-Ising(y) for ComplexApx-
Ising(y, 1). We have specified the error R as an input of the problem, rather than as a parameter
in order to emphasise the suitability of ComplexApx-Ising(y, λ) as an appropriate notion of
approximation for the Ising partition function when y is complex. The number R is expressed in
unary so a polynomial time algorithm for ComplexApx-Ising(y, λ) would give a so-called “fully
polynomial time approximation scheme” for the norm of the partition function. For partition
functions, it is well-known that approximating the norm within a factor that is an inverse poly-
nomial in a unary input R is equivalent in difficultly to approximating the norm with any specific
factor K > 1. We will return to this point later in Lemma 11.

1.3 Main results for the Ising model

The following theorem gives our main complexity results about the Ising model. These results
classify the problem of approximating the partition function over the entire complex plane. For
every value of the parameter y, we either show that the problem is easy, in the sense that both the
norm and the arg of the partition function can be well-approximated (and so can the conglomerate
problem using the Ziv distance), or we show that approximating at least one these is hard (and so
is the conglomerate problem using the Ziv distance). The results for approximation of the norm
are illustrated in Figure 1.3.

Theorem 1. Let y = reiθ be an algebraic complex number with r ≥ 0 and θ ∈ [0, 2π). Suppose
K > 1.

1. If y = 0 or if r = 1 and θ ∈ {0, π
2 , π,

3π
2 } then Factor-K-NormIsing(y), Distance-(π/3)-

ArgIsing(y) and ComplexApx-Ising(y) are in FP.
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2. If y > 1 is a real number then Factor-K-NormIsing(y) and ComplexApx-Ising(y) are
in RP and Distance-(π/3)-ArgIsing(y) is in FP.

3. If y is a real number in (0, 1) then Factor-K-NormIsing(y) and ComplexApx-Ising(y)
are NP-hard and Distance-(π/3)-ArgIsing(y) is in FP.

4. If y < −1 is a real number then Factor-K-NormIsing(y) is equivalent in complexity to the
problem of approximately counting perfect matchings in graphs and ComplexApx-Ising(y)
is as hard. However, Distance-(π/3)-ArgIsing(y) is in FP.

5. If y is a real number in (−1, 0) then Factor-K-NormIsing(y), Distance-(π/3)-ArgIsing(y)
and ComplexApx-Ising(y) are #P-hard.

6. If r = 1 and θ ̸∈ {0, π
2 , π,

3π
2 } then Factor-K-NormIsing(y), Distance-(π/3)-ArgIsing(y)

and ComplexApx-Ising(y) are #P-hard.

7. If θ ∈ {π
2 ,

3π
2 } and r ̸∈ {−1, 0, 1} then Factor-K-NormIsing(y), Distance-(π/3)-ArgIsing(y)

and ComplexApx-Ising(y) are #P-hard.

8. If r > 0 and θ = aπ
2b , where a and b are two co-prime positive integers and a is odd then Fac-

tor-K-NormIsing(y), Distance-(π/3)-ArgIsing(y) and ComplexApx-Ising(y) are #P-
hard.

9. If r < 1 and y ̸= 0 then Factor-K-NormIsing(y) and ComplexApx-Ising(y) are NP-
hard.

10. If r > 1 and θ ̸∈ {0, π} then Factor-K-NormIsing(y) and ComplexApx-Ising(y) are
NP-hard.

1.4 Relaxed versions of the problems

A polynomial-time algorithm for any of the problems that we have defined is required to output
0 if it is given an input G such that ZIsing(G; y, λ) = 0. Theorem 1 gives hardness results for
these problems. The hardness is not due to special difficulties which arise when the value of
the partition function is zero. In order to demonstrate this point, (and in order to make certain
reductions easier later on), we also consider the following, more relaxed versions of the problems,
where the output is unconstrained if the value of the partition function is zero. As before, the
parameter K is greater than 1 and the parameter ρ is in (0, 2π).

Name Factor-K-Nonzero-NormIsing(y, λ).

Instance A (multi)graph G.

Output If |ZIsing(G; y, λ)| = 0 then the algorithm may output any rational number. Otherwise,

it must output a rational number N̂ such that N̂/K ≤ |ZIsing(G; y, λ)| ≤ KN̂ .

Name Distance-ρ-Nonzero-ArgIsing(y, λ).

Instance A (multi)graph G.

Output If ZIsing(G; y, λ) = 0, then the algorithm may output any rational number. Otherwise,

it must output a rational number Â such that |Â− arg(ZIsing(G; y, λ))| ≤ ρ.
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Name ComplexApx-Nonzero-Ising(y, λ).

Instance A (multi)graph G and a positive integer R, in unary.

Output If |ZIsing(G; y, λ)| = 0 then the algorithm may output any complex number. Otherwise,
it must output a complex number z such that d(z, ZIsing(G; y, λ)) ≤ 1

R .

As in the un-relaxed versions of the problems, we drop the parameter “λ” from the problem
name when it is 1. We give the following generalisation of Theorem 1.

Theorem 2. All of the results in Theorem 1 extend to the relaxed case. That is, the results are still
true with Factor-K-NormIsing(y), Distance-(π/3)-ArgIsing(y) and ComplexApx-Ising(y)
replaced by Factor-K-Nonzero-NormIsing(y), Distance-(π/3)-Nonzero-ArgIsing(y) and
ComplexApx-Nonzero-Ising(y), respectively.

1.5 Applications to quantum simulation

1.5.1 IQP

IQP is characterised by a restricted class of quantum circuits [25]. We will give a formal definition
in Section 4.1. There we will also discuss related work by Fujii and Morimae [11], Bremner et
al. [5] and Jozsa et al. [19]. Here we give an informal description that enables us to state our
theorem. Bremner et al. showed a hardness of a certain kind of “weak simulation” of a restricted
class of circuits called IQP1,2(θ) circuits (see Definition 29). The qubits of the circuit travel along
“lines” which go into (and out of) quantum gates. The output of such a circuit C is a random
variable Y (over the qubits that get measured in the output). Given as input the string of all
zero qubits and an output string y ∈ {0, 1}|I| on a set I — the set of qubits that are measured
in the output, PrC;I denotes the probability that Y = y. Strong simulation is the problem of
(approximately) computing this probability. We consider the following problem where K > 1 is
an error parameter.

Name Factor-K-StrongSimIQP1,2(θ).

Instance An IQP1,2(θ) circuit C, a subset I ⊆ [n] of lines, and a string y ∈ {0, 1}|I|.
Output A rational number p such that p/K ≤ PrC;I(Y = y) ≤ Kp.

Our main result regarding this application is the following.

Theorem 3. Suppose K > 1 and θ ∈ (0, 2π). If eiθ is an algebraic complex number and ei8θ ̸= 1
then Factor-K-StrongSimIQP1,2(θ) is #P-hard.

1.5.2 Connections between the Sign of the Tutte Polynomial and BQP

The partition function ZIsing(G; y, λ) is equivalent to a specialisation of the Tutte polynomial,
which is a graph polynomial with two parameters, x and y, defined as follows,

T (G;x, y) =
∑

A⊆E(G)

(x− 1)κ(A)−κ(E(G))(y − 1)|A|−n+κ(A), (2)

where n = |V (G)| and κ(A) is the number of connected components in the subgraph (V (G), A). If
the quantity q = (x− 1)(y− 1) is a positive integer, then the Tutte polynomial with parameters x
and y is closely related to the partition function of the Potts model, which includes the Ising model
as the special case q = 2. In particular, when q = 2,

T (G;x, y) = (y − 1)
−n

(x− 1)
−κ(E(G))

ZIsing(G; y). (3)

Bordewich et al. [4] raised the question “of determining whether the Tutte polynomial is greater
than or equal to, or less than zero at a given point.” As we will see, this question is relevant to
the quantum complexity class BQP. We consider the following problems.
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Name Sign-RealTutte(x, y)

Instance A (multi)graph G.

Output Determine whether the sign of the real part of T (G;x, y) is positive, negative, or 0.

Name Sign-Real-NonzeroTutte(x, y)

Instance A (multi)graph G.

Output A correct statement of the form “T (G;x, y) ≥ 0” or “T (G;x, y) ≤ 0”.

BQP is the class of decision problems solvable by a quantum computer in polynomial time
with bounded error. The theorem [4, Theorem 6.1] shows that all of the problems in BQP can
also be solved classically in polynomial time using an oracle that returns the sign of the real part
of the Jones polynomial of a link, evaluated at the point t = exp(2πi/5). Thistlethwaite [27] (see
[17, (6.1)]), showed that this problem is, in turn, related to the problem of evaluating the Tutte
polynomial T (G;−t,−t−1), for a planar graph G. This inspired the question of Bordewich et al.
about the complexity of determining the sign of the Tutte polynomial, particularly for the point
(x, y) = (−t,−t−1). We show that problem is hard for values of t including the relevant value
t = exp(2πi/5). Note that our result does not have direct implications for the simulation of BQP
because we do not deal with planarity (though it does answer the question of Bordewich et al.).
We give the details in Section 5, where we also discuss a related result of Kuperberg [20]. Our
theorem is as follows.

Theorem 4. Consider the point (x, y) = (exp(−aπi/b), exp(aπi/b)), where a and b are positive
integers satisfying 0 < a/b < 2 and a ̸∈ {b/2, b, 3b/2}. If a is odd and cos(aπ/b) < 11/27 then
Sign-Real-NonzeroTutte(x, y) is #P-hard. Thus Sign-RealTutte(x, y) is also #P-hard.

The condition cos(aπ/b) < 11/27 is roughly 0.36643 < a/b < 1.63357. Since − exp(−2πi/5) =
exp(πi) exp(−2πi/5) = exp(3πi/5), we get the relevant corollary by taking a = 3 and b = 5.

Corollary 5. Let y = − exp(−2πi/5). Then Sign-Real-NonzeroTutte(1/y, y) is #P-hard.

1.6 Results about Ising models with fields

Our results in Section 1.3 are about the complexity of evaluating the Ising partition function in the
absence of an external field (when λ = 1). This is appropriate for the application to IQP. Ising
models with external fields are important for their own sake. Moreover, De las Cuevas et al. [8,
Result 2] showed that with edge interaction i and external field eiπ/4 an additive approximation
of the partition function is BQP-hard. Motivated by such quantum connections, we give the
following extension.

Theorem 6. Let K > 1. Let y and z be two roots of unity. Then the following holds:

1. If y = ±i and z ∈ {1,−1, i,−i}, or y = ±1, then ZIsing(−; y, z) can be computed exactly in
polynomial time.

2. Otherwise Factor-K-Nonzero-NormIsing(y, z) is #P-hard.

2 Preliminaries

2.1 Facts about Approximating Complex Numbers

We will use the following technical lemma concerning Ziv’s distance measure from Section 1.2.

Lemma 7. If z and z′ are two non-zero complex numbers and if d(z′, z) ≤ ε then |z′|/|z| ≤ 1/(1−ε)
and | arg z − arg z′| ≤

√
36ε/11.
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Proof. Suppose d(z′, z) ≤ ε and |z′| ≥ |z|.
First, by the triangle inequality, |z|+ |z′ − z| ≥ |z′| so

|z′|
|z|

= 1 +
|z′| − |z|

|z|
≤ 1 +

|z′ − z|
|z|

= 1 +
|z′ − z|
|z′|

|z′|
|z|

≤ 1 + ε
|z′|
|z|

,

as required.
Second, |z′ − z| ≤ ε|z′| so (|z′ − z|)2 ≤ ε2|z′|2. Letting z = r exp(iθ) and z′ = r′ exp(iθ′) we

have
((r′ cos(θ′)− r cos(θ))

2
+ ((r′ sin(θ′)− r sin(θ))

2 ≤ ε2r′
2
.

The left-hand-side is equal to r2 + r′
2 − 2rr′ cos(θ − θ′). But we already proved

1 ≤ r′

r
≤ 1

1− ε
,

so
r′

2
(1− ε)

2
+ r′

2 − 2r′
2
cos(θ − θ′) ≤ ε2r′

2
,

which implies, by re-arranging the above,

cos(θ − θ′) ≥ 1− 3ε

2
+

ε2

2
.

But cos(x) = 1− x2/2! + x4/4!− x6/6! + · · · , so

(θ − θ′)
2

2!
− (θ − θ′)

4

4!
+

(θ − θ′)
6

6!
− · · · ≤ 3ε

2
− ε2

2
.

Provided that ε is sufficiently small (so θ − θ′ ≤ 1) the left-hand-side is at least (θ−θ′)2

2! − (θ−θ′)4

4!

which is equal to 11(θ − θ′)
2
/24, so |θ − θ′| ≤

√
36ε/11.

Lemma 8. Suppose K > 1 and 0 < ρ < 2π. Then the following polynomial-time Turing reductions
exist.

Factor-K-NormIsing(y, λ) ≤T ComplexApx-Ising(y, λ),

Factor-K-Nonzero-NormIsing(y, λ) ≤T ComplexApx-Nonzero-Ising(y, λ),

Distance-ρ-ArgIsing(y, λ) ≤T ComplexApx-Ising(y, λ),

Distance-ρ-Nonzero-ArgIsing(y, λ) ≤T ComplexApx-Nonzero-Ising(y, λ),

Proof. Let R be any (sufficiently large) integer so that 1− 1/R > 1/K and
√
36/11R ≤ ρ.

Consider a multigraph G where |ZIsing(G; y, λ)| ≠ 0. Given input G and R, an oracle for
ComplexApx-Ising(y, λ) or ComplexApx-Nonzero-Ising(y, λ) returns a complex number z
such that d(z, ZIsing(G; y, λ)) ≤ 1

R . On the other hand, if |ZIsing(G; y, λ)| = 0, then the oracle for
ComplexApx-Ising(y, λ) returns the complex number z = 0 and the oracle for ComplexApx-
Nonzero-Ising(y, λ) returns any complex number z.

For the first two reductions, suppose first that |ZIsing(G; y, λ)| ̸= 0. Then by Lemma 7,
d(z, ZIsing(G; y, λ)) ≤ 1

R implies

|z|
K

≤
(
1− 1

R

)
|z| ≤ |ZIsing(G; y, λ)| ≤ |z|

1− 1
R

≤ K|z|,

so |z| is a suitable output to Factor-K-NormIsing(y, λ) or Factor-K-Nonzero-NormIsing(y, λ)
with input G. On the other hand, if |ZIsing(G; y, λ)| = 0 then |z| is still suitable in both cases.

For the last two reductions, suppose first that |ZIsing(G; y, λ)| ̸= 0. Then by Lemma 7,
d(z, ZIsing(G; y, λ)) ≤ 1

R implies

| arg z − argZIsing(G; y, λ)| ≤
√

36ε/11 ≤ ρ,
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so arg z is a suitable output toDistance-ρ-ArgIsing(y, λ) orDistance-ρ-Nonzero-ArgIsing(y, λ)
with input G. On the other hand, if |ZIsing(G; y, λ)| = 0 and z = 0 then 0 is a suitable output in
both cases. If |ZIsing(G; y, λ)| = 0 and z ̸= 0 then arg z is suitable (as an output for Distance-ρ-
Nonzero-ArgIsing(y, λ)).

2.2 The multivariate Tutte polynomial

We will require the random cluster formulation of the multivariate Tutte polynomial. Given a
(multi) graph G with edge weights γ : E(G) → Q and q ∈ Q, this is defined as

ZTutte(G; q,γ) :=
∑

A⊆E(G)

qκ(A)
∏
e∈A

γe, (4)

where γe is a shorthand for γ(e) for an edge e ∈ E(G).
Suppose x and y satisfy q = (x − 1)(y − 1). For a graph G = (V,E), let γ : E → Q be the

constant function which maps every edge to the value y − 1. Then (see, for example [26, (2.26)])

T (G;x, y) = (y − 1)
−n

(x− 1)
−κ(E(G))

ZTutte(G; q,γ). (5)

Obviously from (3), this implies that if q = 2 then ZIsing(G; y) = ZTutte(G; q,γ).
To apply a technique from [15] we will require a multivariate version of the problem Factor-

K-Nonzero-NormIsing(y, λ). We could do this for general q, but we will only use the following
version, which is restricted to q = 2 and has two complex parameters, γ1 and γ2.

Name Factor-K-Nonzero-Norm2Tutte(γ1, γ2).

Instance A (multi)graph G = (V,E) and edge weights γ : E → {γ1, γ2}.
Output If |ZTutte(G; 2,γ)| = 0 then the algorithm may output any rational number. Otherwise,

it should output a rational number N̂ such that N̂/K ≤ |ZTutte(G; 2,γ)| ≤ KN̂ .

Suppose that s and t are two distinguished vertices of G. Let Zst(G; q,γ) be the contribution
to ZTutte(G; q,γ) from subgraphs A where s and t are in the same component of (V (G), A), that
is,

Zst(G; q,γ) :=
∑
A⊆E:

s and t in same component

qκ(A)
∏
e∈A

γe.

Similarly let Zs|t denote the contribution to ZTutte(G; q,γ) from configurations A in which s and
t are in different components.

2.3 Implementing new edge weights, series compositions, and parallel
compositions

Our treatment of implementations, series compositions and parallel compositions is completely
standard and is taken from [14, Section 2.1]. The reader who is familiar with this material can
skip this section (which is included here for completeness).

Fix W ⊆ Q and q ∈ Q. Let w∗ ∈ Q be a weight (which may not be in W ) which we want to
“implement”. Suppose that there is a graph Υ, with distinguished vertices s and t and a weight
function γ̂ : E(Υ) → W such that

w∗ = qZst(Υ; q, γ̂)/Zs|t(Υ; q, γ̂). (6)

In this case, we say that Υ and γ̂ implement w∗ (or even that W implements w∗).
The purpose of “implementing” edge weights is this. Let G be a graph with weight function γ.

Let f be some edge of G with weight γf = w∗. Suppose that W implements w∗. Let Υ be a graph
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with distinguished vertices s and t with a weight function γ̂ : E(Υ) → W satisfying (6). Construct
the weighted graph G′ by replacing edge f with a copy of Υ (identify s with either endpoint of f
(it doesn’t matter which one) and identify t with the other endpoint of f and remove edge f). Let
the weight function γ′ of G′ inherit weights from γ and γ̂ (so γ′

e = γ̂e if e ∈ E(Υ) and γ′
e = γe

otherwise). Then the definition of the multivariate Tutte polynomial gives

ZTutte(G
′; q,γ′) =

Zs|t(Υ; q, γ̂)

q2
ZTutte(G; q,γ). (7)

So, as long as q ̸= 0 and Zs|t(Υ; q, γ̂) is easy to evaluate, evaluating the multivariate Tutte
polynomial of G′ with weight function γ′ is essentially the same as evaluating the multivariate
Tutte polynomial of G with weight function γ.

Since the norm of the product of two complex numbers is the product of the norms, this
reduces computing (or relatively approximating) the norm with weight function γ to the problem
of computing (or relatively approximating) the norm with weight function γ′. Also, since the
argument of the product of two complex numbers is the sum of the arguments of the numbers,
this reduces computing (or additively approximating) the argument with weight function γ to the
problem of computing (or additively approximating) the argument with weight function γ′.

Two especially useful implementations are series and parallel compositions. Parallel composi-
tion is the case in which Υ consists of two parallel edges e1 and e2 with endpoints s and t and
γ̂e1 = w1 and γ̂e2 = w2. It is easily checked from Equation (6) that w∗ = (1 + w1)(1 + w2) − 1.
Also, the extra factor in Equation (7) cancels, so in this case ZTutte(G

′; q,γ′) = ZTutte(G; q,γ).
Series composition is the case in which Υ is a length-2 path from s to t consisting of edges

e1 and e2 with γ̂e1 = w1 and γ̂e2 = w2. It is easily checked from Equation (6) that w∗ =
w1w2/(q + w1 + w2). Also, the extra factor in Equation (7) is q + w1 + w2, so in this case
ZTutte(G

′; q,γ′) = (q + w1 + w2)ZTutte(G; q,γ). It is helpful to note that w∗ satisfies(
1 +

q

w∗

)
=

(
1 +

q

w1

)(
1 +

q

w2

)
.

We say that there is a “shift” from (q, α) to (q, α′) if there is an implementation of α′ consisting
of some Υ and ŵ : E(Υ) → W where W is the singleton set W = {α}. Taking y = α + 1 and
y′ = α′ + 1 and defining x and x′ by q = (x − 1)(y − 1) = (x′ − 1)(y′ − 1) we equivalently refer
to this as a shift from (x, y) to (x′, y′). It is an easy, but important observation that shifts may
be composed to obtain new shifts. So, if we have shifts from (x, y) to (x′, y′) and from (x′, y′) to
(x′′, y′′), then we also have a shift from (x, y) to (x′′, y′′).

The k-thickening of [17] is the parallel composition of k edges of weight α. It implements α′ =
(1+α)k−1 and is a shift from (x, y) to (x′, y′) where y′ = yk (and x′ is given by (x′−1)(y′−1) = q).
Similarly, the k-stretch is the series composition of k edges of weight α. It implements an α′

satisfying

1 +
q

α′ =
(
1 +

q

α

)k
,

It is a shift from (x, y) to (x′, y′) where x′ = xk. (In the classical bivariate (x, y) parameterisation,
there is effectively one edge weight, so the stretching or thickening is applied uniformly to every
edge of the graph.)

Thus, we have the following observation.

Observation 9. The k-thickening operation gives the following polynomial-time reductions.

• Factor-K-NormIsing(yk) ≤ Factor-K-NormIsing(y),

• Distance-ρ-ArgIsing(yk) ≤ Distance-ρ-ArgIsing(y),

• Sign-RealTutte(1+(x−1)(y−1)/(yk−1), yk) ≤ Sign-RealTutte(x, y), where yk ̸= 1,
and
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• ComplexApx-Ising(yk) ≤ ComplexApx-Ising(y).

Similarly, k-stretching gives the following polynomial-time reductions for y ̸= 1.

• Factor-K-NormIsing(1 + 2/((1 + 2/(y − 1))k − 1)) ≤ Factor-K-NormIsing(y),

• Distance-ρ-ArgIsing(1 + 2/((1 + 2/(y − 1))k − 1)) ≤ Distance-ρ-ArgIsing(y),

• Sign-RealTutte(xk, 1+(x−1)(y−1)/(xk−1)) ≤ Sign-RealTutte(x, y), where xk ̸= 1,
and

• ComplexApx-Ising(1 + 2/((1 + 2/(y − 1))k − 1)) ≤ ComplexApx-Ising(y).

Similar statements hold for the relaxed versions of the problems.

3 Hardness results for the Ising model

In this section we prove Theorems 1 and 2.

3.1 Real weights

First we gather some known results regarding approximating the partition function ZIsing(G; y) of
the Ising model when y is an algebraic real number.

If y ∈ {−1, 0, 1}, then computing ZIsing(G; y) is trivial from the definition (1). A classical result
by Jerrum and Sinclair [18] settles the complexity of approximating ZIsing(G; y) when y > 0. They
show that there is a “fully polynomial randomised approximation scheme” (FPRAS) when y > 1
and that it is NP-hard to approximate the partition function when 0 < y < 1. The negative case
appears to be more complicated. Goldberg and Jerrum [13] showed that if −1 < y < 0, it is also
NP-hard to approximate ZIsing(G; y), but if y < −1, the problem is equivalent to approximating
the number of perfect matchings in a graph and it is not known whether there is an FPRAS.
Technically, neither Jerrum and Sinclair nor Goldberg and Jerrum worked over the algebraic
numbers. In order to avoid issues of real arithmetic, Jerrum and Sinclair used a computational
model in which real arithmetic is performed with perfect accuracy, and Goldberg and Jerrum
restricted attention to rationals. However, the operations in those papers are easily implemented
over the algebraic real numbers. Using our notation, these results are summarised as follows.

Lemma 10. ([18, 13]) Suppose y ∈ Q and K > 1. Then Factor-K-NormIsing(y)

• is in FP if y ∈ {−1, 0, 1};

• is in RP if y > 1;

• is NP-hard if 0 < y < 1 or −1 < y < 0; and

• is equivalent in difficulty to approximately counting perfect matchings if y < −1.

Technically, the results in [18, 13] were not about the problem Factor-K-NormIsing(y)
with fixed K. Instead, the accuracy parameter was viewed as part of the input as in the following
problem.
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Name FPRAS-NormIsing(y, λ).

Instance A (multi)graph G and a positive integer R, in unary.

Output A rational number N̂ such that(
1− 1

R

)
N̂ ≤ |ZIsing(G; y, λ)| ≤

(
1 + 1

R

)
N̂ .

Nevertheless, the hardness results in Lemma 10 follow easily from those papers using the following
standard powering lemma.

Lemma 11. Let y and λ be algebraic numbers. For any K > 1, there are polynomial-time Turing
reductions between Factor-K-NormIsing(y, λ) and FPRAS-NormIsing(y, λ).

Proof. The reduction from Factor-K-NormIsing(y, λ) to FPRAS-NormIsing(y, λ) is straight-
forward: Given an input G to Factor-K-NormIsing(y, λ), choose R so that K ≥ R/(R−1) and
run an algorithm for FPRAS-NormIsing(y, λ) with inputs G and R, returning the result.

The other direction is almost as easy. Given an input (G,R) to FPRAS-NormIsing(y, λ),
choose an integer k sufficiently large (which does not depend on the size of G) so that (1 −
1/R)k ≤ 1/K and (1 + 1/R)k ≥ K. Then form Gk by taking k disjoint copies of G. Run

an algorithm for Factor-K-NormIsing(y, λ) with input Gk, obtaining a number N̂ such that

N̂/K ≤ |ZIsing(Gk; y, λ)| ≤ KN̂ . Then note that ZIsing(Gk; y, λ) = ZIsing(G; y, λ)k, so(
1− 1

R

)
N̂1/k ≤ N̂1/k/K1/k ≤ |ZIsing(G; y, λ)| ≤ K1/kN̂1/k ≤ N̂1/k

(
1 + 1

R

)
,

so N̂1/k is a suitable output.

Note that the NP-hardness result for 0 < y < 1 in Lemma 10 is essentially best possible in the
sense that the problem is not much harder than NP. As [13] observed, the problem can be solved
in randomised polynomial time using an oracle for an NP predicate by applying the bisection
technique of Valiant and Vazirani [28]. The situation is different for y < 0. Goldberg and Jerrum
[15, Theorem 1, Region G] showed that it is #P-hard to determine the sign of ZIsing(G; y) if
−1 < y < 0. Again, they stated their theorem for the case in which y is rational, but the proof
applies equally well when y is an algebraic real number. In terms of our notation, they proved the
following lemma.

Lemma 12. ([15]) For any algebraic real number y ∈ (−1, 0), Sign-RealTutte(x, y) is #P-
hard, where x = 1 + 2/(y − 1).

If y is real then ZIsing(G; y) is real. Thus, either ZIsing(G; y) = 0, or arg(ZIsing(G; y)) ∈ {0, π}.
Hence, approximating the argument within ±π/3 enables one to determine the sign of the real
part. Using the connection (3) between the Tutte polynomial and the partition function of the
Ising model and Lemma 8 we immediately obtain the following corollary.

Corollary 13. Suppose y is an algebraic real number in the range y ∈ (−1, 0). Then the problem
Distance-(π/3)-ArgIsing(y) is #P-hard and so is ComplexApx-Ising(y).

In fact, we can extend Goldberg and Jerrum’s #P-hardness interval-shrinking technique from
[15] to also obtain #P-hardness for the relaxed version of the problems. We start with a general
discussion of interval shrinking. Suppose that we have a linear function f(ε) = −εA + B for
positive A and B and that we wish to find a value ε̂ that is very close to the root ε∗ = B/A.
Suppose that we also have an interval [ε′, ε′′] such that f(ε′) > 0 and f(ε′′) < 0. Suppose that
ε′′ − ε′ = ℓ (so the interval has length ℓ). Roughly, Goldberg and Jerrum had at hand an oracle
for computing the sign of f(ε) (using an oracle for Sign-RealTutte(x, y)) and, using this, it is
easy to bisect the interval, getting very close to ε∗ by binary search.

Using an oracle for the relaxed problem Sign-Real-NonzeroTutte(x, y) we can compute
the sign whenever it is positive or negative, but we receive an unreliable answer for the sign of f(ε)
if f(ε) = 0. Nevertheless, we observe that having a reliable answer in this case is not important for
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the progress of the binary search. If the binary search queries the value of f(ε) and f(ε) ̸= 0 then
the reply from the oracle is correct. Otherwise, the bisection technique described above recurses
into a sub-interval that contains a zero of the function, as required. Thus, we have the following
lemma. (We omit the formal proof since the lemma follows immediately from the observation that
we have just made.)

Lemma 14. For any algebraic real number y ∈ (−1, 0), Sign-Real-NonzeroTutte(x, y) is
#P-hard, where x = 1 + 2/(y − 1). Also, the problems Distance-(π/3)-Nonzero-ArgIsing(y)
and ComplexApx-Nonzero-Ising(y) are #P-hard.

We next show how to further extend the #P-hardness interval-shrinking technique to obtain
#P-hardness for the problem Factor-K-Nonzero-NormIsing(y). This requires new ideas, so
we will provide more details. Let us return to the discussion of interval shrinking. Let η = 1/21
(the exact value of η is not important, but we fix it for concreteness). Instead of having an oracle
for the sign of f(ε) = −εA + B, we only will be able to assume that we have an oracle that, on

input ε, returns a value f̂(ε) satisfying

(1− η)|f(ε)| < 21
22 |f(ε)| ≤ f̂(ε) ≤ 22

21 |f(ε)| = (1 + η)|f(ε)|,

except that again the value f̂(ε) is completely unreliable if f(ε) = 0. Our strategy will be to
divide the interval into 10 equal-length sub-intervals [εi, εi+1] for i ∈ {0, . . . , 9} with ε0 = ε′ and
ε10 = ε′′. (The number 10 is not chosen to be optimal — however, it is easy to see that it suffices.
Changing the number of sub-intervals would influence the choice of η above.) We then let si be

the sign (positive, negative, or zero) of f̂(εi)− f̂(εi+1), for each i ∈ {0, . . . , 9}. The si values can
be computed by the oracle. Now recall that ε∗ is the root B/A of the function f(ε) = −εA+ B.
Consider next what happens if εi < εi+1 < ε∗ (so f(εi) > f(εi+1) > 0) . In this case,

f̂(εi)− f̂(εi+1) ≥ (1− η)f(εi)− (1 + η)f(εi+1)

= A(εi+1 − εi − η(2ε∗ − εi − εi+1)).

Now εi+1 − εi ≥ ℓ/10. Also ε∗ − εi and ε∗ − εi+1 are both at most ℓ. So since η < 1/20, si is
positive. Similarly, if ε∗ < εi < εi+1 (so f(εi+1) < f(εi) < 0 ) then

f̂(εi)− f̂(εi+1) ≥ (1− η)(−f(εi))− (1 + η)(−f(εi+1))

= −A(εi+1 − εi − η(2ε∗ − εi − εi+1)),

so si is negative. If εi ≤ ε∗ and εi+1 ≥ ε∗ then we don’t know what the value of si will be.
However, this is true for at most two values of i. So either s0, s1, s2 and s3 are all positive (in
which case ε2 < ε∗ and we can recurse on the interval [ε2, ε10]) or s6, s7, s8 and s9 are all negative
(in which case ε8 > ε∗ and we can recurse on the interval [ε0, ε8]). Either way, the interval shrinks
to 4/5 of its original length.

Applying this idea in the proof of [15, Lemma 1] yields the following.

Lemma 15. Suppose that γ1 and γ2 are algebraic reals with γ1 ∈ (−2,−1) and γ2 ̸∈ [−2, 0]. Then
Factor-( 2221 )-Nonzero-Norm2Tutte(γ1, γ2) is #P-hard.

Proof. Apart from the interval shrinking idea discussed above, the proof is similar in structure
to the proof of [15, Lemma 1]. We defer some calculations (which are unchanged) to [15] but we
provide the rest of the proof to show how to get the stronger result. We use the fact that the
following problem is #P-complete. This was shown by Provan and Ball [23].

Name #Minimum Cardinality (s, t)-Cut.

Instance A graph G = (V,E) and distinguished vertices s, t ∈ V .

Output |{S ⊆ E : S is a minimum cardinality (s, t)-cut in G}|.
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We will give a Turing reduction from #Minimum Cardinality (s, t)-Cut to the problem
Factor-( 2221 )-Nonzero-Norm2Tutte(γ1, γ2).

Let G, s, t be an instance of #Minimum Cardinality (s, t)-Cut. Assume without loss of
generality that G has no edge from s to t. Let n = |V (G)| and m = |E(G)|. Assume without
loss of generality that G is connected and that m ≥ n is sufficiently large. Let k be the size of a
minimum cardinality (s, t)-cut in G and let C be the number of size-k (s, t)-cuts.

Let q = 2 and M∗ = 24m. Let h be the smallest integer such that (γ2 + 1)h − 1 > M∗ and let
M = (γ2 +1)h − 1. Note that we can implement M from γ2 via an h-thickening, and h is at most
a polynomial in m.

Let δ = 4m/M . Let M be the constant weight function which gives every edge weight M . We
will use the following facts:

qMm(1− δ) ≤ Zst(G; q,M) ≤ qMm(1 + δ) (8)

and
CMm−kq2(1− δ) ≤ Zs|t(G; q,M) ≤ CMm−kq2(1 + δ). (9)

Fact (8) follows from the fact that each of the (at most 2m) terms in Zst(G; q,M), other than the
term with all edges in A, has size at most Mm−1qn and 2mMm−1qn ≤ δMmq. Fact (9) follows
from the fact that all terms in Zs|t(G; q,M) are complements of (s, t)-cuts. If more than k edges

are cut then the term is at most Mm−k−1qn and

2mMm−k−1qn ≤ δCMm−kq2.

For a parameter ε in the open interval (0, 1) which we will tune later, let γ′ = −1−ε ∈ (−2,−1).
We will discuss the implementation of γ′ later. Let G′ be the graph formed from G by adding an
edge from s to t. Let γ be the edge-weight function for G′ that assigns weight M to every edge
of G and assigns weight γ′ to the new edge. Using the definition of the (random cluster) Tutte
polynomial, Goldberg and Jerrum noted that

ZTutte(G
′; 2,γ) = Zst(G; 2,M)(1 + γ′) + Zs|t(G; 2,M)

(
1 +

γ′

2

)
= −εZst(G; 2,M) + Zs|t(G; 2,M)

(
1− 1 + ε

2

)
. (10)

It is easily checked that ZTutte(G
′; 2,γ) is positive if ε is sufficiently small (ε = M−2m will do)

and it is negative at ε = 1. Thus, viewing ZTutte(G
′; 2,γ) as a function of ε, we can perform

interval shrinking (as discussed before the statement of the lemma) to find a value of ε for which
ZTutte(G

′; 2,γ) is very close to 0. The interval shrinking uses an oracle for Factor-( 2221 )-Nonzero-
Norm2Tutte(γ1, γ2).

If we find an ε where ZTutte(G
′; q,γ) = 0, then for this value of ε, we have εZst(G; q,M) =

Zs|t(G; q,M)
(
1− 1+ε

2

)
. Thus, using ε, we can calculate the fraction Zs|t(G; q,M)/Zst(G; q,M).

Plugging this (known) value into (8) and (9), we obtain

Cq(1− δ)

Mk(1 + δ)
≤

Zs|t(G; q,M)

Zst(G; q,M)
≤ Cq(1 + δ)

Mk(1− δ)
.

Now, we don’t know k, but C is an integer between 1 and 2m, whereas M > 24m, so there is only
one value of k that gives a solution C in the right range. Using the value of k, we can calculate C
exactly.

Technical issues arise both because we are somewhat constrained in what values ε we can
implement and because we won’t be able to discover the exact value of ε that we need (but we
will be able to approximate it closely). These technical issues provide no more difficulty than they
did in [15]. Suppose first that we are able, for any given ε ∈ (M−2m, 1) to implement γ′ = −1− ε.
Then our basic strategy is to do the interval shrinking, repeatedly sub-dividing the current interval
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Θ(log(Mm2

)) times, so eventually we’ll get an interval of width at most M−m2

that contains an
ε where ZTutte(G

′; 2,γ) = 0. Goldberg and Jerrum [15] have already shown that knowing such an
interval enables the exact calculation of C (so having a small interval is OK — it is not necessary
to know ε exactly).

The only issue, then, is implementing the weights γ′ = −1 − ε during the interval shrinking.
As in [15] we cannot expect to implement any particular desired γ′ precisely. However, using

stretching and thickening, we can implement a value that is within an additive error of M−m2

/20
of any desired ε, and this suffices. The fact that we have algebraic, rather than rational, numbers
is irrelevant since stretchings and thickenings can be computed on algebraic numbers.

Using stretching and thickening, we get the following corollary.

Corollary 16. Suppose K > 1 and that y ∈ (−1, 0) is an algebraic real number. Then Factor-
K-Nonzero-NormIsing(y) is #P-hard.

Proof. We first show that Factor-(22/21)-Nonzero-NormIsing(y) is #P-hard. Consider the
edge interaction y ∈ (−1, 0). Using the correspondence from (3) and (5), this corresponds directly
to the quantity γ1 ∈ (−2,−1) in Lemma 15. We now consider how to use y to implement the
quantity γ2. A 2-thickening from (x, y) gives an effective weight (x′, y′) with y′ = y2 ∈ (0, 1) and
x′ = 2/(y′ − 1) + 1 < −1. Then a 2-stretch from (x′, y′) gives an effective weight (x′′, y′′) with
x′′ = (x′)2 > 1 and y′′ = 2/(x′′ − 1) + 1 > 1, corresponding to γ2 > 0, as required.

The reduction from Factor-(22/21)-Nonzero-NormIsing(y) to Factor-K-Nonzero-NormIsing(y)
follows from Lemma 11.

Using Lemma 8 and the trivial reduction from Factor-K-Nonzero-NormIsing(y) to Fac-
tor-K-NormIsing(y) and from ComplexApx-Nonzero-Ising(y) to ComplexApx-Ising(y)
we get the following.

Corollary 17. Let y ∈ (−1, 0) be an algebraic real number. Then for any K > 1, Factor-K-
NormIsing(y) and ComplexApx-Nonzero-Ising(y) and ComplexApx-Ising(y) are #P-hard.

3.2 Complex weights

Lemma 18. Let θ ∈ [0, 2π) and θ ̸∈ {0, π
2 , π,

3π
2 }. There is a positive integer k and an integer l

such that kθ + 2πl ∈ (π2 , π) ∪ (π, 3π
2 ).

Proof. Clearly if θ ∈ (π2 , π) ∪ (π, 3π
2 ) then we are done by letting k = 1 and l = 0. Otherwise

θ ∈ (0, π
2 ) ∪ ( 3π2 , 2π). If θ is an irrational fraction of 2π then we can go through the whole unit

circle by taking multiple of θ. So assume θ = 2πa
b where a and b are co-prime and b = 3 or b ≥ 5

as θ ̸∈ {0, π
2 , π,

3π
2 }. Moreover b = 3 contradicts θ ∈ (0, π

2 )∪ ( 3π2 , 2π). Hence b ≥ 5 and there exists
an integer t ̸= b/2 such that b < 4t < 3b. As a and b are relatively prime, there exist integers
l1, l2 such that l1a + l2b = 1 and l1 > 0. It is easy to see that tl1θ = 2πtl1a

b = −2πtl2 +
2πt
b . As

t/b ∈ (1/4, 1/2) ∪ (1/2, 3/4) we have that 2πt
b ∈ (π2 , π) ∪ (π, 3π

2 ). The lemma follows by taking
k = tl1 and l = tl2.

The following lemma enables us to determine the complexity of evaluating the Ising partition
function when the complex edge interaction y ∈ Q is on the unit circle.

Lemma 19. Let y = eiθ ∈ C be an algebraic complex number such that θ ∈ [0, 2π) and θ ̸∈
{0, π

2 , π,
3π
2 }. There exists an algebraic real number y′ ∈ (−1, 0) that can be implemented by a

sequence of stretchings and thickenings from y.

Proof. By Lemma 18, there is a positive integer k and an integer l such that kθ + 2πl ∈ (π2 , π) ∪
(π, 3π

2 ). As a k-thickening realizes yk = eikθ, we may assume θ ∈ (π2 , π) ∪ (π, 3π
2 ).

Since θ ̸∈ {0, π
2 , π,

3π
2 }, we have cos θ ̸= 1 and sin θ cos θ ̸= 0. The latter implies that sin θ +

cos θ ̸= 1. Let x = y+1
y−1 . Note that x = sin θ

cos θ−1 i. Moreover θ ∈ (π2 , π)∪ (π, 3π
2 ), implies that cos θ <

0 and hence |x| < 1. We do a 2-stretch and the effective weight is y′ = 1− 2
|x|2+1 ∈ (−1, 0).

16



Combining Lemma 19 with Observation 9, Corollary 16, Lemma 14 and Corollary 17 we get
the following corollary, which applies to the problems Factor-K-Nonzero-NormIsing(y), Dis-
tance-(π/3)-Nonzero-ArgIsing(y) and ComplexApx-Nonzero-Ising(y) and also to the un-
relaxed versions Factor-K-NormIsing(y), Distance-(π/3)-ArgIsing(y) and ComplexApx-
Ising(y).

Corollary 20. Let y = eiθ ∈ C be an algebraic complex number such that θ ∈ [0, 2π) and
θ ̸∈ {0, π

2 , π,
3π
2 }. Then for any K > 1, Factor-K-Nonzero-NormIsing(y), Distance-(π/3)-

Nonzero-ArgIsing(y) and ComplexApx-Nonzero-Ising(y) are #P-hard. Hence, so are the
un-relaxed versions of all three problems.

The hardness on the unit circle extends directly to the whole imaginary axis.

Lemma 21. Suppose y = ri and r ̸= 0,±1 where r is algebraic. There exists an algebraic real
number y′ ∈ (−1, 0) that can be implemented by a sequence of stretchings and thickenings from y.

Proof. If 0 < |y| < 1, then a 2-thickening yields effective weight y2 = −r2 ∈ (−1, 0). Let y′ = −r2

and the claim holds.
Otherwise suppose |y| > 1. We know that a k-stretch yields the weight zk = 1 + 2/(xk − 1)

where x = 1 + 2/(y − 1) = (y + 1)/(y − 1). Re-arranging, we find that zk = (y+1)k+(y−1)k

(y+1)k−(y−1)k
. We

will now argue that zk is purely imaginary. To see this, note that monomials in the numerator all
have degrees of the same parity as k, whereas those in the denominator have degrees of the same
parity as k − 1. Therefore, it must be the case that the numerator is real and the denominator is
purely imaginary, or vice versa. In either case, zk is purely imaginary. Therefore, if we can find a
positive integer k such that 0 < |zk| < 1 then we have reduced our problem to the previous case.

Since y is purely imaginary, we have that |y + 1| = |y − 1|. Since x = (y + 1)/(y − 1), this
implies that |x| = 1. It is easy to see that 0 < |zk| < 1 if and only if |xk + 1| < |xk − 1| and
xk ̸= −1. This in turn is equivalent to arg

(
xk
)
∈
(
π
2 , π

)
∪
(
π, 3π

2

)
. By Lemma 18, such a k always

exists unless arg(x) = tπ
2 where t = 0, 1, 2, 3. In these cases y = ±1,±i, which contradicts our

assumption.

Combining Lemma 21 with Observation 9, Corollary 16, Lemma 14 and Corollary 17, we get
the following corollary.

Corollary 22. Let y = ri where r ̸= 0,±1 and r is algebraic. Let K > 1. Then Fac-
tor-K-Nonzero-NormIsing(y), Distance-(π/3)-Nonzero-ArgIsing(y) and ComplexApx-
Nonzero-Ising(y) are #P-hard. Hence, so are the un-relaxed versions of all three problems.

Finally, this hardness can be extended to some algebraic complex numbers off of the unit circle.

Lemma 23. Let y = reiθ be an algebraic complex number such that r > 0 and θ = aπ
2b , where

a and b are two co-prime positive integers and a is odd. There exists an algebraic real number
y′ ∈ (−1, 0) that can be implemented by a sequence of stretchings and thickenings from y.

Proof. If r = 1 then we are done by Lemma 19. Otherwise r ̸= 1 and by a b-thickening it reduces
to the case of Lemma 21.

Corollary 24. Let y = reiθ be an algebraic complex number such that r > 0 and θ = aπ
2b ,

where a and b are two co-prime positive integers and a is odd. Then for any K > 1, Fac-
tor-K-Nonzero-NormIsing(y), Distance-(π/3)-Nonzero-ArgIsing(y) and ComplexApx-
Nonzero-Ising(y) are #P-hard. Hence, so are the un-relaxed versions of all three problems.

To obtain obtain NP-hardness results for other values of y, we start with the well-known
NP-hard problem Max-Cut.
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Name Max-Cut.

Instance A (multi)graph G and a positive integer b.

Output Is there a cut of size at least b.

Lemma 25. Suppose K > 1. Let y be an algebraic complex number such that |y| < 1 and y ̸=
0. Then Factor-K-Nonzero-NormIsing(y) is NP-hard and so is ComplexApx-Nonzero-
Ising(y).

Proof. We will reduce Max-Cut to Factor-K-Nonzero-NormIsing(y). Given a graph G and
a constant b, we want to decide whether G has a cut of size at least b. We do a k-thickening on
G, where k is the least positive integer such that 2m|y|k < 1/4. Then the effective edge weight is
yk = yk. Clearly |yk| = |y|k < 1.

Suppose the maximum cut of G has size c. Now rewrite (1) as

ZIsing(G; yk) =

c∑
i=0

Ciy
m−i
k ,

where m is the number of edges in G and Ci is the number of configurations under which there
are exactly i bichromatic edges. Since the maximum cut of G has size c and G has m edges,∑m−c

i=0 Ci = 2m. Also, since 2m|yk| < 1, the i = c term dominates the sum, so ZIsing(G; yk) is not
equal to 0.

If c ≥ b, then our choice of k together with the triangle inequality implies that

|ZIsing(G; yk)| = |Ccy
m−c
k +

c−1∑
i=0

Ciy
m−i
k | > Cc|yk|m−c − 2m|yk|m−c+1

> |yk|m−c|1− 2m|y|k| > 3
4 |yk|

m−b.

Otherwise we have c ≤ b− 1 and

|ZIsing(G; yk)| = |
c∑

i=0

Ciy
m−i
k | <

c∑
i=0

Ci|yk|m−i

≤ 2m|yk|m−b+1 < 1
4 |yk|

m−b

again by the triangle inequality and 2m|yk| < 1/4. Therefore we could solve Max-Cut in polyno-
mial time using an oracle for Factor-1.1-Nonzero-NormIsing(yk). By Observation 9 it suffices
to use an oracle for Factor-1.1-Nonzero-NormIsing(y). By Lemma 11, an oracle for Fac-
tor-K-Nonzero-NormIsing(y) will do. Finally, Lemma 8 gives the result for ComplexApx-
Nonzero-Ising(y).

The other case, when the norm of y is larger than 1, can be shown to be NP-hard by reduction
from the previous case, unless the edge weight is real.

Lemma 26. Suppose K > 1. Let y be an algebraic complex number such that |y| > 1 and y ̸∈
R. Then Factor-K-Nonzero-NormIsing(y) is NP-hard and so is ComplexApx-Nonzero-
Ising(y).

Proof. We will prove that there exists a positive integer k such that the effective weight yk of a
k-stretch satisfies |yk| < 1. Then we are done by Lemma 25.

Recall that yk = xk+1
xk−1

where x = y+1
y−1 . Clearly |yk| < 1 if and only if |xk + 1| < |xk − 1|. The

latter is equivalent to arg(xk) = k arg(x) ∈ (π/2, 3π/2) (plus some integer multiple of 2π). Let
θ = arg(x) ∈ [0, 2π). The fact that |y| > 1 implies that θ ∈ [0, π/2) ∪ (3π/2, 2π). If θ = 0, then
y ∈ R, which is a contradiction. Therefore θ ∈ (0, π/2) ∪ (3π/2, 2π). By Lemma 18, there is a
positive integer k and and integer l such that kθ+2πl ∈ (π/2, π)∪(π, 3π/2) ⊂ (π/2, 3π/2). This is
exactly what we need. Moreover, k does not depend on the input G. This finishes our proof.
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3.3 Proof of Theorems 1 and 2

Theorems 1 and 2 follow from the following combined theorem. The hardness result in Item 3 of
Theorem 1 (and its counterpart in Theorem 2) follows from Item 9 of the combined theorem.

Theorem 27. Let y = reiθ be an algebraic complex number with θ ∈ [0, 2π). Suppose K > 1.

1. If y = 0 or if r = 1 and θ ∈ {0, π
2 , π,

3π
2 } then Factor-K-NormIsing(y), Distance-(π/3)-

ArgIsing(y) and ComplexApx-Ising(y) are in FP.

2. If y > 1 is a real number then Factor-K-NormIsing(y) and ComplexApx-Ising(y) are
in RP and Distance-(π/3)-ArgIsing(y) is in FP.

3. If y is a real number in (0, 1) then Distance-(π/3)-ArgIsing(y) is in FP.

4. If y < −1 is a real number then Factor-K-Nonzero-NormIsing(y) is equivalent in com-
plexity to the problem of approximately counting perfect matchings in graphs and ComplexApx-
Nonzero-Ising(y) is as hard. However, Distance-(π/3)-ArgIsing(y) is in FP.

5. If y is a real number in (−1, 0) then Factor-K-Nonzero-NormIsing(y), Distance-
(π/3)-Nonzero-ArgIsing(y) and ComplexApx-Nonzero-Ising(y) are #P-hard.

6. If r = 1 and θ ̸∈ {0, π
2 , π,

3π
2 } then Factor-K-Nonzero-NormIsing(y), Distance-(π/3)-

Nonzero-ArgIsing(y) and ComplexApx-Nonzero-Ising(y) are #P-hard.

7. If θ ∈ {π
2 ,

3π
2 } and r ̸∈ {−1, 0, 1} then Factor-K-Nonzero-NormIsing(y), Distance-

(π/3)-Nonzero-ArgIsing(y) and ComplexApx-Nonzero-Ising(y) are #P-hard.

8. If r > 0 and θ = aπ
2b , where a and b are two co-prime positive integers and a is odd

then Factor-K-Nonzero-NormIsing(y), Distance-(π/3)-Nonzero-ArgIsing(y) and
ComplexApx-Nonzero-Ising(y) are #P-hard.

9. If r < 1 and y ̸= 0 then Factor-K-Nonzero-NormIsing(y) and ComplexApx-Nonzero-
Ising(y) are NP-hard.

10. If r > 1 and θ ̸∈ {0, π} then Factor-K-Nonzero-NormIsing(y) and ComplexApx-
Nonzero-Ising(y) are NP-hard.

Proof. Item 1 is from [17]. The randomised algorithm for Factor-K-NormIsing(y) referred to
in Item 2 is from [18]. See also Lemma 10 and the surrounding text for a discussion of algebraic
numbers and accuracy parameters. The same algorithm can be used for ComplexApx-Ising(y)

because ZIsing(G; y) is real and positive so an approximation N̂ satisfing(
1− 1

R

)
N̂ ≤ ZIsing(G; y, λ) ≤

(
1 + 1

R

)
N̂

also satisfies d(N̂ , ZIsing(G; y, λ)) ≤ 1
R . The deterministic algorithm referred to in Items 2 and 3

is trivial because the argument of a positive real number is 0. The approximation equivalence in
Item 4 is from [13], since one can decide in polynomial time the existence of perfect matchings
to lift the non-zero restriction. The hardness for ComplexApx-Nonzero-Ising(y) follows from
Lemma 8. The deterministic sign algorithm in Item 4 is from [15]. Item 5 is from Lemma 14 and
Corollary 16 and Lemma 8. Item 6 is from Corollary 20. Item 7 is from Corollary 22. Item 8 is
from Corollary 24. Item 9 is from Lemma 25. Finally, item 10 is from Lemma 26.

4 Quantum circuits and counting complexity

In this section we explain the connection between quantum computation and complex weighted
Ising models. We begin with some basic notions about quantum circuits. We view qubits |0⟩
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H

Figure 2: Gate H applying only
on the first qubit.
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Figure 3: Two quantum gates U1 and U2 composed to-
gether.

and |1⟩ as column vectors [ 10 ] and [ 01 ]. Similarly ⟨0| and ⟨1| are row vectors (1, 0) and (0, 1). For
x ∈ {0, 1}n, let |x⟩ denote the tensor product ⊗n

j=1|xj⟩ and ⟨x| is similar.
Suppose C is a quantum circuit on n qubits and consists of m quantum gates U1, . . . , Um

sequentially. A quantum gate is a function taking k input and k output variables and returning
a value in C. Such a gate is called k-local and has a natural 2k by 2k square unitary matrix
representation. In a circuit we also need to specify on which qubits the gate acts upon. To make
the notation uniform we view unaffected qubits as simply copied and associate each quantum gate
with the following 2n by 2n square unitary matrix. Let U be a quantum gate and x,y ∈ {0, 1}n
two vectors specifying the input and output on all n qubits. Define the 2n by 2n matrix MU

corresponding to gate U as MU ;x,y = U(x,y).
For example, let H be the Hadamard gate 1√

2

[
1 1
1 −1

]
acting on the first qubit and suppose

there are two qubits in total, illustrated as in Figure 2. Then the matrix MH is 1√
2

[
1 1
1 −1

]
⊗ [ 1 0

0 1 ] =

1√
2

[
1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

]
.

Using this notation, given an input x ∈ {0, 1}n, the output of the quantum circuit C is a
random variable Y subject to the distribution

PrC(Y = y) =

∣∣∣∣∣∣⟨y|
m∏
j=1

MUm+1−j |x⟩

∣∣∣∣∣∣
2

, (11)

where y ∈ {0, 1}n. It is not necessary that we measure all qubits in the output. We may measure
a subset I of all n qubits. Let y′ ∈ {0, 1}s where |I| = s. Then the output is a random variable
Y′ subject to the distribution

PrC;I(Y
′ = y′) =

∑
z∈{0,1}n such that z|I=y′

PrC(Y = z). (12)

Alternatively, we may treat such marginal probability in the counting perspective, as a partition
function in the “sum of product” fashion. First let us consider composing two quantum gates,
say U1 and U2. Let the input variables of U1 be x1, . . . , xn. Let z1, . . . , zn be the variables on the
wires between U1 and U2. Finally, let y1, . . . , yn be the outputs of U2. We use σ(x) to denote an
assignment of values in {0, 1} to the variables x1, . . . , xn. We use σ(y) and σ(z) similarly. Then
the composition U of U1 followed by U2 is given by

U(x,y) =
∑
σ(z)

U1(x, σ(z))U2(σ(z),y). (13)

Figure 3 illustrates the composition of gate U1 acting upon qubits 2, 3, 4 followed by U2 acting
upon 1, 2. In the matrix notation, it is easy to see that MU = MU1MU2 .

We now associate an intermediate variable zj,k to each edge on qubit k between gate Uj and
Uj+1 for all 2 ≤ j ≤ m − 1 and 1 ≤ k ≤ n. Denote by zj the vector {zj,k | 1 ≤ k ≤ n} and
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z = ∪m−1
j=2 zj. As the initial input and output of a quantum circuit are column vectors and row

vectors respectively, they may be treated as function/gates with no output variables or no input
variables. In particular, on the product input state |x⟩ input variables are set to {xk} where
x ∈ {0, 1}n. Using (13) recursively we can rewrite (11) as follows:

PrC(Y = y) =

∣∣∣∣∣∣
∑

σ:z→{0,1}

U1(x, σ(z1))Um(σ(zm−1),y)
m−1∏
j=2

Uj(σ(zj−1), σ(zj))

∣∣∣∣∣∣
2

. (14)

To simulate classically a quantum circuit, one can either (approximately) compute the proba-
bility PrC(Y = y) — this is called “strong simulation” — or one can sample from a distribution
that is sufficiently close to the one given by (11) or (14). This is called “weak simulation”

4.1 IQP and the Ising partition function

IQP, which stands for “instantaneous quantum polynomial time”, is characterised by a restricted
class of quantum circuits introduced by Shepherd and Bremner [25]. Bremner et al. [5] showed that
if IQP can be simulated classically in the sense of “weak simulation” with multiplicative error,
then the polynomial hierarchy collapses to the third level. Fujii and Morimae [11] showed that
the marginal probabilities of possible outcomes of IQP circuits correspond to partition functions
of Ising models with complex edge weights.

The key property of IQP is that all gates are diagonal in the |0⟩ ± |1⟩ basis. Therefore all
gates are commutable. In other words, there is no temporal structure and hence it is called
“instantaneous”. Let H be the Hadamard gate 1√

2

[
1 1
1 −1

]
. If a gate U is diagonal in the |0⟩ ± |1⟩

basis, there exists a diagonal matrix D such that MU = H⊗nDH⊗n. Moreover H is its own
inverse; That is, HH = I2. Any two H’s between each pair of gates cancel. This leads to an
alternative view of IQP circuit in which each qubit line starts and ends with an H gate and all
gates in between are diagonal.

Definition 28. An IQP circuit on n qubit lines is a quantum circuit with the following structure:
each qubit line starts and ends with an H gate, and all other gates are diagonal.

We will focus particularly on 1, 2-local IQP, which means that every intermediate gate acts on
1 or 2 qubits. It was shown that a classical weak simulation of 1, 2-local IQP with multiplicative
error implies the polynomial hierarchy collapse to the third level [5]. Let Z =

[
1 0
0 −1

]
. The hardness

of simulation holds even if we restrict gates to the phase gate ei(π/8)Z =
[
eiπ/8 0
0 e−iπ/8

]
and the

controlled Z-gate CZ =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]
other than H gates on two ends of each line. We will show

that this class of IQP circuits corresponds to Ising models with complex edge interactions and
that therefore the strong simulation of these circuits is #P-hard, even allowing an error of any
factor K > 1.

To show the relationship between these circuits and Ising partition functions, it is convenient

to use another set of gates. Let Pθ = eiθZ =
[
eiθ 0
0 e−iθ

]
and Rθ = eiθZ⊗Z =

[
eiθ 0 0 0
0 e−iθ 0 0
0 0 e−iθ 0
0 0 0 eiθ

]
. Note

from (11) that we may multiply a gate by any norm 1 constant without affecting the outcome of
the gate. By multiplying by e−iπ/4, we may decompose CZ as:

e−iπ/4

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]
=

[
eiπ/8 0 0 0
0 e−iπ/8 0 0
0 0 e−iπ/8 0
0 0 0 eiπ/8

]2 [
eiπ/8 0 0 0
0 e−iπ/8 0 0
0 0 eiπ/8 0
0 0 0 e−iπ/8

]14 [
eiπ/8 0 0 0
0 eiπ/8 0 0
0 0 e−iπ/8 0
0 0 0 e−iπ/8

]14
=
(
Rπ/8

)2 (
Pπ/8 ⊗ I2

)14 (
I2 ⊗ Pπ/8

)14
. (15)

Hence we can replace every CZ gate on qubits j, k by 2 copies of Rπ/8 on j, k, 14 copies of Pπ/8

on qubit j, and 14 Pπ/8 on qubit k. It is easy to see that Rπ/8 can be replaced by CZ and Pπ/8 as
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Input Output

|0〉 H • • H |0〉

|0〉 H • • H |1〉

|0〉 H • • • H |0〉

|0〉 H • Pθ H |1〉

Figure 4: An IQP1,2(θ) circuit. We use two
solid dots to denote Rθ gate as it is diagonal
and symmetric.

v1 v2

τ(v2) = −1

v3

v4

τ(v4) = −e−i2θ

ei2θ

ei2θ ei2θ

ei2θ

Figure 5: The equivalent Ising instance to
the circuit in Figure 4.

well. We may therefore assume every gate is either Pπ/8 on 1 qubit or Rπ/8 on 2 qubits without
changing the computational power of the circuit. In general we give the following definition.

Definition 29. An IQP1,2(θ) circuit on n qubit lines is a quantum circuit with the following
structure: each qubit line starts and ends with an H gate, and every other gate is either Pθ on 1
qubit or Rθ on 2 qubits. We assume the input state is always |0n⟩.

An example IQP1,2(θ) circuit is given in Figure 4.
The relationship between IQP1,2(θ) circuits and Ising models was first observed by Fujii and

Morimae [11]. These connections will be shown next. For completeness we include our own
proofs, which have a more combinatorial flavour than the original ones by Fujii and Morimae [11].
We introduce the following non-uniform Ising model which has been studied previously. See, for
example [26]. Let G = (V,E) be a (multi)graph. The edge interaction is specified by a function
φ : E → C and the external field is specified by a function τ : V → C. The partition function is
defined as

ZIsing(G;φ, τ) =
∑

σ:V→{0,1}

∏
e=(vj ,vk)∈E

φ(e)δ(σ(vj),σ(vk))
∏
v∈V

τ(v)σ(v), (16)

where δ(x, y) = 1 if x = y and δ(x, y) = 0 if x ̸= y. We write ZIsing(G; y, τ) when φ(e) = y
is a constant function and similarly ZIsing(G;φ, λ) when τ(v) = λ. Notice that this notation is
consistent with (1).

We will show that the following problem is related to Factor-K-StrongSimIQP1,2(θ) when
eiθ is a root of unity.

Name Factor-K-NormIQPIsing(θ).

Instance A (multi)graph G with an edge interaction function φ(−) taking value eiθ or e−iθ, and
an external field function τ so that for each vertex v there are non-negative integers av and bv
so that τ(v) = (−1)av

(
eiθ
)bv

or τ(v) = (−1)av
(
e−iθ

)bv
.

Output A rational number p such that |ZIsing(G;φ, τ)|/K ≤ p ≤ K|ZIsing(G;φ, τ)|.

We will first consider inputs to IQP1,2(θ) where I = [n] so all qubits are measured. Given an
IQP1,2(θ) circuit C on n qubits and a string y ∈ {0, 1}n, we can construct a non-uniform Ising
instance GC with edge interaction ei2θ and external field τC;y such that

PrC(Y = y) = 2−2n
∣∣ZIsing(GC ; e

i2θ, τC;y)
∣∣2 . (17)

The construction is as follows. The vertex set {vj} contains n vertices and each vertex corresponds
to a qubit. For each gate Rθ on two qubits j, k, add an edge (j, k) in GC . For qubit j, let pj be
the number of gates Pθ acting on qubit j in C. Let τC;y(vj) = e−i(2pjθ)(−1)yj . An example of the
construction is given in Figure 5.
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Lemma 30. Let C be an IQP1,2(θ) circuit on n qubits and y ∈ {0, 1}n be the output. Let GC

and τC;y be constructed as above. Then (17) holds.

Proof. Suppose C is composed sequentially by U1 = H⊗n, U2, . . . , Um−1, Um = H⊗n, where Uj

is either Pθ on 1 qubit or Rθ on 2 qubits for 2 ≤ j ≤ m− 1. Notice that U1(x,x
′) = Um(x,x′) =

2−n/2
∏n

k=1(−1)xkx
′
k . As the input |x⟩ = |0n⟩, we can rewrite (14):

PrC(Y = y) =

∣∣∣∣∣∣
∑

σ:z→{0,1}

U1(0, σ(z1))Um(σ(zm−1),y)

m−1∏
j=2

Uj(σ(zj−1), σ(zj))

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣2−n
∑

σ:z→{0,1}

n∏
k=1

(−1)0·σ(z1,k)
n∏

k=1

(−1)ykσ(zm−1,k)
m−1∏
j=2

Uj(σ(zj−1), σ(zj))

∣∣∣∣∣∣
2

= 2−2n

∣∣∣∣∣∣
∑

σ:z→{0,1}

n∏
k=1

(−1)ykσ(zm−1,k)
m−1∏
j=2

Uj(σ(zj−1), σ(zj))

∣∣∣∣∣∣
2

(18)

Let Q denote the quantity inside the norm, that is,

Q :=
∑

σ:z→{0,1}

n∏
k=1

(−1)ykσ(zm−1,k)
m−1∏
j=2

Uj(σ(zj−1), σ(zj)).

Since Uj ’s are diagonal for 2 ≤ j ≤ m− 1, any configuration σ with a non-zero contribution to Q
must satisfy that for any k, σ(z1,k) = σ(z2,k) = · · · = σ(zm−1,k). Therefore we may replace zj,k
by a single variable vk for all 1 ≤ j ≤ m− 1 so that

Q =
∑

σ:V→{0,1}

n∏
k=1

(−1)ykσ(vk)
m−1∏
j=2

Uj(σ(V ), σ(V )).

Moreover, if Uj is the gate Pθ on qubit k, then Uj(σ(V ), σ(V )) = eiθ
(
e−i2θ

)σ(vk). If Uj is the

gate Rθ on qubits k1 and k2, then Uj(σ(V ), σ(V )) = e−iθ
(
ei2θ
)δ(σ(vk1

),σ(vk2
))
, where δ(x, y) = 1

if x = y and δ(x, y) = 0 if x ̸= y. Recall that pk is the number of Pθ gates on qubit k and
τC;y(vk) = e−i(2pkθ)(−1)yk . Collecting all the contributions, we have

Q = ei(m1−m2)θ
∑

σ:V→{0,1}

(
ei2θ
)m(σ)

n∏
k=1

(−1)ykσ(vk)
(
e−i2θ

)pkσ(vk)

= ei(m1−m2)θ
∑

σ:V→{0,1}

(
ei2θ
)m(σ)

n∏
k=1

τC;y(vk)
σ(vk) (19)

= ei(m1−m2)θZIsing(GC ; e
i2θ, τC;y),

where mj is the number of j qubit(s) gates for j ∈ {1, 2}, and, from (1), m(σ) is the number of
monochromatic edges under σ. We get (17) by substituting (19) in (18).

Similar results hold when some qubits are not measured. To show it, we need the following fact.
It can be viewed as an application of Parsevals’s identity on the length-2n vector {Cz} indexed
by z ∈ {0, 1}n over an orthonormal basis {ez} where basis element ez has value 2−

n
2 (−1)z·z

′
in

position z′. We include a proof for completeness.

Claim 31. Let {Cz} be 2n complex numbers where z runs over {0, 1}n. Then we have

∑
z′∈{0,1}n

∣∣∣∣∣∣
∑

z∈{0,1}n

Cz(−1)z·z
′

∣∣∣∣∣∣
2

= 2n
∑

z∈{0,1}n

|Cz|2 .
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Proof. Notice that for two complex numbers A and B,

|A+B|2 + |A−B|2 =
(
|A|2 + |B|2 − 2|A||B| cos θ

)
+
(
|A|2 + |B|2 + 2|A||B| cos θ

)
= 2

(
|A|2 + |B|2

)
(20)

where θ is the angle from A to B. Hence we have

∑
z′∈{0,1}n

∣∣∣∣∣∣
∑

z∈{0,1}n

Cz(−1)z·z
′

∣∣∣∣∣∣
2

=
∑

z′∈{0,1}n

s.t. z′n=0

∣∣∣∣∣∣
∑

z∈{0,1}n

Cz(−1)z·z
′

∣∣∣∣∣∣
2

+
∑

z′∈{0,1}n

s.t. z′n=1

∣∣∣∣∣∣
∑

z∈{0,1}n

Cz(−1)z·z
′

∣∣∣∣∣∣
2

=
∑

y′∈{0,1}n−1

∣∣∣∣∣∣
∑

y∈{0,1}n−1

Cy0(−1)y·y
′
+

∑
y∈{0,1}n−1

Cy1(−1)y·y
′

∣∣∣∣∣∣
2

+

∑
y′∈{0,1}n−1

∣∣∣∣∣∣
∑

y∈{0,1}n−1

Cy0(−1)y·y
′
−

∑
y∈{0,1}n−1

Cy1(−1)y·y
′

∣∣∣∣∣∣
2

= 2
∑

y′∈{0,1}n−1


∣∣∣∣∣∣

∑
y∈{0,1}n−1

Cy0(−1)y·y
′

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

y∈{0,1}n−1

Cy1(−1)y·y
′

∣∣∣∣∣∣
2
 ,

where in the last line we apply (20). The claim holds by induction.

We then have the following reduction.

Lemma 32. Let K > 1 and θ ∈ [0, 2π). Then
Factor-K-StrongSimIQP1,2(θ) ≤T Factor-K2-NormIQPIsing(2θ).

Proof. If all qubits in the input to Factor-K-StrongSimIQP1,2(θ) are measured, then the result
follows from Lemma 30. Otherwise, without loss of generality we assume the first n− s qubits are
measured. Let C, I = [n−s] and y′ ∈ {0, 1}n−s be the input to Factor-K-StrongSimIQP1,2(θ).
We use (12), (18), and the first line of (19):

PrC;I(Y
′ = y′) =

∑
z′∈{0,1}s

PrC(Y = y′z′)

= 2−2n
∑

z′∈{0,1}s

∣∣∣∣∣ ∑
σ:V→{0,1}

(
ei2θ
)m(σ)

(
n∏

l=n−s+1

(−1)z
′
l−(n−s)σ(vl)

(
e−i2θ

)plσ(vl)

)
(

n−s∏
k=1

(−1)y
′
kσ(vk)

(
e−i2θ

)pkσ(vk)

)∣∣∣∣∣
2

= 2−2n
∑

z′∈{0,1}s

∣∣∣∣∣∣
∑

z∈{0,1}s

Qz(−1)z·z
′

∣∣∣∣∣∣
2

, (21)

where for z ∈ {0, 1}s, Qz is the contribution of assigning zl−n+s to vl without the possible −1
external field, that is,

Qz =
n∏

l=n−s+1

(
e−i2θ

)zl−n+spl
∑

σ:V→{0,1} such that
for n−s+1≤l≤n,σ(vl)=zl−n+s

(
ei2θ
)m(σ)

n−s∏
k=1

(−1)y
′
kσ(vk)

(
e−i2θ

)pkσ(vk)
.

Apply Claim 31 on (21):

PrC;I(Y
′ = y′) = 2−2n+s

∑
z∈{0,1}s

|Qz|2 . (22)
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v1 v2(v
′
2)

v3(v
′
3)v4

τ(v4) = −e−i2θ v′1

v′4
τ(v′

4
) = −ei2θ

ei2θ

ei2θ

ei2θ

e−i2θ

e−i2θ

e−i2θ

Figure 6: The equivalent Ising instance to the circuit in Figure 4, if qubits 2 and 3 are unmeasured.
The notation v2(v

′
2) indicates that vertices v2 and v′2 have been identified.

Moreover we have

|Qz|2 =

∣∣∣∣∣∣∣∣
∑

σ:V→{0,1} such that
for n−s+1≤l≤n,σ(vl)=zl−n+s

(
ei2θ
)m(σ)

n−s∏
k=1

(−1)y
′
kσ(vk)

(
e−i2θ

)pkσ(vk)

∣∣∣∣∣∣∣∣
2

.

We construct the following instance of Factor-K2-NormIQPIsing(2θ). We first construct
GC = (V,E) with edge interaction ei2θ as before. The vertex set {vj} contains one vertex for each
of the n qubits. For each gate Rθ on two qubits j, k we add edge (j, k) with edge interaction ei2θ

to GC . Now make a copy G′
C = (V ′, E′) such that the edge interaction is ei2θ = e−i2θ. Let φC;I

be this edge interaction function. Then we identify vertices vl with v′l for all n−s+1 ≤ l ≤ n. Let
U be the set of these identified vertices and let V1 = V − U and V ′

1 = V ′ − U . The external field

τ = τC;I,y′ is defined as follows: for any v ∈ U , τ(v) = 1; for any vj ∈ V1, τ(vj) = e−i(2pjθ)(−1)y
′
j ;

and for any v′j ∈ V ′
1 , τ(v

′
j) = τ(vj) = ei(2pjθ)(−1)y

′
j . Informally, this instance was formed by

putting GC and its complement together and identifying vertices that correspond to unmeasured
qubits. Note that if two vertices in U are connected by an edge, then they are actually connected
by two edges, and the product of the two edge interactions is 1. We therefore remove all edges
with both endpoints in U . Call the resulting graph HC . One can verify that (HC , φC;I , τC;I,y′) is
a valid instance of Factor-K2-NormIQPIsing(2θ). An example of the construction is given in
Figure 6.

Fix an assignment z ∈ {0, 1}s on U . The contribution Zz to ZIsing(HC ;φC;I , τC;I,y′) can be
counted in two independent parts, V and V ′. Hence we have

Zz =

 ∑
σ1:V1→{0,1}

(
ei2θ
)m∗(σ1,z)

n−s∏
j=1

τ(vj)
σ(vj)

 ·

 ∑
σ′
1:V

′
1→{0,1}

(
e−i2θ

)m′
∗(σ

′
1,z)

n−s∏
j=1

τ(vj)
σ(v′

j)


=

∣∣∣∣∣∣
∑

σ1:V1→{0,1}

(
ei2θ
)m∗(σ1,z)

n−s∏
j=1

τ(vj)
σ(vj)

∣∣∣∣∣∣
2

,

where given the configurations σ1 (or σ
′
1), m∗(σ1, z) (orm

′
∗(σ

′
1, z)) is the number of monochromatic

edges with at least one endpoint in V (or V ′). Recall that τ(vj) = e−i(2pjθ)(−1)y
′
j . Comparing
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Zz to |Qz|2, the only difference is that in |Qz|2, ei2θ is raised to the number of monochromatic
edges in the whole V instead of V1. However for any monochromatic edge in U , its contribution is
independent from the configuration σ, and hence can be moved outside of the sum. All such terms
are cancelled after taking the norm. This implies Zz = |Qz|2. Therefore (22) can be rewritten as

PrC;I(Y
′ = y′) = 2−2n+s

∑
z∈{0,1}s

Zz

= 2−2n+sZIsing(HC ;φC;I , τC;I,y′) = 2−2n+s|ZIsing(HC ;φC;I , τC;I,y′)|. (23)

The lemma follows from the above equation.

Remark 33. In fact, the construction of HC can be further simplified. If v ∈ V and v′ ∈ V ′

connect to some u ∈ U , we can replace edges (u, v) and (u, v′) by a new edge (v, v′) with an
Ising interaction 2

ei4θ+e−i4θ . (In case ei4θ + e−i4θ = 0 this interaction is equality and we identify
v with v′.) Therefore we can reduce an instance of Factor-K-StrongSimIQP1,2(θ) to an Ising
model of size linear in |I|, the number of measured qubits. If |I| = O(log n), then the reduced
Ising instance is tractable and so is the simulation. This matches the strong simulation result by
Shepherd (see [5, Theorem 3.4] , the remark following that theorem and also [24].)

The reduction also works in the other direction when eiθ is a root of unity.

Theorem 34. Let eiθ be a root of unity and let K > 1. Then
Factor-K-NormIQPIsing(2θ) ≡T Factor-K1/2-StrongSimIQP1,2(θ).

Proof. Lemma 32 implies a reduction from the right hand side to the left hand side. In the rest
of the proof we show the other direction. As eiθ is a root of unity, there exists a positive integer t
such that e−i2θ = ei2tθ. Given an instance (G,φ, τ) of Factor-K-NormIQPIsing(2θ), we may
replace each edge of interaction e−i2θ by t parallel edges of weight ei2θ. Moreover, we may assume

the external field is of the form τ(vj) = (−1)aj
(
e−i2θ

)bj
for the same reason.

We construct an IQP1,2(θ) circuit C on n = |V | qubits. For each edge (vj , vk) ∈ E, we add
a quantum gate Rθ on qubits j and k. For each 1 ≤ j ≤ n, we add bj many quantum gate
Pθ on qubits j and let the output yj = 1 on qubit j if aj is odd. By Lemma 30 we see that

22n PrC(Y = y) =
∣∣ZIsing(G; ei2θ, τ)

∣∣2.
Suppose the Ising instance in the proof of Theorem 34 has no external field and has a constant

edge interaction ei2θ. Then it is not hard to see that the above construction does not rely on eiθ

being a root of unity and works for general θ. Hence we have the following lemma.

Lemma 35. Let eiθ ∈ C and K > 1. Then
Factor-K-NormIsing(eiθ) ≤T Factor-K1/2-StrongSimIQP1,2(θ/2).

We can now prove our main result about IQP.

Theorem 3. Suppose K > 1 and θ ∈ (0, 2π). If eiθ is an algebraic complex number and ei8θ ̸= 1
then Factor-K-StrongSimIQP1,2(θ) is #P-hard.

Proof. This follows from Lemma 35 and Corollary 20.

We note that if ei8θ = 1, then Factor-K-StrongSimIQP1,2(θ) has a polynomial time al-
gorithm. By Theorem 34, Factor-K-StrongSimIQP1,2(θ) can be reduced to Factor-K2-
NormIQPIsing(2θ). If ei8θ = 1, then ei2θ is an integer power of i. Therefore both the edge
weight and the vertex weight of Factor-K2-NormIQPIsing(2θ) are powers of i. The algorithm
from [7] (affine-type) can be used to solve Factor-K2-NormIQPIsing(2θ). See also case 1 of
Theorem 6.

In a related result, Bremner et al. [5, Corollary 3.3] showed that weakly simulating IQP
with multiplicative error implies that the polynomial hierarchy collapses to the third level. More
precisely, their result is the following. Suppose C is an IQP1,2(π/8) circuit on n qubits. If there
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exists a classical randomized polynomial time procedure to sample a binary string Z of length n,
such that for every string y ∈ {0, 1}n and any constant 1 ≤ K <

√
2,

PrC(Y = y)/K ≤ Pr(Z = y) ≤ K PrC(Y = y),

then the polynomial hierarchy collapses to the third level. The usual measure for determining the
quality of a sampling procedure is total variation distance. The notion of total variation distances
is weaker than “multiplicative error” so the result in [5] does not rule out weak simulation with
small variation distance. To see this, note that, if the multiplicative error is K, then obviously the
total variation distance is at most K−1. On the other hand, consider two distributions supported
by two n-bit Boolean strings. A sample from the first distribution is obtained uniformly choosing
each of the n bits. A sample from the second distribution is obtained by uniformly choosing each
of the first n − 1 bits. The last bit is 1 if all other bits are 0, and is chosen uniformly otherwise.
The total variation distance is 2−n, but the multiplicative error is infinity at the all 0 string. Note
that the complexity implication “polynomial hierarchy collapses to the third level” is apparently
weaker than the consequence of strong simulation from Theorem 3, which is FP = #P.

Strong simulation is also studied with respect to other classes of quantum circuits, see for
example [19]. The allowable error is usually taken to be additive and exponentially small, instead
of the constant factors that we have studied here. For example, [19] requires that the output be
computed with k bits of precision in an amount of time that is polynomial in both k and the
size of the input. Additive error is quite different from multiplicative error. Also, the amount of
accuracy is important. Lemma 11 shows that there is no difference between a constant factor and
an FPRAS scenario, in which the error is allowed to be a factor of 1± 1/R for a unary input R.
On the other hand, achieving a multiplicative error of 1±1/ exp(R) is an entirely different matter.

5 BQP and the Tutte polynomial

Bordewich et al. [4] raised the question “of determining whether the Tutte polynomial is greater
than or equal to, or less than zero at a given point.” Thus, they raised the question of determining
the complexity of Sign-RealTutte(x, y). In fact, they were especially interested in the case
x = −t, y = −t−1 where t = exp(2πi/5).

We next show that resolving this case is a simple corollary of our results. After that, we will
discuss the motivation for considering this point (x, y) and its connection to the complexity class
BQP. We will also briefly discuss a relevant general result of Kuperberg [20], which resolves similar
questions by using three results about quantum computation — the Solovay-Kitaev theorem, the
FLW density theorem, and a result of Aaronson.

Motivated by connections to quantum computing, we consider the difficulty of the problem
Sign-RealTutte(x, y) when xy = 1. In particular, we study the points

(x, y) = (exp(−aπi/b), exp(aπi/b)),

where a and b are positive integers. If a ∈ {0, b/2, b, 3b/2} then the problem is trivial since (x, y)
is one of the so-called “special points” ((1, 1), (−1,−1), (−i, i) and (i,−i)) where evaluating the
Tutte polynomial is in FP [17]. We can assume without loss of generality that a < 2b since adding
2π to the argument of a complex number doesn’t change anything. We can now prove the main
result of this section.

Theorem 4. Consider the point (x, y) = (exp(−aπi/b), exp(aπi/b)), where a and b are positive
integers satisfying 0 < a/b < 2 and a ̸∈ {b/2, b, 3b/2}. If a is odd and cos(aπ/b) < 11/27 then
Sign-Real-NonzeroTutte(x, y) is #P-hard. Thus Sign-RealTutte(x, y) is also #P-hard.

Proof. We will use the fact that

q = (x− 1)(y − 1) = 2− x− y = 2− exp(−aπi/b)− exp(aπi/b) = 2− 2 cos(aπ/b),

which is real. Since 0 < a/b < 2 and a ̸∈ {b/2, b, 3b/2}, q ∈ (0, 4) and q ̸= 2.
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We implement (x′, y′) using a b-thickening from (x, y). Then, since a is an odd positive integer,

y′ = yb = exp(aπi) = −1.

So x′ = 1 + q/(y′ − 1) = 1− q/2 = cos(aπ/b).
Now since x′ < 11/27, [15, Theorem 1, Region F] shows that computing the sign of ZTutte(−; q, y′−

1) is #P-hard. As we showed in the argument that established Lemma 14 (see the paragraph
before the statement of the lemma), the same is true if the oracle returns any answer when the
value is 0.

Since x′ and y′ are not 1, (5) shows that it is also hard to compute the sign of T (x′, y′). The
result now follows from Observation 9.

Since − exp(−2πi/5) = exp(πi) exp(−2πi/5) = exp(3πi/5), we can take a = 3 and b = 5
to obtain Corollary 5, which says that Sign-Real-NonzeroTutte(1/y, y) is #P-hard for y =
− exp(−2πi/5).

Theorem 4 is very close to a special case of the following result of Kuperberg. A link is a
collection of smooth simple closed curves embedded in 3-dimensional space. VL(t) denotes the
Jones polynomial of a link L evaluated at point t. We do not need the detailed definition of the
Jones polynomial in order to state Kuperberg’s theorem.

Theorem 36. [20, Theorem 1.2] Let V (L, t) be the Jones polynomial of a link L described by a
link diagram, and let t be a principal root of unit other than exp(2πi/r) where r ∈ {1, 2, 3, 4, 5, 6}.
Let 0 < A < B be two positive real numbers and assume as a promise that either |V (L, t)| < A or
|V (L, t)| > B. Then it is #P-hard to decide which inequality holds. Moreover, it is still #P-hard
when L is a knot.

The connection is as follows. There is a result of Thistlethwaite [27] (see [17, (6.1)]), showing
that when L is an alternating link with associated planar graphG(L), then VL(t) = fL(t)T (G;−t,−t−1),
where fL(t) is an easily-computable factor which is plus or minus a half integer power of t. Thus,
the evaluation of Jones polynomial of an alternating link is an easily-computable multiple of an
evaluation of the Tutte polynomial along the hyperbola xy = 1 (where, for some value t, x = −t
and y = −t−1), as in Theorem 4. The importance of these evaluations is established in [4, Theo-
rem 6.1] which shows that all of the problems in the quantum complexity class BQP (consisting
of those decisions problems that can be solved by a quantum computer in polynomial time) can
also be solved classically in polynomial time using an oracle that returns the sign of the real part
of the Jones polynomial of a link, evaluated at the point t = exp(2πi/5) (the point studied in
Corollary 5).

Kuperberg’s theorem (Theorem 36) is incomparable to Theorem 4. In some respects, Theo-
rem 36 is more general — it does not have the restriction cos(aπ/b) < 11/27. Also, G(L) is always
planar, which is essential for the connection to BQP, and it applies to a wide range of A and B.
On the other hand, the most relevant case A = B = 0 (the one that relates to the BQP result of
[4]) is actually excluded from Theorem 36 since A and B must be different and positive. We are
not sure whether Kuperberg’s proof can be adapted to include this case, where the goal would be
to determine whether |V (L, t)| ≥ 0 or |V (L, t)| ≤ 0. This is covered by Theorem 4.

In any case, it seems interesting to note that the proof of Theorem 4 is combinatorial (about
Tutte polynomials only) whereas the proof of Theorem 36 is essentially about quantum compu-
tation. (Kuperberg describes it as “a mash-up of three standard theorems in quantum computa-
tion”.)

We refer the reader to [3] for more recent results giving BQP-hardness of multiplicative ap-
proximations of the Jones polynomial of the plat closure of a braid at roots of unity. Also, we
note that other works such as [12] have suggested the idea of using tractable planar evaluations of
these polynomials to give efficient classical simulations for special cases of quantum circuits.
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6 Ising with a field

In Section 6.2, we will extend our Ising hardness results from Theorems 1 and 2 to the situation
in which we have an external field λ ̸= 1. To obtain our hardness results, we need a lower bound
on the relevant partition functions.

6.1 Lower bounds on partition functions

Suppose we have two edge weights y and y′ that are close. It is easy to bound the distance between
ZIsing(G; y) and ZIsing(G; y′) additively, but not multiplicatively. To convert an absolute error into
a relative error, one needs some lower bound on the partition function. However, when the edge
interaction y is negative or complex, it is possible that the partition function vanishes. Assuming
that it doesn’t vanish, we would like to know how close to zero could it get. When y is rational, an
exponential lower bound is easy to obtain by a simple granularity argument, but the argument is
more difficult when y is not rational. In this section we give an exponential lower bound which is
valid when y is an algebraic number. The techniques that we use are standard in transcendental
number theory, see e.g. [6].

We begin with some basic definitions from [6]. For a polynomial with complex coefficients

P (x) =
n∑

i=0

aix
i = an

n∏
i=1

(x− αi),

the (naive) height of P (x) is defined as H(P ) := maxi{|ai|}. A more advanced tool, its Mahler
measure, is defined as

M(P ) := |an|
n∏

i=1

max{1, |αi|}.

There is a standard inequality relating these two measures. It is proved for complex polynomials
in [6, Lemma A.2]. For completeness, we include the proof (following [6]) for the case in which P (x)
is a real polynomial, which is all that we require.

Lemma 37. Let P (x) be a non-zero real polynomial of degree n. Then M(P ) ≤
√
n+ 1 H(P ).

Proof. First apply Jensen’s formula on P (x) and on the unit circle in the complex plane,

M(P ) = exp

{∫ 1

0

log |P (e2iπt)|dt
}
.

The convexity of exponential functions implies

M(P ) ≤
∫ 1

0

|P (e2iπt)|dt ≤
(∫ 1

0

|P (e2iπt)|2dt
)1/2

,

where the second inequality follows by the Cauchy-Schwarz inequality writing P (x) as f(x)g(x)
where g(x) = 1. The inner integral yields

∫ 1

0

|P (e2iπt)|2dt =
∫ 1

0


 n∑

j=0

aj cos(j · 2πt)

2

+

 n∑
j=0

aj sin(j · 2πt)

2
 dt

=
n∑

i=0

a2i + 2

∫ 1

0

∑
0≤j<k≤n

ajak(cos(j · 2πt) cos(k · 2πt) + sin(j · 2πt) sin(k · 2πt))dt

=

n∑
i=0

a2i + 2
∑

0≤j<k≤n

ajak

∫ 1

0

cos((j − k) · 2πt)dt =
n∑

i=0

a2i .

The claim holds as M(P ) ≤
(∑n

i=0 a
2
i

)1/2 ≤
√
n+ 1 H(P ).
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Let y ∈ C be an algebraic number and its minimal polynomial over Z is Py(x). The degree of
Py(x) is called the degree of y and H(Py) is called the height of y, also denoted H(y).

We also need the following notion of resultants.

Definition 38. Let P (x) = an
∏n

i=1(x − αi) and Q(x) = bm
∏m

i=1(x − yi) be two non-constant
polynomials. The resultant of P (x) and Q(x) is defined as

Res(P,Q) = amn bnm
∏

1≤i≤n

∏
1≤i≤m

(αi − yj).

It is a standard result that Res(P,Q) is an integer polynomial in the coefficients of P (x) and
Q(x). The resultant is also the determinant of the so-called Sylvester matrix. In particular, when
P (x) and Q(x) are integer polynomials, Res(P,Q) is always an integer, as the Sylvester matrix is
an integer matrix in this case. Moreover, we can rewrite the resultant as follows:

Res(P,Q) = amn
∏

1≤i≤n

Q(αi) = (−1)mnbnm
∏

1≤j≤m

P (yj).

Now we are ready to give a lower bound for any integer polynomial evaluated at an algebraic
number. It is a standard result in algebraic number theory. For completeness we provide a proof
here and the treatment is from [6, Theorem A.1].

Lemma 39. Let P (x) be an integer polynomial of degree n, and y ∈ C be an algebraic number of
degree d. Then either P (y) = 0 or

|P (y)| ≥ C−n
y ((n+ 1)H(P ))

−d+1
.

where Cy > 1 is an effectively computable constant that only depends on y.

Proof. Assume P (y) ̸= 0. Let Q(x) = bd
∏d

i=1(x−yi) be the minimal polynomial of y over Z with
y1 = y.

Suppose there is an j ̸= 1 such that P (yj) = 0. As Q(x) is the minimal polynomial of y, none
of yj could be a rational number. Hence there is an automorphism of the splitting field of Q(x)
that maps yj to y. Applying this automorphism on both sides of P (yj) = 0, we get P (y) = 0.
Contradiction!

Hence we have P (yi) ̸= 0 for all i and the resultant of P (x) and Q(x) is non-zero. Since
Res(P,Q) is an integer, we have

1 ≤ |Res(P,Q)| = |bd|n
∏

1≤i≤d

|P (yi)|.

Clearly, by triangle inequality we have |P (yi)| ≤ (n+ 1)H(P )(max{1, |yi|})n. It implies,

1 ≤ |P (y)||bd|n ((n+ 1)H(P ))
d−1

∏
2≤i≤d

(max{1, |yi|})n

= |P (y)| ((n+ 1)H(P ))
d−1

(
M(Q)

max{1, |y|}

)n

≤ |P (y)| ((n+ 1)H(P ))
d−1

(√
d+ 1H(y)

)n
where the last inequality follows from Lemma 37. Therefore we have

|P (y)| ≥ ((n+ 1)H(P ))
−d+1

(√
d+ 1H(y)

)−n

.

Let Cy =
√
d+ 1H(y) and the lemma holds.
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Lemma 40. Let G be a graph and y ∈ C a non-zero algebraic number of degree d. There exists
a positive constant C > 1 depending only on y such that if ZIsing(G; y) ̸= 0, then |ZIsing(G; y)| >
C−m, where m is the number of edges in G.

Proof. Given a graph G, first suppose that G is not connected, Gi’s are the components of G.
Then ZIsing(G; y)=

∏
iZIsing(Gi; y). It is easy to see that if the claim holds for all components it

hold for G as well. Therefore in the following we may assume G is connected. Then m ≥ n − 1
where n is the number of vertices.

We can rewrite ZIsing(G; y) as a polynomial in y as follows,

P (y) = ZIsing(G; y) =
m∑
i=0

Cjy
j ,

where Cj is the number of configurations such that there are exactly j many monochromatic edges.
Notice that

∑m
j=0 Cj = 2n, we have H(P ) ≤ 2n. Assume P (y) ̸= 0. Apply Lemma 39 and we

obtain

|P (y)| ≥ C−m
y ((m+ 1)H(P ))

−d+1

≥ (m+ 1)−d+1C−m
y 2−(d−1)n,

where Cy > 1 is a constant depending only on y. As m ≥ n − 1, the right hand side decays
exponentially in m and the lemma follows.

Lemma 41. Let G be a graph and y, z ∈ C two roots of unity. Let n be the number of vertices in
G and m the number of edges. There exists a positive constant C > 1 depending only on y and z
such that if ZIsing(G; y, z) ̸= 0, then |ZIsing(G; y, z)| > C−m.

Proof. As in the previous lemma we may assume G is connected and m ≥ n− 1. Suppose y is of
order d1 and z order d2. Let d be the least common multiple of d1 and d2. Then there exists a
root of unity w of order d such that y = wt1 and z = wt2 .

Given a graph G, we can rewrite ZIsing(G; y, z) as a polynomial in y and z as follows,

ZIsing(G; y, z) =

n∑
k=0

m∑
j=0

Cj,ky
jzk,

where Cj,k is the number of configurations such that there are exactly j many monochromatic
edges and k many 1 vertices. Let

P (w) = ZIsing(G; y, z) =
n∑

k=0

m∑
j=0

Cj,kw
t1j+t2k =

t1m+t2n∑
ℓ=0

C ′
ℓw

ℓ,

where C ′
ℓ =

∑
t1j+t2k=ℓ Cj,k. Notice that

∑t1m+t2n
ℓ=0 C ′

ℓ =
∑n

k=0

∑m
j=0 Cj,k = 2n, we have H(P ) ≤

2n. Assume P (w) ̸= 0. Apply Lemma 39 and we obtain

|P (w)| ≥ C−t1m−t2n
w ((t1m+ t2n+ 1)H(P ))

−d+1

≥ (t1m+ t2n+ 1)−d+1C−t1m−t2n
w 2−(d−1)n,

where Cw > 1 is a constant depending only on w. As m ≥ n − 1, the right hand side decays
exponentially in m and the lemma follows.

6.2 Hardness results

In this section we will show hardness results when both the edge interaction and external field are
roots of unity.
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We first consider the external field −1. We describe the edge interaction by specifying an

interaction matrix

[
n00 n01

n10 n11

]
, where nij is the weight when the two endpoints have spins i and

j, respectively. In this notation, a binary equality is

[
1 0
0 1

]
, and an Ising interaction with weight

y is

[
y 1
1 y

]
. Given a gadget with two distinguished vertices, we may view it as an edge and

compute its effective interaction matrix M . Then we say the gadget implements M . Also, recall
the definitions of k-stretch and k-thickening (Observation 9, for example).

Lemma 42. Let K > 1 and y ∈ C be an algebraic complex number such that y ̸= ±1. Then we
have Factor-K-Nonzero-NormIsing(y) ≤T Factor-K-Nonzero-NormIsing(y,−1).

Proof. We first argue that a binary equality can be implemented. Consider a 2-stretch with the
edge interaction y and external field −1. It is easy to calculate that the (effective) interaction

matrix is
[
y2−1 0

0 1−y2

]
. Then do a 2-thickening. The resulting matrix is

[
(y2−1)2 0

0 (1−y2)2

]
. Up to

a constant of (y2 − 1)2 this is equality.
Suppose G = (V,E) is an input to Factor-K-Nonzero-NormIsing(y). We introduce a new

vertex v′ for every vertex v ∈ V . Connect v and v′ via this equality gadget, that is, first a 2-stretch
and then a 2-thickening. Hence the external field on v is cancelled with this construction. The
reduction follows.

Next we consider the case when a real edge interaction can be implemented. If the norm of
the interaction is less than 1, then we can cancel out the external field.

Lemma 43. Let K > 1 and K ′ > 1. Let y and z be two roots of unity and z ̸= ±1. Suppose
some real number w ∈ (−1, 1) as an edge interaction is implementable for the Ising model with
edge interaction y and external field z. Then we have Factor-K-Nonzero-NormIsing(y) ≤T

Factor-(KK ′)-Nonzero-NormIsing(y, z).

Proof. LetG = (V,E) be an input to Factor-K-Nonzero-NormIsing(y). Assume ZIsing(G; y) ̸=
0 as otherwise we are done. Suppose |V | = n, |E| = m, and V = {vi|1 ≤ i ≤ n}.

Suppose w = 0, which means we can implement inequality (see the remark above Lemma 42).
For each vertex vi, we introduce a new vertex v′i and connect vi and v′i by the inequality. It is
easy to verify that if vi is assigned 0, the weight from vi and v′i together is z; when vi is assigned
1, the weight is also z. Hence the external field is effectively cancelled and the reduction follows.

Otherwise assume w ̸= 0, that is w ∈ (−1, 0) ∪ (0, 1). For each vertex vi, we introduce a new
vertex v′i, and add 2t many new edges between vi and v′i, where t is a positive integer which we
will choose later. By assumption we can implement the edge interaction w and we put it on all
new edges. Let V ′ = {v′i|1 ≤ i ≤ n} and we get a new graph G′ = (V ∪ V ′, E′).

For each vertex vi, the contribution of vi and v′i (to the partition function) together is w2t + z

when vi is assigned 0 and z(1 + w2tz) when vi is assigned 1. Let λ = z(1+w2tz)
w2t+z . Notice that

w2t + z ̸= 0 as |w| < 1 = |z|. We have

ZIsing(G
′; y, z) = (w2t + z)n

∑
σ:V→{0,1}

ym(σ)λn1(σ),

where m(σ) is the number of monochromatic edges in E under σ and n1(σ) is the number of
vertices in V that are assigned 1.

Let Z :=
∣∣∣ZIsing(G

′;y,z)
(w2t+z)n − ZIsing(G; y)

∣∣∣. We want to show that Z is exponentially small. Apply

32



the triangle inequality:

|Z| =

∣∣∣∣∣∣
∑

σ:V→{0,1}

ym(σ)(λn1(σ) − 1)

∣∣∣∣∣∣ ≤
∑

σ:V→{0,1}

∣∣∣ym(σ)(λn1(σ) − 1)
∣∣∣

=
∑

σ:V→{0,1}

∣∣∣λn1(σ) − 1
∣∣∣ = n∑

j=0

(
n

j

) ∣∣λj − 1
∣∣ , (24)

where we used the fact that |y| = 1. Let α = λ − 1 = z(1+w2tz)
w2t+z − 1 = w2t(z2−1)

w2t+z . As z2 − 1 ̸= 0

and w2t + z ̸= 0, |α| is decreasing exponentially in t. We may pick a positive integer t = O(log n)
such that ne|α| < 1. Applying the triangle inequality again for each 0 ≤ j ≤ n, we get

|λj − 1| = |
j∑

l=1

(
j

l

)
αl| ≤

j∑
l=1

(
j

l

)
|αl|

= (|α|+ 1)j − 1 ≤ (|α|+ 1)n − 1

=

n∑
l=1

(
n

l

)
|α|l ≤

n∑
l=1

(
ne|α|
l

)l

≤ n2e|α|, (25)

as
(

ne|α|
l

)l
is decreasing in l. Plugging (25) into (24) we have

|Z| ≤
n∑

j=0

(
n

j

)
n2e|α| = e2nn2|α|. (26)

Since ZIsing(G; y) ̸= 0, by Lemma 40, there exists a constant Cy > 1 such that |ZIsing(G; y)| >
C−m

y . Since |α| is decreasing exponentially in t, by (26), we may pick an integer t that is polynomial
in n (and sufficiently large with respect to K ′) such that

|Z| < K ′ − 1

K ′ C−m
y <

K ′ − 1

K ′ |ZIsing(G; y)|. (27)

By the definition of |Z| and again the triangle inequality we get

1

K ′ = 1− K ′ − 1

K ′ ≤ |ZIsing(G
′; y, z)|

|w2t + z|n|ZIsing(G; y)|
≤ 1 +

K ′ − 1

K ′ ≤ K ′.

This finishes the proof.

A similar proof works when the implementable real field has a larger than 1 norm. Basically
when this is the case we may power the external field z. If z is a root of unity then we could power
it to 1.

Lemma 44. Let K > 1 and K ′ > 1. Let y and z be two roots of unity and z ̸= ±1. Suppose some
real number w ∈ (−∞,−1)∪(1,∞) as an edge interaction is implementable for the Ising model with
edge interaction y and external field z. Then we have Factor-K-Nonzero-NormIsing(y, zr)
≤T Factor-(KK ′)-Nonzero-NormIsing(y, z) for any positive integer r.

Proof. Let G = (V,E) be an input to Factor-K-Nonzero-NormIsing(y, zr). Assume that
ZIsing(G; y, zr) ̸= 0 as otherwise we are done. Suppose |V | = n, |E| = m, and V = {vi|1 ≤ i ≤ n}.

For each vertex vi, we introduce r − 1 many new vertices vi,j , and add 2t many new edges
between vi and each vi,j , where j ∈ [r − 1] and t is a positive integer which we will choose later.
By assumption we can implement the edge interaction w and we put it on all new edges. Let
V ′ = {vi,j |1 ≤ i ≤ n, 1 ≤ j ≤ r − 1} and we get a new graph G′ = (V ∪ V ′, E′).
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For each vertex vi, the contribution of vi and all vi,j combined is
(
w2t + z

)r−1
when vi is

assigned 0 and z
(
1 + w2tz

)r−1
when vi is assigned 1. Let λ =

z(1+w2tz)
r−1

(w2t+z)r−1 . Notice that w2t+z ̸= 0

as |w| > 1 = |z|. We have

ZIsing(G
′; y, z) =

(
w2t + z

)n(r−1) ∑
σ:V→{0,1}

ym(σ)λn1(σ),

where m(σ) is the number of monochromatic edges in E under σ and n1(σ) is the number of
vertices in V that are assigned 1.

Let Z :=
∣∣∣ ZIsing(G

′;y,z)

(w2t+z)n(r−1) − ZIsing(G; y, zr)
∣∣∣. As the previous proof we show that Z is exponen-

tially small. Apply the triangle inequality:

|Z| =

∣∣∣∣∣∣
∑

σ:V→{0,1}

ym(σ)(λn1(σ) − zrn1(σ))

∣∣∣∣∣∣ ≤
∑

σ:V→{0,1}

∣∣∣ym(σ)(λn1(σ) − zrn1(σ))
∣∣∣

=
∑

σ:V→{0,1}

∣∣∣λn1(σ) − zrn1(σ)
∣∣∣ = n∑

j=0

(
n

j

) ∣∣λj − zrj
∣∣ , (28)

where we used the fact that |y| = 1. Let α = λ− zr =
z(1+w2tz)

r−1

(w2t+z)r−1 − zr = z
(
(z + µ)r−1 − zr−1

)
,

where µ = 1+w2tz
w2t+z − z = 1−z2

w2t+z ̸= 0. As z2 − 1 ̸= 0 and |w| > 1, |µ| decreases exponentially

in t. Pick a large enough integer t so that |µ| < 1. Hence |α| = |z||(z + µ)r−1 − zr−1| =

|
∑r−1

j=1

(
r−1
j

)
µjzr−1−j | ≤

∑r−1
j=1

(
r−1
j

)
|µj | < |µ|2r−1 by the triangle inequality. As |µ| decreases

exponentially in t, so does |α|.
Notice that |λ| = |zr + α| ≤ |z|r + |α| = 1 + |α|. Pick t large so that |α| < 1. Applying the

triangle inequality again for each 0 ≤ j ≤ n, we get

|λj − zrj | = |λ− zr|

∣∣∣∣∣
j−1∑
l=0

λlzr(j−1−l)

∣∣∣∣∣ ≤ |α|

(
j−1∑
l=0

∣∣∣λlzr(j−1−l)
∣∣∣)

= |α|

(
j−1∑
l=0

|λ|l
)

≤ |α|

(
j−1∑
l=0

(1 + |α|)l
)

< |α|

(
j−1∑
l=0

2l

)
< 2j |α| ≤ 2n|α|, (29)

as |z| = 1. Plugging (29) into (28) we have

|Z| <
n∑

j=0

(
n

j

)
2n|α| = 4n|α|. (30)

Since ZIsing(G; y, zr) ̸= 0, by Lemma 41, there exists a constant Cy,zr > 1 such that |ZIsing(G; y, zr)| >
C

−|E|
y,zr . Since |α| is decreasing exponentially in t, by (30), we may pick an integer t that is poly-

nomial in n (and sufficiently large with respect to K ′) such that

|Z| < K ′ − 1

K ′ C
−|E|
y,zr <

K ′ − 1

K ′ |ZIsing(G; y, zr)|. (31)

By the definition of |Z| and again the triangle inequality we get

1

K ′ = 1− K ′ − 1

K ′ ≤ |ZIsing(G
′; y, z)|

|w2t + z|n(r−1)|ZIsing(G; y, zr)|
≤ 1 +

K ′ − 1

K ′ ≤ K ′.

This finishes the proof.
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We will show how to implement a real edge interaction in the next lemma. Unless the norm
of the new interaction is 1, the hardness holds due to the previous two lemmas. The failure cases
are indeed polynomial-time computable.

Lemma 45. Let K > 1. Let y and z be two roots of unity such that y ̸∈ {1,−1, i,−i} and
z ̸∈ {1,−1}. Then Factor-K-Nonzero-NormIsing(y, z) is #P-hard.

Proof. Let y = eiθ and z = eiφ and θ, φ ∈ [0, 2π). Then θ ̸∈ {0, π/2, π, 3π/2} and φ ̸∈ {0, π}.
Since y is a root of unity, there exists an integer power of y that equals y−1. Hence we can

implement y−1 by thickenings. Then we implement a real interaction w(θ, φ) by the following
gadget. We replace every edge by two parallel gadgets: one is a 2-stretch with interaction y
(on both edges) and the other is also a 2-stretch but with y−1. Then we calculate the effective
edge interaction. When both endpoints are assigned 0, the contribution is (y2 + z)(1/y2 + z) =
1+z2+z(y2+1/y2). When both endpoints are assigned 1, the contribution is (y2z+1)(z/y2+1) =
1 + z2 + z(y2 + 1/y2) as well. When one endpoint is assigned 0 and the other 1, the contribution
is y(1+ z) · (1+ z)/y = (1+ z)2. Hence effectively on this edge the interaction is of the Ising type

and its weight is w(θ, φ) = 1+z2+z(y2+1/y2)
(1+z)2 .

We claim w(θ, φ) ∈ R. This is because

w(θ, φ) =
1 + z2 + z(y2 + 1/y2)

(1 + z)2
= 1 +

z(y2 + 1/y2 − 2)

(1 + z)2

= 1 +
(y − 1/y)2

z + 1/z + 2
= 1 +

−4 sin2 θ

2 cosφ+ 2

= 1− sin2 θ

cos2 φ
2

.

Notice that cos φ
2 ̸= 0 as φ ̸= 0, π. If |w| < 1, then we are done by combining Lemma 43 and

Corollary 20. Otherwise if |w| > 1, the lemma follows from Lemma 44 by powering z to 1, and
Corollary 20.

The failure case is |w(θ, φ)| = 1 and hence sin2 θ = 2 cos2 φ
2 or sin θ = 0. Note that sin θ = 0

implies y = ±1 which contradicts our assumption. It is easy to implement y2, which has argument
2θ. We then repeat the construction. If |w(2θ, φ)| ̸= 1, then it is reduced to previous cases.
Otherwise |w(2θ, φ)| = 1, implying that sin2 2θ = 2 cos2 φ

2 = sin2 θ or sin 2θ = 0. The latter

case is impossible as θ ̸∈ {0, π/2, π, 3π/2}. Hence sin2 2θ = sin2 θ. It is easy to show that
θ ∈ {π/3, 2π/3, 4π/3, 5π/3} as θ ̸= 0, π. Therefore 2 cos2 φ

2 = sin2 θ = 3/4. However cos2 φ
2 = 3/8

has no solution φ that is a rational fraction of π, which contradicts the fact that z is a root of
unity. This finishes the proof.

Lemma 46. Let K > 1. Let y = ±i and z be a root of unity that is not one of {1,−1, i,−i}.
Then Factor-K-Nonzero-NormIsing(y, z) is #P-hard.

Proof. Let y = eiθ and z = eiφ where θ, φ ∈ [0, 2π). As y = ±i, we have θ ∈ {π/2, 3π/2} and
z ̸∈ {1,−1, i,−i} implies φ ̸∈ {0, π/2, π, 3π/2}. We use the same w(θ, φ) ∈ R construction as in the
proof of Lemma 45. If |w(θ, φ)| = 0 then cos2 φ

2 = 1. This implies φ/2 ∈ {0, π} contradicting φ ̸∈
{0, π/2, π, 3π/2}. If |w(θ, φ)| = 1 then cos2 φ

2 = 1/2. This implies φ/2 ∈ {π/4, 3π/4, 5π/4, 7π/4}
also contradicting φ ̸∈ {0, π/2, π, 3π/2}. Hence we can implement a real edge interaction w(θ, φ)
such that |w(θ, φ)| ̸= 0, 1.

Note that w(θ, φ) = 1 − sin2 θ

cos2
φ
2

= 1 − 1/ cos2 φ
2 < 0. If w(θ, φ) ∈ (−1, 0), then we adopt

the construction in the proof of Lemma 43 to cancel the external field of z. Hence we can re-
duce Factor-K-Nonzero-NormIsing(w(θ, φ)) to Factor-(KK ′)-Nonzero-NormIsing(y, z)
for any constant K ′ > 1. The #P-hardness follows from Corollary 17.

Otherwise w(θ, φ) ∈ (−∞,−1), then we use Lemma 44 to power up the external field of z.
Instead of powering z to 1, we would like to pick a positive integer r such that w(θ, rφ) ∈ (−1, 0),
which reduces to the previous case. This is equivalent to 1

2 < cos2 rφ
2 < 1, which, in turn, is
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equivalent to rφ ∈ (0, π/2)∪ (3/2π, 2π) modulo 2π. Suppose φ = 2aπ
b where a, b are two co-prime

positive integers and b = 3 or b ≥ 5 since z ̸∈ {1,−1, i,−i}. Assume b ≥ 5 first. As a, b are
co-prime, there exist two integers l1 and l2 such that l1a+ l2b = 1 and l1 > 0. Let r = l1 and we
have rφ/2 = 2al1π

b = 2π
b − 2l2π. This choice of r meets the requirement since 2π

b ∈ (0, π/2).
The case left is when b = 3, in which case φ ∈ {2π/3, 4π/3}. We reduce Factor-K-Nonzero-

NormIsing(y,−z) to Factor-K-Nonzero-NormIsing(y, z). This suffices due to arg(−z) =
φ+ π, which is one of the previous cases.

Suppose G = (V,E) is an input to Factor-K-Nonzero-NormIsing(y,−z). Introduce a new
vertex v′ for each vertex v ∈ V . Since y = ±i, there exists a positive integer t such that yt = −1.
Connect v and v′ by t many new edges. We can calculate that the effective field of v in the new

graph (with respect to interaction y and field z) is z−z2

z−1 = −z. This finishes our proof.

We can now prove our main theorem about this model.

Theorem 6. Let K > 1. Let y and z be two roots of unity. Then the following holds:

1. If y = ±i and z ∈ {1,−1, i,−i}, or y = ±1, then ZIsing(−; y, z) can be computed exactly in
polynomial time.

2. Otherwise Factor-K-Nonzero-NormIsing(y, z) is #P-hard.

Proof. If y = ±1, then we can replace every edge interaction by two unary constraints. Hence
the problem is tractable for any external field. Consider next the case where y = ±i. If z ∈
{1,−1, i,−i}, the algorithm is from [7]. Otherwise, the hardness is from Lemma 46. Finally, for
the rest of the proof, we consider the case where y ̸∈ {1,−1, i,−i}. For z = 1, the hardness follows
from Corollary 20. For z = −1, the hardness is obtained by combining Lemma 42 and Corollary
20. Otherwise z ̸∈ {1,−1}, and the hardness follows from Lemma 45.
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