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Abstract

We study the computational complexity of counting problems, such as computing the partition

functions, in both the exact and approximate sense. In the first part of the dissertation, we

classify exact counting problems. We show a dichotomy theorem for Holant problems defined

by any set of symmetric complex-valued functions on Boolean variables in both general and

planar graphs. Problems are classified into three classes: those that are P-time solvable over

general graphs; those that are P-time solvable over planar graphs but #P-hard over general

graphs; those that remain #P-hard over planar graphs. It has been shown that in many other

contexts, holographic algorithms with matchgates capture all counting problems in the second

class. A surprising result is that we found a new class of tractable problems in the same class,

but cannot be captured by holographic algorithms with matchgates. In the course of proving

this dichotomy theorem, we also classify parity Holant problems and #CSP defined by any set

of symmetric complex-valued functions on Boolean variables.

Then we focus on approximating partition functions of 2-spin systems, including the famous

Ising model as a special case. We show a fully polynomial-time approximation scheme (FPTAS)

for anti-ferromagnetic 2-spin systems up to the tree uniqueness threshold. There is no such

algorithm beyond the threshold unless NP = RP [SS14]. We also generalize this hardness result

to bipartite graphs, with the exception that the Ising model without fields is approximable in bi-

partite graphs. This hardness result helps to establish some new imapproximability results for

ferromagnetic 2-spin systems [LLZ14a]. To complement those, we give near-optimal FPTAS in

certain regions of ferromagnetic 2-spin systems. Furthermore, we go beyond non-negative real

weights, and classify the computational complexity of the Ising model with complex weights.

Using such results, we draw conclusions about strong simulation of certain quantum circuits.
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Chapter 1

Introduction

1.1 Counting Problems and Complexity Classification

In this dissertation we study counting problems. A canonical example is #Sat, namely to count

the number of satisfying assignments of CNF formulas. #Sat can be viewed as a special case in

a more general framework, called counting constraint satisfaction problems (#CSP). An instance

of #CSP contains variables and constraints, and the goal is to count the number of assignments

satisfying all constraints. An equivalent formalism is to sum the weights over all possible

assignments, where the weight is 1 if it is satisfying and 0 otherwise. Moreover, we may de-

compose this weight into a product over all constraints, maintaining the same semantics. Thus

this sum-of-products quantity counts the number of satisfying assignment, which is usually

called the partition function. Recasting in these terms, it is natural to generalize to functions

taking values in Q, R, or C, rather than just {0, 1}. This is a really powerful framework, capable

of expressing many problems of counting local combinatorial structures, such as independent

sets or vertex covers.

The name “partition function” originated from the statistic physics literature. Its study

was initiated even before the formalization of polynomial time algorithms and computational

complexity. Many models have been proposed to study the interaction among particles, such

as the Ising model [Isi25]. The partition function is a crucial quantity for these models, as it

encodes a lot of information regarding the model. These statistical models later found a lot

of applications in computer science. Examples range from factor graphs in machine learning
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[WJ08], signal processing [For01], to the classical simulation of quantum computation [Val02b,

JV14]. The significance of these models is that they achieve the maximum entropy among

all models that are consistent with the data. After learning such models, one may want to

draw conclusions according to them. This is called statistical inference, and it often amounts

to computing the marginal probability, expectation, or entropy of random variables. These

tasks are equivalent to the evaluation of partition functions, and thus are essentially counting

problems.

Efficient algorithms of evaluating partition functions would have a lot of theoretical and

practical significance, but do they really exist? If there is not an universal one, then for what

problems do efficient algorithms exist? The formalization of this question dates back to 1979,

in which year Valiant [Val79b, Val79a] proposed the counting complexity class #P to capture

the apparent intractability of many natural counting problems. The class #P is the counting

counterpart to NP, that is, to count the number of certificates which can be verified in polyno-

mial time. Just like NP-hard problems, #P-hard problems are the most difficult ones in #P. It

is believed that #P-hard problems, including the aforementioned #Sat, do not admit efficient

algorithms. It is not surprising that #Sat is #P-hard, since its decision version is NP-hard. How-

ever, what surprises people is that problems, such as counting the number of perfect matchings

(#PM), whose decision counterparts have efficient algorithms, are still possible to be #P-hard

[Val79a].

One ultimate goal we pursue is to understand which problems are easy to count, and which

are not. In other words, we want to classify the computational complexity of counting prob-

lems. There can be several different meanings of an easy problem. The strongest sense is that

we have an efficient algorithm to compute the exact answer. This is the most desirable but least

likely one. In many contexts, we are content with good approximations. On the other hand, in

the absence of an separation between #P and FP (the function counterpart of P), #P-hardness

becomes our standard notion of computational intractability. After all, #P-hard problems are

very unlikely to have efficient algorithms. We also work under other standard complexity as-

sumptions, such as NP ≠ RP, when we are talking about the impossibility of efficient algorithms

in a weaker sense, such as approximations.

Some of the most intriguing efficient algorithms again come from statistical physics. In
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particular, the Fisher-Kasteleyn-Temperley (FKT) algorithm [TF61, Kas61, Kas67] is a classical

gem that counts perfect matchings over planar graphs in polynomial time. This was an impor-

tant milestone in a decades-long research program in statistical physics to determine what is

known as Exactly Solved Models [Bax82, Isi25, Ons44, Yan52, YL52, LY52, TF61, Kas61, Kas67,

Lie67, LS81, Wel93].

For four decades, the FKT algorithm stood as the polynomial-time algorithm for any count-

ing problem over planar graphs that is #P-hard over general graphs. Then Valiant introduced

matchgates [Val02b, Val02a] and holographic reductions to the FKT algorithm [Val08, Val06].

These reductions differ from classical ones by introducing quantum-like superpositions. This

novel technique extended the reach of the FKT algorithm and produced polynomial-time algo-

rithms for a number of problems for which only exponential-time algorithms were previously

known.

Since the new polynomial-time algorithms appear so exotic and unexpected, and since they

solve problems that appear so close to being #P-hard, they challenge our faith in the well-

accepted conjecture that P ≠ NP. Quoting Valiant [Val06]: “The objects enumerated are sets

of polynomial systems such that the solvability of any one member would give a polynomial

time algorithm for a specific problem. . . . the situation with the P = NP question is not dissim-

ilar to that of other unresolved enumerative conjectures in mathematics. The possibility that

accidental or freak objects in the enumeration exist cannot be discounted if the objects in the

enumeration have not been studied systematically.” Indeed, if any “freak” object exists in this

framework, it would collapse #P to FP.

Therefore, over the past 10 to 15 years, this technique has been intensely studied in order to

gain a systematic understanding to the limit of the trio of holographic reductions, matchgates,

and the FKT algorithm [Val02a, CC07, CCL09, CL10, Val10, CL11a, LMN13, Mor11, MM13, CG14].

Without settling the FP versus #P question, the best hope is to achieve a complexity classifi-

cation. This program finds its sharpest expression in a complexity dichotomy theorem, which

classifies every problem expressible in a framework as either solvable in polynomial time or

#P-hard, with nothing in between.

Assuming that FP ≠ #P, such a dichotomy does not hold for the whole class of #P, due to

an easy adaption of Ladner’s theorem [Lad75]. Nevertheless all known intermediate problems
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are unnatural and artificial. On the other hand, many natural problems are expressible as, for

example, #CSPs, which we have mentioned at the beginning of this section. Hence we usually

want to work within certain frameworks, such as the Tutte polynomial or #CSP, in order not

to ask overly general and vague questions. Unfortunately, there are some important problems,

like #PM, that are difficult to express as a point on the Tutte polynomial or as a #CSP. In fact,

#PM is provably beyond the reach of the special case of vertex assignment models [FLS07,

DGL+12, Sch13]. However, this is the problem for which FKT was designed, and is the basis of

Valiant’s matchgates and holographic reductions. To address this issue, a refined framework,

called Holant problems [CLX11a], was proposed. It is an edge assignment model. It naturally

encodes and expresses #PM as well as Valiant’s matchgates and holographic reductions, which

makes it the proper framework to study the power of holographic algorithms. It is also more

general than #CSP in the sense that a complete complexity classification for Holant problems

implies one for #CSP.

The first success in classifying the complexity of Holant problems was achieved in the parity

setting. The goal is to compute the partition function modulo 2, and the hardness is captured

by⊕P-hardness. In a joint paper with Lu and Valiant [GLV13], we showed a complete dichotomy

for symmetric Boolean functions. An interesting phenomenon is observed in this work, that

is, for some functions, the partition function is always even, which makes it 0 mod 2. We

call them vanishing signatures. Later, it turned out that the vanishing signatures are the last

missing piece in a complete computational complexity dichotomy of complex weighted Holant

problems [CGW13].

The dichotomy in [CGW13], despite being the culminating result of a long line of research

[CLX11a, CK12, CK13, CHL12, HL12], does not answer the question raised by Valiant, since it

does not tell us about the complexity when instances are restricted to planar graphs. With

respect to planar instances, a strong theme has emerged in research. For a wide variety of

problems, such as those expressible as a #CSP, holographic reductions to the FKT algorithm is

a universal technique for turning problems that are #P-hard in general to P-time solvable over

planar graphs. In fact, a preponderance of evidence suggests the following putative classifica-

tion of all counting problems defined by local constraints into exactly three categories:
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(1) those that are P-time solvable over general graphs;

(2) those that are P-time solvable over planar graphs but #P-hard over general graphs;

(3) those that remain #P-hard over planar graphs.

Moreover, category (2) consists of precisely those problems that are holographically reducible

to the FKT algorithm. This theme is so strong that it has become an intuitive and trusty guide

for us when we investigate unknown problems and plan proof strategies. Many of the results

were proved in this way. However, one is still left wondering whether the FKT algorithm is

universal, or more precisely, is the combined algorithmic power of the trio sufficient to capture

all tractable problems over planar graphs that are intractable in general? Supporting evidences

for this putative classification date back to the classification of the Tutte polynomial [Ver91,

Ver05]. It has also been an unfailing theme when classifying spin systems [Kow10, CKW12] and

#CSP [CLX10, GW13].

What catches us off guard is when we classify for the first time the complexity of Holant

problems over planar graphs in an recent paper [CFGW15], there are new planar tractable prob-

lems not expressible by a holographic reduction to matchgates and FKT. To the best of our

knowledge, this is the first primitive extension since FKT to a problem solvable in P over planar

instances but #P-hard in general. Furthermore, our dichotomy theorem says that this completes

the picture: there are no more undiscovered extensions for problems expressible in this frame-

work, unless #P collapses to FP. In particular, the putative form of the planar Holant dichotomy

is false. This complexity dichotomy generalizes both the dichotomy for Holant [HL12, CGW13]

and the dichotomy for planar #CSP [CLX10, GW13].

This new tractable class can be described as orientation problems. Given a planar graph,

we allow two kinds of vertices. The first kind can be either a sink or a source while the sec-

ond kind only allows one incoming edge. The goal is to compute the number of orientations

satisfying these constraints. This problem can be expressed in the Holant framework under

a transformation by
[

1 1
i −i

]
. It can be shown that this is equivalent to the Holant problem on

the (planar) edge-vertex incidence graph where we assign the Disequality function to every

edge, and to each vertex, we assign either the Equality function or the ExactOne function.

Suppose vertices assigned Equality functions all have degree k. If k = 2, then this problem
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can be solved by FKT. We show that this problem is #P-hard if k = 3 or k = 4, but is tractable

again if k ⩾ 5. The algorithm involves a recursive procedure that simplifies the instance until

it can be solved by known algorithms, including FKT. The algorithm crucially uses global topo-

logical properties of a planar graph, in particular Euler’s characteristic formula. If the graph is

not planar, then this algorithm does not work, and indeed the problem is #P-hard over general

graphs.

More generally, we allow vertices of arbitrary degrees to be assigned Equality. If all the

degrees are at most 2, then the problem is tractable by the FKT algorithm. Otherwise, the

complexity depends on the greatest common divisor (gcd) of the degrees. The problem is

tractable if gcd ⩾ 5 and #P-hard if gcd ⩽ 4. It is worth noting that the criterion for tractability

is not a degree lower bound. Moreover, the planarity assumption and the degree rigidity pose

a formidable challenge in the hardness proofs for gcd ⩽ 4.

If the graph is bipartite with Equality functions assigned on one side and ExactOne func-

tions on the other, then this is the problem of #PM over hypergraphs with planar incidence

graphs. Our results imply that the complexity of this problem depends on the gcd of the hy-

peredge sizes. The problem is computable in polynomial time when gcd ⩾ 5 and is #P-hard

when gcd ⩽ 4 (assuming there are hyperedges of sizes at least 3). For more details, see Section

6.4 and Theorem 6.16.

Coming back to the challenge of the P vs. NP question posed by Valiant’s holographic al-

gorithms, we venture the opinion that the dichotomy theorem provides a satisfactory answer.

Indeed, it would be difficult to conceive a world where #P is FP, and yet all this algebraic theory

can somehow maintain a consistent, sharp but faux division where there is none. (Consider the

following Gedankenexperiment: #P is really equal to P, but the Supreme Fascist keeps scores

on how much of #P we have learned to be in P. For every problem in this broad class that is

yet unknown to be in P the SF lets we prove it #P-hard—a superfluous notion really. Neverthe-

less for every problem in the class known to be in P, the SF makes sure our proof method for

#P-hardness on that problem fails, thus preventing one from making the ultimate discovery.)

In the first part of this dissertation, our main goal is to show the dichotomy theorem for

Holant problems, for both general and planar graphs. This is summarized as Theorem 6.17.

In Chapter 1, starting from Section 1.3, we give necessary definitions and useful background
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knowledge. In Chapter 2, we show the dichotomy for Holant problems modulo 2. In Chapter

3, we give a dichotomy for a single arity-4 function. In Chapter 4, a dichotomy for planar #CSP

is shown. In Chapter 5, we examine more closely about what holographic transformations can

do for tractable problems, and show some related hardness results. Finally in Chapter 6, we

give the main dichotomy, Theorem 6.17. Results in Chapter 2 are joint work with Pinyan Lu

and Leslie G. Valiant [GLV13]. To ensure the best presentation, results taken from four papers

[CGW13, GW13, CGW14, CFGW15] are blended and reported in Chapters 3, 4, 5, and 6. These

are joint work with Jin-Yi Cai, Zhiguo Fu, and Tyson Williams.

1.2 Approximate Counting

One thing that seems unfortunate, indicated by dichotomy theorems described in the previous

section, is that algorithms for exact counting are rather scarce. The vast majority of counting

problems are #P-hard. However, the pursuit of efficient counting algorithms does not stop

there. In practice, people use algorithms like belief propagation or the junction-tree algorithm,

which either works as intended only in restricted settings, or requires exponential running time

on certain instances.

For provable efficient algorithms, a celebrated result is by Jerrum et al. [JS89, JSV04], which

gives a fully polynomial time randomized approximation scheme (FPTAS) for the permanent of a

non-negative matrix. Computing the permanent is the first nontrivial example of #P-hardness

given by Valiant [Val79a]. The algorithm is based on a Markov Chain Monte Carlo (MCMC)

sampling scheme, a technique which has its own long and fruitful history in statistical physics.

Since then, this MCMC technique is studied extensively and broadly. Examples include, but are

not limited to, approximately counting the number of proper colorings [Vig00], independent

sets [DG00b], and to approximate the volume of a convex body [DFK91], etc.

Powerful as they are, MCMC algorithms do not always give the optimal bounds on many

problems, at least not with the current analysis tools available. For example, the best Markov

chain to sample independent sets works when the graph has a degree bound of 4 [DG00b],

whereas a breakthrough result by Weitz [Wei06] showed that it is possible to approximately

count the number of independent sets when the degree bound is 5. Weitz’s idea involves a novel
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technique called correlation decay or strong spatial mixing, which asserts that the correlation

among variables of the system decays exponentially fast in distance. When this is the case,

we can recursively compute the marginal probability by unfolding the original instance into

an exponentially large tree with early truncation as the influence below is small. This idea of

approximate counting without sampling is independently introduced by Bandyopadhyay and

Gamarnik [BG08] as well.

Counting independent sets is a special case of the partition function of the hardcore gas

model, in which the same independence constraint is applied and each vertex is assigned a

weight (also called fugacity or activity) when it is chosen. The hardcore gas model, in turn, is

a special case of the more general 2-state spin systems. Spin systems are some of the most

fundamental statistical physics systems. The goal is to model nearest neighbour interactions.

For a 2-spin system and an underlying graph, we assign “+” or “-” spins to vertices. On each edge

there is an interaction between the two endpoints, depending on their spins. This interaction

may be contractive, where the system is called ferromagnetic, or repulsive, where it is called

anti-ferromagnetic. The system is often equipped with an external field as well, which favors

toward one spin or the other. We use a matrix
[
β 1
1 γ

]
to denote the symmetric edge interaction,

and a vector
[
λ
1

]
to denote the external field. Then ferromagnetic systems have βγ > 1 and

anti-ferromagnetic βγ < 1. For the hardcore model, the edge interaction is
[

0 1
1 1

]
, banning all

(+,+) edges, and the external field is
[
λ
1

]
, where λ is the vertex weight when it is chosen (or

assigned “+”). Another famous model in this framework is the Ising model [Isi25], where the

edge interaction is totally symmetric
[
β 1
1 β

]
.

One important phenomenon statistical physicists discovered is the phase transition, namely

that these systems undergo a drastic change of behaviors as parameters change. The system

may have disordered or ordered phases, depending on the uniqueness of the so-called Gibbs

measures. The breakthrough by Weitz [Wei06] first illustrated that it is possible to get an FPTAS

for the hardcore gas model all the way up to this uniqueness threshold in infinite regular trees

(also known as the Bethe lattice or the Cayley tree). Weitz’s algorithm is later generalized to all

anti-ferromagnetic 2-spin models by Sinclair et al. [SST12] and Li et al. [LLY12, LLY13]. Some of

my unpublished results are combined with [LLY12, LLY13] for a journal submission [GLLY15].

On the other hand, when the correlation decay fails, there are gadgets to realize some long
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range correlation. In these gadgets, typical configurations are ordered, in the sense that they

favor one part of the graph or the other. We then can use these ordered phases to simulate

states of other problems, and show that the original problem is hard to even approximate. The

first tight result of this sort is due to Sly [Sly10], building upon a series of work [DFJ02, MWW09],

showing that there is no FPRAS unless NP = RP for the hardcore gas model in a small interval

beyond the uniqueness threshold in infinite regular trees. It is later improved by [GGS+14] for

the hardcore model to all fields beyond the uniqueness threshold for most degrees, and by us

[CCGL12] for all anti-ferromagnetic 2-spin systems to beyond the uniqueness threshold multi-

plied by a constant factor. It is finally confirmed [GŠV12, SS14] that this hardness always holds

beyond the uniqueness threshold. Thus, a beautiful connection between the computational

complexity transition and the phase transition of statistical systems has been established.

The 2-state spin models can be viewed as the simplest case of #CSP, namely with only one

binary symmetric function, and a possibly unary function with respect to the field. Similar to

exact counting, a lot of research has been devoted to classify the computational complexity

of approximating counting problems. An important open question emerges from these work,

which is counting independent sets in bipartite graphs (#BIS). There is no known efficient al-

gorithm for #BIS, nor is there any hardness reduction. It is conjectured that neither is the

case [DGGJ03]. For instance, there is a whole class of #CSP problems that are equivalent to

#BIS in approximation [BDG+13, CDG+15], and approximating the ferromagnetic Potts model

(a higher domain version of the Ising model) is shown to be at least as hard as #BIS [GJ12a]. The

intriguing feature of #BIS is that all previous hardness reductions break, due to the bipartite

structure. Striving for a better understanding of #BIS, we [CGG+14] showed that beyond the

uniqueness threshold, anti-ferromagnetic 2-spin systems in bipartite graphs are no easier to

approximate than #BIS, except for Ising models without external field, which can be reduced

to ferromagnetic Ising models and thus have FPRASes [JS93]. In particular, #BIS with degree

bound 6 is as hard to approximate as #BIS itself. Our results would hopefully shed some light

on the approximation complexity of #BIS in future.

Although not solving the problem #BIS, our result in [CGG+14] does help classifying fer-

romagnetic 2-spin models (βγ > 1). All ferromagnetic 2-spin models are #BIS-easy [GJ07].

Thus #BIS-hardness is the best lower bound one should hope for. Building upon our results in
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[CGG+14], Liu et al. [LLZ14a] showed some unexpected #BIS-hardness for ferromagnetic 2-spin

models, especially for the case of β ⩽ 1 < γ. Recently, we [GL15] have obtained a complemen-

tary correlation decay based algorithm for β ⩽ 1 < γ as well, for external fields λ ⩽
(
γ
β

)∆c+1
2

,

where ∆c =
√
βγ+1√
βγ−1

, improving upon previously best known bound λ ⩽ γ
β

[LLZ14a]. This is al-

most optimal, since if we allow all external fields in the range of (0, λ) for some λ >
(
γ
β

) ⌈∆c⌉+1
2

,

then the problem is #BIS-hard [LLZ14a, CGG+14]. Interestingly, we also provide evidence that

neither
(
γ
β

)∆c+1
2

is the tight bound for approximability, nor is
(
γ
β

) ⌈∆c⌉+1
2

tight for the failure of

correlation decay.

Prior to this point, all results mentioned in this section are about non-negative weighted

counting problems. In a recent paper [GG14], we studied the Ising model with complex param-

eters. In addition to its intrinsic mathematical interest, the complex weighted Ising model has

connections to a quantum complexity class called IQP [SB09, BJS11], which stands for “Instanta-

neously Quantum Polynomial-time”. What we are interested in is to approximate the norm and

the argument of the partition function. We show that for most parameters in the absence of

external fields, these problems are NP-hard to approximate. In fact, we also show an interesting

stronger results that for many of these parameters, even approximation is #P-hard. (Note that

all problems in #P can be approximated with an NP oracle [DGGJ03].) We also gave a complete

classification when the edge interaction and the external field are both roots of unity, cases

relating to BQP. Our work implies some new hardness results about classically simulating IQP

circuits in the strong sense.

The second part of this dissertation, starting from Chapter 7, focuses upon approximate

counting, and is organized as follows. In Chapter 7 we give necessary backgrounds and de-

fine problems, as well as show the algorithm for all anti-ferromagnetic 2-spin systems up to

the uniqueness threshold. In Chapter 8 we explain the complementary hardness results, and

generalize them to bipartite graphs. In Chapter 9 we present the improved algorithm for fer-

romagnetic 2-spin systems. In Chapter 10 complex weighted Ising models are studied. Results

presented in Chapter 7 are mostly from [GLLY15] and are joint work with Liang Li, Pinyan Lu,

and Yitong Yin. Results in Chapter 8 are published in [CGG+14] and are joint work with Jin-Yi

Cai, Andreas Galanis, Leslie Ann Goldberg, Mark Jerrum, Daniel Štefankovič, and Eric Vigoda.
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Chapter 9 is summarized in [GL15], joint work with Pinyan Lu. Results in Chapter 10 are from

[GG14], joint work with Leslie Ann Goldberg.

1.3 Problems and Definitions

In the rest of this chapter we will define problems to be studied in the context of exact counting

and prove some necessary background knowledge. For approximate counting, see Chapter 7

and later.

The framework of Holant problems is defined for functions mapping any [q]n → R for a

finite q and some commutative semiring R. We investigate Boolean Holant problems, that is, the

domain size q is 2. We are interested in complex-weighted functions [2]n → C throughout this

dissertation, as well as parity functions [2]n → Z2 in Chapter 2. For consideration of models

of computation, complex functions take algebraic values.

We allow multigraphs, that is, graphs may have self-loops and parallel edges. A graph

without self-loops or parallel edges is a simple graph. Fix a set of local constraint functions

F. A signature grid Ω = (G,π) consists of a graph G = (V ,E), where π assigns to each vertex

v ∈ V and its incident edges some fv ∈ F and its input variables. We say that Ω is a planar

signature grid if G is planar, where the variables of fv are ordered counterclockwise starting

from an edge specified by π. The Holant problem on instance Ω is to evaluate

Holant(Ω;F) =
∑
σ

∏
v∈V

fv(σ |E(v)),

a sum over all edge assignments σ : E→ {0, 1}, where E(v) denotes the incident edges of v and

σ |E(v) denotes the restriction of σ to E(v). We write G in place of Ω when π is clear from the

context. We also sometimes write HolantΩ instead of Holant(Ω;F) when F is clear from the

context.

A Holant problem is defined by a set F of signatures.

Name Holant(F)

Instance A signature grid Ω = (G,π).

Output Holant(Ω;F).
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The problem Pl-Holant(F) is defined similarly using a planar signature grid.

We allow F to be an infinite set. For Holant(F) (or Pl-Holant(F)) to be tractable, the problem

must be computable in polynomial time even when there exists an effective description of

every signature in F, and these descriptions are considered part of the input. In contrast, we

say Holant(F) is #P-hard if there exists a finite subset of F for which the problem is #P-hard.

We say a signature set F is tractable (resp. #P-hard) if the corresponding counting problem

Holant(F) is tractable (resp. #P-hard). Similarly for a signature f, we say f is tractable (resp. #P-

hard) if {f} is. We follow the usual conventions about polynomial time Turing reduction ⩽T and

polynomial time Turing equivalence ≡T .

A function fv can be represented by listing its values in lexicographical order as in a truth

table, which is a vector in C2deg(v)
, or as a tensor in (C2)⊗deg(v). A function is symmetric if its

output depends only on the Hamming weight of its input. A symmetric function f of arity n can

be expressed as [f0, f1, . . . , fn], where fw is the value of f on inputs of Hamming weight w. This

is the signature of f, and we also use the two words “function” and “signature” interchangeably.

We study symmetric functions in most cases, but we do go beyond if necessary.

An example of symmetric signatures is the Equality signature =n of arity n, which can be

expressed as [1, 0, · · · , 0, 1]. Let EQ = {=n| n ∈ N}. Another example is the ExactOne signature

EOn of arity n, which can be expressed as [0, 1, 0, · · · , 0]. Let EO = {EOn | n ∈ N}. Then

Holant(EO) is the problem of counting perfect matchings.

A signature f of arity n is degenerate if there exist unary signatures uj ∈ C2 (1 ⩽ j ⩽ n)

such that f = u1⊗ · · · ⊗un. It is equivalent to replace f by u1, . . . ,un, ordered appropriately. If

a degenerate signature f is symmetric, then there exists an unary u such that f = u⊗n.

Replacing a signature f ∈ F by a constant multiple cf, where c ̸= 0, does not change the

complexity of Holant(F). It introduces a global nonzero factor to Holant(Ω;F). We may say we

obtain a signature f when in fact we have obtained a signature cf for some c ̸= 0.
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1.4 Useful Reductions

Holographic Reduction

One key technique for Holant problems is holographic reductions. To introduce the idea, it is

convenient to consider bipartite graphs. For a general graph, we can always transform it into

a bipartite graph while preserving the Holant value as follows. For each edge in the graph, we

replace it by a path of length two. (This operation is called the 2-stretch of the graph and yields

the edge-vertex incidence graph.) Each new vertex is assigned the binary Equality signature

(=2) = [1, 0, 1].

We use Holant (F | G) to denote the Holant problem over signature grids with a bipartite

graph H = (U,V ,E), where each vertex in U or V is assigned a signature in F or G, respec-

tively. Signatures in F are considered as row vectors (or covariant tensors); signatures in G are

considered as column vectors (or contravariant tensors) (see, for example [DP91]). Similarly,

Pl-Holant (F | G) denotes the Holant problem over signature grids with a planar bipartite graph.

For a 2-by-2 matrix T and a signature set F, define TF = {g | ∃f ∈ F of arity n, g = T⊗nf},

and similarly for FT . Whenever we write T⊗nf or TF, we view the signatures as column vectors;

similarly for fT⊗n or FT as row vectors. In the special case that T =
[

1 1
1 −1

]
, we use F̂ to denote

TF.

Let T be an invertible 2-by-2 matrix. The holographic transformation defined by T is the

following operation: given a signature grid Ω = (H,π) of Holant (F | G), for the same bipartite

graph H, we get a new grid Ω ′ = (H,π ′) of Holant
(
FT | T−1G

)
by replacing each signature in F

or G with the corresponding signature in FT or T−1G.

Theorem 1.1 (Valiant’s Holant Theorem [Val08]). If T ∈ C2×2 is an invertible matrix, then we

have Holant(Ω;F | G) = Holant(Ω ′;FT | T−1G).

Therefore, an invertible holographic transformation does not change the complexity of the

Holant problem in the bipartite setting. Furthermore, there is a special kind of holographic

transformation, the orthogonal transformation, that preserves the binary equality and thus

can be used freely in the standard setting.
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Theorem 1.2 (Theorem 2.6 in [CLX11a]). If T ∈ O2(C) is an orthogonal matrix (i.e. TTT = I2),

then Holant(Ω;F) = Holant(Ω ′; TF).

We frequently apply a holographic transformation defined by the matrix Z = 1√
2

[
1 1
i −i

]
(or

sometimes without the nonzero factor of 1√
2

since this does not affect the complexity). This

matrix has the property that the binary Equality signature (=2) = [1, 0, 1] is transformed to

[1, 0, 1]Z⊗2 = [0, 1, 0] = (≠2), the binary Disequality signature.

By Theorem 1.1, we have that

Holant(F) ≡ Holant
(
[1, 0, 1]T⊗2 | T−1F

)
Pl-Holant(F) ≡ Pl-Holant

(
[1, 0, 1]T⊗2 | T−1F

)
,

where T ∈ GL2(C) is nonsingular. This leads to the notion of C-transformable.

Definition 1.3. Let F and C be two sets of signatures. We say F is C-transformable if there exists

a T ∈ GL2(C) such that [1, 0, 1]T⊗2 ∈ C and F ⊆ TC.

The following lemma is immediate.

Lemma 1.4. If F is C-transformable, then we have the following reductions.

Holant(F) ⩽T Holant(C);

Pl-Holant(F) ⩽T Pl-Holant(C).

Clearly, if Holant(C) or Pl-Holant(C) is tractable, then Holant(F) or Pl-Holant(F) is tractable

for any C-transformable set F.

Counting Constraint Satisfaction Problems

From the bipartite perspective, it is easy to express counting constraint satisfaction problems

(#CSP) in the Holant framework. An instance of #CSP(F) has the following bipartite view. Create

a vertex for each variable and each constraint. Connect a variable vertex to a constraint vertex

if the variable appears in the constraint. This bipartite graph is also known as the constraint
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graph. Moreover, each variable can be viewed as an Equality function, as it forces the same

value for all adjacent edges. Under this view, we see that

#CSP(F) ≡T Holant (EQ | F) ,

where EQ = {=1,=2,=3, . . . } is the set of Equality signatures of all arities. By restricting to

planar constraint graphs, we have the planar #CSP framework, which we denote by Pl-#CSP.

The construction above also shows that Pl-#CSP(F) ≡T Pl-Holant (EQ | F).

For any positive integer d, the problem #CSPd(F) is the same as #CSP(F) except that every

variable appears a multiple of d times. Similarly for Pl-#CSPd(F). Clearly #CSP1(F) is the same

as #CSP(F). We also have that,

#CSPd(F) ≡T Holant (EQd | F)

Pl-#CSPd(F) ≡T Pl-Holant (EQd | F) ,

where EQd = {=d,=2d,=3d, . . . } is the set of Equality signatures of arities that are a multiple

of d. Furthermore, if d ∈ {1, 2}, then we have

#CSPd(F) ≡T Holant(EQd ∪ F)

Pl-#CSPd(F) ≡T Pl-Holant(EQd ∪ F). (1.1)

Reductions from left to right are trivial. For the other direction, we take a signature grid Ω for

the problem on the right and create a bipartite signature grid Ω ′ for the problem on the left

such that both signature grids have the same Holant value. We simply create the bipartite grid

Ω ′′ of Ω as described earlier. Then we contract all Equality signatures that are connected

with each other, resulting in Ω ′ where Equality signatures are on one side and signatures

from F on the other. If d = 1, then this is an instance of #CSP(F) (or Pl-#CSP(F)). If d = 2, then

every Equality inΩ ′′ is of even arity and contraction keeps parity. HenceΩ ′ is an instance of

#CSP2(F) (or Pl-#CSP2(F)).
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Figure 1.1: An F-gate with 5 dangling edges.

Realization

One basic notion used extensively is realization. We say a signature f is realizable (or con-

structible, implementable) from a signature set F if there is a gadget with some dangling edges

such that each vertex is assigned a signature from F, and the resulting graph, when viewed as

a black-box signature with inputs on the dangling edges, is exactly f. If f is realizable from a

set F, then we can freely add f into F while preserving the complexity.

Formally, such a notion is defined by an F-gate [CLX10]. An F-gate is similar to a signature

grid (G,π) for Holant(F) except that G = (V ,E,D) is a graph with some dangling edges D. The

dangling edges define external variables for the F-gate. (See Figure 1.1 for an example.) We

denote the regular edges in E by 1, 2, . . . ,m and the dangling edges in D by m + 1, . . . ,m + n.

Then we can define a function Γ for this F-gate as

Γ(y1, . . . ,yn) =
∑

x1,...,xm∈{0,1}

H(x1, . . . , xm,y1, . . . ,yn),

where (y1, . . . ,yn) ∈ {0, 1}n is an assignment on the dangling edges andH(x1, . . . , xm,y1, . . . ,yn)

is the value of the signature grid on an assignment of all edges in G, which is the product of

evaluations at all internal vertices. We also call this function Γ the signature of the F-gate.

An F-gate is planar if the underlying graph G is a planar graph, and the dangling edges,

ordered counterclockwise corresponding to the order of the input variables, are in the outer

face in a planar embedding. A planar F-gate can be used in a planar signature grid as if it is

just a single vertex with the particular signature.

Using the idea of F-gates, we can reduce one planar Holant problem to another. Suppose g

is the signature of some F-gate. Then Holant(F ∪ {g}) ⩽T Holant(F). The reduction is simple.
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Given an instance of Holant(F ∪ {g}), by replacing every appearance of g by the F-gate, we get

an instance of Holant(F). Since the signature of the F-gate is g, the Holant values for these two

signature grids are identical. This reduction clearly applies to the planar setting as well.

Although our main result is about symmetric signatures, some of our proofs utilize asym-

metric signatures. When a gadget has an asymmetric signature, we place a diamond on the edge

corresponding to the first input. The remaining inputs are ordered counterclockwise around

the vertex.

We note that even for a very simple signature set F, the signatures for all F-gates can be

quite complicated and expressive.

1.5 Tractable Signature Sets

We summarize several known sets of tractable Boolean functions with complex weights. The

first one is very simple. If all signatures are degenerate or binary, then the problem is tractable.

For a binary signature, define its matrix as

Mf :=
[
f(00) f(01)
f(10) f(11)

]
. (1.2)

Connecting f to g via one edge gives another signature h with the matrix Mh =MfMg.

Lemma 1.5. Let F be a set of complex weighted symmetric signatures in Boolean variables. Then

Holant(F) is computable in polynomial time if all non-degenerate signatures in F are of arity at

most 2.

Proof. We first replace degenerate signatures by a bunch of equivalent unary signatures. Then

any instance of Holant(F) can be decomposed into paths and cycles. The Holant is a product

of all paths and cycles.

For a path, we remove the two endpoints, leaving a binary signature f composed by a series of

binary signatures. Compute the signature matrix Mf of f by multiplying all binary signatures

along the path. Then the Holant is vMfu
T, where v and u are the two unary signatures at

endpoints.
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For a cycle, we arbitrarily break an edge getting a path with two dangling edges. Similar to

the above case, we multiply matrices of all binary signatures along this path, getting M. The

trace of M is the Holant.

We further note that for a binary signature f and T ∈ C2×2, let g = fT⊗2. Then

Mg = TMfT
T. (1.3)

This can be seen by viewing T as a binary, and then treating g as connecting T , f, and TT

sequentially.

Affine Signatures

Definition 1.6 (Definition 3.1 in [CLX14]). A k-ary function f(x1, . . . , xk) is affine if it has the form

λ · χAx=0 · i
∑n
j=1⟨vj,x⟩,

where λ ∈ C, x = (x1, x2, . . . , xk, 1)T, A is a matrix over F2, vj is a vector over F2, and χ is a 0-1

indicator function such that χAx=0 is 1 if and only if Ax = 0. Note that the dot product ⟨vj, x⟩

is calculated over F2, while the summation
∑n
j=1 on the exponent of i =

√
−1 is evaluated as a

sum mod 4 of 0-1 terms. We use A to denote the set of all affine functions.

The matrix A defines an affine space which is the support of the signature f (and hence

the name). Notice that there is no restriction on the number of rows in the matrix A. It is

permissible that A is the zero matrix so that χAx=0 = 1 holds for all x. An equivalent way

to express the exponent of i is as a quadratic polynomial where all cross terms have an even

coefficient (cf. [CCLL10]).

It is known that the set of non-degenerate symmetric signatures inA is precisely the nonzero

signatures (λ ≠ 0) in F1 ∪ F2 ∪ F3 with arity at least 2, where F1, F2, and F3 are three families
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of signatures defined as

F1 =
{
λ
(
[1, 0]⊗k + ir[0, 1]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
,

F2 =
{
λ
(
[1, 1]⊗k + ir[1,−1]⊗k

)
| λ ∈ C,k = 1, 2, . . . , r = 0, 1, 2, 3

}
, (1.4)

F3 =
{
λ
(
[1, i]⊗k + ir[1,−i]⊗k

)
| λ ∈ C, k = 1, 2, . . . , r = 0, 1, 2, 3

}
.

We explicitly list these signatures up to an arbitrary constant multiple from C:

1. [1, 0, . . . , 0,±1]; (F1, r = 0, 2)

2. [1, 0, . . . , 0,±i]; (F1, r = 1, 3)

3. [1, 0, 1, 0, . . . , 0 or 1]; (F2, r = 0)

4. [1,−i, 1,−i, . . . , (−i) or 1]; (F2, r = 1)

5. [0, 1, 0, 1, . . . , 0 or 1]; (F2, r = 2)

6. [1, i, 1, i, . . . , i or 1]; (F2, r = 3)

7. [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)]; (F3, r = 0)

8. [1, 1,−1,−1, 1, 1,−1,−1, . . . , 1 or (−1)]; (F3, r = 1)

9. [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)]; (F3, r = 2)

10. [1,−1,−1, 1, 1,−1,−1, 1, . . . , 1 or (−1)]. (F3, r = 3)

Table 1.1: List of all non-degenerate affine signatures.

The tractability of A is first shown in [CLX14]. In fact, #CSP(A) is tractable and hence so is

Holant(A) by (1.1). It was later generalized to arbitrary domain size using Gauss sums [CCLL10].

Together with Lemma 1.4, we have the following.

Lemma 1.7. Let F be any set of symmetric, complex-valued signatures in Boolean variables. If

F is A-transformable, then Holant(F) is computable in polynomial time.

Product-Type Signatures

Definition 1.8 (Definition 3.3 in [CLX14]). A function is of product type if it can be expressed as a

product of unary functions, binary equality functions ([1, 0, 1]), and binary disequality functions

([0, 1, 0]). We use P to denote the set of product-type functions.
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An alternate definition for P, implicit in [CLX11b], is the tensor closure of signatures with

support on two complementary bit vectors. It is easily shown (cf. Lemma A.1 in the full version

of [HL12]) that if f is a symmetric signature in P, then f is degenerate, binary Disequality ≠2,

or [a, 0, . . . , 0,b] for some a,b ∈ C.

The tractability of P is due to a straightforward propagation algorithm (see, for example

[CLX14]). In fact, #CSP(P) is tractable and hence so is Holant(P) by (1.1). Together with Lemma

1.4, we have the following.

Lemma 1.9. Let F be any set of symmetric, complex-valued signatures in Boolean variables. If

F is P-transformable, then Holant(F) is computable in polynomial time.

Matchgate Signatures

Matchgates were introduced by Valiant [Val02b, Val02a] to give polynomial-time algorithms

for a collection of counting problems over planar graphs. As the name suggests, problems

expressible by matchgates can be reduced to computing a weighted sum of perfect matchings.

The latter problem is tractable over planar graphs by Kasteleyn’s algorithm [Kas67], a.k.a. the

FKT algorithm [TF61, Kas61]. These counting problems are naturally expressed in the Holant

framework using matchgate signatures, denoted by M. Thus Pl-Holant(M) is tractable.

Formally, recall that EO is the set of ExactOnek functions for all integers k. Let WEO be

the set of weighted ExactOnek functions for all k. Then M contains signatures that can be

realized as an WEO-gate. Holographic transformations extend the reach of the FKT algorithm

even further by Lemma 1.4, as stated below.

Lemma 1.10. Let F be any set of symmetric, complex-valued signatures in Boolean variables. If

F is M-transformable, then Pl-Holant(F) is computable in polynomial time.

Matchgate signatures are characterized by the matchgate identities (for an up-to-date treat-

ment, see [CG14] for the identities and a self-contained proof). Any matchgate signature fmust

satisfy the parity condition, which asserts that the support of f has to contain entries of only

even or odd Hamming weights, but not both. For symmetric matchgates, they have 0 for every

other entry and form a geometric progression with the remaining entries. We explicitly list all

the symmetric signatures in M (see [CG14]).
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Proposition 1.11. Let f be a symmetric signature in M. Then there exists a,b ∈ C and n ∈ N

such that f takes one of the following forms:

1. [an, 0,an−1b, 0, . . . , 0,abn−1, 0,bn] (of arity 2n ⩾ 2);

2. [an, 0,an−1b, 0, . . . , 0,abn−1, 0,bn, 0] (of arity 2n+ 1 ⩾ 1);

3. [0,an, 0,an−1b, 0, . . . , 0,abn−1, 0,bn] (of arity 2n+ 1 ⩾ 1);

4. [0,an, 0,an−1b, 0, . . . , 0,abn−1, 0,bn, 0] (of arity 2n+ 2 ⩾ 2).

In the last three cases with n = 0, the signatures are [1, 0], [0, 1], and [0, 1, 0]. Any multiple of

these is also a matchgate signature.

Note that perfect matching signatures, [0, 1, 0, · · · , 0], and their reversal are special cases

when b = 0 or a = 0 in the last two cases.

Another useful way to view the symmetric signature in M is via a low tensor rank decom-

position. To state these low rank decompositions, we use the following definition.

Definition 1.12. Let Sn be the symmetric group of degree n. Then for positive integers t and n

with t ⩽ n and unary signatures v, v1, . . . , vn−t, we define

Symtn(v; v1, . . . , vn−t) =
∑
π∈Sn

n⊗
k=1

uπ(k),

where the ordered sequence (u1,u2, . . . ,un) = (v, . . . , v︸ ︷︷ ︸
t copies

, v1, . . . , vn−t).

Proposition 1.13. Let f be a symmetric signature in M of arity n. Then there exist a,b, λ ∈ C

such that f takes one of the following forms:

1. [a,b]⊗n + [a,−b]⊗n =


2[an, 0,an−2b2, 0, . . . , 0,bn] n is even,

2[an, 0,an−2b2, 0, . . . , 0,abn−1, 0] n is odd;

2. [a,b]⊗n − [a,−b]⊗n =


2[0,an−1b, 0,an−3b3, 0, . . . , 0,abn−1, 0] n is even,

2[0,an−1b, 0,an−3b3, 0, . . . , 0,bn] n is odd;

3. λ Symn−1
n ([1, 0]; [0, 1]) = [0, λ, 0, . . . , 0];

4. λ Symn−1
n ([0, 1]; [1, 0]) = [0, . . . , 0, λ, 0].
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The understanding of matchgates was further developed in [CL11a], which characterized,

for every symmetric signature, the set of holographic transformations under which the trans-

formed signature becomes a matchgate signature.

1.6 Some Known Dichotomies

We first state a dichotomy theorem for a single signature of arity 3. It will be the induction

base case in various settings. It is a combination of [CHL12, Theorem 3] (standard setting) and

[CLX10, Theorem V.1] (planar setting).

Theorem 1.14. If f = [f0, f1, f2, f3] is a non-degenerate, complex-valued signature, then Pl-Holant

(f) is #P-hard unless f satisfies one of the following conditions, in which case the problem is

computable in polynomial time:

1. f is A- or P-transformable;

2. For α ∈ {2i,−2i}, f2 = αf1 + f0 and f3 = αf2 + f1;

3. f is M-transformable.

If f satisfies condition 1 or 2, then Holant(f) is computable in polynomial time without planarity;

otherwise Holant(f) is #P-hard.

Next is a dichotomy theorem about counting complex weighted graph homomorphisms over

degree prescribed graphs.

Theorem 1.15 (Theorem 3 in [CK12]). Let S ⊆ Z+ containing some r ⩾ 3, let G = {=k| k ∈ S},

and let d = gcd(S). Further suppose that f0, f1, f2 ∈ C. Then Pl-Holant ([f0, f1, f2] | G) is #P-hard

unless one of the following conditions holds:

1. f0f2 = f21;

2. f0 = f2 = 0;

3. f1 = 0;

4. f0f2 = −f21 and fd0 = −fd2 ≠ 0;
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5. fd0 = fd2 ≠ 0.

In all exceptional cases, the problem is computable in polynomial time.

In particular, in Case 5, Holant ([f0, f1, f2] | G) is #P-hard unless another condition is satisfied.

Theorem 1.15 is the original statement as in [CK12]. It is explicit and easy to apply. Con-

ceptually, it can be restated as Theorem 1.15 ′.

Theorem 1.15 ′ (Theorem 3 in [CK12]). Let S ⊆ Z+ contain k ⩾ 3, let G = {=k| k ∈ S}, and

let d = gcd(S). Further suppose that f is a non-degenerate, symmetric, complex-valued binary

signature in Boolean variables. Then Pl-Holant (f | G) is #P-hard unless f satisfies one of the

following conditions, in which case the problem is computable in polynomial time:

1. there exists T ∈ T4d such that T⊗2f ∈ A;

2. f ∈ P;

3. there exists T ∈ T2d such that T⊗2f ∈ M̂.

In particular, in Case 3, Holant ([f0, f1, f2] | G) is #P-hard unless another condition is satisfied.

The following dichotomy theorems are not directly used. We list them for comparison. First

is the Boolean #CSP dichotomy. Note that it is not restricted to symmetric functions.

Theorem 1.16 (Theorem 3.1 in [CLX14]). Let F be a set of complex functions in Boolean variables.

Then #CSP(F) is #P-hard unless F ⊆ P or F ⊆ A, in which case the problem is computable in

polynomial time.

The other three are about Holant problems, and we paraphrase them in the more up-to-date

language of C-transformable signatures. We have the real-valued Holant dichotomy.

Theorem 1.17 (Theorem III.2 in [HL12]). Let F be any set of symmetric, real-valued signatures in

Boolean variables. Then Holant(F) is #P-hard unless F satisfies one of the following conditions,

in which case the problem is computable in polynomial time:

1. Any non-degenerate signature in F is of arity at most 2;

2. F is A- or P-transformable.
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The other two dichotomy theorems concern about Holant problems with some auxiliary

functions available. Let U denotes the set of all unary functions, and in particular, let ∆0

and ∆1 denote constant unary functions [1, 0] and [0, 1]. Denote by Holant∗(F) the problem

Holant(F ∪ U), that is, unary functions are freely available. Similarly denote by Holantc(F) the

problem Holant(F ∪ {∆0,∆1}), that is, constant unary functions are freely available. Complex-

valued Holant∗ and Holantc are classified in [CLX11a] and [CHL12], respectively.

Theorem 1.18 (Theorem 4.1 in [CLX11a]). Let F be any set of symmetric, complex-valued sig-

natures in Boolean variables. Then Holant∗(F) is #P-hard unless F satisfies one of the following

conditions, in which case the problem is computable in polynomial time:

1. Any non-degenerate signature in F is of arity at most 2;

2. F is P-transformable;

3. There exists α ∈ {2i,−2i}, such that for any signature f ∈ F of arity n, for 0 ⩽ k ⩽ n − 2,

we have fk+2 = αfk+1 + fk.

Theorem 1.19 (Theorem 6 in [CHL12]). Let F be any set of symmetric, complex-valued signa-

tures in Boolean variables. Then Holantc(F) is #P-hard unless F satisfies one of the following

conditions, in which case the problem is computable in polynomial time:

1. Any non-degenerate signature in F is of arity at most 2;

2. F is P-transformable;

3. F ∪ {[1, 0], [0, 1]} is A-transformable;

4. There exists α ∈ {2i,−2i}, such that for any non-degenerate signature f ∈ F of arity n, for

0 ⩽ k ⩽ n− 2, we have fk+2 = αfk+1 + fk.
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Chapter 2

Parity Holant Problems

In this chapter, we show a dichotomy theorem for parity Holant problems. The parity Holant

problem concerns about Boolean functions taking values in Z2. To avoid confusion, we call

them Z2-functions or Z2-signatures. In other words, our goal is to compute the parity of integer

valued Holant problems. We write ⊕Holant(Ω;F) to denote the Holant value in this particular

case, where F is a set of Z2-signatures.

Name ⊕Holant(F)

Instance A signature grid Ω = (G,π).

Output ⊕Holant(Ω;F).

Similar to Holantc problems, ⊕Holantc denote problems with ∆0 = [1, 0] and ∆1 = [0, 1] avail-

able. Our proof strategy is to first prove a dichotomy for ⊕Holantc and then extend it to the

general case. We call a signature f a sub-signature of g if f0f1 · · · fn is a substring of g0g1 · · ·gm.

In the Holantc setting any sub-signature is realizable.

Note that the only non-trivial transformation in Z2 is
[

1 1
0 1

]
. However, we shall not restrict

transformations in Z2. As we will see in a moment, transformations in R are useful to derive

tractability results.
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2.1 Tractable Z2-Functions

We start with three tractable families for ⊕Holantc problems, related to the three families de-

scribed in Section 1.5. We need to consider each class in the specialized parity setting. The

first family, affine signatures, is adopted directly. The second family is derived from Fibonacci

signatures [CLX13]. As we now understand, it is actually a subclass of P-transformable signa-

tures. For general counting problems, Fibonacci signatures are tractable, and so are they for

parity counting. This family remains tractable even with the addition of the inversion signa-

ture [0, 1, 0] in the parity setting. This addition for general counting problems would entail

#P-hardness. The third family is matchgate signatures. As noted in Section 1.5, matchgate sig-

natures are tractable in planar graphs but not in general graphs. However, if we are restricted

to the parity problem, then matchgate Z2-signatures are tractable even in general graphs since

we can decide the parity of the number of perfect matchings efficiently.

Clearly for any set F, if ⊕Holantc(F) is tractable then so is ⊕Holant(F).

Affine Signatures

Unlike in Section 1.5, we only need to consider unweighted affine signatures. In this special

case, affine signatures correspond to simultaneous linear equations over Z2 and are defined as

follows.

Definition 2.1. A Z2-signature is affine if its support is an affine space. Denote by A⊕ the set of

all affine Z2-signatures.

By definition, an affine Z2-signature can be viewed as a constraint defined by a set of linear

equations. Viewing edges as variables in Z2, every assignment which contributes 1 in ⊕Holant

is a solution which satisfies all linear equations, and vice versa. Hence ⊕Holant is exactly the

number of solutions of the linear system, which can be computed in polynomial time. Note

that by definition all degenerate Z2-signatures are in A⊕.

Lemma 2.2. The problem ⊕Holantc(A⊕) is polynomial time computable.
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We explicitly list all non-degenerate symmetric affine Z2-signatures, derived from Table

1.1. Notice that in the parity setting 1, −1, and i all behave the same. Every non-degenerate

symmetric affine Z2-signature has one of the following forms:

• Equality Signatures: [1, 0, 0, . . . , 0, 1];

• Parity Signatures: [1, 0, 1, 0, . . . , 0/1] or [0, 1, 0, 1, . . . , 0/1],

where the last entry depends on the arity.

Fibonacci Signatures and [0, 1, 0]

The family of Fibonacci signatures was introduced in [CLX13] to characterize a new family

of holographic algorithms. It is now understood as a subclass of P-transformable signatures

[CGW14]. In Z2, we have the following definition.

Definition 2.3. A symmetric Z2-signature [f0, f1, . . . , fn] is called Fibonacci if for 0 ⩽ k ⩽ n − 2,

fk + fk+1 = fk+2.

The Holant of a grid composed of Fibonacci signatures can be computed in polynomial time

[CLX13]. Its parity version is therefore also tractable. Here we will show that the tractability

still holds even if we extend the set with the binary DisEquality signature [0, 1, 0], which is

not Fibonacci. The tractability is based on the properties of Fibonacci Z2-signatures and an

observation on [0, 1, 0] as a Z2-signature. Denote by P⊕ the set of all Fibonacci Z2-signatures

plus [0, 1, 0] and all degenerate Z2-signatures. Note that as [0, 1], [1, 0], and [1, 1] are all Fibonacci,

adding degenerate signatures in P⊕ does not affect its tractability.

Lemma 2.4. The problem ⊕Holantc(P⊕) is polynomial time computable.

In the proof, we will go beyond Z2 and use transformations in R. This is the only place in

this chapter where signature entries are viewed as real numbers rather than in Z2.

Since our goal is the parity, [0, 1, 0] can be replaced by the asymmetric signature (0, 1,−1, 0)

in R. (Note that here the expression (0, 1,−1, 0) is a vector listing function values, rather than

the abbreviated form of symmetric signatures.) This (0, 1,−1, 0) is a so-called 2-realizable
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signature, which has a special invariant property under holographic transformations [Val06,

CL11a, CL11b]. This property plays an important role in the proof.

Proof. As stated above, we replace [0, 1, 0] by the asymmetric signature (0, 1,−1, 0). We also

replace Fibonacci Z2-signatures by real-valued Fibonacci signatures. For example, [1, 1, 0, 1] is

replaced by [1, 1, 2, 3]. After the replacement, the parity of the Holant value does not change.

Denote the set of real-valued Fibonacci signatures by F. Since∆0,∆1 ∈ F, Holantc(F∪(0, 1,−1, 0))

is equivalent to Holant(F∪(0, 1,−1, 0)). Next we show that Holant(F∪(0, 1,−1, 0)) is computable

in polynomial time.

For a Fibonacci signature f = [f0, f1, . . . , fn] over R, we have that fk+2 = fk+1 + fk for all

k = 0, 1, . . . ,n − 2. This is a second-order homogeneous linear recurrence relation. Thus we

have that fi = Aλi1 +Bλ
i
2 for 1 ⩽ i ⩽ n, where λ1 = (1−

√
5)/2 and λ2 = (1+

√
5)/2 are the two

roots of its characteristic polynomial x2 = x+1, andA,B are two real numbers depending on f0

and f1. In the tensor notation, we have that f = A
[

1
λ1

]⊗n
+ B

[
1
λ2

]⊗n
. One crucial observation

is that λ1 and λ2 are universal for all Fibonacci signatures (while A and B can vary depending

on the initial values). Therefore we can do a holographic reduction as in Theorem 1.2 under

the following orthogonal matrix T =

 1√
λ2

1+1

λ1√
λ2

1+1

1√
λ2

2+1

λ2√
λ2

2+1

. We note that T is orthogonal because

λ1λ2 = −1. This does not change the Holant value by Theorem 1.2. But all Fibonacci signatures

have nicer forms since

T⊗nf = T⊗n
(
A
[

1
λ1

]⊗n
+ B

[
1
λ2

]⊗n)
= AT⊗n

[
1
λ1

]⊗n
+ BT⊗n

[
1
λ2

]⊗n
= A

(
T
[

1
λ1

])⊗n
+ B

(
T
[

1
λ2

])⊗n
=
√
λ2

1 + 1A
[

1
0

]⊗n
+
√
λ2

2 + 1B
[

0
1

]⊗n
=

[√
λ2

1 + 1A, 0, . . . , 0,
√
λ2

2 + 1B

]
.

Note that
[√
λ2

1 + 1A, 0, . . . , 0,
√
λ2

2 + 1B
]
∈ P. This in fact shows that Fibonacci signatures are

P-transformable.

For the signature (0, 1,−1, 0), it is easy to verify that T⊗2(0, 1,−1, 0) = (0,−1, 1, 0). More-
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over, as an asymmetric signature, (0,−1, 1, 0) ∈ P as well. Hence we have shown that

Holant(F ∪ (0, 1,−1, 0)) ⩽T Holant(P).

Recall that Holant(P) is tractable by Lemma 1.9. This finishes the proof.

Next we list explicitly all non-degenerate Fibonacci Z2-signatures. By Definition 2.3, a Fi-

bonacci Z2-signature is completely determined by its first two bits and arity. The initial bits

can be 00, 01, 10, or 11. However, the 00 case leads to the degenerate all-0 signature. Every

non-degenerate Fibonacci Z2-signature has one of the following forms:

• [0, 1, 1, 0, 1, 1, . . . , 0/1],

• [1, 0, 1, 1, 0, 1, . . . , 0/1],

• [1, 1, 0, 1, 1, 0, . . . , 0/1].

The following lemma regarding the realizability is useful in the hardness proof later.

Lemma 2.5. Any non-degenerate Fibonacci Z2-signature can be realized by any Z2-signature in

the set {[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1]} with the two unary constants [1, 0] and [0, 1].

Before the proof, we want to point out that {[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1]} is the set of non-

degenerate ternary Fibonacci Z2-signature. In other words, they are the simplest non-trivial

ones.

Proof. Suppose we have f ∈ {[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1]} and we want to realize some non-

degenerate Fibonacci Z2-signature g of arity n. Given another non-degenerate Fibonacci Z2-

signature f ′, it is easy to verify that by connecting f ′ to f via one edge is still symmetric, non-

degenerate, and Fibonacci. Hence we may construct non-degenerate Fibonacci Z2-signature

of arbitrarily long arity. Moreover, observe that g is a subsignature of any non-degenerate

Fibonacci Z2-signature of arity n + 2, despite its initial values. Then the construction is to get

such a signature of arity n + 2 using f first, and get the subsignature g using [1, 0] and [0, 1]

next.
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Matchgate Signatures

In this chapter our notion of matchgates is different from that in Section 1.5. The main differ-

ence is that we allow not necessarily perfect matchings. As we shall see later, this relaxation

maintains tractability even in not necessarily planar graphs. Denote by EOn = [0, 1, 0, · · · , 0]

the ExactOne function of arity n, and AOn = [1, 1, 0, · · · , 0] the AtMostOne function of arity

n. Let EO and AO the set of all these functions, respectively.

Definition 2.6. A Z2-signature f is called matchgate if f can be realized by functions from EO

and AO. Denote by M⊕ the set of all matchgate Z2-signatures.

Note that [0, 1], [1, 0] and [1, 1] are all matchgates. Hence all degenerate Z2 signatures are

in M⊕. Also note that this notion of matchgates is in its most general sense: the gadget can

be either planar or non-planar and for each node we can insist or not on whether it has to be

saturated by a matching edge. We will prove the following.

Lemma 2.7. The problem ⊕Holantc(M⊕) is polynomial time computable.

As [1, 0], [0, 1] ∈ M⊕, we define parity matching problem which is equivalent to ⊕Holantc

(M⊕). Reductions between these two problems are straightforward. The graph is the same. All

the vertices in V0 have signatures from EO and all the other vertices have signatures from AO.

Name Parity Matching Problem

Instance A graph G = (V ,E) and V0 ⊆ V .

Output Parity of the number of (partial) matchings that saturate all the vertexes in V0.

The total number of such matchings can be rewritten as a summation of perfect matchings

MatchingS(G) =
∑
U⊇V0

PM(G(U)),

where MatchingS(G) is the value we what to compute, PM(G) is the number of perfect matchings

in G, and G(U) is the induced subgraph of G on vertex set U.

Before proceeding to the algorithm for the Parity Matching Problem, we need an impor-

tant notion called the Pfaffian. The Pfaffian of an n × n skew-symmetric matrix A, denoted
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Pf(A), is defined to be zero if n is odd and one if n = 0. If n = 2k is even with k > 0, then:

Pf(A) =
1

2kk!

∑
σ∈S2k

εσ

k∏
i=1

A(σ(2i− 1),σ(2i)),

where σ is a permutation on {1, 2, · · · , 2k}, S2k is the symmetric group on 2k elements, and

εσ ∈ {1,−1} is the sign of σ.

The following fact, due to Cayley [Cay49], (see also [BR91] Theorem 9.5.2) relates the Pfaffian

to the determinant.

Theorem 2.8. For any 2k× 2k skew-symmetric matrix A

det(A) = (Pf(A))2.

In the field Z2, we have x ≡ −x and hence a skew-symmetric matrix is indeed symmetric.

Moreover the sign επ in Z2 can be ignored. Let A be the adjacency matrix of a graph G = (V ,E),

i.e. nonzero elements of A are Ai,j = Aj,i = 1 if {i, j} ∈ E. Then each monomial in the Pfaffian

corresponds to a distinct perfect matching in G. Therefore, in Z2, Pf(A) is exactly the parity of

the number of perfect matchings in G. We have that

PM(G) ≡ Pf(A) ≡ (Pf(A))2 ≡ det(A) (mod 2) (2.1)

if G has an even number of vertices. Since det(A) is polynomial time computable, so is the

parity of the number of perfect matchings.

Next we show that this tractability can be extended to partial matchings as well in Z2. We

do this through the Pfaffian Sum Theorem [Val02b]. For any n × n matrix A we call a set

I = {i1, i2, . . . , ir} ⊆ [n] an index set. Further we denote by A(I) the r × r sub matrix of A on

rows and columns in I.

Definition 2.9. The Pfaffian Sum of an n × n matrix A is a polynomial over indeterminates
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λ1, λ2, . . . , λn such that

PfS(A) =
∑
I⊆[n]

∏
i ̸∈I

λi

 Pf(A(I)).

We only need instances in which each λi is either 0 or 1. For a given unomittable vertex set

V0, we define the characteristic vector λ⃗ = (λ1, . . . λn) as follows: for each i, λi = 0 if i ∈ V0 and

λi = 1 otherwise. Thus the Pfaffian Sum over λ⃗ is the sum of Pf(A(I)) over index sets containing

V0.

We define the n× n matrix Λ(n) as follows:

Λ(n)(i, j) =


(−1)j−i+1λiλj, if i < j,

(−1)i−jλiλj, if i > j,

0, if i = j.

Also for an n× n matrix A we define A+ to be the (n+ 1)× (n+ 1) matrix of which the first n

rows and columns equal A itself, and the (n+ 1)-st row and column entries are all zero.

The following theorem, which relates the Pfaffian Sum to a single Pfaffian, was proved in

[Val02b].

Theorem 2.10. For an n× n skew-symmetric matrix A, and indeterminates λ1, · · · , λn+1

PfS(A) =


Pf(A+Λ(n)) if n is even

Pf(A+ +Λ(n+1)) with λn+1 = 1, if n is odd.

Thus, a Pfaffian Sum can be computed in polynomial time. The relation (2.1) between perfect

matchings and Pfaffians can be therefore generalized to one between matchings and Pfaffian

Sums:

MatchingS(G) =
∑
U⊇V0

PM(G(U)) =
∑
U⊇V0

Pf(A(U)) = PfS(A)(⃗λ) (mod 2). (2.2)

This relation gives a polynomial time algorithm for the Parity Matching Problem and completes

the proof of Lemma 2.7.
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Now we go on to list explicitly all the non-degenerate symmetric matchgate signatures.

Useful matchgate identities in [CCL09] is an essential tool to characterize the realizability of

matchgates. For completeness we quote the identities as follows.

A pattern α is an m-bit string, i.e., α ∈ {0, 1}m. A position vector P = {pi}, i ∈ [l], is a

subsequence of {1, 2, . . . ,m}, i.e., pi ∈ [m] and p1 < p2 < · · · < pl. It can also be viewed as a

m-bit string, whose (p1,p2, . . . ,pl)-th bits are 1 and the others are 0. Let ei ∈ {0, 1}m be the

pattern with 1 in the i-th bit and 0 elsewhere. Let α+β denote the bitwise XOR of the patterns

α and β.

Proposition 2.11 (Matchgate Identities for Signatures). For a signature f realizable by signatures

from EO, for any pattern α ∈ {0, 1}m, any l (0 < l ⩽ m), and any position vector P = {pi}, i ∈ [l],

the following identity holds:

l∑
i=1

(−1)if(α+ epi)f(α+ p+ epi) = 0. (2.3)

Lemma 2.12. Every non-degenerate symmetric Z2-signature in M⊕ has one of the following

forms:

• ExactOne [0, 1, 0, 0, . . . , 0] or its reversal [0, 0, . . . , 0, 1, 0],

• AtMostOne [1, 1, 0, 0, . . . , 0] or its reversal [0, 0, . . . , 0, 1, 1],

• Parity: [1, 0, 1, 0, . . . , 0/1] or [0, 1, 0, 1, . . . , 0/1].

Proof. We first prove that every non-degenerate symmetric signature f of arity n realizable

from EO and AO has one of the forms as claimed in the lemma. Suppose in general f is realized

by some gadget G = (V ,E,D) where D is the set of dangling edges, and V0 ⊆ V is the set of

omittable vertices. We construct G ′ where every vertex in G ′ has EO signature using Theorem

2.10 as follows. We add all edges (i, j) where i, j ∈ V0. Moreover, we add an additional vertex u

with a dangling edge, and we connect u to all vertices in V0. Then G ′ defines a signature g of

arity n+ 1 since we add one more dangling edge.

Suppose the input is α on D. Then it is equivalent to remove all vertices that are adjacent

to a dangling edge chosen by α. If there are odd many of remaining omittable vertices, then we
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keep u as remained, and otherwise remove u. That is to say, the input on u is ⊕α = ⊕ni=1αi,

the parity of α. By Theorem 2.10, g(α,⊕α) = f(α). Since every signature in G ′ is from EO, g

satisfies (2.3) by Proposition 2.11.

In the following, we assume that G has an odd number of vertices. The case of even vertices

is similar.

If n = 2, all non-degenerate symmetric signatures are of the forms claimed in the lemma.

We now consider n ⩾ 3 and apply the matchgate identities (2.3) to g. Consider the pattern

100α0 where α has Hamming weight 2i, and 0 ⩽ 2i ⩽ n − 3. Let the position vector be

111000 · · ·01. Then (2.3) gives us that

0 = g(000α0)g(111α1) − g(110α0)g(001α1) + g(101α0)g(010α1) − g(100α1)g(011α0).

Translating back to f, we get that

f2if2i+3 − f2i+2f2i+1 = 0.

If n = 3, then this is f0f3 = f1f2 and is the only identity.

If n ⩾ 4, we use the matchgate identities (2.3) again. Consider the pattern 1000α⊕α where

α has Hamming weight i, and 0 ⩽ i ⩽ n− 4. Let the position vector be 111100 · · ·0. Then (2.3)

gives us that

0 = g(0000α,⊕α)g(1111α,⊕α) − g(1100α,⊕α)g(0011α,⊕α)

+ g(1010α,⊕α)g(0101α,⊕α) − g(1001α,⊕α)g(0110α,⊕α).

Translating back to f, we get that

fifi+4 − fi+2fi+2 = 0.

Consider the pattern 10m and the position vector 1m⊕ (m), where ⊕(m) is the parity of m.
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Then we have

0 = g(0m+1)g(1m ⊕ (m)) − g(110m−1)g(001m−2 ⊕ (m))

+ g(1010m−2)g(0101m−3 ⊕ (m)) − g(10010m−3)g(01101m−4 ⊕ (m))± · · ·

All terms cancel except the first two. Translating to f, we get that

f0fm − f2fm−2 = 0.

Similarly, consider the pattern 10m and the position vector 1m−10⊕ (m−1). Then we have

0 = g(0m+1)g(1m−10⊕ (m− 1)) − g(110m−1)g(001m−30⊕ (m− 1))

+ g(1010m−2)g(0101m−40⊕ (m− 1)) − g(10010m−3)g(01101m−50⊕ (m− 1))± · · ·

Again, all terms cancel except the first two. Translating to f, we get that

f0fm−1 − f2fm−3 = 0.

Similarly, we can also get that f1fm = f3fm−2 and f1fm−1 = f3fm−3.

The relation fifi+4 = f2i+2 implies that the subsequence of entries from even (or odd) indices

form a geometric sequence. In Z2, there are only four types of geometric sequences, which are

1. [0, 0, . . . , 0],

2. [1, 0, 0, . . . , 0],

3. [0, 0, . . . , 0, 1],

4. [1, 1, . . . , 1].

There are 4 × 4 = 16 possible combinations for even subsequence and odd subsequence. We

use type (i, j) to denote the sequence whose odd subsequence is of type i and even subsequence

is of type j. Types (1, 1) and (4, 4) are degenerate. Types (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1),
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(3, 3), and (4, 1) are listed in the lemma. We only need to rule out the remaining six types (2, 3),

(2, 4), (3, 2), (3, 4), (4, 2), and (4, 3).

• For (2, 4), the first four entries are [1, 1, 0, 1], which does not satisfy f0f3 = f1f2. This

matchgate identity also rules out (4, 2), whose first four entries are [1, 1, 1, 0].

• For (3, 4) and (4, 3), their last four entries do not satisfy fm−3fm = fm−1fm−2.

• For (2, 3), it has form [1, 0, . . . , 0, 1] or [1, 0, . . . , 0, 1, 0]. It violates either f0fm = f2fm−2 or

f0fm−1 = f2fm−3.

• For (3, 2), we can similarly argue that it violates either f1fm = f3fm−2 or f1fm−1 = f3fm−3.

This completes the first part of the proof, namely that all matchgate Z2-signatures are of

desired forms. The realizability of these signatures follow from Lemma 2.15 below.

Next we prove some realizability properties regarding symmetric matchgate signatures,

which will be useful later in the #P-hardness proofs. We prove progressively stronger realiz-

ability.

Lemma 2.13. Every Parity Z2-signature can be realized by the signatures [0, 1], [1, 0], and

[0, 1, 0, 1] (or [1, 0, 1, 0]).

Proof. Suppose we have f = [0, 1, 0, 1]. The case of [1, 0, 1, 0] is similar. We prove inductively

that we can realize [0, 1, 0, 1, · · · , 0/1] of arity 2k + 1. The base case is k = 1 and is f. Suppose

we have g = [0, 1, 0, 1, · · · , 0/1] of arity 2k + 1 > 3. We may connect g to f via one single edge

twice. The resulting signature has the form [0, 1, 0, 1, · · · , 0/1] and arity 2k + 3. Hence we can

construct signatures of the form of arbitrary length. Suppose we want to realize some Parity

Z2-signature h of arity n. Then h is a subsignature of the realizable [0, 1, 0, 1, · · · , 0/1] of arity

n+1 or n+2, depending on the parity of n. Using [0, 1] and [1, 0] to get h finishes the proof.

Lemma 2.14. Every Parity and ExactOne (and its reversal) Z2-signature can be realized by

the signatures [0, 1], [1, 0], and [0, 1, 0, 0] (or [0, 0, 1, 0]).
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Figure 2.1: The triangular gad-
get.

Figure 2.2: The gadget for [0, 1, 0, 0, 0] and
[1, 1, 0, 0, 0].

Proof. By symmetry, we only need to prove the lemma for [0, 1, 0, 0]. First observe that if we

place [0, 1, 0, 0] at every vertex in the triangular gadget shown in Figure 2.1, the resulting sig-

nature is [0, 1, 0, 1]. Then by Lemma 2.13, every Parity signature can be constructed.

Connecting [1, 0] to [0, 1, 0, 0], we get [0, 1, 0]. Then we use the gadget in Figure 2.2, where we

put [0, 1, 0, 0] on circle vertices and [0, 1, 0] on the square. It is easy to verify that the resulting

Z2-signature is [0, 1, 0, 0, 0], which is symmetric. Note that in general such a construction does

not entail a symmetric signature. In the same way we can connect [0, 1, 0, . . . , 0] of arity k to

[0, 1, 0, 0] via [0, 1, 0], and the resulting Z2-signature is [0, 1, 0, . . . , 0] of arity k + 1. Therefore

we can construct all Z2-signatures in EO. Their reversal can be obtained by putting [0, 1, 0] on

every edge. This completes the proof.

Lemma 2.15. Every Parity, ExactOne (and its reversal), and AtMostOne (and its reversal),

can be realized by the signatures [0, 1], [1, 0], and [1, 1, 0, 0] (or [0, 0, 1, 1]).

Proof. By symmetry, we only need to prove the lemma for [1, 1, 0, 0]. Note that we get [1, 1] from

[1, 1, 0, 0] by connecting it with [1, 0] twice. By connecting [1, 1] with [1, 1, 0, 0], we get [0, 1, 0].

Then we place [1, 1, 0, 0] at circles and [0, 1, 0] at the square on the gadget in Figure 2.2. Similar

to the proof of Lemma 2.14, we get a symmetric Z2-signature [0, 1, 0, 0, 0]. Thus, by Lemma

2.14, all Parity, EO, and their reversal are realizable.

Moreover, connect [0, 1, 0, . . . , 0] of arity kwith [1, 1, 0, 0] via [0, 1, 0], resulting in [1, 1, 0, . . . , 0]

of arity k+1. In this way, we can construct every AtMostOne Z2-signature. Again, their reversal

can be obtained by putting [0, 1, 0] on every edge.

The realizability part of Lemma 2.12 follows from Lemma 2.15 since [0, 1], [1, 0], and [1, 1, 0, 0]

are all allowed to build Z2-signatures in M⊕.
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2.2 Hardness Results

In this section, we prove several hardness results regarding ⊕Holantc problems. These results

are preparations for proving dichotomy theorems. Most of them are for low arity signature

sets. As we will see later, general cases will boil down to lower arity cases.

A Hardness Starting Point

To begin with, we first consider the problem of⊕Pl-Rtw-Mon-3CNF. Pl-Rtw-Mon-3CNF is a special

case of the satisfying problem for 3CNF formulas, with the requirement of “PL”, “Rtw”, and

“Mon”. “PL” means that inputs are restricted to planar (constraint) graphs. “Rtw” (read twice)

means that every variable only appears twice in clauses. “Mon” (monotone) means that for

every variable only itself or its negation appears, but not both. Therefore we may assume all

variables appear in positive forms. ⊕Pl-Rtw-Mon-3CNF is to compute the parity of all satisfying

assignments of such instances.

To rewrite ⊕Pl-Rtw-Mon-3CNF in the Holant setting, we use vertices to represent all clauses

and variables. Draw an edge between a clause vertex c and a variable vertex x if x appears c. Due

to the requirements “Rtw” and “3CNF”, the resulting graph is a 2-3 bipartite graph. Moreover,

a variable that only appears positively is the same as the signature =2, which means it can be

viewed as an edge. The signature on each clause vertex is [0, 1, 1, 1] since it is an “OR”. Hence,

in the Holant language, this problem becomes Planar ⊕Holant([0, 1, 1, 1]).

Valiant [Val06, Theorem 2.3] showed that ⊕Pl-Rtw-Mon-3CNF is ⊕P-complete. Translating

to the Holant framework, we have the following. Note that the problem ⊕Holant([0, 1, 1, 1]) is

equivalent to ⊕Holant([1, 1, 1, 0]) by complementing all assignments.

Proposition 2.16. Planar ⊕Holant([0, 1, 1, 1]) and Planar ⊕Holant([1, 1, 1, 0]) are ⊕P-complete.

Remark All hardness results in this chapter for ⊕Holantc hold even if we restrict the input

to planar graphs. This is because Proposition 2.16 holds for planar graphs, and all reductions

are also planar. On the other hand, to prove the ⊕Holant dichotomy we will employ some

non-planar reductions.
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To apply holographic transformations, we need to rewrite ⊕Holant([0, 1, 1, 1]) in the bipar-

tite setting, which is ⊕Holant([1, 0, 1]|[0, 1, 1, 1]). Under the transformation T =
[

1 1
0 1

]
, we have

that

⊕Holant([1, 0, 1]|[0, 1, 1, 1]) ≡ ⊕Holant([1, 1, 0]|[1, 0, 0, 1]).

Since this is the first time to see holographic transformation in action, we will calculate it in

detail. Later we shall not repeat this calculation for brevity. Let f = [1, 0, 1], g = [0, 1, 1, 1]. By

Theorem 1.1, we have that ⊕Holant(f | g) ≡ ⊕Holant(fT⊗2 |
(
T−1

)⊗3
g). Now we compute

fT⊗2 =

[
1 0 0 1

]
·



1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1


=

[
1 1 1 2

]
.

As a Z2-signature, fT⊗2 = [1, 1, 0]. On the other hand, note that T−1 ≡ T (mod 2). Hence we

have

(
T−1

)⊗3
g =



1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1



·



0

1

1

1

1

1

1

1



=



7

4

4

2

4

2

2

1


As a Z2-signature,

(
T−1

)⊗3
g = [7, 4, 2, 1] = [1, 0, 0, 1]. Thus, the problem after transformation is

⊕Holant([1, 1, 0]|[1, 0, 0, 1]). Hence we have the following corollary. Again the second problem

is equivalent to the first by flipping all assignments.

Corollary 2.17. ⊕Holant([1, 1, 0]|[1, 0, 0, 1]) and ⊕Holant([0, 1, 1]|[1, 0, 0, 1]) are ⊕P-complete.
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In fact, the result above is also shown in [Val06]. The problem ⊕Holant([1, 1, 0]|[1, 0, 0, 1])

is called ⊕Pl-3/2-Bip-VC, and is further equivalent to ⊕Holant([1, 1, 0]|[1, 1, 1, 0]) under holo-

graphic transformations.

More Hardness Results

Next we establish some further hardness results for ⊕Holantc problems. First comes a quick

generalization of Corollary 2.17. Recall that =n is the Equality signature of arity n.

Corollary 2.18. If n ⩾ 3, then ⊕Holantc([0, 1, 1],=n) is ⊕P-complete.

Proof. If n = 3, ⊕Holant([0, 1, 1], [1, 0, 0, 1]) is ⊕P-complete by Corollary 2.17. Otherwise we

show how to construct =3 from =n. Connecting [0, 1] with [0, 1, 1] gives the unary [1, 1]. Con-

necting =n with (n− 3) many [1, 1]’s gives =3.

Then we deal with the case when the signature set intersects both P⊕ and M⊕. We first

show a base case and then reduce the general case to it.

Lemma 2.19. ⊕Holantc([0, 1, 0, 1, 0], [0, 1, 1, 0]) is ⊕P-complete.

Proof. First we claim that⊕Holant([0, 1, 0, 0, 0], [0, 1, 1, 0]) is⊕P-complete. Construct the gadget

in Figure 2.3. We put [0, 1, 0, 0, 0] on circles and [0, 1, 1, 0] on the square. The resulting signature

is [1, 1, 1, 0]. Thus, ⊕Holant([1, 1, 1, 0]) ⩽T ⊕Holant([0, 1, 0, 0, 0], [0, 1, 1, 0]). By Proposition

2.16, ⊕Holant([1, 1, 1, 0]) is ⊕P-complete. The claim is proved.

Under a holographic transformation of T =
[

1 0
1 1

]
, we have that

⊕Holant ([0, 1, 0, 0, 0], [0, 1, 1, 0]) ≡⊕ Holant

(
[1, 0, 1]T⊗2 |

(
T−1

)⊗4
[0, 1, 0, 0, 0],

(
T−1

)⊗3
[0, 1, 1, 0]

)

≡⊕ Holant ([0, 1, 1] | [0, 1, 0, 1, 0], [0, 1, 1, 0]) .

Note that we get [0, 1, 1] by connecting [0, 1, 1, 0] to [1, 0]. Hence

⊕Holant ([0, 1, 1] | [0, 1, 0, 1, 0], [0, 1, 1, 0]) ⩽T ⊕Holantc ([0, 1, 0, 1, 0], [0, 1, 1, 0]) .
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Combine everything and the lemma is proved.

Figure 2.3: The gadget to construct
[1, 1, 1, 0].

Figure 2.4: An asymmetric gadget
for domain pairing.

Corollary 2.20. Let f and g be two non-degenerate Z2-signatures of arity n and m, respectively,

such that n,m ⩾ 3, f ∈ P⊕, and g ∈M⊕. Then ⊕Holantc(f,g) is ⊕P-complete.

Proof. First, we connect n−3 many [1, 0]’s to f to get an arity 3 signature f ′. Since f ∈ P⊕ and is

non-degenerate, f ′ is in the set {[0, 1, 1, 0], [1, 0, 1, 1], [1, 1, 0, 1]}. By Lemma 2.5, we can construct

all signatures in P⊕, including [0, 1, 1, 0], from f ′, [1, 0], and [0, 1].

By Lemma 2.12, we may assume that g is in EO, AO, or Parity. Connect g with m− 3 many

[1, 0]’s. The resulting signature g ′ is one of [0, 1, 0, 0], [1, 1, 0, 0], [0, 1, 0, 1], or [1, 0, 1, 0]. Apply

Lemma 2.13, Lemma 2.14, or Lemma 2.15, and we can always construct all Parity signatures,

including [0, 1, 0, 1, 0], from g ′, [1, 0], and [0, 1].

Hence ⊕Holantc ([0, 1, 0, 1, 0], [0, 1, 1, 0]) ⩽T ⊕Holantc(f,g). By Lemma 2.19, ⊕Holantc(f,g)

is ⊕P-complete.

Corollary 2.20 implies that any mixing of non-trivial Z2-signatures from P⊕ and M⊕ leads

to ⊕P-hardness. Similarly, we have the following no-mixing lemma of M⊕ and EQ.

In the following proof we will use a technique called domain pairing. It is first employed

in [CLX10, Lemma III.2] for real weighted Pl-#CSP. It was also used in [HL12, Lemma IV.5] with

real weights as well as grouping more than just two domain elements.

Given a signature f of arity 2n, we view each pair of inputs of f as a new input. Effectively

this is a signature of arity n on a domain of size 2×2 = 4. However, we will use other signatures

to ensure that the values on each pair of inputs are always the same. Hence the domain size
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is projected down back to 2. Usually the gadget we use is not symmetric geometrically, like

the one in Figure 2.4, and its signature is also asymmetric. However, by this domain pairing

argument (edges are paired by the dotted circle in Figure 2.4), the resulting signature is indeed

symmetric. To ensure the same value constrict, we usually work in a bipartite graph, construct

an equality signature on the other side, pair its edges, and use it as an equality of half the arity.

Lemma 2.21. ⊕Holant([0, 0, 1, 0],=6) is ⊕P-complete.

Proof. We connect one edge of two [0, 1, 0, 0]’s as in Figure 2.4, getting an asymmetric signature

f. As discussed above for domain pairing, we will enforce that each pair of dotted edges of f

takes the same value. Under this guarantee, f is [1, 1, 0] of arity 2 in the paired domain. In other

words, the domain pairing is the following reduction

⊕Holant([1, 1, 0] | =3) ⩽T ⊕Holant(f | =6).

Given an instanceΩ = (G,π) of⊕Holant([1, 1, 0] |=3), we replace each edge by a pair of parallel

edges, and put f on the left and =6 on the right. This is an instance of ⊕Holant(f | =6). It is

easy to verify that this does not change the ⊕Holant. By Corollary 2.17, ⊕Holant([1, 1, 0] | =3)

is ⊕P-complete and so is ⊕Holantc([0, 1, 0, 0],=n).

Lemma 2.21 can be generalized for higher arity equalities and AtMostOne signatures.

Lemma 2.22. If n ⩾ 3, then ⊕Holantc([0, 0, 1, 0],=n), ⊕Holantc([0, 1, 0, 0],=n), ⊕Holantc([0, 0,

1, 1],=n) and ⊕Holantc([1, 1, 0, 0],=n) are all ⊕P-complete.

Proof. By symmetry, we only need to prove the lemma for [0, 1, 0, 0] and [1, 1, 0, 0]. By Lemma 2.15,

we can realize [0, 1, 0, 0] from [1, 1, 0, 0], [0, 1], and [1, 0]. Hence it is sufficient to prove ⊕P-

hardness for ⊕Holantc([0, 1, 0, 0],=n).

We reduce the arity of =n by doing self-loops. Eventually it becomes =3 or =4, depending

on the parity of n. In either case we can realize =6 by connecting four =3’s or two =4’s together.

Hence we are done by Lemma 2.21.

Lemma 2.22 implies the following corollary for signatures that contain both Equality and

ExactOne or AtMostOne as subsignatures.
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Corollary 2.23. ⊕Holantc([1, 0, . . . , 0, 1, 0]) and ⊕Holantc([1, 0, . . . , 0, 1, 1]) are ⊕P-complete, if

the number of zeroes is at least 2.

Finally, there’s still two more cases not covered by all above. They can be treated in more or

less the same manner, and are summarized in the next lemma. We will use Lemma 2.21 again.

Lemma 2.24. ⊕Holantc([0, 0, 1, 0, 0]) and ⊕Holantc([0, 0, 1, 0, 1]) are ⊕P-complete.

Proof. Note that [0, 0, 1, 0] is a subsignature of both [0, 0, 1, 0, 0] and [0, 0, 1, 0, 1]. We only need

to construct =6 to apply Lemma 2.21.

If we place [0, 0, 1, 0, 0] at both the circle and the triangle in the gadget shown in Figure

2.5, the resulting signature is =4. We get =6 by connecting one edge of two =4’s. Hence

⊕Holantc([0, 0, 1, 0, 0]) is ⊕P-complete.

The case of [0, 0, 1, 0, 1] is more complicated. First get [0, 1, 0] as it is a subsignature of

[0, 0, 1, 0, 1]. Hence we have [1, 0, 1, 0, 0] by connecting [0, 1, 0] to each edge of [0, 0, 1, 0, 1]. Then

we place this [1, 0, 1, 0, 0] at the triangle and [0, 0, 1, 0, 1] at the circle in the gadget in Figure 2.5.

The combined gadget is depicted in Figure 2.6, where circles are [0, 0, 1, 0, 1] and squares are

[0, 1, 0]. The resulting signature is again [1, 0, 0, 0, 1]. The remaining proof is the same as the

case of [0, 0, 1, 0, 0].

We remark that the gadget in Figure 2.5 does not necessarily realize a symmetricZ2-signature,

but it does with the specific signatures we put in the proof above.

Figure 2.5: The gadget to construct
[1, 0, 0, 0, 1] from [0, 0, 1, 0, 0].

Figure 2.6: The gadget to construct
[1, 0, 0, 0, 1] from [0, 0, 1, 0, 1].

2.3 Parity Holantc Dichotomy

Based on the algorithms in Section 2.1 and the hardness results in Section 2.2, we are now ready

to show the dichotomy theorem for ⊕Holantc problems, which is a stepping stone towards the

final dichotomy. We show a single signature dichotomy first, and then generalize it to sets.
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Lemma 2.25. Let f be a Z2-signature such that f ̸∈ A⊕ ∪ P⊕ ∪M⊕. Then ⊕Holantc(f) is ⊕P-

complete.

The proof is a case-by-case analysis. Basically we want to discuss in terms of the maximum

number of consecutive ‘0’ bits and then that of ‘1’ bits in its symmetric form. We need to rule

out some simple cases before that.

Proof. First notice that M⊕ contains all signatures with arity less than or equal to two, as well

as all degenerate signatures. Thus, f has arity n ⩾ 3 and is non-degenerate. Also note that the

reversal of f has the same complexity as f by flipping. Hence we will often ignore its reversal.

We also rule out some patterns that will appear later more than once. Assume f contains one

of [0, 1, 1, 0], [1, 0, 1, 1], one [1, 1, 0, 1] as a subsignature. Because f ̸∈ P⊕, it must extend that sub-

signature in either or both directions. Thus fmust contain [0, 1, 1, 0, 0], [1, 0, 1, 1, 1], [1, 1, 0, 1, 0]

or their reversals as a subsignature. However, any of the three defines a ⊕P-complete problem,

and their reversals have the same complexity by flipping.

• For [0, 1, 1, 0, 0], ⊕Holantc(f) is ⊕P-complete by Corollary 2.20 since it contains both a

Fibonacci Z2-signature [0, 1, 1, 0] and ExactOne3 [1, 1, 0, 0] as subsignatures.

• For [1, 0, 1, 1, 1],⊕Holantc(f) is⊕P-complete by Proposition 2.16 since it contains [0, 1, 1, 1]

as a subsignature.

• For [1, 1, 0, 1, 0], ⊕Holantc(f) is ⊕P-complete by Corollary 2.20 since it contains both a

Fibonacci Z2-signature [1, 1, 0, 1] and Parity [1, 0, 1, 0] as subsignatures.

Hence we can assume that f does no contains any of [0, 1, 1, 0], [1, 0, 1, 1], or [1, 1, 0, 1] as its

subsignature.

Now we consider the maximum number of consecutive ‘0’ bits of f in its symmetric form.

First we assume f contains at least 2 consecutive 0’s. Then consider a sequence of consecutive

0’s of the maximum length k0 in f. If both ends of this sequence are 1, then f contains a

subsignature of the form [1, 0, . . . , 0, 1, 0], [1, 0, . . . , 0, 1, 1] or their reversals, because otherwise

f is an Equality signature =n∈ A⊕. Then by Corollary 2.23, ⊕Holantc(f) is ⊕P-complete.
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Otherwise, only one end of these 0’s is 1. Hence we may assume the first k0 bits of f are 0

as we may flip f if necessary. Consider the number of subsequent ones after these zeroes. We

have the following 3 cases.

• If there are more than 2 ones, then we have [0, 1, 1, 1] as its subsignature and we are done

by Proposition 2.16.

• If there are 2, f cannot end here because the partial matching gate [0, . . . , 0, 1, 1] is in M.

Then we have [0, 0, 1, 1, 0] as a subsignature of f. Hence ⊕Holantc(f) is ⊕P-complete as

discussed earlier.

• If there is only 1, f cannot end there because [0, . . . , 0, 1] is degenerate. Also because

[0, . . . , 0, 1, 0] is in M, f must have the form [0, . . . , 0, 1, 0, 0] or [0, . . . , 0, 1, 0, 1]. By Lemma

2.24 both cases are ⊕P-complete.

The case left is when f contains at most 1 consecutive 0’s. Consider the maximum number

k1 of consecutive 1’s in f. If k1 ⩾ 3, f must contain [0, 1, 1, 1] or its reversal and we get ⊕P-

completeness by Proposition 2.16. If k1 = 1, f must be a Parity signature which belongs to

M⊕. Contradiction. Thus k1 = 2. In that case fmust contain a Fibonacci Z2-signature [0, 1, 1, 0],

[1, 0, 1, 1] or [1, 1, 0, 1] as its subsignature, which is already shown to imply⊕P-completeness.

Given Lemma 2.25, the remaining case to deal with is that F ⊆ A⊕ ∪ P⊕ ∪M⊕, but F is not

a subset of any of them. The next lemma shows that this case also implies ⊕P-complete.

Lemma 2.26. Let F be a set of signatures. If F ⊆ A⊕ ∪ P⊕ ∪M⊕, but F ̸⊆ A⊕, F ̸⊆ P⊕, and

F ̸⊆M⊕, then ⊕Holantc(F) is ⊕P-complete.

Proof. Since F ̸⊆ M⊕ and every Z2-signature with arity at most 2 is a matchgate, there must

exist f ∈ F of arity n ⩾ 3 which is not a matchgate. Therefore f is either =n or a Fibonacci

signature.

We deal with the case that f is =n first. Since F is not a subset of A⊕, there must exist g ∈ F

such that g ̸∈ A⊕ but g ∈ P⊕ ∪M⊕. Since A⊕ contains all degenerate Z2-signatures, g is non-

degenerate and of arity at least 2. Moreover, if g has arity 2, then g is either [0, 1, 1] or [1, 1, 0]

as g ̸∈ A⊕. By Corollary 2.18, ⊕Holantc(f,g) is ⊕P-complete and so is ⊕Holantc(F). Otherwise
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g has arity ⩾ 3. Since g ∈ P⊕ ∪M⊕ but g ̸∈ A⊕, g is Fibonacci, ExactOne, or AtMostOne.

Hence g contains a subsignature [0, 1, 1], [1, 1, 0], or [0, 1, 0, 0]. By Corollary 2.18 and Lemma

2.22, ⊕Holantc(F) is ⊕P-complete in any of the cases.

The other case is when f is Fibonacci. Then f contains either [0, 1, 1] or [1, 1, 0] as a sub-

signature. Because F is not a subset of P⊕, there must exist g ∈ F such that g ̸∈ P⊕ but

g ∈ A⊕ ∪M⊕. Since P⊕ contains all degenerate Z2-signatures, g is non-degenerate and has

arity ⩾ 3. If g is Equality, then by Corollary 2.18, ⊕Holantc(f,g) is ⊕P-complete and so is

⊕Holantc(F). Otherwise, g ∈ M⊕. By Corollary 2.20, ⊕Holantc(f,g) is ⊕P-complete and so is

⊕Holantc(F).

By Lemma 2.2, Lemma 2.4, and Lemma 2.7, ifF ⊆ A⊕, F ⊆ P⊕, orF ⊆M⊕, then⊕Holantc(F)

is computable in polynomial time. Together with Lemma 2.25 and Lemma 2.26, we have the

dichotomy of ⊕Holantc problems.

Theorem 2.27. ⊕Holantc(F) is ⊕P-complete, unless F ⊆ A⊕, F ⊆ P⊕ or F ⊆M⊕. In any of the

exceptional cases ⊕Holantc(F) can be computed in polynomial time. The same statement also

holds for planar graphs.

2.4 Parity Vanishing Signature Sets

In the remaining two sections we extend our results to obtain the dichotomy result for⊕Holant

without assuming any available functions. One key ingredient to the full dichotomy is a new

tractable family which we call Vanishing.

Definition 2.28. A set F of Z2-signatures is called vanishing if the value of⊕Holant(Ω;F) is zero

for every Ω. A single Z2-signature f is called vanishing if {f} is. Denote by V⊕ the class of all

vanishing signature sets.

We note that Definition 2.28 in fact defines a family of tractable Z2-signatures, instead of

just a set. It is possible that both F1 and F2 are vanishing, but F1 ∪ F2 is not.

We first show some basic properties of V⊕. For two Z2-signatures f and g of the same arity,

f+ g denotes the bitwise addition in Z2, i.e. for any input x, (f+ g)(x) = f(x) + g(x).
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Lemma 2.29. Let F be a vanishing Z2-signature set.

• If f is an F-gate, then F ∪ {f} ∈ V⊕.

• If g0 and g1 are two Z2-signatures in F of the same arity, then F ∪ {g0 + g1} ∈ V⊕.

Proof. The first statement is trivial. We prove the second, which says that a vanishing signature

set is closed under linear combinations.

LetΩ = (G,π) be an instance of ⊕Holant(F∪ {g0 +g1}). We want to show that HolantΩ = 0.

If the signature g0 + g1 does not appear in H, then HolantΩ is zero since F ∈ V⊕. Otherwise,

we denote by U the set of vertices having the signature g0 + g1. Then:

HolantΩ =
∑

σ:V→{0,1}

∏
v∈V

fv(σ |E(v))

=
∑
σ

∏
v ̸∈U

fv(σ |E(v))
∏
v∈U

(
g0(σ |E(v)) + g1(σ |E(v))

)

=
∑
σ

∏
v ̸∈U

fv(σ |E(v))

 ∑
τ:U→{0,1}

∏
v∈U

gτ(v)(σ |E(v))


=

∑
τ:U→{0,1}

∑
σ

∏
v ̸∈U

fv(σ |E(v))
∏
v∈U

gτ(v)(σ |E(v))

 ,

where σ is an assignment, E(v) denotes the incident edges of v, and σ |E(v) denotes the re-

striction of σ to E(v). In the final line, we rewrote HolantΩ into an exponential sum over all

configurations τ on U, where every term in the bracket is a Holant value on Ω but with g1 + g2

on v replaced by gτ(v) for every v ∈ U. These are all instances of ⊕Holant(F), and therefore all

terms are zero since F ∈ V⊕. The summation HolantΩ, albeit exponential, is also zero. This

completes the proof.

In the following two subsections, we mention some simple examples of V⊕. They are not

really used in the dichotomy proof, but one may get some intuition and there are some interest-

ing phenomena. In the last part of this section, we will introduce self-vanishable Z2-signatures,

which is crucial in the proof of the full dichotomy.
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Complement Invariant Signatures

The simplest example of vanishing Z2-signatures are complement invariant ones. A signature

f of arity n is called complement invariant if for α ∈ {0, 1}n, f(α) = f(α).

If all Z2-signatures involved in a Holant instance Ω are complement invariant, then any

assignment of edges and its complement yield the same value, and hence they are cancelled in

⊕Holant. In the end ⊕Holant is always 0.

Proposition 2.30. Let F be a set of complement invariant signatures. Then F is vanishing.

As a side note, this family of signature sets corresponds to the additional tractable case of

in Faben’s parity CSP dichotomy [Fab08].

Matching Based Vanishing Signature Sets

Next we describe another family of vanishing signature sets. In a graph where all nodes have

even degrees the parity of the number of perfect matchings is even. This can be easily shown

using (2.1). The parity of perfect matchings is equal to that of the determinant of its adjacency

matrix. Adding up all rows of the adjacency matrix, we get a vector composed of even numbers.

Thus this matrix must be singular in Z2 and its determinant is zero.

Furthermore, using (2.2), we make the same claim for Parity Matching Problems defined

in Section 2.1. If unomittable nodes have even degrees and omittable nodes have odd degrees,

then the parity of desired matchings is always even. By (2.2), the parity of the number of such

matchings equals Pf(A+Λ(n)) if n, the number of nodes, is even, or Pf(A++Λ(n+1)) if n is odd.

As the number of vertices of odd degrees must be even, it is easy to verify that the summation

of all rows in A+Λ(n) for even n, or the first n rows in A+ +Λ(n+1) for odd n is a zero vector

in Z2. Hence, the Pfaffian, which equals the determinant, is zero in Z2. In the Holant language,

unomittable nodes of even degrees have Z2-signatures ExactOne2k, and omittable nodes of

odd degrees have AtMostOne2k ′−1, for some integers k, k ′ ⩾ 1.

By Lemma 2.29, the linear combination of these matching signatures, or signatures that can

be realized from them, also belong to this vanishing signature family.
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Proposition 2.31. If a Z2-signature set F is composed of ExactOne of even arities, AtMostOne

of odd arities, Z2-signatures realizable from them, and linear combinations of all above, then

F ∈ V⊕.

Note that all Z2-signatures realized from ExactOne2k and AtMostOne2k ′−1 are in M⊕,

and they do not provide any new tractable set. However, the linear combination can bring us

outside of M⊕. Then Z2-signatures realized from these linear combinations are also outside of

M⊕. Indeed, there are some sets F such that ⊕Holantc(F) is ⊕P-complete, but F is vanishing,

and thus ⊕Holant(F) is tractable.

Example 2.32. By Theorem 2.27 ⊕Holantc({[1, 1, 1, 0, 1]}) is ⊕P-complete. However, [1, 1, 1, 0, 1]

is vanishing because [1, 1, 1, 0, 1] = [0, 1, 0, 0, 0] + [1, 0, 1, 0, 1], where [0, 1, 0, 0, 0] is ExactOne4

and [1, 0, 1, 0, 1] can be realized from ExactOne4 (the construction is similar to that in Lemma

2.14).

Self-Vanishable Signatures

In this section, we introduce a new notion called self-vanishable signatures which plays an

important role in the proof of the full dichotomy. First, we introduce an extended version of

the inner product for two signatures with not necessarily the same arity.

Definition 2.33. Let f and g be two signatures with arities n and m (n ⩾ m) respectively. Their

inner product h = ⟨f,g⟩ is a signature with arity n−m defined as follows:

h(α) =
∑

β∈{0,1}m

f(β,α)g(β),

for every α ∈ {0, 1}n−m.

If f is symmetric, then h = ⟨f,g⟩ is also symmetric. If both f and g are symmetric, then

their inner product h = [h0,h1, . . . ,hn−m] has the following form: hi =
∑m
j=0

(
m
j

)
fj+igj for

0 ⩽ i ⩽ n−m. Hence, in Z2,

⟨f, [1, 1]⊗2⟩ = ⟨f, [1, 1, 1]⟩ = ⟨f, [1, 0, 1]⟩, (2.4)
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since
(2

1

)
= 2. We will need this simple fact in future.

We can also view this inner product in a combinatorial way. Given two gates with signatures

f and g, connecting (the first) m dangling edges of f to g (see Figure 2.7), results in a gadget

with signature ⟨f,g⟩.

gf
... ...

Figure 2.7: The signature inner product.

Definition 2.34. A Z2-signature f of arity n is called self-vanishable of degree k if there exists a

unique non-negative integer k < n such that ⟨f, [1, 1]⊗k+1⟩ = 0 and ⟨f, [1, 1]⊗k⟩ ≠ 0, denoted by

rd(f) = k. Define rd(0) := −1. If such a k does not exist, then f is not self-vanishable and define

rd(f) := n.

The notation, rd(·), stands for the recurrence degree. We will see in Lemma 2.37 that entries

of f with rd(f) = d satisfy a linear recurrence of degree d.

A vanishing Z2-signature is necessarily self-vanishable, as shown in the following proposi-

tion. It also partly explains the intuition why we define this notion in this way.

Proposition 2.35. If f is vanishing, then f is self-vanishable.

Proof. Let n be the arity of f. If n = 2k is even, construct an instance of one single vertex of k

many self loops, and put f on it. The resulting signature is of arity 0, which means it is a single

value, and the value is ⟨f, [1, 0, 1]⊗k⟩. However, (2.4) implies that

⟨f, [1, 1]⊗2k⟩ = ⟨f, [1, 1, 1]⊗k⟩ = ⟨f, [1, 0, 1]⊗k⟩.

Since f is not self-vanishable, ⟨f, [1, 1]⊗2k⟩ ≠ 0. Hence f is not vanishing, and neither is F.

If n = 2k + 1 is odd, then we do k many self-loops of f. The resulting Z2-signature is arity

1, and its signature is g = ⟨f, [1, 0, 1]⊗k⟩ = ⟨f, [1, 1]⊗2k⟩. This g cannot be [0, 0] or [1, 1] for f is

not self-vanishable. Hence g must be either [0, 1] or [1, 0]. In either case, connect two copies of

g. We get an instance whose ⊕Holant is 1. Again f is not vanishing, and neither is F.
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The following lemma is immediate by induction.

Lemma 2.36. Let f be self-vanishable of degree d ⩾ 0. Let r be an integer that 0 < r ⩽ d + 1.

Then rd(⟨f, [1, 1]⊗r⟩) = d− r.

It is easy to verify that for a symmetric Z2-signature f = [f0, f1, . . . , fn], we have that

⟨f, [1, 1]⟩ = [f0 + f1, f1 + f2, . . . , fn−1 + fn].

Hence the only symmetric Z2-signature of arity n with rd(f) = 0 is [1, 1]⊗n. In other words, it

satisfies a linear relation fi = 1 for any 0 ⩽ i ⩽ n. In general, we have the following.

Lemma 2.37. Let f = [f0, f1, · · · , fn] be a symmetric Z2-signature with arity n, rd(f) = d and

0 ⩽ d < n. Then we have that

d∑
j=0

(
d

j

)
fi+j = 1, (2.5)

for any 0 ⩽ i ⩽ n− d.

Proof. We prove it by induction on d. The base case is when d = 0. As shown above, the only

possible Z2-signature is [1, 1]⊗n, and it satisfies fi = 1 for any 0 ⩽ i ⩽ n.

Now suppose d > 0 and the lemma holds for any 0 ⩽ k < d. Let f ′ = ⟨f, [1, 1]⊗r⟩ of arity

n− 1. By Lemma 2.29, rd(f ′) = d− 1. By induction hypothesis,

d−1∑
j=0

(
d− 1

j

)
f ′i+j = 1, (2.6)

for any 0 ⩽ i ⩽ n− d. Moreover, f ′i = fi + fi+1. Plugging it in (2.6) the lemma is proved.

Lemma 2.37 implies that any self-vanishable signature of degree d ⩾ 0 is completely

determined by its first d entries. We call a self-vanishable Z2-signature f with arity n and

rd(f) = d < n has the canonical form if fi = 0 for any 0 ⩽ i ⩽ d − 1. Using Lemma 2.36, it is

easy to verify that if f has the canonical form for symmetric self-vanishable Z2-signatures of

degree d, then ⟨f, [1, 1]⊗r⟩ has the canonical form of degree d− r where 0 < r ⩽ d+ 1.
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Denote by vd,n the canonical symmetric self-vanishable Z2-signature of degree d and arity

n > d. We also write vd when the arity is clear from the context. Clearly vdd = 1 by (2.5) and

the fact that vdi = 0 for any 0 ⩽ i ⩽ d− 1. We will use this observation in the following lemma.

Lemma 2.38. Let f be a symmetric self-vanishable Z2-signature of degree d and arity n > d.

Then there exist ci ∈ {0, 1} where 0 ⩽ i ⩽ d− 1 such that

f = vd,n +

d−1∑
i=0

civ
i,n.

Proof. Since all canonical self-vanishables have the same arity n, we will drop the superscript

n. Let ci’s be the unique solution to the linear system
∑d−1
j=0 xjv

j
i = fi for 0 ⩽ i ⩽ d − 1. The

solution {ci} always exists because the coefficient matrix A is of full rank, as

A =



v0
0 v0

1 . . . v0
d−1

v1
0 v1

1 . . . v1
d−1

...
...

...

vd−1
0 vd−1

1 . . . vd−1
d−1


=



1 1 . . . 1

0 1 . . . 0/1
...

...
...

0 0 . . . 1


where we use the facts that vij = 0 for all 0 ⩽ j < i and vii = 1 for all 0 ⩽ i ⩽ d− 1. Let

f ′ := vd +

d−1∑
i=0

civ
i.

We will show that f ′ = f. By the definition of f ′ and {ci}, it is easy to verify that f ′i = fi for all

0 ⩽ i ⩽ d− 1.

Then by Lemma 2.37, it is sufficient to prove that f ′ is self-vanishable of degree d. This can

be verified as follows:

⟨f ′, [1, 1]⊗d+1⟩ = ⟨vd, [1, 1]⊗d+1⟩+
d−1∑
i=0

ci⟨vi, [1, 1]⊗d+1⟩ = 0,
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and

⟨f ′, [1, 1]⊗d⟩ = ⟨vd, [1, 1]⊗d⟩+
d−1∑
i=0

ci⟨vi, [1, 1]⊗d⟩ = ⟨vd, [1, 1]⊗d⟩ ≠ 0.

The canonical form is useful due to the following decomposition lemma.

Lemma 2.39. The canonical symmetric self-vanishable Z2-signature of degree d ⩾ 0 can be

expressed as follows:

vd =
∑

S⊆[n],|S|=d

n⊗
i=1

u[i∈S],

where [i ∈ S] = 1 if and only if i ∈ S, u0 = [1, 1] and u1 = [0, 1].

Proof. We prove by induction on d. It is obvious for d = 0. Now we assume that the lemma

holds for d− 1. For d > 0, let

f :=
∑

S⊆[n],|S|=d

n⊗
i=1

u[i∈S].

Then,

⟨f, [1, 1]⟩ =

⟨ ∑
S⊆[n],|S|=d

n⊗
i=1

u[i∈S], [1, 1]

⟩
=

∑
S⊆[n],|S|=d

⟨
n⊗
i=1

u[i∈S], [1, 1]

⟩

=
∑

S⊆[n],|S|=d

⟨
u[n∈S], [1, 1]

⟩
⊗
n−1⊗
i=1

u[i∈S]

=
∑

S⊆[n],|S|=d
n∈S

n−1⊗
i=1

u[i∈S] =
∑

S⊆[n−1],|S|=d−1

n−1⊗
i=1

u[i∈S].

By the induction hypothesis, we conclude that ⟨f, [1, 1]⟩ = vd−1. Hence f is self-vanishable of

degree d by Definition 2.34. Moreover, we have that fi+fi+1 = 0 for all 0 ⩽ i ⩽ d−2. It implies

that fi = fi+1 for all 0 ⩽ i ⩽ d− 2. Since d > 0, it is easy to verify that f0 = 0. Hence fi = 0 for

all 0 ⩽ i ⩽ d− 1.

Remark Note that this exponential sum is very similar to the symmetrization function Symtn(· ; ·)
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of Definition 1.12. However since we are working in Z2, we have to be more careful to avoid

even factors introduced by redundant permutations.

We define strongly and weakly self-vanishable Z2-signatures depending on rd(·). As we will

see shortly, strongly self-vanishable Z2-signatures are vanishing.

Definition 2.40. Let f be a self-vanishable Z2-signature with arity n and rd(f) = d < n. We call

f strongly self-vanishable if −1 ⩽ d ⩽ n
2 , and weakly self-vanishable otherwise.

A set F of strongly self-vanishable Z2-signatures is vanishing. The idea is that using Lemma

2.38 and Lemma 2.39, ⊕Holant(Ω;F) can be always decomposed into smaller⊕Holant’s where

each one contains only unary signatures, and there are more than half [1, 1]’s. As a result two

[1, 1]’s must be matched, and makes the ⊕Holant 0.

Lemma 2.41. Let F be a set of symmetric strongly self-vanishable Z2-signatures. Then F is

vanishing, that is, F ∈ V⊕.

Proof. Clearly we can ignore all Z2-signatures in F that are identically 0, which are f such that

rd(f) = −1. Then by Lemma 2.29 and Lemma 2.38 it is sufficient to prove the theorem for

canonical strongly self-vanishable Z2-signatures. They can be decomposed as in Lemma 2.39.

Each term of the decomposition is a degenerate signature, a tensor product of [1, 1]’s and [0, 1]’s.

For a strongly self-vanishable Z2-signature, we have that d ⩽ n
2 . It implies that in each term,

the number of [1, 1]’s is larger than or equal to the number of [0, 1]’s.

LetΩ = (G,π) be an instance of⊕Holant(F). Suppose that there is at least one f ∈ F of arity

n appearing in Ω such that rd(f) = d < n
2 . It implies that in each term of the decomposition

there are strictly more [1, 1]’s than [0, 1]’s. In this case, we further decompose the Holant value

as in Lemma 2.29 into a sum of several (possibly exponentially many) Holant values according

to the decomposition of canonical Z2-signatures in Lemma 2.39. Then in every such Holant,

every signature appeared is degenerate. A vertex of arity n can be viewed as n unary signatures

([1, 1]’s or [0, 1]’s). Therefore the whole graph is decomposed into isolated edges. For each edge,

its two endpoints are either [1, 1] or [0, 1]. The Holant is the product over all these edges. If

both ends of one edge are [1, 1], then the value for this edge is 0 and so is the Holant. However,

in every Holant, such cancellation must happen at some edge because there are strictly more
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[1, 1]’s than [0, 1]’s. Hence, in total, the whole Holant is a sum of (possibly exponentially many)

0s, which is still 0.

If there is a signature of odd arity, then d < n
2 always holds. The remaining case is that of

all Z2-signatures have even arity and satisfy d = n
2 . In that case we do the same decomposition

as in the previous paragraph. The numbers of [1, 1]s and [0, 1]s are now exactly equal. Now it

is possible to have some Holant in the decomposition that equals 1. In this case, we need to

look further into the structure of the decomposition

f =
∑

S⊆[n],|S|=d

n⊗
i=1

v[i∈S] =
∑

S⊆[n],|S|=n
2

n⊗
i=1

u[i∈S].

Let G = (V ,E). As in the proof of Lemma 2.29, we have that

HolantΩ =
∑
σ

∏
v∈V

fv(σ |E(v))

=
∑

Sv⊆[nv], |Sv|=
nv
2

∀ v∈V

∑
σ

∏
v∈V

n⊗
i=1

u[i∈Si](σ |E(v))

=
∑

Sv⊆[nv], |Sv|=
nv
2

∀ v∈V

∏
(i,j)∈E

⟨
u[
ti
(i,j)∈Si

],u[
t
j

(i,j)∈Sj
]⟩ ,

where ti(i,j) and tj(i,j) are indices of the edge (i, j) in the local numbering of edges at vertices i

and j, respectively. Note that the summation is indexed by a vector {Sv | v ∈ V}. A term indexed

by some {Sv} in the summation contributes 1 if and only if {Sv} satisfies the condition that for

all edges (i, j), exactly one of ti(i,j) ∈ Si and tj(i,j) ∈ Sj is true. The crucial observation is that

if {Sv} satisfies this condition, its complement {Sv} also satisfies it. Hence, if a term indexed

by {Sv} is 1, it will be cancelled out with the term indexed by the {Sv}. (Here we use the fact

|Sv| = |Sv| =
nv
2 .) This completes the proof.

As a final remark we note that the family V⊕ has the following difference from A⊕, P⊕, and

M⊕. The union of two sets in V⊕ is not necessarily in V⊕. For example, [0, 0, 1, 1, 0] is strongly

self-vanishable, and [1, 0, 1, 1, 1] is matching based vanishing, but the set of [0, 0, 1, 1, 0] and

[1, 0, 1, 1, 1] is not vanishing.
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2.5 Dichotomy for Parity Holant

In the final section of this chapter, we prove the dichotomy for ⊕Holant problems with sym-

metric Z2-signatures. We will reduce a lot of cases into ⊕Holantc problems, and then apply

Theorem 2.27. To do so, we need to do pinning, that is, to realize [0, 1] and [1, 0]. However,

pinning is not always possible. We show that for exceptional cases, signature sets must be

vanishing, and are therefore tractable.

We remark that some reductions in this chapter are not planar (for example, Lemma 2.42).

As a result, a dichotomy for planar graphs does not follow directly.

Our first goal is to show that realizing either one of [0, 1] and [1, 0] is sufficient to realize

the other. Before that we show that degenerate Z2-signatures [0, 0, 1] or [1, 0, 0] can be used as

[0, 1] or [1, 0].

Lemma 2.42. For any Z2-signature set F, we have that

⊕Holant(F ∪ {[1, 0]}) ≡T ⊕Holant(F ∪ {[1, 0, 0]})

⊕Holant(F ∪ {[0, 1]}) ≡T ⊕Holant(F ∪ {[0, 0, 1]}).

Proof. In both claims reductions from the right to the left are trivial. We will show⊕Holant(F∪

{[1, 0]}) ⩽T ⊕Holant(F ∪ {[1, 0, 0]}). The other claim is similar.

Let Ω = (G,π) be an instance of ⊕Holant(F ∪ {[1, 0]}). We make another copy G ′ of G and

put them together disjointly. Then use [1, 0, 0] to replace every occurrence of [1, 0] in G and its

corresponding one in G ′. This is depicted in Figure 2.8. All circles are put [1, 0] and all squares

[1, 0, 0]. View the part of G excluding [1, 0]’s as a (possibly exponentially large) signature f. The

Holant of the left is f(00 . . . 0), while the Holant of the right is (f(00 . . . 0))2 ≡ f(00 . . . 0) (mod

2).

It may not be always possible that having only one of [0, 1] and [1, 0] we can construct the

other. However, if the signature set is of one of the three tractable family, then we don’t need

to worry. Otherwise we show that if the other unary signature is not easy to construct, the

signature set itself is hard already.
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G

… …

G

… …

G ′

Figure 2.8: Simulating [1, 0] using [1, 0, 0] or [1, 1, 0].

Lemma 2.43. Let F be a set of symmetric Z2-signatures. Problems⊕Holant(F∪{[1, 0]}), ⊕Holant

(F∪ {[1, 0, 0]}), ⊕Holant(F∪ {[0, 1]}) and ⊕Holant(F∪ {[0, 0, 1]}) are ⊕P-complete unless F ⊆ A⊕,

F ⊆ P⊕, or F ⊆ M⊕. Moreover, in any of the exceptional cases, these problems are computable

in polynomial time.

Proof. By Lemma 2.42 and symmetry, we only need to prove the lemma for⊕Holant(F∪{[1, 0]}).

If F is a subset of A, M, or F ∪ {[0, 1, 0]}, then by Lemma 2.2, Lemma 2.4, or Lemma 2.7,

⊕Holant(F ∪ {[1, 0]}) is computable in polynomial time.

Now suppose otherwise. If we can simulate [0, 1] or [0, 0, 1], then by Lemma 2.42, ⊕Holantc

(F) ⩽T ⊕Holant(F ∪ {[1, 0]}). Hence by Theorem 2.27, ⊕Holant(F ∪ {[1, 0]}) is ⊕P-complete.

Since F is not a subset of A⊕, there exists f ∈ F, which is non-degenerate and f ̸∈ A⊕.

Consider the first bit of f. Assume it is 0. If the next bit is 1, we are done, since using [1, 0]

we can get any prefix of f, and in particular, [0, 1] in this case. Otherwise it begins with, say, k

many successive 0’s followed by 1. Using [1, 0] we get [0, 0, . . . , 1] of arity k. If k = 2, then it is

[0, 0, 1] and we are done. Otherwise we do self-loops until it is unary or binary. The resulting

signature is either [0, 1] or [0, 0, 1]. In either case, we are done with the leading bit 0 case.

Next assume that the leading bit is 1. Similar to the leading bit 0 case, we can get a Z2-

signature g of the form [1, 1, . . . , 1, 0] of arity k. Depending on k, we have three cases.

• If k ⩾ 3, one self-loop on g results in a Z2-signature of the form [0, 0, . . . , 0, 1] of arity k−2.

This has been dealt with in the leading bit 0 case.

• If k = 2, then g = [1, 1, 0]. Connecting two copies of g sequentially gives us [0, 1, 1]. We

get [0, 1] by connecting [0, 1, 1] to [1, 0].
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• Otherwise k = 1 and f begins with 1, 0. Consider the number of successive 0’s afterwards

in f.

– If there is only one 0 afterwards, f have a prefix [1, 0, 1]. Since f cannot be [1, 0, 1, 0, . . . ,

0/1] ∈ A⊕, fmust have a prefix of the form [1, 0, 1, 0, . . . , 1, 0, 0] or [1, 0, 1, 0, . . . , 0, 1, 1].

In either case, one self-loop on this prefix gives us [0, 0, . . . , 0, 1]. This has been dealt

with in the leading bit 0 case.

– Otherwise f starts with [1, 0, · · · , 0, 1] where there are at lest two 0’s since f is non-

degenerate. Moreover, f cannot be [1, 0, . . . , 0, 1] ∈ A⊕. Hence f must have a prefix

h of the form either [1, 0, . . . , 0, 1, 0] or [1, 0, . . . , 0, 1, 1] of arity k ⩾ 4. In either case,

we do a self-loop on h to get h ′. Note that h ′ has the same form as h, but with two

less arities and 0’s. Repeat this process until we get a Z2-signature of arity 4 or 5,

depending on the parity of k. It is one of the following four: [1, 0, 0, 1, 0], [1, 0, 0, 1, 1],

[1, 0, 0, 0, 1, 0] or [1, 0, 0, 0, 1, 1].

∗ For [1, 0, 0, 1, 0], one self-loop gives [1, 1, 0] which is dealt with above.

∗ For [1, 0, 0, 1, 1], put it on every vertex in the tetrahedron gadget of Figure 2.9. The

resulting signature is [0, 1, 0, 1, 0]. We get [0, 1] from [0, 1, 0, 1, 0] by connecting it

with three [1, 0]’s.

∗ For [1, 0, 0, 0, 1, 0], put it on every vertex in the gadget of Figure 2.10. The result-

ing signature is [0, 0, 1].

∗ For [1, 0, 0, 0, 1, 1], with two self-loops we get [0, 1].

Figure 2.9: The tetrahedron gadget. Figure 2.10: The gadget for [1, 0, 0, 0, 1, 0].

Using the idea of replication in Lemma 2.42, [1, 1, 0] can also be used as [1, 0]. Formally we

have the following corollary.
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Corollary 2.44. Let F be a set of symmetric Z2-signatures. Problems ⊕Holant(F∪ {[1, 1, 0]}) and

⊕Holant(F ∪ {[0, 1, 1]}) are ⊕P-complete, unless F ⊆ P⊕ or F ⊆M⊕. In either of the exceptional

cases, both problems are computable in polynomial time.

Notice that if F is a subset of A⊕, then ⊕Holant(F∪ {[1, 1, 0]}) is still possibly ⊕P-complete,

because for example [1, 1, 0] together with =3∈ A⊕ gives ⊕P-hardness by Corollary 2.17.

Proof. We first prove that

⊕Holant ((F ∪ {[1, 1, 0]}) ∪ [1, 0]}) ⩽T ⊕Holant(F ∪ {[1, 1, 0]}). (2.7)

We use the same idea as in Lemma 2.42. Given an instanceΩ = (G,π) of ⊕Holant((F∪ [1, 1, 0])

∪[1, 0]), we replicate G and replace every pair of corresponding occurrences of [1, 0] by [1, 1, 0],

as depicted in Figure 2.8. Circles are [1, 0]’s and squares [1, 1, 0]’s. Call the new instance Ω ′.

Suppose there are n many occurrences of [1, 0] in G. Again view the part of G excluding [1, 0]’s

as an arity n signature f. Hence we have

⊕HolantΩ ′ =
∑

α,β∈{0,1}n

α∧β=0

f(α)f(β),

where α∧ β is the bit-wise “and” of α and β. The requirement α∧ β = 0 is due to [1, 1, 0]’s. In

the summation, if α ≠ β and f(α)f(β) = 1, then f(β)f(α) = 1 as well, so their contributions are

cancelled in ⊕HolantΩ ′ . If α = β, then it must be that α = β = 0. Hence,

⊕HolantΩ ′ = (f(0))2 ≡ f(0) = ⊕HolantΩ .

By Lemma 2.43 and (2.7), ⊕Holant(F∪ {[1, 1, 0]}) is ⊕P-complete unless (F∪ {[1, 1, 0]}) ⊆ A⊕,

(F ∪ {[1, 1, 0]}) ⊆ P⊕, or (F ∪ {[1, 1, 0]}) ⊆ M⊕. Since [1, 1, 0] ∈ P⊕, [1, 1, 0] ∈ M⊕ whereas

[1, 1, 0] ̸∈ A⊕, the condition above simplifies to F ⊆ P⊕ or F ⊆M⊕.

Finally we are ready to show the full ⊕Holant dichotomy.
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Theorem 2.45. Let F be a set of symmetric Z2-signatures. The problem ⊕Holant(F) is ⊕P-

complete unless F ⊆ A⊕, F ⊆ P⊕, F ⊆M⊕, or F ∈ V⊕. Moreover, in any of the exceptional cases,

⊕Holant(F) is polynomial time computable.

Proof. If F ∈ V⊕ then ⊕Holant(F) is trivially computable in polynomial time since we just

return 0 for any input. The other three cases are tractable by Lemma 2.2, Lemma 2.4, and

Lemma 2.7 (note that ⊕Holant(F) ⩽T ⊕Holantc(F)).

Now we assume that F ̸∈ V⊕. By Definition 2.28, there is an instance Ω = (G,π) of

⊕Holant(F) such that ⊕Holant(Ω;F) = 1. We shall use G as a gadget to realize Z2-signatures.

Breaking the graph of G at one arbitrary edge, we get a signature of arity 2. Call it g. Hence

⊕Holant(Ω;F) = g(00)+g(11) = 1. By symmetry, we may assume that g(00) = 1 and g(11) = 0.

If g(01) = g(10) = 0, then we have a Z2-signature [1, 0, 0] and we are done by Lemma 2.43. If

g(01) = g(10) = 1, then we have a Z2-signature [1, 1, 0] and we are done by Corollary 2.44.

The remaining cases are g(01) = 1, g(10) = 0 and g(01) = 0, g(10) = 1. These two Z2-

signatures are the same up to a reordering of the two dangling edges. We may assume that

g(01) = 1, g(10) = 0. Then g is [1, 0]⊗ [1, 1]. By connecting two copies of this g through their

first edge, we get a Z2-signature [1, 1, 1] = [1, 1]⊗ [1, 1]. By the same replication argument as in

Lemma 2.42, we can use the Z2-signature [1, 1] freely.

If all Z2-signatures in F are strongly self-vanishable, then F ∈ V⊕ by Lemma 2.41, a con-

tradiction. Therefore there exists f ∈ F of arity n which is weakly self-vanishable or not self-

vanishable.

We first assume that f is not self-vanishable. If n = 2k+1 is odd, by kmany self-loops on f,

we get a unary ⟨f, [1, 0, 1]⊗k⟩ = ⟨f, [1, 1]2k⟩. This is not [0, 0] or [1, 1] since f is not self-vanishable.

So it must be [0, 1] or [1, 0] and we are done by Lemma 2.43. If n = 2k is even, then k− 1 many

self-loops on f gives us a binary ⟨f, [1, 0, 1]⊗k−1⟩ = ⟨f, [1, 1]⊗2k−2⟩ = [a,b, c], where a ≠ c since

f is not self-vanishable. It has to be one of [1, 0, 0], [0, 0, 1], [1, 1, 0] and [0, 1, 1]. Again we are

done by Lemma 2.43 or Corollary 2.44.

Henceforth we may assume that all Z2-signatures in F are self-vanishable. In particular

f ∈ F is weakly self-vanishable such that rd(f) = d. Then n
2 < d ⩽ n− 1 by Definition 2.40. We

will realize either [1, 0] or [0, 1]. Since d is an integer and d > n
2 , 2d − n − 1 ⩾ 0. We connect f



61

to (n− d) many copies of g’s and 2d−n− 1 many copies of [1, 1]’s to get f ′. This construction

is valid because f ′ has arity n − 2(n − d) − (2d − n − 1) = 1. Recall that g = [1, 0] ⊗ [1, 1]. We

calculate f ′ as follows:

f ′ = ⟨f,g⊗n−d ⊗ [1, 1]⊗2d−n−1⟩ = ⟨f, [1, 1]⊗d−1 ⊗ [1, 0]⊗n−d⟩ = ⟨⟨f, [1, 1]⊗d−1⟩, [1, 0]⊗n−d⟩.

Since f ′ is unary, it is in fact the first two entries of ⟨f, [1, 1]⊗d−1⟩. By Lemma 2.36, ⟨f, [1, 1]⊗d−1⟩

is a self-vanishable signature of degree d − (d − 1) = 1. Therefore by Lemma 2.37 it must

be Parity [1, 0, 1, 0, . . . , 0/1] or [0, 1, 0, 1, . . . , 0/1], whose first two entries are either [1, 0] or

[0, 1].

Concluding Remarks

Results reported in this chapter are mainly from [GLV13], joint work with Pinyan Lu and Leslie

G. Valiant. However, the presentation, especially regarding vanishing Z2-signatures, is largely

rewritten using more up-to-date language.

The major open problem left is to characterize all vanishing Z2-signatures. Although we

have provided three sufficient conditions including Lemma 2.41, as well as a necessary condi-

tion Proposition 2.35, it is not clear what a complete characterization of V⊕ might look like. The

main obstacle is that some cases, such as matching based vanishing Z2-signatures, can become

very complicated. As we will see in Chapter 3, in contrast, we have a complete characteriza-

tion of complex vanishing signatures, which basically corresponads to strongly self-vanishable

signatures in this chapter.

Related work includes Faben’s parity Boolean CSP dichotomy [Fab08], which was later gener-

alized to all integer moduli [GHLX11], as well as computing the parity of graph homomorphisms

[FJ15, GGR14, GGR15]. We note that in terms of graph homomorphisms, a full dichotomy is

still open. Only special cases are solved such as trees and other graph families.
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Chapter 3

Holant Problems on 4-regular graphs

In the following several chapters we will classify all complex weighted Boolean Holant problems

on both general graphs and planar graphs. From this point on, all functions are [2]n → C.

In this chapter we will first develop a theory about vanishing signatures in C, similar to the

one developed in Chapter 2. However, unlike in Chapter 2, we will complete characterize all

vanishing signatures in C. These vanishing signatures happen to account for some isolated

tractable cases in previous work [CLX11a, CHL12]. We will use the characterization and continue

to show a dichotomy for Holant(f) and Pl-Holant(f) where f is a symmetric signature of arity 4.

3.1 Complex Vanishing Signatures

We define complex vanishing signatures similar to Definition 2.28.

Definition 3.1. A set of signatures F is called vanishing if Holant(Ω;F) = 0 for every signature

grid Ω. A signature f is called vanishing if the singleton set {f} is vanishing.

The trivial example of vanishing signatures is the identically zero signature. Similar to

the case in Z2, there are non-trivial vanishing signatures in C. We will characterize all sets

of symmetric vanishing signatures. Note that we do not have a complete characterization in

Chapter 2.

First we observe that Lemma 2.29 still holds in C, with the same proof. Note that it does

not require signatures to be symmetric. Recall that f + g denotes the bit-wise addition of two
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signatures f and g of the same arity, i.e. (f+ g)(x) = f(x) + g(x) for any input x.

Lemma 3.2. Let F be a vanishing signature set.

• If f is an F-gate, then F ∪ {f} is vanishing.

• If g0 and g1 are two signatures in F of the same arity, then F ∪ {g0 + g1} is vanishing.

Our generalization is mostly based on the idea in Lemma 2.41. Basically we want to show

that for certain signatures F, Holant(Ω;F) can be always decomposed into smaller Holant’s

where each one contains only unary signatures, and two unary signatures vanishing each other

must be matched. In Lemma 2.41, the vanishing unary is [1, 1]. In C, apparently [1, 1] is not van-

ishing. Instead, we will use [1, i] and [1,−i], which are the only two vanishing unary signatures

in C. Also note that there is no vanishing unary in R. That explains why there is no vanishing

signature shown up in the dichotomy Theorem 1.17 of real-weighted Holant .

More concretely, consider a signature set F where every signature of arity n is degenerate.

That is, every signature of arity n is a tensor product of unary signatures. Moreover, for each

signature, suppose that more than half of the unary signatures in the tensor product are [1, i].

For any signature grid Ω with signatures from F, it can be decomposed into many pairs of

unary signatures. The total Holant value is the product of the Holant on each pair. Since more

than half of the unaries in each signature are [1, i], more than half of the unaries in Ω are [1, i].

Then two [1, i]’s must be paired up and hence HolantΩ = 0. Thus, all such signatures form a

vanishing set. Clearly this argument holds when [1, i] is replaced by [1,−i].

These signatures described above are generally asymmetric. To characterize symmetric

vanishing signatures, we will use the symmetrization operation in Definition 1.12. Let t and n

be two positive integers such that t ⩽ n. Let v, v1, . . . , vn−t be unary signatures, and Sn be the

symmetric group of degree n. Recall that

Symtn(v; v1, . . . , vn−t) =
∑
π∈Sn

n⊗
k=1

uπ(k),

where the ordered sequence (u1,u2, . . . ,un) = (v, . . . , v︸ ︷︷ ︸
t copies

, v1, . . . , vn−t).
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Compare Definition 1.12 to the symmetrization used in Lemma 2.39. The difference is

that in Definition 1.12 we allow redundant permutations of v. Moreover, equivalent vi’s also

induce redundant permutations. These redundant permutations introduce a nonzero constant

factor, which affects the complexity in Z2, but not in C. On the other hand, they simplify

our calculations in C. We will mainly use v = [1, i] or v = [1,−i]. An illustrative example of

Definition 1.12 is

Sym2
3([1, i]; [a,b]) = 2[a,b]⊗ [1, i]⊗ [1, i] + 2[1, i]⊗ [a,b]⊗ [1, i] + 2[1, i]⊗ [1, i]⊗ [a,b]

= 2[3a, 2ia+ b,−a+ 2ib,−3b].

Next we define the vanishing degree, which is a dual of the recurrence degree in Definition

2.34.

Definition 3.3. A nonzero symmetric signature f of arity n has positive vanishing degree k ⩾ 1,

denoted by vd+(f) = k, if k ⩽ n is the largest positive integer such that there exists n− k unary

signatures v1, . . . , vn−k such that

f = Symkn([1, i]; v1, . . . , vn−k).

If f cannot be expressed as such a symmetrization form, we define vd+(f) = 0. If f is the all zero

signature, define vd+(f) = n+ 1.

We define negative vanishing degree vd− similarly, using −i instead of i.

It is possible that both vd+(f) and vd−(f) are nonzero. For example, vd+(=2) = vd−(=2) =

1.

We define analogues to strongly self-vanishable Z2-signatures of Definition 2.40. Note that

unlike in Definition 2.40, in C a signature of vanishing degree exactly n2 does not vanish, since

we do not have the nice cancellation in Z2.

Definition 3.4. For σ ∈ {+,−}, define Vσ := {f | 2 vdσ(f) > arity(f)}.

Similar to Lemma 2.41, V+ and V− are vanishing.

Lemma 3.5. Let F be a set of symmetric signatures. If F ⊆ V+ or F ⊆ V−, then F is vanishing.
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In Theorem 3.12, we will show that V+ and V− capture all symmetric vanishing signature

sets in C.

Characterizing Vanishing Signatures using Recurrence Relations

Similar to Lemma 2.37, we have an equivalent characterization of vanishing signatures. It also

uses linear recurrence relations, but the recurrence is different from (2.5).

Definition 3.6. A symmetric signature f = [f0, f1, . . . , fn] of arity n is in R+
t for a nonnegative

integer t ⩾ 0 if t > n or for any 0 ⩽ k ⩽ n− t, fk, . . . , fk+t satisfy the recurrence relation

(
t

t

)
itfk+t +

(
t

t− 1

)
it−1fk+t−1 + · · ·+

(
t

0

)
i0fk = 0. (3.1)

We define R−
t similarly but with −i in place of i in (3.1).

It is easy to see that R+
0 = R−

0 is the set of all zero signatures. Also, for σ ∈ {+,−}, we have

Rσt ⊆ Rσt ′ when t ⩽ t ′. By definition, if arity(f) = n then f ∈ Rσn+1.

Let f = [f0, f1, . . . , fn] ∈ R+
t with 0 < t ⩽ n + 1. Then the characteristic polynomial of its

recurrence relation is (1+xi)t. Thus there exists a polynomial p(x) of degree at most t−1 such

that fk = ikp(k), for 0 ⩽ k ⩽ n. Furthermore, p(x) is unique. If there are two polynomials p(x)

and q(x), both of degree at most t − 1 ⩽ n, such that fk = ikp(k) = ikq(k) for 0 ⩽ k ⩽ n, then

p(x) and q(x) must be identical. Now suppose fk = ikp(k) (0 ⩽ k ⩽ n) for some polynomial p

of degree at most t−1, where 0 < t ⩽ n. Then f satisfies the recurrence (3.1) of order t. Hence

f ∈ R+
t .

Thus f ∈ R+
t+1 if and only if there exists a polynomials p(x) of degree at most t such that

fk = ikp(k) (0 ⩽ k ⩽ n), for all 0 ⩽ t ⩽ n. For R−
t+1, just replace i by −i.

Definition 3.7. For a nonzero symmetric signature f of arity n, it is of positive (resp. negative)

recurrence degree t ⩽ n, denoted by rd+(f) = t (resp. rd−(f) = t), if and only if f ∈ R+
t+1 − R+

t

(resp. f ∈ R−
t+1 − R−

t ). If f is the all zero signature, we define rd+(f) = rd−(f) = −1.

Note that although we call it the recurrence degree, it refers to a special kind of recurrence

relation. For any nonzero symmetric signature f, by the uniqueness of p(x), it follows that
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rdσ(f) = t if and only if deg(p) = t, where 0 ⩽ t ⩽ n. We remark that rdσ(f) is the maximum

integer t such that f does not belong to Rσt . Also, for an arity n signature f, rdσ(f) = n if and

only if f does not satisfy any such recurrence relation (3.1) of order t ⩽ n for σ ∈ {+,−}.

Lemma 3.8. Let f = [f0, . . . , fn] be a symmetric signature of arity n, not identically 0. Let t be a

non-negative integer such that 0 ⩽ t < n. For σ ∈ {+,−}, the following two are equivalent:

(i) There exist t unary signatures v1, . . . , vt, such that

f = Symn−tn ([1,σi]; v1, . . . , vt). (3.2)

(ii) f ∈ Rσt+1.

Proof. We consider σ = + since the other case is similar, so let v = [1, i].

We start with (i) =⇒ (ii) and proceed via induction on both t and n. Assume that f =

[f0, . . . , fn] = Symn−tn (v; v1, . . . , vt). For the first base case of t = 0, Symnn(v) = [1, i]⊗n =

[1, i,−1,−i, . . . , in], so fk+1 = ifk for all 0 ⩽ k ⩽ n− 1 and f ∈ R+
1 .

The other base case is that t = n− 1. Let Sym1
n(v; v1, . . . , vt) = [f0, . . . , fn] where vi = [ai,bi]

for 1 ⩽ i ⩽ t, and S = infn+ · · ·+
(
n
1

)
if1+

(
n
0

)
i0f0. We need to show that S = 0. First notice that

any entry in f is a linear combination of terms of the form ai1ai2 · · ·ain−1−kbj1 · · ·bjk , where

0 ⩽ k ⩽ n − 1, and {i1, . . . , in−1−k, j1, . . . , jk} = {1, 2, . . . ,n − 1}. Thus S is a linear combination

of such terms as well. Now we compute the coefficient of each of these terms in S.

Each term ai1ai2 · · ·ain−1−kbj1 · · ·bjk appears twice in S, once in fk and the other time in

fk+1. Its coefficient is k!(n − k)! in fk, and is i(k + 1)!(n − k − 1)! in fk+1. Thus, its coefficient

in S is

(
n

k+ 1

)
ik+1i(k+ 1)!(n− k− 1)! +

(
n

k

)
ikk!(n− k)! = 0.

The above computation works for any such term due to the symmetry of f, so all their coeffi-

cients in S are 0. Hence S = 0.

Now assume for any t ′ < t or for the same t and any n ′ < n, the statement holds. For (n, t),

where n > t+ 1, let g = [g0, . . . ,gn−1] be a signature such that g = Symn−t−1
n−1 (v; v1, . . . , vt), and
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for any 1 ⩽ j ⩽ t, let h(j) = [h
(j)
0 , . . . ,h(j)n−1] be a signature such that

h(j) = Symn−tn−1(v; v1, . . . , vj−1, vj+1, . . . , vt).

By the induction hypothesis, g satisfies (3.1) of order t + 1, namely g ∈ R+
t+1. Also for any j,

h(j) satisfies (3.1) of order t, namely h(j) ∈ R+
t ⊆ R+

t+1.

We have the recurrence relation

Symn−tn (v; v1, . . . , vt) = (n− t)v⊗ Symn−t−1
n−1 (v; v1, . . . , vt)

+

t∑
j=1

vj⊗ Symn−tn−1(v; v1, . . . , vj−1, vj+1, . . . , vt). (3.3)

By (3.3), the entry of weight k in f for any k > 0 is

fk = (n− t)igk−1 +

t∑
j=1

bjh
(j)
k−1.

We know that {gi} and {h
(j)
i } satisfy the recurrence relation (3.1) of order t+1. Thus, their linear

combination {fi} also satisfies (3.1) starting from i = k > 0 for any k > 0.

We also observe that by (3.3), the entry of weight k in f for any k < n is

fk = (n− t)gk +

t∑
j=1

ajh
(j)
k .

Since t < n− 1, by the same argument, (3.1) holds for f when k = 0 as well.

Now we show (ii) =⇒ (i). Notice that we only need to find unary signatures {vi} for

1 ⩽ i ⩽ t such that Symn−tn (v; v1, . . . , vt) matches the first t + 1 entries of f. The theorem

follows from this since we have shown that Symn−tn (v; v1, . . . , vt) satisfies (3.1) of order t + 1

and any such signature is determined by the first t+ 1 entries.

We show that there exist vi = [ai,bi] (1 ⩽ i ⩽ t) satisfying the requirement above. Since f is

not identically 0, by (3.1), some nonzero term occurs among {f0, . . . , ft}. Let fs ≠ 0, for 0 ⩽ s ⩽ t,

be the first nonzero term. By a nonzero constant multiplier, we may normalize fs = s!(n− s)!,

and set vj = [0, 1], for 1 ⩽ j ⩽ s (which is vacuous if s = 0), and set vs+j = [1,bs+j], for
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1 ⩽ j ⩽ t− s (which is vacuous if s = t). Let f ′ be the function defined in (3.2) using these vi’s.

Then f ′k = fk = 0 for 0 ⩽ k < s (which is vacuous if s = 0). By expanding the symmetrization

function, for s ⩽ k ⩽ t, we get

f ′k = k!(n− k)!
k−s∑
j=0

(
n− t

k− s− j

)
∆ji

k−s−j,

where ∆j is the elementary symmetric polynomial in {bs+1, . . . ,bt} of degree j for 0 ⩽ j ⩽ t− s.

By definition, ∆0 = 1 and f ′s = fs. Setting f ′k = fk for s + 1 ⩽ k ⩽ t, this is a linear system in

∆j’s (1 ⩽ j ⩽ t − s), with a triangular matrix and nonzero diagonals. We can hence solve ∆j’s

for 1 ⩽ j ⩽ t − s. It is sufficient to find bj’s (s + 1 ⩽ j ⩽ t) to satisfy ∆j’s (1 ⩽ j ⩽ t − s) which

we have just solved. We pick the (t− s) many roots of the equation
∑t−s
j=0(−1)j∆jxt−s−j = 0 to

be bj’s (s+ 1 ⩽ j ⩽ t). It is easy to see that such bj’s ensure that f ′k = fk for s+ 1 ⩽ k ⩽ t, and

hence f ′ = f.

Corollary 3.9. If f is a symmetric signature and σ ∈ {+,−}, then vdσ(f) + rdσ(f) = arity(f).

Thus we have an equivalent form of Vσ for σ ∈ {+,−}. Namely,

Vσ = {f | 2 rdσ(f) < arity(f)}.

Characterizing Vanishing Signature Sets

Now we show thatV+ and V− capture all symmetric vanishing signature sets. To begin, we show

that a vanishing signature set cannot contain both types of nontrivial vanishing signatures.

Lemma 3.10. Let f+ ∈ V+ and f− ∈ V−. If neither f+ nor f− is the all zero signature, then the

signature set {f+, f−} is not vanishing.

Proof. Let arity(f+) = n and rd+(f+) = t, so 2t < n. Consider the gadget with two vertices

and 2t edges between two copies of f+. (See Figure 3.1 for an example of this gadget.) View

f+ in the symmetrized form. Since vd+(f+) = n − t, in each term, there are n − t many [1, i]’s

and t many unary signatures not equal to (a multiple of) [1, i]. This is a superposition of many

degenerate signatures. Then the only non-vanishing contributions come from the cases where
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the n− 2t dangling edges on both sides are all assigned [1, i], while inside, the t copies of [1, i]

pair up with t unary signatures not equal to [1, i] from the other side perfectly. Notice that

for any such contribution, the Holant value of the inside part is always the same constant and

this constant is not 0 because [1, i] paired up with any unary signature other than (a multiple

of) [1, i] is not 0. Then the superposition of all of the permutations is a degenerate signature

[1, i]⊗2(n−2t) up to a nonzero constant factor.

Similarly, we can do this for f− of arity n ′ and rd−(f−) = t ′, where 2t ′ < n ′, and get a

degenerate signature [1,−i]⊗2(n ′−2t ′), up to a nonzero constant factor. Then form a bipartite

signature grid with (n ′ − 2t ′) vertices on one side, each assigned [1, i]⊗2(n−2t), and (n − 2t)

vertices on the other side, each assigned [1,−i]⊗2(n ′−2t ′). Connect edges between the two sides

arbitrarily as long as it is a 1-1 correspondence. The resulting Holant is a power of 2, which is

not vanishing.

Figure 3.1: Example of a gadget used to create a degenerate vanishing signature
from some general vanishing signature. This example is for a signature of arity 7
and recurrence degree 2, which is assigned to both vertices.

Lemma 3.11. Every symmetric vanishing signature is in V+ ∪ V−.

Proof. Let f be a symmetric vanishing signature. We prove this by induction on n, the arity of

f. For n = 1, by connecting f = [f0, f1] to itself, we have f20 + f21 = 0. Then up to a constant

factor, we have either f = [1, i] or f = [1,−i]. The lemma holds.

For n = 2, first we do a self loop. The Holant is f0 + f2. Also, we can connect two copies of

f, in which case the Holant is f20 + 2f21 + f22. Since f is vanishing, we have that f0 + f2 = 0 and

f20 + 2f21 + f
2
2 = 0. Solving them, we get f = [1, i,−1] = [1, i]⊗2 or f = [1,−i,−1] = [1,−i]⊗2 up to

a constant factor.

Now assume n > 2 and the lemma holds for any signature of arity k < n. Let f =

[f0, f1, . . . , fn] be a vanishing signature. A self loop on f gives f ′ = [f ′0, f ′1, . . . , f ′n−2], where

f ′j = fj + fj+2 for 0 ⩽ j ⩽ n − 2. Since f is vanishing, f ′ is vanishing as well. By the induction

hypothesis, f ′ ∈ V+ ∪ V−.
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If f ′ is identically zero, then we have fj+ fj+2 = 0 for 0 ⩽ j ⩽ n−2. This means that the fj’s

satisfy a recurrence relation with characteristic polynomial x2 + 1, so we have fj = aij+ b(−i)j

for some a and b. Then we perform a holographic transformation with Z = 1√
2

[
1 1
i −i

]
,

Holant (=2 | f) ≡T Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)
≡T Holant

(
[0, 1, 0] | f

)
,

where f = [a, 0, . . . , 0,b]. The problem Holant
(
[0, 1, 0] | f

)
is a weighted version of testing if a

graph is bipartite. Now consider a graph with only two vertices, both assigned f, and n edges

between them. The Holant of this graph is 2ab. However, we know that it must be vanishing,

so ab = 0. If a = 0, then f ∈ V−. Otherwise, b = 0 and f ∈ V+.

Now suppose that f ′ is in V+ ∪ V− but not identically zero. We consider f ′ ∈ V+ since the

other case is similar. Then rd+(f ′) = t, so 2t < n− 2. Consider the gadget which has only two

vertices, both assigned f ′, and has 2t edges between them. (It is the same one as in Lemma

3.10. See Figure 3.1 for an example.) It forms a signature of arity d = 2(n−2−2t). This gadget

is valid because n − 2 > 2t. By the combinatorial view as in the proof of Lemma 3.10, this

signature is [1, i]⊗d.

Moreover, rd+(f ′) = t implies that the entries of f ′ satisfy (3.1) of order t + 1. Replacing

f ′j by fj + fj+2, we get a recurrence relation for the entries of f with characteristic polynomial

(x2 + 1)(x − i)t+1 = (x + i)(x − i)t+2. Thus, fj = ijp(j) + c(−i)j for some polynomial p(x) of

degree at most t + 1 and some constant c. It suffices to show that c = 0 since 2(t + 1) < n as

2t < n− 2.

Consider the signature h = [h0, . . . ,hn−1] created by connecting f with a single unary sig-

nature [1, i]. For any (n − 1)−regular graph G = (V ,E) with h assigned to every vertex, we can

define a duplicate graph of (d+1)|V | vertices as follows. First for each v ∈ V , define vertices v ′,

v1, . . . , vd. For each i, 1 ⩽ i ⩽ d, we make a copy of G on {vi | v ∈ V}, i.e., for each edge (u, v) ∈ E,

include the edge (ui, vi) in the new graph. Next for each v ∈ V , we introduce edges between v ′

and vi for all 1 ⩽ i ⩽ d. For each v ∈ V , assign the degenerate signature [1, i]⊗d that we have

constructed in the last paragraph to the vertices v ′; assign f to all the vertices v1, . . . , vd. Let

H be the Holant of G with h assigned to every vertex. Then for the new graph with the given
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signature assignments, the Holant is Hd. By our assumption, f is vanishing, so Hd = 0. Thus,

H = 0. This holds for any graph G, so h is vanishing.

Notice that hk = fk+ ifk+1 for any 0 ⩽ k ⩽ n−1. If h is identically zero, then fk+ ifk+1 = 0

for any 0 ⩽ k ⩽ n − 1, which means f = [1, i]⊗n up to a constant factor and we are done.

Otherwise, suppose that h is not identically zero. By the inductive hypothesis, h ∈ V+ ∪ V−.

We claim h cannot be from V−. This is because, although we do not directly construct h from

f, we can always realize it by the method depicted in the previous paragraph. Therefore the set

{f ′,h} is vanishing. As both f ′ and h are nonzero, and f ′ ∈ V+, we have h ̸∈ V−, by Lemma 3.10.

Hence h ∈ V+. There exists a polynomial q(x) of degree at most t ′ =
⌊
n−1

2

⌋
such that

hk = ikq(k), for any 0 ⩽ k ⩽ n − 1. Since 2t < n − 2, we have t ⩽ t ′. On the other hand,

hk = fk + ifk+1 for any 0 ⩽ k ⩽ n− 1, so we have

ikq(k) = hk = fk + ifk+1

= ikp(k) + c(−i)k + i
(
ik+1p(k+ 1) + c(−i)k+1

)
= ik (p(k) − p(k+ 1)) + 2c(−i)k

= ikr(k) + 2c(−i)k,

where r(x) = p(x) − p(x+ 1) is another polynomial of degree at most t. Then we have

q(k) − r(k) = 2c(−1)k,

which holds for all 0 ⩽ k ⩽ n − 1. Notice that the left hand side is a polynomial of degree at

most t ′, call it s(x). However, for all even k ∈ [n], s(k) = 2c. There are exactly
⌈
n
2

⌉
>
⌊
n−1

2

⌋
= t ′

many even k within the range {0, . . . ,n − 1}. Thus s(x) = 2c for any x. Now we pick k = 1, so

s(1) = −2c = 2c, which implies c = 0. This completes the proof.

Combining Lemma 3.5, Lemma 3.10, and Lemma 3.11, we obtain the following theorem that

characterizes all symmetric vanishing signature sets.

Theorem 3.12. Let F be a set of symmetric signatures. Then F is vanishing if and only if F ⊆ V+

or F ⊆ V−.
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The set of vanishing signatures is closed under orthogonal transformations. This is because

under any orthogonal transformation, the unary signatures [1, i] and [1,−i] are either invariant

or transformed into each other. Then considering the symmetrized form of any signature, we

have the following lemma.

Lemma 3.13. For a symmetric signature f of arity n, σ ∈ {+,−}, and an orthogonal matrix

T ∈ C2×2, either vdσ(f) = vdσ(T⊗nf) or vdσ(f) = vd−σ(T⊗nf).

Characterizing Vanishing Signatures via a Holographic Transformation

There is another explanation for the vanishing signatures. Given f ∈ V+ with arity(f) = n and

rd+(f) = d, we perform a holographic transformation with Z = 1√
2

[
1 1
i −i

]
,

Holant (=2 | f) ≡T Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)
≡T Holant

(
[0, 1, 0] | f

)
,

where f is of the form [f0, f1, . . . , fd, 0, . . . , 0], and fd ≠ 0. To see this, note that Z−1 = 1√
2

[
1 −i
1 i

]
andZ−1

[
1
i

]
=
√

2
[

1
0

]
. We know that f has a symmetrized form, such as Symn−dn (

[
1
i

]
; v1, . . . , vd).

Then up to a factor of 2n/2, we have f = (Z−1)⊗nf = Symn−dn (
[

1
0

]
;u1, . . . ,ud), whereui = Z−1vi

for 1 ⩽ i ⩽ d and ui and vi are column vectors in C2. From this expression for f, it is clear

that all entries of Hamming weight greater than d in f are 0. Moreover, if fd = 0, then one

of the ui has to be a multiple of [1, 0]. This contradicts the degree assumption of f, namely

vd+(f) = n− rd+(f) = n− d but not any higher. Formally we have the following.

Lemma 3.14. Suppose f is a symmetric signature of arity n. Let f = (Z−1)⊗nf. If rd+(f) = d,

then f = [f0, f1, . . . , fd, 0, . . . , 0] and fd ̸= 0. Also f ∈ R+
d if and only if all nonzero entries of f are

among the first d entries in its symmetric signature notation.

Similarly, if rd−(f) = d, then f = [0, . . . , 0, fn−d, . . . , fn] and fn−d ̸= 0. Also f ∈ R−
d if and

only if all nonzero entries of f are among the last d entries in its symmetric signature notation.

By linearity, Lemma 3.14 implies the following fact. If f = g+h is of arity n, where rd+(g) =

d, rd−(h) = d ′, and d + d ′ < n, then after a holographic transformation by Z, f = (Z−1)⊗nf
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takes the form [g0, . . . ,gd, 0, . . . , 0,hd ′ , . . . ,h0], with n − d − d ′ − 1 ⩾ 0 zeros in the middle of

the signature.

In any instance of Holant
(
[0, 1, 0] | f

)
, the binary Disequality (≠2) = [0, 1, 0] on the left

imposes the condition that half of the edges must take the value 0 and the other half must take

the value 1. On the right side, by f ∈ V+, we have d < n/2, thus f requires that less than half of

the edges are assigned the value 1. Therefore the Holant is always 0. A similar conclusion was

reached in [CLX12] for certain 2-3 bipartite Holant problems with Boolean signatures. However,

the importance was not realized at that time.

Under this transformation, one can observe another interesting phenomenon. For any a,b ∈

C,

Holant ([0, 1, 0] | [a,b, 1, 0, 0]) and Holant ([0, 1, 0] | [0, 0, 1, 0, 0])

take exactly the same value on every signature grid. This is because, to contribute a nonzero

term in the Holant, exactly half of the edges must be assigned 1. Then for the first problem, the

signature on the right can never contribute a nonzero value involving a or b. Thus the Holant

values of these two problems on any signature grid are always the same. Nevertheless, there

exist a,b ∈ C such that there is no holographic transformation between these two problems. We

note that this is the first counterexample involving non-unary signatures in the Boolean domain

to the converse of Theorem 1.1, Valiant’s Holant Theorem. It provides a negative answer to a

conjecture made by Xia in [Xia11, Conjecture 4.1].

Moreover, Holant ([0, 1, 0] | [0, 0, 1, 0, 0]) counts Eulerian orientations in a 4-regular graph.

This problem was shown #P-hard [HL12, Theorem V.10]. In this chapter we will strengthen this

result to the planar setting. Undoing the Z transformation, the problem of counting Eulerian

orientations in a 4-regular graph is Holant([3, 0, 1, 0, 3]). The other problem Holant([0, 1, 0] |

[a,b, 1, 0, 0]) corresponds to a Holant problem defined by f = Z⊗4[a,b, 1, 0, 0] of arity 4 with

rd(f) = 2. Therefore, for any a,b ∈ C, f is #P-hard as well.

Tractable cases involving vanishing signatures

We note that some particular categories of tractable cases in previous dichotomies (case 2 of

Theorem 1.14, case 3 of Theorem 1.18, and case 4 of Theorem 1.19) are in R±
2 . At the time
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they were discovered, it was not known that those cases are vanishing. In fact, we may add

more signatures in vanishing sets and preserve its tractability. First, we can include binary

signatures in Rσ2 for σ ∈ {+,−}.

Lemma 3.15. LetF be a set of complex weighted symmetric signatures in Boolean variables. Then

Holant(F) is computable in polynomial time if F ⊆ Vσ ∪ {f ∈ Rσ2 | arity(f) = 2} for σ ∈ {+,−}.

Proof. Any binary signature g ∈ Rσ2 has rdσ(g) ⩽ 1, and thus vdσ(g) ⩾ 1 = arity(g)/2. Any

signature f ∈ Vσ has vdσ(f) > arity(f)/2. If F contains a signature f of arity at least 3, then

it must belong to Vσ. Given an instance Ω of Holant(F), if there is f appearing in Ω such

that arity(f) ⩾ 3, then f ∈ Vσ and by the combinatorial view of Lemma 3.5, more than half

of the unary signatures are [1,σi], so HolantΩ vanishes. On the other hand, if none of arity 3

signatures shown up inΩ, then every signature is of arity at most 2. This is the case of Lemma

1.5.

Moreover, we may combine all unary and degenerate signatures with Rσ2 for σ ∈ {+,−}.

Lemma 3.16. Let F be a set of complex weighted symmetric signatures in Boolean variables.

Then Holant(F) is computable in polynomial time if all non-degenerate signatures in F are in Rσ2

for σ ∈ {+,−}.

Note that any signature in Rσ2 having arity at least 3 is a vanishing signature. Thus all

signatures of arity at least 3 in Lemma 3.16 are vanishing. Lemma 3.16 is in fact case 3 of

Theorem 1.18 [CLX11a]. It is also a special case of Fibonacci gates [CLX13, CLX11b]. Here we

give a different proof based on vanishing signatures.

Proof. LetΩ be an instance of Holant(F). Decompose all degenerate signatures into unary ones.

Then recursively absorb any unary signature into its neighboring signature. If it is connected

to another unary signature, then this produces a global constant factor. If it is connected to

a binary signature, then this creates another unary signature. We observe that if f ∈ Rσ2 has

arity(f) ⩾ 2, then for any unary signature u, after connecting f to u, the signature ⟨f,u⟩ still

belongs to Rσ2 . Hence after recursively absorbing all unary signatures in the above process, we

still have a signature grid where all signatures belong to Rσ2 . Any remaining signature f that
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has arity at least 3 belongs to Vσ since rdσ(f) ⩽ 1 and thus vdσ(f) ⩾ arity(f) − 1 > arity(f)/2.

Thus we can apply Lemma 3.15.

Lemma 3.15 and Lemma 3.16 are both based on vanishing signatures, but they can be very

different. In Lemma 3.15, all signatures in F, including unary signatures but excluding binary

signatures, must be in Vσ for σ ∈ {+,−}; the binary signatures are only required to be in Rσ2 .

In contrast, Lemma 3.16 has no requirement placed on degenerate signatures which include all

unary signatures. All non-degenerate binary signatures are required to be in Rσ2 . Moreover, all

non-degenerate signatures of arity at least 3 are also required to be in Rσ2 , which is a strong

form of vanishing; they must have a large vanishing degree of type σ.

3.2 Redundant 4-by-4 Matrices

We need some language to talk about arity 4 signatures, which will be the main subject in the

rest of this chapter. For a binary signature, we have a matrix representation defined in (1.2).

We extend this notion to arity 4 signatures. We define a 4-by-4 matrix as the signature matrix

of an arity 4 signature, index by two “input” bits and two “output” bits. Note that there is no

real input and output. It is just that we view two wires as inputs and the other two as outputs.

Definition 3.17. The signature matrix of a symmetric arity 4 signature f = [f0, f1, f2, f3, f4] is

Mf =



f0 f1 f1 f2

f1 f2 f2 f3

f1 f2 f2 f3

f2 f3 f3 f4


.

This definition extends to an asymmetric signature g as

Mg =



g0000 g0010 g0001 g0011

g0100 g0110 g0101 g0111

g1000 g1010 g1001 g1011

g1100 g1110 g1101 g1111


,



76

where we use gx to denote g(x) for a vector x ∈ {0, 1}4.

When we present g as an F-gate, we order the four external edges ABCD counterclockwise.

In Mg, the row index bits are ordered AB and the column index bits are ordered DC, in reverse

order. This is for convenience so that the signature matrix of the linking of two arity 4 F-gates

is the matrix product of the signature matrices of the two F-gates.

One important property of the signature matrix of a symmetric signature is that its middle

two rows and two columns are identical. If we connect two such signatures together by two

wires, the resulting one is not necessarily symmetric, but it still has this property. Due to this

observation, we define redundant matrices.

Definition 3.18. A 4-by-4 matrix is redundant if its middle two rows and middle two columns

are the same. Denote the set of all redundant 4-by-4 matrices over a field F by RM4(F).

Consider the function φ : C4×4 → C3×3 defined by

φ(M) = AMB,

where

A =


1 0 0 0

0 1
2

1
2 0

0 0 0 1

 and B =



1 0 0

0 1 0

0 1 0

0 0 1


.

Intuitively, the operation φ replaces the middle two columns ofM with their sum and then the

middle two rows ofM with their average. (These two steps commute.) Conversely, we have the

following function ψ : C3×3 → RM4(C) defined by

ψ(N) = BNA.

Intuitively, the operation ψ duplicates the middle row of N and then splits the middle column

evenly into two columns. Notice that φ(ψ(N)) = N. When restricted to RM4(C), φ is an iso-

morphism between the semi-group of 4-by-4 redundant matrices and the semi-group of 3-by-3
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matrices, under matrix multiplication, and ψ is its inverse. To see this, just notice that

AB =


1 0 0

0 1 0

0 0 1

 and BA =



1 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 1


are the identity elements of their respective semi-groups.

For an (not necessarily symmetric) signature f, if Mf is redundant, define the compressed

signature matrix of f as M̃f := φ(Mf).

We are particularly interested in the signature id4 with signature matrix

Mid4 =



1 0 0 0

0 1
2

1
2 0

0 1
2

1
2 0

0 0 0 1


, (3.4)

the identity element in the semi-group of redundant matrices. Thus, M̃id4 = I3.

Although our main focus is symmetric signatures, to achieve our result we have to go beyond

to asymmetric signatures. For an asymmetric signature (of a fixed ordering), we use a diamond

to illustrate its most significant bit. We often want to reorder the input bits under a circular

permutation. For a single counterclockwise rotation by 90◦, the effect on the entries of the

signature matrix of an arity 4 signature is given in Figure 3.2.

Redundancy of a signature matrix and non-singularity of a compressed signature matrix

are invariant under invertible holographic transformations.

Lemma 3.19. Let f be an arity 4 signature with complex weights, T ∈ C2×2 a matrix, and f = T⊗4f.

If Mf is redundant, then Mf is also redundant and det(φ(Mf)) = det(φ(Mf))det(T)6.

Proof. Since f = T⊗4f, we can express Mf in terms of Mf and T as

Mf = T
⊗2Mf (T

⊺)⊗2 . (3.5)
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(a) A counterclockwise rotation (b) Movement of signature matrix entries

Figure 3.2: The movement of the entries in the signature matrix of an arity 4 sig-
nature under a counterclockwise rotation of the input edges. Entires of Hamming
weight 1 are in the dotted cycle, entires of Hamming weight 2 are in the two solid cy-
cles (one has length 4 and the other one is a swap), and entries of Hamming weight 3
are in the dashed cycle.

This can be directly checked. Alternatively, this relation is known (and can also be directly

checked) had we not introduced the flip of the middle two columns, i.e., if the columns were

ordered 00, 01, 10, 11 by the last two bits in f and f. Instead, the columns are ordered by

00, 10, 01, 11 in Mf and Mf. Let T = (tij), where row index i and column index j range from

{0, 1}. Then T⊗2 = (tijt
i ′

j ′), with row index ii ′ and column index jj ′. Let

E =



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


,

then ET⊗2E = T⊗2, i.e., a simultaneous row flip ii ′ ↔ i ′i and column flip jj ′ ↔ j ′j keep T⊗2 un-

changed. Then the known relationsMfE = T⊗2MfE (T⊺)⊗2 and E (T⊺)⊗2
E = (T⊺)⊗2 imply (3.5).

Now X ∈ RM4(C) if and only if EX = X = XE. Then it follows that Mf ∈ RM4(C) if Mf ∈

RM4(C). For the two matrices A and B in the definition of φ, we note that BA = Mid4 , where

Mid4 given in (3.4) is the identity element of the semi-group RM4(C). Since Mf ∈ RM4(C), we
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have BAMf =Mf =MfBA. Then we have

φ(Mf) = AMfB = A
(
T⊗2Mf (T

⊺)⊗2
)
B

= (AT⊗2B)(AMfB)(A (T⊺)⊗2
B) (3.6)

= φ(T⊗2)φ(Mf)φ((T
⊺)⊗2).

Another direct calculation shows that

det(φ(T⊗2)) = det(T)3 = det(φ((T⊺)⊗2)).

Thus, by applying determinant to both sides of (3.6), we have

det(φ(Mf)) = det(φ(Mf))det(T)6

as claimed.

3.3 Counting Eulerian Orientations in 4-Regular Planar Graphs

Counting (unweighted) Eulerian orientations over 4-regular graphs was shown to be #P-hard

[HL12, Theorem V.10]. We will strengthen this result by showing that this problem remains

#P-hard when the graph is also planar. Recall the definition of an Eulerian orientation.

Definition 3.20. Given a graph G, an orientation of its edges is an Eulerian orientation if for

each vertex v of G, the number of incoming edges of v equals the number of outgoing edges of v.

We have the following problem and result.

Name Pl-4reg-#EO

Instance A 4-regular-planar graphs G.

Output The number of Eulerian orientations in G.

Theorem 3.21. Pl-4reg-#EO is #P-hard.
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(a) (b) (c)

Figure 3.3: A plane graph (a), its medial graph (c), and both graphs superimposed (b).

The reduction begins with the problem of evaluating the Tutte polynomial at the point (3,3),

which is #P-hard even over planar graphs.

Theorem 3.22 (Theorem 5.1 in [Ver05]). For x,y ∈ C, evaluating the Tutte polynomial at (x,y)

is #P-hard over planar graphs unless (x − 1)(y − 1) ∈ {1, 2} or (x,y) ∈ {(1, 1), (−1,−1), (ω,ω2),

(ω2,ω)}, whereω = e2πi/3. In each exceptional case, the computation can be done in polynomial

time.

The first step in the reduction concerns a sum of weighted Eulerian orientations on a medial

graph of a planar graph. Recall the definition of a medial graph.

Definition 3.23 (cf. [BO92]). For a connected plane graph G (i.e. a planar embedding of a con-

nected planar graph), its medial graph H has a vertex for each edge of G and two vertices in H

are joined by an edge for each face of G in which their corresponding edges occur consecutively.

An example of a plane graph and its medial graph are given in Figure 3.3. Notice that a

medial graph of a planar graph is always a planar 4-regular graph. Las Vergnas connected the

evaluation of the Tutte polynomial of a planar graphG at the point (3,3) with a sum of weighted

Eulerian orientations on a medial graph of G [Las88].

Theorem 3.24 (Theorem 2.1 in [Las88]). Let G be a connected plane graph and let O(Gm) be the

set of all Eulerian orientations in the medial graph Gm of G. Then

2 · T(G; 3, 3) =
∑

O∈O(Gm)

2β(O), (3.7)
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where β(O) is the number of saddle vertices in the orientation O, i.e. the number of vertices in

which the edges are oriented “in, out, in, out” in cyclic order.

Although the medial graph depends on a particular embedding of the planar graph G, the

right side of (3.7) is invariant under different embeddings of G. This follows from (3.7) and the

fact that the Tutte polynomial does not depend on the embedding of G.

Now we are ready to prove Theorem 3.21.

Proof of Theorem 3.21. In the Holant language, Pl-4reg-#EO is the problem Pl-Holant( ̸=2 |

[0, 0, 1, 0, 0]). We reduce calculating the right side of (3.7) to Pl-Holant ( ̸=2 | [0, 0, 1, 0, 0]). Once

finished the reduction the theorem follows from Theorem 3.22 and Theorem 3.24.

The right side of (3.7) can be expressed as Pl-Holant ( ̸=2 | f), where the signature matrix of

f is

Mf =



0 0 0 1

0 1 2 0

0 2 1 0

1 0 0 0


.

We perform a holographic transformation by Z =
[

1 1
i −i

]
to get

Pl-Holant ( ̸=2 | f) ≡T Pl-Holant
(
[0, 1, 0](Z−1)⊗2 | Z⊗4f

)
≡T Pl-Holant

(
[1, 0, 1]/2 | 4f

)
≡T Pl-Holant(f),

where the signature matrix of f is

Mf =



2 0 0 1

0 1 0 0

0 0 1 0

1 0 0 2


.
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We also transform Pl-Holant ( ̸=2 | [0, 0, 1, 0, 0]) by Z to get

Pl-Holant ( ̸=2 | [0, 0, 1, 0, 0]) ≡T Pl-Holant
(
[0, 1, 0](Z−1)⊗2 | Z⊗4[0, 0, 1, 0, 0]

)
≡T Pl-Holant ([1, 0, 1]/2 | 2[3, 0, 1, 0, 3])

≡T Pl-Holant([3, 0, 1, 0, 3]).

Using the planar tetrahedron gadget in Figure 3.4, we assign [3, 0, 1, 0, 3] to every vertex and

obtain a gadget with signature 32g, where the signature matrix of g is

Mg =
1

2



19 0 0 7

0 7 5 0

0 5 7 0

7 0 0 19


.

Figure 3.4: The planar tetrahedron gadget. Each vertex is assigned [3, 0, 1, 0, 3].

Now we show how to reduce Pl-Holant(f) to Pl-Holant(g) by interpolation. Consider an

instance Ω of Pl-Holant(f). Suppose that f appears n times in Ω. We construct from Ω a

sequence of instances Ωs of Holant(g) indexed by s ⩾ 1. We obtain Ωs from Ω by replacing

each occurrence of f with the gadgetNs in Figure 3.5 with g assigned to all vertices. Although f

and g are asymmetric signatures, they are invariant under a cyclic permutation of their inputs.

Thus, it is not necessary to specify which edge corresponds to which input. We call such

signatures rotationally symmetric. In other words, a rotationally symmetric signature has the

same matrix under the operation in Figure 3.2.

To obtain Ωs from Ω, we effectively replace Mf with MNs = (Mg)
s, the sth power of the
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N1 N2

Ns

Ns+1

Figure 3.5: Recursive construction to interpolate f. The vertices are assigned g.

signature matrix Mg. Let

T =



0 0 1 1

1 1 0 0

−1 1 0 0

0 0 −1 1


.

Then

Mf = TΛfT
−1 = T



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 3


T−1 and Mg = TΛgT

−1 = T



1 0 0 0

0 6 0 0

0 0 6 0

0 0 0 13


T−1.

We can view our construction ofΩs as first replacing eachMf by TΛfT
−1 to obtain a signature

grid Ω ′, which does not change the Holant value, and then replacing each Λf with Λsg. We

stratify the assignments in Ω ′ based on the assignment to Λf. We only need to consider the

assignments to Λf that assign

• 0000 j many times,

• 0110 or 1001 k many times, and

• 1111 ℓ many times.

Let cjkℓ be the sum over all such assignments of the products of evaluations from T and T−1

but excluding Λf on Ω ′. Then

HolantΩ =
∑

j+k+ℓ=n

3ℓcjkℓ



84

and the value of the Holant on Ωs, for s ⩾ 1, is

HolantΩs =
∑

j+k+ℓ=n

(6k13ℓ)scjkℓ. (3.8)

This coefficient matrix in the linear system of (3.8) is Vandermonde and of full rank since for

any 0 ⩽ k+ ℓ ⩽ n and 0 ⩽ k ′ + ℓ ′ ⩽ n such that (k, ℓ) ̸= (k ′, ℓ ′), 6k13ℓ ≠ 6k
′
13ℓ

′
. Therefore, we

can solve the linear system for the unknown cjkℓ’s and obtain the value of HolantΩ.

3.4 Redundant Signatures with Non-Singular Compressed Matrices

In this section, we will show that all redundant signatures with non-singular compressed ma-

trices are #P-hard, even in planar graphs. We begin with the identity element id4 of RM4(C).

Lemma 3.25. Let id4 be the arity 4 signature with Mid4 given in (3.4) so that M̃id4 = I3. Then

Pl-Holant(id4) is #P-hard.

Proof. We reduce from Pl-Holant(f), where f = [1, 0, 1
3 , 0, 1]. Under the holographic transfor-

mation Z = 1√
2

[
1 1
i −i

]
, Pl-Holant(f) is equivalent to Pl-4reg-#EO. Hence Pl-Holant(f) is #P-hard

by Theorem 3.21. The reduction is via an arbitrarily close approximation using the recursive

construction in Figure 3.6 with g assigned to every vertex.

We claim that the signature matrix MNk of Gadget Nk is

MNk =



1 0 0 ak

0 ak+1 ak+1 0

0 ak+1 ak+1 0

ak 0 0 1


,

where ak = 1
3 − 1

3

(
−1

2

)k
. One can directly verify this for N0. Inductively assume MNk has this



85

N0 N1

N
k

Nk+1

Figure 3.6: Recursive construction to approximate [1, 0, 1
3 , 0, 1]. Vertices are as-

signed g.

form. Then the rotated form of the signature matrix for Nk, as described in Figure 3.2, is



1 0 0 ak+1

0 ak ak+1 0

0 ak+1 ak 0

ak+1 0 0 1


. (3.9)

The action of g on the far right side of Nk+1 is to replace each of the middle two entries in the

middle two rows of the matrix in (3.9) with their average, (ak + ak+1)/2 = ak+2. This gives

MNk+1 .

Clearly this construction is planar.

LetΩ = (G,π) be an instance of Pl-Holant(f). SupposeG = (V ,E) and |V | = n. Then |E| = 2n.

Let Hf = Holant(Ω; f) be its Holant value. Let HNk = Holant(Ω;Nk) be the Holant where every

vertex inG is assignedNk. Since each signature entry in f can be expressed as a rational number

with denominator 3, each term in Hf can be expressed as a rational number with denominator

3n, and HNk itself is a sum of 22n such terms, as |E| = 2n. If the error |HNk −Hf| is at most

1/3n+1, then we can recover Hf from HNk by selecting the nearest rational number to HNk

with denominator 3n.

For each signature entry x in Mf, its corresponding entry x̃ in MNk satisfies |x̃− x| ⩽ x/2k.

Then for each term t in the Holant sum Hf, its corresponding term t̃ in the sum HNk satisfies

t(1 − 1/2k)n ⩽ t̃ ⩽ t(1 + 1/2k)n, thus −t(1 − (1 − 1/2k)n) ⩽ t̃ − t ⩽ t((1 + 1/2k)n − 1). Since

1 − (1 − 1/2k)n ⩽ (1 + 1/2k)n − 1, we get |̃t− t| ⩽ t((1 + 1/2k)n − 1). Also each term t ⩽ 1.



86

Hence

|HNk −HO| ⩽ 22n((1 + 1/2k)n − 1) < 1/3n+1,

if we take k = 4n. The construction is of linear size, and hence the reduction is in polynomial

time.

In Lemma 3.27, we will show that every signature of arity 4 with non-singular compressed

matrix is able to interpolate the identity element id4. There are three cases in Lemma 3.27 and

one of them requires the following technical lemma.

Lemma 3.26. Let M = [B0 B1 · · · Bt] be an n-by-n block matrix such that there exists a λ ∈ C,

for all integers 0 ⩽ k ⩽ t, block Bk is an n-by-ck matrix for some integer ck ⩾ 0, and the entry

of Bk at row r and column c is (Bk)rc = rc−1λkr, where r, c ⩾ 1. If λ is nonzero and is not a root

of unity, then M is nonsingular.

Proof. We prove by induction on n. If n = 1, then the sole entry is λk for some nonnegative

integer k. This is nonzero since λ ̸= 0. Assume n > 1 and let the left-most nonempty block

be Bj. We divide row r by λjr, which is allowed since λ ̸= 0. This effectively changes block Bℓ

into a block of the form Bℓ−j. Thus, we have another matrix of the same form as M but with

a nonempty block B0. To simplify notation, we also denote this matrix again by M. The first

column of B0 is all 1’s. We subtract row r− 1 from row r, for r from n down to 2. This gives us

a new matrixM ′, and detM = detM ′. Then detM ′ is the determinant of the (n−1)-by-(n−1)

submatrix M ′′ obtained from M ′ by removing the first row and column. Now we do column

operations (onM ′′) to return the blocks to the proper form so that we can invoke the induction

hypothesis.

For any block B ′
k different from B ′

0, we prove by induction on the number of columns in

B ′
k that B ′

k can be repaired. In the base case, the rth element of the first column is (B ′
k)r1 =

λkr − λk(r−1) = λk(r−1)(λk − 1) for r ⩾ 2. We divide this column by λk − 1 to obtain λk(r−1),

which is valid since λ is not a root of unity and k ̸= 0. This is now the correct form for the rth

element of the first column of a block in M ′′.

Now for the inductive step, assume that the first d−1 columns of block B ′
k are in the correct

form to be a block in M ′′. That is, for row index r ⩾ 2, which denotes the (r−1)-th row of M ′′,
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the rth element in the first d− 1 columns of B ′
k have the form (B ′

k)rc = (r− 1)c−1λk(r−1). The

rth element in column d of B ′
k currently has the form (B ′

k)rd = rd−1λkr − (r − 1)d−1λk(r−1).

Then we do column operations

(B ′
k)rd −

d−1∑
c=1

(
d− 1

c− 1

)
(B ′
k)rc = r

d−1λkr − (r− 1)d−1λk(r−1) −

d−1∑
c=1

(
d− 1

c− 1

)
(r− 1)c−1λk(r−1)

= rd−1λkr − rd−1λk(r−1)

= rd−1λk(r−1)(λk − 1)

and divide by (λk − 1) to get rd−1λk(r−1). Once again, this is valid since λ is not a root of unity

and k ̸= 0. Then more (of the same) column operations yield

rd−1λk(r−1)−

d−1∑
c=1

(
d− 1

c− 1

)
(r− 1)c−1λk(r−1)

= λk(r−1)

(
rd−1 + (r− 1)d−1 −

d∑
c=1

(
d− 1

c− 1

)
(r− 1)c−1

)

and the term in parentheses is precisely (r − 1)d−1. This gives the correct form for the rth

element in column d of B ′
k in M ′′.

Now we repair the columns in B ′
0, also by induction on the number of columns. In the base

case, if B ′
0 only has one column, then there is nothing to prove, since this block has disappeared

in M ′′. Otherwise, (B ′
0)r2 = r− (r− 1) = 1, so the second column is already in the correct form

to be the first column inM ′′, and there is still nothing to prove. For the inductive step, assume

that columns 2 to d − 1 are in the correct form to be the first block in M ′′ for d ⩾ 3. That is,

the entry at row r ⩾ 2 and column c from 2 through d − 1 has the form (B ′
0)rc = (r − 1)c−2.

The rth element in column d currently has the form (B ′
0)rd = rd−1 − (r − 1)d−1. Then we do

the column operations

(B ′
0)rd −

d−1∑
c=2

(
d− 1

c− 2

)
(B ′

0)rc = r
d−1 − (r− 1)d−1 −

d−1∑
c=2

(
d− 1

c− 2

)
(r− 1)c−2

= (d− 1)(r− 1)d−2
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and divide by d − 1, which is nonzero, to get (r − 1)d−2. This is the correct form for the rth

element in column d of B ′
0 in M ′′. Therefore, we invoke our original induction hypothesis that

the (n− 1)-by-(n− 1) matrix M ′′ has a nonzero determinant, which completes the proof.

Lemma 3.27. Let id4 be the arity 4 signature with Mid4 given in (3.4) and let f be an arity 4

signature. If Mf is redundant and M̃f is nonsingular, then for any set F containing f, we have

that

Holant(F ∪ {id4}) ⩽T Holant(F).

Proof. Consider an instanceΩ of Holant(F∪ {id4}). Suppose that id4 appears n times inΩ. We

construct from Ω a sequence of instances Ωs of Holant(F) indexed by s ⩾ 1. We obtain Ωs

from Ω by replacing each occurrence of id4 with the gadget Ns in Figure 3.7 with f assigned

to all vertices. In Ωs, the edge corresponding to the ith significant index bit of Ns connects to

the same location as the edge corresponding to the ith significant index bit of id4 in Ω.

N1 N2

Ns

Ns+1

Figure 3.7: Recursive construction to interpolate id4. All vertices are assigned f.

Now to determine the relationship between HolantΩ and HolantΩs , we use the isomorphism

between redundant 4-by-4 matrices and 3-by-3 matrices. To obtain Ωs from Ω, we effectively

replace Mid4 with MNs = (Mf)
s, the sth power of the signature matrix Mf. By the Jordan

normal form of M̃f, there exist T ,Λ ∈ C3×3 such that

M̃f = TΛT
−1 = T


λ1 b1 0

0 λ2 b2

0 0 λ3

 T−1,

where b1,b2 ∈ {0, 1}. Note that λ1λ2λ3 = det(M̃f) ̸= 0. Also since M̃id4 = φ(Mid4) = I3, and

TI3T
−1 = I3, we have ψ(T)Mid4ψ(T

−1) = Mid4 . We can view our construction of Ωs as first
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replacing each Mid4 by ψ(T)Mid4ψ(T
−1), which does not change the Holant value, and then

replacing each new Mid4 with ψ(Λs) = ψ(Λ)s to obtain Ωs. Observe that

φ(ψ(T)ψ(Λs)ψ(T−1)) = TΛsT−1 = (M̃f)
s = (φ(Mf))

s = φ((Mf)
s).

Hence, ψ(T)ψ(Λs)ψ(T−1) = MNs . (Since Mid4 = ψ(T)Mid4ψ(T
−1) and MNs = ψ(T)ψ(Λs)

ψ(T−1), replacing each Mid4 , sandwiched between ψ(T) and ψ(T−1), by ψ(Λs) indeed trans-

forms Ω to Ωs. We also note that, by the isomorphism, ψ(T−1) is the multiplicative inverse

of ψ(T) within the semi-group of redundant 4-by-4 matrices; but we prefer not to write it as

ψ(T)−1 since it is not the usual matrix inverse as a 4-by-4 matrix. Indeed, ψ(T) is not invertible

as a 4-by-4 matrix.)

In the case analysis below, we stratify the assignments in Ωs based on the assignment to

ψ(Λs). The inputs to ψ(Λs) are from {0, 1}2 × {0, 1}2. However, we can combine the input 01

and 10, since ψ(Λs) is redundant. Thus we actually stratify the assignments in Ωs based on

the assignment to Λs, which takes inputs from {0, 1, 2}× {0, 1, 2}. In this compressed form, the

row and column assignments to Λs are the Hamming weight of the two actual binary valued

inputs to the uncompressed form ψ(Λs).

Now we begin the case analysis on the values of b1 and b2.

1. Assume b1 = b2 = 0. We only need to consider the assignments to Λs that assign

• (0, 0) i many times,

• (1, 1) j many times, and

• (2, 2) k many times

since any other assignment contributes a factor of 0. Let cijk be the sum over all such

assignments of the products of evaluations of all signatures inΩs except forΛs (including

the contributions from T and T−1). Note that this quantity is the same in Ω as in Ωs. In

particular it does not depend on s. Then

HolantΩ =
∑

i+j+k=n

cijk

2j
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and the value of the Holant on Ωs, for s ⩾ 1, is

HolantΩs =
∑

i+j+k=n

(
λi1λ

j
2λ
k
3

)s (cijk
2j

)
.

The coefficient matrix is Vandermonde, but it may not have full rank because it is possible

that λi1λ
j
2λ
k
3 = λi

′

1 λ
j ′

2 λ
k ′

3 for some (i, j, k) ̸= (i ′, j ′, k ′), where i + j + k = i ′ + j ′ + k ′ = n.

However, this is not a problem since we are only interested in the sum
∑ cijk

2j . If two

coefficients are the same, we replace their corresponding unknowns cijk/2j and ci ′j ′k ′/2j
′

with their sum as a new variable. After all such combinations, we have a Vandermonde

system of full rank. In particular, none of the entries are 0 since λ1λ2λ3 = det(M̃f) ̸= 0.

Therefore, we can solve the linear system and obtain the value of HolantΩ.

2. Assume b1 ̸= b2. We can permute the Jordan blocks in Λ so that b1 = 1 and b2 = 0, then

λ1 = λ2, denoted by λ. We only need to consider the assignments to Λs that assign

• (0, 0) i many times,

• (1, 1) j many times,

• (2, 2) k many times, and

• (0, 1) ℓ many times

since any other assignment contributes a factor of 0. Let cijkℓ be the sum over all such

assignments of the products of evaluations of all signatures inΩs except forΛs (including

the contributions from T and T−1). Then

HolantΩ =
∑

i+j+k=n

cijk0

2j

and the value of the Holant on Ωs, for s ⩾ 1, is

HolantΩs =
∑

i+j+k+ℓ=n

λ(i+j)sλks3

(
sλs−1

)ℓ (cijkℓ
2j+ℓ

)
= λns

∑
i+j+k+ℓ=n

(
λ3

λ

)ks
sℓ
( cijkℓ
λℓ2j+ℓ

)
.
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If λ3/λ is a root of unity, then take a t such that (λ3/λ)
t = 1. Then

HolantΩst = λ
nst

∑
i+j+k+ℓ=n

sℓ
(
tℓcijkℓ

λℓ2j+ℓ

)
.

For s ⩾ 1, this gives a coefficient matrix that is Vandermonde. Although this system is

not full rank, we can replace all the unknowns cijkℓ/2j having i + j + k = n − ℓ by their

sum to form new unknowns c ′ℓ =
∑
i+j+k=n−ℓ

cijkℓ
2j , where 0 ⩽ ℓ ⩽ n. The new unknown

c ′0 is the Holant of Ω that we seek. The resulting Vandermonde system

HolantΩst = λ
nst

n∑
ℓ=0

sℓ
(
tℓc ′ℓ
λℓ2ℓ

)

has full rank, so we can solve for the new unknowns and obtain the value of HolantΩ = c ′0.

If λ3/λ is not a root of unity, then we replace all the unknowns cijkℓ/(λℓ2j+ℓ) having

i+j = m with their sum to form new unknowns c ′mkℓ, for any 0 ⩽ m, k, ℓ andm+k+ℓ = n.

The Holant of Ω is now

HolantΩ =
∑

m+k=n

c ′mk0

and the value of the Holant on Ωs is

HolantΩs = λ
ns

∑
i+j+k+ℓ=n

(
λ3

λ

)ks
sℓ
( cijkℓ
λℓ2j+ℓ

)
= λns

∑
m+k+ℓ=n

(
λ3

λ

)ks
sℓc ′mkℓ.

After a suitable reordering of the columns, the matrix of coefficients satisfies the hypoth-

esis of Lemma 3.26. Therefore, the linear system has full rank. We can solve for the

unknowns and obtain the value of HolantΩ.

3. Assume b1 = b2 = 1. In this case, we have λ1 = λ2 = λ3, denoted by λ, and we only need

to consider the assignments to Λs that assign

• (0, 0) or (2, 2) i many times,
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• (1, 1) j many times,

• (0, 1) k many times,

• (1, 2) ℓ many times, and

• (0, 2) m many times

since any other assignment contributes a factor of 0. Let cijkℓm be the sum over all such

assignments of the products of evaluations of all signatures inΩs except forΛs (including

the contributions from T and T−1). Then

HolantΩ =
∑
i+j=n

cij000

2j

and the value of the Holant on Ωs, for s ⩾ 1, is

HolantΩs =
∑

i+j+k+ℓ+m=n

λ(i+j)s
(
sλs−1

)k+ℓ (
s(s− 1)λs−2

)m ( cijkℓm
2j+k+m

)
= λns

∑
i+j+k+ℓ+m=n

sk+ℓ+m(s− 1)m
( cijkℓm

λk+ℓ+2m2j+k+m

)
.

We replace all the unknowns cijkℓm/(λk+ℓ+2m2j+k+m) having i + j = p and k + ℓ = q by

their sums to form new unknowns c ′pqm, for any 0 ⩽ p,q,m and p + q + m = n. The

Holant of Ω is now c ′n00. This new linear system is

HolantΩs = λ
ns

∑
p+q+m=n

sq+m(s− 1)mc ′pqm,

but is still rank deficient. We now index the columns by (q,m), where q ⩾ 0, m ⩾ 0,

and q + m ⩽ n. Correspondingly, we rename the variables xq,m = c ′pqm. Note that

p = n− q−m is determined by (q,m). Observe that the column indexed by (q,m) is the

sum of the columns indexed by (q− 1,m) and (q− 2,m+ 1) provided q− 2 ⩾ 0. Namely,

sq+m(s−1)m = sq−1+m(s−1)m+sq−2+m+1(s−1)m+1. Of course this is only meaningful

if q ⩾ 2, m ⩾ 0 and q+m ⩽ n. We write the linear system as

∑
q⩾0, m⩾0, q+m⩽n

αq,mxq,m =
HolantΩs
λns

,
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where αq,m = sq+m(s − 1)m are the coefficients. Hence αq,mxq,m = αq−1,mxq,m +

αq−2,m+1xq,m, and we define new variables

xq−1,m ← xq,m + xq−1,m

xq−2,m+1 ← xq,m + xq−2,m+1

from q = n−m down to 2 for every 0 ⩽ m ⩽ n− 2.

Observe that in each update, the newly defined variables have a decreased index value

for q. A more crucial observation is that the column indexed by (0, 0) is never updated.

This is because, in order to be an updated entry, there must be some q ⩾ 2 and m ⩾ 0

such that (q− 1,m) = (0, 0) or (q− 2,m+ 1) = (0, 0), which is clearly impossible. Hence

x0,0 = c ′n00 is still the Holant value on Ω. The 2n+ 1 unknowns that remain are

x0,0, x1,0, x0,1, x1,1, x0,2, x1,2, . . . , x0,n−1, x1,n−1, x0,n

and their coefficients in row s are

1, s, s(s− 1), s2(s− 1), s2(s− 1)2, . . . , sn−1(s− 1)n−1, sn(s− 1)n−1, sn(s− 1)n.

It is clear that the κ-th entry in this row is a monic polynomial in s of degree κ, where

0 ⩽ κ ⩽ 2n, and thus sκ is a linear combination of the first κ entries. It follows that

the coefficient matrix is a product of the standard Vandermonde matrix multiplied to its

right by an upper triangular matrix with all 1’s on the diagonal. Therefore, the linear

system has full rank. We can solve for these final unknowns and obtain the value of

HolantΩ = x0,0 = c ′n00.

We summarize our progress with the following corollary, which combines Lemmas 3.25 and

3.27.

Corollary 3.28. Let f be an arity 4 signature with complex weights. If Mf is redundant and M̃f

is nonsingular, then Pl-Holant(f) is #P-hard.



94

We also have a consequence of Corolloary 3.28, weaker yet easier to apply, concerning

symmetric signatures.

Corollary 3.29. For a symmetric arity 4 signature [f0, f1, f2, f3, f4] with complex weights, if there

does not exist a,b, c ∈ C, not all zero, such that for all k ∈ {0, 1, 2},

afk + bfk+1 + cfk+2 = 0,

then Pl-Holant(f) is #P-hard.

By Lemma 3.19, for a nonsingular matrix T ∈ C2×2, Mf is redundant and M̃f is nonsingular

if and only if Mf is redundant and M̃f is nonsingular. Combine this fact with Corollary 3.28

and Lemma 3.19, and we have the following.

Corollary 3.30. Let f be an arity 4 signature with complex weights. If there exists a nonsingular

matrix T ∈ C2×2 such that f = T⊗4f, where Mf is redundant and M̃f is nonsingular, then

Holant(f) is #P-hard.

3.5 A Unary Interpolation Lemma

Before continuing to the main result of this chapter, we prove an interpolation lemma for unary

signatures first. It is useful in the following the rest of this chapter as well as in the next.

Lemma 3.31. Suppose M ∈ Cn×n and s ∈ Cn×1. If the following three conditions are satisfied,

1. det(M) ̸= 0;

2. s is not orthogonal to any row eigenvector of M;

3. M has infinite order modulo a scalar;

then vectors in the set S = {Mks | k ⩾ 0} are pairwise linearly independent.

Proof. Since det(M) ̸= 0, M is nonsingular and the eigenvalues λi of M, for 1 ⩽ i ⩽ n, are

nonzero. Let M = P−1JP be the Jordan decomposition of M and let p = Ps ∈ Cn×1. Suppose

for a contradiction that vectors in S are not pairwise linearly independent. This means that



95

there exists integers k > ℓ ⩾ 0 such that Mks = βMℓs for some β ≠ 0. Let t = k − ℓ > 0. Then

we have that P−1JtPs =Mts = βs and hence Jtp = βp.

Suppose that J contains some nontrivial Jordan block and consider the 2-by-2 submatrix

in the bottom right corner of this block. From this portion of J, the two equations given by

Jtp = βp are λtipi−1 + tλt−1
i pi = βpi−1 and λtipi = βpi. Since s is not orthogonal to any row

eigenvector of M, pi ̸= 0. Then these equations imply that tλt−1
i pi = 0, a contradiction.

Otherwise,M is diagonalizable and J contains only trivial Jordan blocks. From Jtp = βp, we

get the equations λtipi = βpi for 1 ⩽ i ⩽ n. Since s is not orthogonal to any row eigenvector of

M, pi ̸= 0 for 1 ⩽ i ⩽ n. Hence λti = 1 for all 1 ⩽ i ⩽ n. ThereforeMt = βIn, which contradicts

that fact that M has infinite order modulo a scalar.

Recall that for a binary signature f, its matrixMf is defined in the same way as in Definition

3.17:

Mf =
[
f(00) f(01)
f(10) f(11)

]
.

Note that here we do not need to worry about how to order the edges of f.

Lemma 3.32. Let F be a set of signatures. If there exists a planar F-gate with signature matrix

M ∈ C2×2 and a planar F-gate with signature s ∈ C2×1 satisfying the following conditions,

1. det(M) ̸= 0;

2. det([s Ms]) ̸= 0;

3. M has infinite order modulo a scalar;

then Pl-Holant(F ∪ {[a,b]}) ⩽T Pl-Holant(F) for any a,b ∈ C.

Proof. LetΩ = (G,π) be an instance of Pl-Holant(F∪{[a,b]}). Let V ′ ⊆ V be the subset of vertices

assigned [a,b] by π and suppose that |V ′| = n. We construct fromΩ a sequence of instancesΩk

of Pl-Holant(F) indexed by k ⩾ 1. We obtain Ωk from Ω by replacing each occurrence of [a,b]

with the unary recursive construction (M, s) in Figure 3.8 containing k copies of the recursive

gadget. This unary recursive construction has the signature [ak,bk] =Mks.
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M M · · · M M s

Figure 3.8: Unary recursive construction (M, s).

If s is orthogonal to a row eigenvector β ofM, it is easy to verify thatMs is also orthogonal

to β. Hence [s Ms] is singular. This contradicts to det([s Ms]) ̸= 0. It implies that s is not

orthogonal to any row eigenvector of M. By Lemma 3.31, vectors in the set S = {[ak,bk] | 0 ⩽

k ⩽ n+ 1} are pairwise linearly independent. In particular, at most one bk can be 0, so we may

assume that bk ̸= 0 for 0 ⩽ k ⩽ n, renaming if necessary.

We stratify the assignments in Ω based on the assignment to [a,b]. Let cℓ be the sum over

all assignments of products of evaluations at all v ∈ V\V ′ such that exactly ℓ occurrences of

[a,b] have their incident edges assigned 0 (and n−ℓ have their incident edges assigned 1). Then

HolantΩ =
∑

0⩽ℓ⩽n
aℓbn−ℓcℓ

and the value of the Holant on Ωk, for k ⩾ 1, is

HolantΩk =
∑

0⩽ℓ⩽n
aℓkb

n−ℓ
k cℓ = b

n
k

∑
0⩽ℓ⩽n

(
ak

bk

)ℓ
cℓ.

The coefficient matrix of this linear system is Vandermonde. Since vectors ak,bk in S are

pairwise linearly independent, ratios ak/bk are distinct (and well-defined since bk ̸= 0), which

means that the Vandermonde matrix has full rank. Therefore, we can solve the linear system

for the unknown cℓ’s and obtain the value of HolantΩ.

3.6 Pl-Holant Dichotomy for a Symmetric Arity 4 Signature

With Corollary 3.28 in hand, the only obstacles remaining to prove a dichotomies for a symmet-

ric arity 4 signature are Holant([v, 1, 0, 0, 0]) and Pl-Holant([v, 1, 0, 0, 0]). On the other hand, if

v = 0, then Pl-Holant([v, 1, 0, 0, 0]) is tractable, since it counts the number of perfect matchings

in a 4-regular planar graph. We will show that otherwise it is #P-hard. On the other hand,

Holant[0, 1, 0, 0, 0] is #P-hard without the planar assumption.
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Lemma 3.33. Holant([0, 1, 0, 0, 0]) is #P-hard.

Proof. Using the tetrahedron gadget in Figure 2.9 with [0, 1, 0, 0, 0] assigned to each vertex, we

get a signature g = [3, 0, 1, 0, 1]. Since det(M̃g) = 4, we are done by Corollary 3.28.

We will prove that Pl-Holant([v, 1, 0, 0, 0])with v ≠ 0 is #P-hard by reducing from Pl-Holant([v,

1, 0, 0]). These two problems are counting weighted matchings over planar k-regular graphs for

k = 4 and k = 3 respectively. First we want to realize [1, 0, 0]. We will combine the idea of anti-

gadgets from [CKW12] with Lemma 3.32.

Lemma 3.34. For any v ∈ C and signature set F containing [v, 1, 0, 0, 0],

Pl-Holant(F ∪ {[1, 0, 0]}) ⩽T Pl-Holant(F).

Proof of Lemma 3.34. Consider the gadget construction in Figure 3.9. For k ⩾ 0, the signature

ofNk is of the form [ak,bk, 0], andN0 = [v, 1, 0]. SinceNk is symmetric and always ends with 0,

we can analyze this construction as if it were a unary recursive construction. Let sk =
[ ak
bk

]
, so

s0 = [ v1 ]. It is easy to verify that that sk =Mks0, where M =
[
v 2
1 0

]
.

N0 N1

Nℓ

Nℓ+1

Figure 3.9: Binary recursive construction with a starter to interpolate [1, 0, 0]. Ver-
tices are assigned [v, 1, 0, 0, 0].

Since det(M) = −2, M is nonsingular. If M has finite order modulo a scalar, then Mℓ = βI2

for some positive integer ℓ and some nonzero complex value β. Thus, the signature of Nℓ−1,

which contains the anti-gadget of M, is Mℓ−1s0 = βM−1s0 = β
[

1
0

]
. After normalizing, we

directly realize [1, 0, 0].

OtherwiseM has infinite order modulo a scalar. It is easy to verify that det ([s0 Ms0]) = −2.

Hence by the unary interpolation as in Lemma 3.32, we have that

Pl-Holant(F ∪ {[a,b, 0]}) ⩽T Pl-Holant(F).
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for any a,b ∈ C. The lemma follows from the claim by setting a = 1 and b = 0.

Note that towards the end of the proof of Lemma 3.34, Lemma 3.32 does not really directly

apply, as we are interpolating a binary signature, instead of a unary one. However, the inter-

polation is almost identically the same, as the support of the binary signature has dimension

two, which is the same as a unary signature.

For the next lemma, we use a well-known and easy generalization of a classic result by

Petersen [Pet91]. Petersen’s theorem considers 3-regular, bridgeless, simple graphs (i.e. graphs

without self-loops or parallel edges) and concludes that there exists a perfect matching. The

same conclusion holds even if the graphs are not simple. We provide a proof for completeness.

Theorem 3.35. Any 3-regular bridgeless graph G has a perfect matching.

Proof. We may assume that G is connected. If G has a vertex v with a self-loop, then the other

edge of v is a bridge since G is 3-regular, which is a contradiction. If there exists some pair of

vertices of G joined by exactly three parallel edges, then G has only these two vertices since it

is connected and the theorem holds.

In the remaining case, there exists some pair of vertices joined by exactly two parallel edges.

We build a new graph G ′ without any parallel edges. For vertices u and v joined by exactly two

parallel edges, we remove these two parallel edges and introduce two new vertices w1 and w2.

We also introduce the new edges (u,w1), (u,w2), (v,w1), (v,w2), and (w1,w2). Then G ′ is a

3-regular, bridgeless, simple graph.

By Petersen’s theorem, G ′ has a perfect matching P ′. Now we construct a perfect matching

P in G using P ′. We put any edge in both G and P ′ into P. If u is matched by a new edge in G ′,

then v must be matched by a new edge in G ′ as well and we put the edge (u, v) into P. If u and

v are not matched by a new edge, then we do not add anything to P. It is easy to see that P is a

perfect matching in G.

We use this result to show the existence of what we call a planar pairing for any planar

3-regular graph, which we use in our proof of #P-hardness.

Definition 3.36 (Planar pairing). A planar pairing in a graphG = (V ,E) is a set of edges P ⊂ V×V

such that P is a perfect matching in the graph (V ,V × V), and the graph (V ,E ∪ P) is planar.
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Obviously, a perfect matching in the original graph is a planar pairing.

Lemma 3.37. For any planar 3-regular graph G, there exists a planar pairing that can be com-

puted in polynomial time.

Proof. We efficiently find a planar pairing in G by induction on the number of vertices in G.

Since G is a 3-regular graph, it must have an even number of vertices. If there are no vertices in

G, then there is nothing to do. Suppose that G has n = 2k vertices and that we can efficiently

find a planar pairing in graphs containing fewer vertices. If G is not connected, then we can

already apply our inductive hypothesis on each connected component ofG. The union of planar

pairings in each connected component of G is a planar pairing in G, so we are done. Otherwise

assume that G is connected.

u1

v1

u

v

u2

v2

(a) The neighborhood around u and v in G.

u1

v1

u

v

u2

v2

eu

ev

(b) The same neighborhood in H.

Figure 3.10: The neighborhood around u and v both before and after they are re-
moved.

Suppose that G contains a bridge (u, v). Let the three (though not necessarily distinct)

neighbors of u be v, u1, and u2, and let the three (though not necessarily distinct) neighbors

of v be u, v1, and v2 (see Figure 3.10a). Furthermore, let Hu be the connected component in

G − {(u, v)} containing u and let Hv be the connected component in G − {(u, v)} containing v.

Consider the induced subgraph H ′
u of Hu after adding the edge eu = (u1,u2) (which might be

a self-loop on u = u1 = u2) and then removing u. Similarly, consider the induced subgraph

H ′
v of Hv after adding the edge ev = (v1, v2) (which might be a self-loop on v = v1 = v2) and

then removing v. Both H ′
u and H ′

v are 3-regular graphs and their disjoint union gives a graph

H ′ with n− 2 = 2(k− 1) vertices (see Figure 3.10b).

By induction on both H ′
u and H ′

v, we have planar pairings Pu and Pv in H ′
u and H ′

v respec-

tively. Let H ′′ be the graph H ′ including the edges Pu ∪ Pv. If H ′′ contains both eu and ev,

then embed H ′′ in the plane so that both eu and ev are adjacent to the outer face. Otherwise,
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any planar embedding will do. Then the graph G including the edges Pu ∪ Pv is also planar, so

Pu ∪ Pv ∪ {(u, v)} is a planar pairing in G.

Otherwise, G is bridgeless. Then by Theorem 3.35, G has a perfect matching, which is also

a planar pairing in G. Since a perfect matching can be found in polynomial time by Edmond’s

blossom algorithm [Edm65], the whole procedure is in polynomial time.

The approach above to find a planar pairing is reported in [GW13]. Alternatively, an algo-

rithm by Cai and Kowalczyk [CK13] achieves the same goal. It was used to show that counting

vertex covers over k-regular graphs is #P-hard for even k ⩾ 4 (see the proof of Lemma 15

in [CK13]). Their algorithm to find a planar pairing starts by taking a spanning tree and then

pairing up the vertices on this tree. The planar pairing idea is special, in the sense that the

argument is global. In contrast, most gadget constructions in our hardness proofs are local.

Planar pairings permit reductions that are not otherwise possible.

Now we use the planar pairing technique to show the following.

Lemma 3.38. Let v ≠ 0 ∈ C. Pl-Holant([v, 1, 0, 0, 0]) is #P-hard.

Proof. We reduce from Pl-Holant([v, 1, 0, 0]) to Pl-Holant([v, 1, 0, 0, 0], [1, 0, 0]). Since Pl-Holant([v,

1, 0, 0]) is #P-hard when v ≠ 0 by Theorem 1.14, the reduction implies that Pl-Holant([v, 1, 0, 0, 0])

is also #P-hard when v ≠ 0 by Lemma 3.34.

Let Ω = (G,π) be an instance of Pl-Holant([v, 1, 0, 0]). Then G = (V ,E) is planar and 3-

regular. By Lemma 3.37, there exists a planar pairing P in G and it can be found in polynomial

time. Then the graph G ′ = (V ,E ∪ P) is planar and 4-regular. We assign [v, 1, 0, 0, 0] to every

vertex in G ′. Moreover, we replace each edge in P with a path of length 2 to form a graph

G ′′ and assign [1, 0, 0] = [1, 0]⊗2 to each of the new vertices. Call this new instance Ω ′′. Then

Holant(Ω; [v, 1, 0, 0]) = Holant(Ω ′′; {[v, 1, 0, 0, 0], [1, 0, 0]}).

Note that our proof of Lemma 3.38 reduces Pl-Holant([v, 1, 0, 0]) to Pl-Holant([v, 1, 0, 0, 0]) for

all v ∈ C. Neither Lemma 3.34 nor Lemma 3.38 ever considers the value of v. This is consistent

because both signatures are in M when v = 0, thus tractable, and both signatures are #P-hard

when v is different from 0.

Now we are ready to prove our Pl-Holant dichotomy for a symmetric arity 4 signature.
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Theorem 3.39. Let f be a non-degenerate, complex-weighted Boolean signature. Pl-Holant(f) is

#P-hard unless f satisfies one of the following conditions, in which case the problem is computable

in polynomial time:

1. f is A- or P-transformable;

2. f is vanishing;

3. f is M-transformable.

If f satisfies condition 1 or 2, then Holant(f) is computable in polynomial time without planarity;

otherwise Holant(f) is #P-hard.

Proof. Tractability follows from Lemma 1.7, Lemma 1.9, and Lemma 1.10, as well as the fact

that vanishing signatures are tractable.

Suppose f = [f0, f1, f2, f3, f4]. If there do not exist a,b, c ∈ C, not all zero, such that for all

k ∈ {0, 1, 2}, afk+bfk+1 + cfk+2 = 0, then Pl-Holant(f) is #P-hard by Corollary 3.29. Otherwise,

such a,b, c exist. If a = c = 0, then b ̸= 0, so f1 = f2 = f3 = 0. In this case, f ∈ P is a generalized

equality signature, so f is P-transformable.

Now suppose a and c are not both 0. If b2 − 4ac ̸= 0, then fk = α4−k
1 αk2 + β4−k

1 βk2 , where

α1β2 − α2β1 ̸= 0. A holographic transformation by
[
α1 β1
α2 β2

]
transforms f to =4. Apply The-

orem 1.15 and we have tha Pl-Holant(f) is #P-hard unless f is A-, P-, or M-transformable.

Moreover, if f is M-transformable, Holant(f) is #P-hard.

The exceptional case is b2 − 4ac = 0. There are two symmetric possibilities. In the first,

for any 0 ⩽ k ⩽ 2, fk = ckαk−1 + dαk, where c ̸= 0. In the second, for any 0 ⩽ k ⩽ 2,

fk = c(4−k)α3−k+dα4−k, where c ̸= 0. These two possibilities map between each other under

a holographic transformation by
[

0 1
1 0

]
, so assume that the first one holds.

If α = ±i, then f is vanishing. Otherwise, a further holographic transformation by 1√
1+α2[

1 α
α −1

]
transforms f to f = [v, 1, 0, 0, 0] for some v ∈ C after normalizing the second entry.

(Details are provided after the proof.) If v = 0, then the problem is counting perfect matchings

over planar 4-regular graphs, so f ∈ M and f is M-transformable. Pl-Holant(f) is tractable but

Holant(f) is #P-hard by Lemma 3.33. Otherwise, v ̸= 0 and we are done by Lemma 3.38.
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Here we give the details of the orthogonal transformation used in the proof of Theorem

3.39. We state the general case for symmetric signatures of arity n ⩾ 1, although we only used

n = 4 in the proof above. Appendix D of [CHL12] has the case of n = 3.

We are given a symmetric signature f = [f0, . . . , fn] such that fk = ckαk−1 + dαk, where

c ̸= 0, and α ≠ ±i. Let S =

[
1 d−1

n

α c+
d−1
n
α

]
. Note that det(S) = c ̸= 0. Then f can be expressed as

f = S⊗n[1, 1, 0, . . . , 0],

where [1, 1, 0, . . . , 0] should be understood as a dimension 2n column vector, which has 1 in

entries with Hamming weight at most one and 0 elsewhere. This identity can be verified by

observing that

[1, 1, 0, . . . , 0] = [1, 0]⊗n +
1

(n− 1)!
Symn−1

n ([1, 0]; [0, 1])

and we apply S⊗n using properties of tensor product, S⊗n[1, 0]⊗n = (S[1, 0])⊗n, etc. We con-

sider the value at index 0n−k1k, which is the same as the value at any entry of weight k. By

considering where the tensor product factor [0, 1] is located among the n possible locations,

we get

αk + k

(
c+

d− 1

n
α

)
αk−1 + (n− k)

d− 1

n
αk = ckαk−1 + dαk.

Let T = 1√
1+α2

[
1 α
α −1

]
, then T = T⊺ = T−1 ∈ O2(C) is orthogonal, and R = TS = [u w0 z ] is

upper triangular, where z,w ∈ C and u =
√

1 + α2 ̸= 0. However, det(R) = det(T)det(S) =
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(−1)c ̸= 0, so we also have z ̸= 0. It follows that

T⊗nf = (TS)⊗n[1, 1, 0, . . . , 0]

= R⊗n[1, 1, 0, . . . , 0]

= R⊗n
(
[1, 0]⊗n +

1

(n− 1)!
Symn−1

n ([1, 0]; [0, 1])

)
= [u, 0]⊗n +

1

(n− 1)!
Symn−1

n ([u, 0]; [w, z])

= [un + nun−1w,un−1z, 0, . . . , 0].

Since un−1z ̸= 0, we can normalize to 1 the entry of Hamming weight 1 by a scalar multiplica-

tion. Thus, we have [v, 1, 0, . . . , 0] for some v ∈ C.

3.7 Vanishing Signatures Revisited

In this section, we revisit vanishing signatures and show related hardness results. Basically,

these hardness results imply that the two tractable cases illustrated in Lemma 3.15 and Lemma

3.16 are essentially maximal, in the sense that adding any other signature yields #P-hardness.

In planar graphs some exceptional cases do exist, due to M-transformable signatures. Results

proven in this section will be useful for the Pl-Holant dichotomy.

Before proving anything, we first show a simple interpolation lemma, which will be handy

in future.

Lemma 3.40. Let x ∈ C. If x ̸= 0, then for any set F containing [x, 1, 0], we have

Holant (≠2 | F ∪ {[v, 1, 0]}) ⩽T Holant (≠2 | F) ,

for any v ∈ C.

Proof. Consider an instance Ω of Holant (≠2 | F ∪ {[v, 1, 0]}). Suppose that [v, 1, 0] appears n

times in Ω. We stratify the assignments in Ω based on its assignments to [v, 1, 0]. We only

need to consider assignments that give all [v, 1, 0]’s Hamming weights 0 and 1 since Hamming

weight 2 contributes 0. If there are i many [v, 1, 0]’s having Hamming weight 0, then the rest
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n− imany have Hamming weight 1. Let ci denote the summation of the product of evaluations

of signatures other than [v, 1, 0] in Ω over assignments which give i many [v, 1, 0]’s Hamming

weight 0. We can rewrite the Holant on Ω as

HolantΩ =

n∑
i=0

vici.

We construct from Ω a sequence of instances Ωs of Holant(F) indexed by s ⩾ 1. We obtain

Ωs from Ω by replacing each occurrence of [v, 1, 0] with a gadget gs created from s copies

of [x, 1, 0], connected sequentially but with (≠2) = [0, 1, 0] between each sequential pair. The

signature of gs is [sx, 1, 0], which can be verified by the matrix product


x 1

1 0


0 1

1 0



s−1 x 1

1 0

 =

1 x

0 1


s−1 x 1

1 0

 =

1 (s− 1)x

0 1


x 1

1 0

 =

sx 1

1 0

 .

The Holant on Ωs is

HolantΩs =
n∑
i=0

(sx)ici.

For s ⩾ 1, this gives a coefficient matrix that is Vandermonde. Since x is nonzero, sx is distinct

for each s. Therefore, the Vandermonde system has full rank. We can solve for the unknowns

ci and obtain the value of HolantΩ.

Now consider the mixing of vanishing signatures with unary and binary signatures. For

unary signatures, they can be combined with Rσ2 , and we show that they cannot be combined

with any other vanishing signature.

Lemma 3.41. Let f ∈ Vσ be a symmetric signature of arity n with rdσ(f) = d ⩾ 2 where

σ ∈ {+,−}. Suppose v = u⊗m is a symmetric degenerate signature for some unary signature u

and some integer m ⩾ 1. If u is not a multiple of [1,σi], then Pl-Holant(f, v) is #P-hard.

Proof. We consider σ = + since the other case is similar. Since f ∈ V+, we have n > 2d ⩾ 4.

Under a holographic transformation by Z, we have

Pl-Holant(f, v) ≡ Pl-Holant
(
≠2 | f, [a,b]⊗m

)
,
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where f =
(
Z−1

)⊗n
f and [a,b]⊗m =

(
Z−1

)⊗m
v with b ≠ 0 since u is not a multiple of [1, i].

Moreover, f = [f0, f1, . . . , fd, 0, . . . , 0] with fd ≠ 0 by Lemma 3.14.

We get f ′ = [fd−2, fd−1, fd, 0, . . . , 0] of arity n − 2d + 4 by d − 2 self-loops via ≠2 on f. This

is on the right side. With two more self-loops, we get [1, 0]⊗n−2d, also on the right.

We claim that we can use [1, 0]⊗n−2d and [a,b]⊗m to create [a,b]⊗n−2d. Let t = gcd(m,n−

2d). If n − 2d > m, then we connect [a,b]⊗m to [1, 0]⊗n−2d via ≠2 to get [1, 0]⊗n−2d−m up

to a nonzero factor b ≠ 0. We repeat this process until we get a tensor power [1, 0]⊗ℓ for

some ℓ ⩽ m. We can do a similar construction if m > n − 2d. Repeat this process, which is a

subtractive Euclidean algorithm. Halt upon getting both [1, 0]⊗t and [a,b]⊗t. Then we combine

n−2d
t

copies of [a,b]⊗t to get [a,b]⊗n−2d.

Now connecting [a,b]⊗n−2d back to f ′ via ≠2, gives f ′′ = [f ′′0, f ′′1, f ′′2, 0, 0] of arity 4. More-

over, f ′′2 = bn−2dfd ≠ 0. Notice that Pl-Holant(≠2 | [f ′′0, f ′′1, f ′′2, 0, 0]) ≡ Pl-Holant(≠2 |

[0, 0, 1, 0, 0]), the Eulerian Orientation problem over planar 4-regular graphs, which is #P-hard

by Theorem 3.21. Thus, Pl-Holant(f, v) is #P-hard.

Next come binary signatures. We first do some preparation.

Lemma 3.42. Let c, t ∈ C. If ct ̸= 0, then Pl-Holant ( ̸=2 | [t, 1, 0, 0, 0], [c, 0, 1]) is #P-hard. More-

over, Holant ( ̸=2 | [0, 1, 0, 0, 0], [c, 0, 1]) is #P-hard.

Proof. By connecting two copies of ̸=2 to either side of [c, 0, 1], we get the signature [1, 0, c]

on the left. Clearly Pl-Holant ([1, 0, c] | [t, 1, 0, 0, 0]) ⩽T Pl-Holant ( ̸=2 | [t, 1, 0, 0, 0], [c, 0, 1]). Then

under a holographic transformation by T−1, where T =
[

1 0
0
√
c

]
, we have

Pl-Holant ([1, 0, c] | [t, 1, 0, 0, 0]) ≡ Pl-Holant
(
[1, 0, c](T−1)⊗2 | T⊗4[t, 1, 0, 0, 0]

)
≡ Pl-Holant

(
[1, 0, 1] | [t,

√
c, 0, 0, 0]

)
≡ Pl-Holant([t,

√
c, 0, 0, 0]).

The last problem is #P-hard by Lemma 3.38 after dividing by
√
c. Clearly above reductions

still hold without the planar restriction. The second statement follows from t = 0 and Lemma

3.33.
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If t = 0, the above problem is tractable in planar graphs. In general, we need to take care

of some planar tractable cases. Recall that Z = 1√
2

[
1 1
i −i

]
Define

M+
4 :=

{
f | arity(f) = n, f = Z⊗nExactOnen,n ∈ N

}
and

M−
4 :=

{
f | arity(f) = n, f = Z⊗nAllButOnen,n ∈ N

}
.

It is easy to see that M−
4 =

{(
Z
[

0 1
1 0

])⊗n
ExactOnen,n ∈ N

}
=
[

1 0
0 −1

]
M+

4 . Let M4 = M+
4 ∪M

−
4 .

The reason of the name M±
4 will become clear in Chapter 5, in particular, Definition 5.16. The

set M4 contains all M-transformable signatures in V±.

Also note that if f ∈ V± is a symmetric non-degenerate signature, then f has arity at least

3. This is because a unary signature is degenerate, and if a binary symmetric signature f is

vanishing, then its vanishing degree is greater than 1, hence at least 2, and therefore f is also

degenerate. Nevertheless, we explicitly state this condition arity(f) ⩾ 3 in the following lemmas.

In light of Lemma 3.15, we can allow non-vanishing binary signatures from Rσ2 but not

others.

Lemma 3.43. Let f ∈ Vσ be a symmetric non-degenerate signature of arity n ⩾ 3 for some

σ ∈ {+,−}. Let h ∉ Rσ2 be a non-degenerate binary signature. Then Holant(f,h) is #P-hard.

Moreover, if f ̸∈Mσ
4 , then Pl-Holant(f,h) is #P-hard.

Proof. We consider σ = + since the other case is similar. Under a Z transformation,

Pl-Holant(f,h) ≡ Pl-Holant
(
≠2 | f,h

)
,

Holant(f,h) ≡ Holant
(
≠2 | f,h

)
,

where f =
(
Z−1

)⊗n
f and h =

(
Z−1

)⊗2
h. Since h ̸∈ R+

2 , we may assume that h = [a,b, 1] by

Lemma 3.14 with a nonzero entry h2. Moreover since h is non-degenerate, so is h, and b2 ≠ a.

We prove the lemma by induction on the arity of f (or equivalently f). There are two base

cases, n = 3 and n = 4. However, the arity 3 case is easily reduced to the arity 4 case. We show



107

this first, and then show that the lemma holds in the arity 4 case.

Assume n = 3. Since f ∈ V+, we have f = [t, 1, 0, 0] for some t ≠ 0, by Lemma 3.14 and

f ̸∈ M+
4 . Consider the gadget in Figure 3.11. We assign f to the circle vertices and ≠2 to the

square vertex. Let f
′

be the signature of the resulting gadget. The signature f
′

may not seem

symmetric by construction, but it is not hard to verify that indeed f
′
= [2t, 1, 0, 0, 0]. The crucial

observation is that it takes the same value 0 on inputs 1010 and 1100, where bits are ordered

counterclockwise, starting from an arbitrary edge. This finishes our reduction to n = 4.

Figure 3.11: Circle vertices are assigned [t, 1, 0, 0] and the square vertex is assigned
≠2.

Now we consider the base case of n = 4. Since f ∈ V+, we have vd+(f) > 2 and rd+(f) < 2.

As f is not degenerate, rd+(f) ̸∈ {−1, 0}. It implies that rd+(f) = 1 and by Lemma 3.14, f =

[t, 1, 0, 0, 0].

Our next goal is to show that we can realize a signature of the form [c, 0, 1] with c ≠ 0,

namely,

Pl-Holant (≠2 | [t, 1, 0, 0, 0], [c, 0, 1]) ⩽T Pl-Holant(f,h);

Holant (≠2 | [t, 1, 0, 0, 0], [c, 0, 1]) ⩽T Holant(f,h).

This finishes our base case because Holant (≠2 | [t, 1, 0, 0, 0], [c, 0, 1]) is #P-hard by Lemma 3.42.

Moreover, if f ∉ M+
4 , then t ≠ 0. By Lemma 3.42, Pl-Holant (≠2 | [t, 1, 0, 0, 0], [c, 0, 1]) is also

#P-hard.

If b = 0, then h is what we want since in this case a = a− b2 ̸= 0.

Otherwise b ≠ 0. By connecting h to f via ≠2, we get [t + 2b, 1, 0]. If t ≠ −2b, then by

Lemma 3.40, we can interpolate any binary signature of the form [v, 1, 0]. Otherwise t = −2b.

Then we connect two copies of h via ≠2, and get h
′
= [2ab,a + b2, 2b]. By connecting this h

′

to f via ≠2, we get [2(a − b2), 2b, 0], for t = −2b. Since a ≠ b2 and b ≠ 0, we can once again

interpolate any [v, 1, 0] by Lemma 3.40.
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Figure 3.12: A sequence of binary gadgets that forms another binary gadget. The
circles are assigned [v, 1, 0], squares are ≠2, and the triangle is [a,b, 1].

Hence, we have the signature [v, 1, 0], where v ∈ C is for us to choose. We construct the

gadget in Figure 3.12 with the circles assigned [v, 1, 0], the squares assigned≠2, and the triangle

assigned [a,b, 1]. The resulting gadget has signature [a+2bv+v2,b+v, 1], which can be verified

by the matrix product

v 1

1 0


0 1

1 0


a b

b 1


0 1

1 0


v 1

1 0

 =

a+ 2bv+ v2 b+ v

b+ v 1

 .

Setting v = −b, we get [c, 0, 1], where c = a− b2 ≠ 0. This finishes the base case of n = 3, 4.

Now we do the induction step. Assume n ⩾ 5. Since f is non-degenerate, rd+(f) ⩾ 1. If

rd+(f) = 1, then f = [t, 1, 0, . . . , 0] for some t ≠ 0. We connect h to f via ≠2, getting [t +

2b, 1, 0, . . . , 0] of arity n − 2 ⩾ 3. If t + 2b ≠ 0, then we are done by induction hypothesis.

Otherwise t = −2b, and we connect two h together via≠2. The signature is h
′
:= [2ab,b2+a, 2b].

Connect h
′
to f via ≠2. We get [−4b2 + 2(b2 + a), 2b, 0, . . . , 0] = [2(a− b2), 2b, 0, . . . , 0]. If b = 0,

then t = 0. Contradiction. Hence b ≠ 0, and a − b2 ≠ 0 for b is not degenerate. Then we can

apply induction hypothesis on [2(a− b2), 2b, 0, . . . , 0].

The case left is that rd+(f) = d ⩾ 2. Then f = [f0, f1, . . . , fd, 0, . . . , 0] with fd ≠ 0 by

Lemma 3.14. We do a self-loop of f via ≠2, getting f
′′
:= [f1, . . . , fd, 0, . . . , 0] of arity n − 2 ⩾ 3.

Since d ⩾ 2, f
′′

is non-degenerate and f ′′ = Z⊗(n−2)f
′′ ∈ V+. Apply the induction hypothesis

and we are done here for Holant(f,h).

For the planar case, if f ′′ ̸∈ M+
4 , then apply the induction hypothesis and we are done.

Otherwise d = 2 and we may assume f = [f0, 0, 1, 0, . . . , 0] since f2 ≠ 0.

In this case, we connect h to f via ≠2, getting f
′′′

:= [a+ f0, 2b, 1, 0, . . . , 0] of arity n− 2 ⩾ 3.

If n ⩾ 7, then we can apply the induction hypothesis. If n = 6, then f
′′′

= [a + f0, 2b, 1, 0, 0] of

arity 4. Notice that Pl-Holant
(
≠2| [a+ f0, 2b, 1, 0, 0]

)
is equivalent to Pl-Holant (≠2| [0, 0, 1, 0, 0]),

which is Pl-4reg-#EO. Then Pl-Holant
(
≠2 | f

′′′
)

is #P-hard by Theorem 3.21.
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The only case left now is when n = 5 and f = [f0, 0, 1, 0, 0, 0]. We do two self-loops on f via

≠2 to get [1, 0]. Then connect [1, 0] to h via ≠2 and get [b, 1]. At last, connect [b, 1] to f via ≠2,

resulting in [f0,b, 1, 0, 0]. Similar to the case above, Pl-Holant
(
≠2| [f0,b, 1, 0, 0]

)
is equivalent to

Pl-4reg-#EO, and is #P-hard by Theorem 3.21.

If f ∈M±
4 , there is an additional planar tractable case for the binary signature.

Lemma 3.44. Let f ∈ Mσ
4 be a symmetric non-degenerate signature with σ ∈ {+,−} of arity

k ⩾ 3. Suppose h is a non-degenerate binary signature such that h ∉ Rσ2 and h is not a multiple

of Z⊗2[a, 0, 1] for any a ≠ 0. Then Pl-Holant(f,h) is #P-hard.

Proof. We assume f ∈ M+
4 since the other case is similar. Suppose h = Z⊗2[a,b, c] for some

a,b, c ∈ C. Since h ∉ R+
2 , we have c ≠ 0, so we assume c = 1. Moreover b ≠ 0. This is because,

if b = 0 then either h is degenerate or is a multiple of Z⊗2[a, 0, 1] for some a ≠ 0. Either case

violates our assumption. Then under a holographic transformation by Z, the problem becomes

Pl-Holant (≠2 | ExactOnek, [a,b, 1]). If we connect two copies of ExactOnek via ≠2, we get

ExactOne2k−2. Hence we may assume that k ⩾ 5. Then we connect [a,b, 1] to ExactOnek

via ≠2, and get [2b, 1, 0, . . . , 0] of arity k − 2 ⩾ 3. Since b ≠ 0, Pl-Holant(f,h) is #P-hard by

Lemma 3.43.

Next we consider mixing signatures from V+ and V−. In general graphs, it is always #P-hard.

For planar graphs, there is a tractable case when one signature is in M+
4 and the other is in M−

4 ,

since as a set they are M-transformable. We will first show that every other case is #P-hard,

even for planar graphs. We deal with the case when signatures from both M+
4 and M−

4 show

up immediately after.

Lemma 3.45. Let f ∈ V+ and g ∈ V− be two symmetric non-degenerate signatures of arities ⩾ 3.

If f ∉M+
4 or g ∉M−

4 then Pl-Holant(f,g) is #P-hard.

Proof. Suppose rd+(f) = d, rd−(g) = d ′, arity(f) = n and arity(g) = n ′, then 2d < n and

2d ′ < n ′. Under a holographic transformation by Z =
[

1 1
i −i

]
, we have that

Pl-Holant (=2 | f,g) ≡T Pl-Holant
(
≠2 | f,g

)
,
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where f := (Z−1)⊗nf = [f0, . . . , fd, 0, . . . , 0] and g := (Z−1)⊗n
′
g = [0, . . . , 0,gd ′ , . . . ,g0] due to

Lemma 3.14. Moreover fd ̸= 0 and gd ′ ≠ 0.

If d ⩾ 2, we can do d ′ many self-loops of ≠2 on g, getting g ′ := [0, . . . , 0,gd ′ ] of arity

n ′ − 2d ′ ⩾ 1. Thus g ′ := Z⊗(n ′−2d ′)g ′ = [1,−i]⊗(n ′−2d ′) up to a nonzero constant. We apply

Lemma 3.41 to derive that Pl-Holant(f,g) is #P-hard. If d ′ ⩾ 2, we can similarly get [1, i]⊗(n−2d)

and apply Lemma 3.41. Thus we can assume that d = d ′ = 1.

So up to nonzero constants, we have f = [a, 1, 0, . . . , 0] and g = [0, . . . , 0, 1,b] for some

a,b ∈ C. We can assume that f ∉ M+
4 and a ≠ 0. The case of b ≠ 0 is similar. We show that

it is always possible to get two such signatures of the same arity min{n,n ′}. Suppose n > n ′.

We form a loop from f via ≠2. It is easy to see that this signature is the degenerate signature

2[1, 0]⊗(n−2). Similarly, we can form a loop from g and can get 2[0, 1]⊗(n ′−2). Thus we have

both [1, 0]⊗(n−2) and [0, 1]⊗(n ′−2). We can connect all n ′ − 2 edges of the second to the first,

connected by ≠2. This gives [1, 0]⊗(n−n ′). We can continue subtracting the smaller arity from

the larger one. We continue this process in a subtractive version of the Euclidean algorithm,

and end up with both [1, 0]⊗t and [0, 1]⊗t, where t = gcd(n−2,n ′−2) = gcd(n−n ′,n ′−2). In

particular, t | n−n ′ and by taking n−n ′

t
copies of [0, 1]⊗t, we can get [0, 1]⊗(n−n ′). Connecting

this back to f via ≠2, we get a symmetric signature of arity n ′ consisting of the first n ′ + 1

entries of f. A similar proof works when n ′ > n.

Thus we may assume n = n ′. Connecting [0, 1]⊗(n−2) to f = [a, 1, 0, . . . , 0] via ≠2 we get

h = [a, 1, 0]. Recall that a ≠ 0. Translating this back by Z, we have a binary signature h ∉ R−
2

and h is not a multiple of Z⊗2[c, 0, 1] for any c ≠ 0. Since g ∈ V−, by Lemma 3.43 or Lemma 3.44,

Pl-Holant(g,h) is #P-hard. Hence Pl-Holant(f,g) is also #P-hard.

When signatures in both M+
4 and M−

4 appear, we show that the only degenerate signatures

that mix must also be vanishing.

Lemma 3.46. Let f ∈ M+
4 and g ∈ M−

4 be two non-degenerate signatures of arity n ⩾ 3 and

m ⩾ 3, respectively. Let v = u⊗ℓ be a degenerate signature for some unary signature u and

some integer ℓ ⩾ 1. If u is not a multiple of [1,±i], then Pl-Holant(f,g, v) is #P-hard.
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Proof. Under a holographic transformation by Z, we have that

Pl-Holant(f,g, v) ≡ Pl-Holant
(
≠2 | ExactOnen, AllButOnem, [a,b]⊗ℓ

)
,

where ab ≠ 0. Notice that v is transformed to (Z−1u)⊗ℓ = [a,b]⊗ℓ. We have ab ≠ 0 since

u is not a multiple of [1,±i]. First we get [1, 0]⊗n−2 by a self-loop via ≠2 on ExactOnen.

By the same subtractive Euclidean argument as in Lemma 3.41, we can realize [a,b]⊗n−2 by

[1, 0]⊗n−2 and [a,b]⊗ℓ. Connecting [a,b]⊗n−2 to ExactOnen via ≠2 we get a binary signature

h = [(n− 2)abn−3,bn−2, 0]. After transforming back, we have that

Pl-Holant(g,Z⊗2h) ⩽T Pl-Holant(f,g, v).

However Z⊗2h ∉ R−
2 by Lemma 3.14 and it is not a multiple of Z⊗2[c, 0, 1] for any c ≠ 0. Apply

Lemma 3.44, where (g,Z⊗2h) plays the role of “(f,h)” in Lemma 3.44 and σ = −, we conclude

that Pl-Holant(f,g, v) is #P-hard.

At last, we show the planar tractable case is #P-hard in general graphs. The reduction uses

a non-planar construction.

Lemma 3.47. Let f ∈M+
4 and g ∈M−

4 be two signatures of arity n ⩾ 3 and m ⩾ 3, respectively.

Then Holant(f,g) is #P-hard.

Proof. Use the subtractive Euclidean argument in Lemma 3.45, we can realize signatures f ′ ∈

M+
4 and g ∈ M−

4 of the same arity min{n,m}. Hence we may assume that m = n. We do a

Z =
[

1 1
i −i

]
transformation:

Holant(f,g) ≡ Holant
(
≠2| f,g

)
,

where f = ExactOnen and g =
[

0 1
1 0

]⊗n
ExactOnen = [0, . . . , 0, 1, 0] since f ∈M+

4 and g ∈M−
4 .

Our goal is to obtain a signature that satisfies the condition of Corollary 3.30.

The gadget in Figure 3.13a, with f assigned to the circle, g assigned to the triangle, and ≠2
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assigned to squares, has signature h with a signature matrix

Mh =



0 0 0 v

0 1 1 0

0 1 1 0

0 0 0 0


,

where v = n − 2 is positive since n ⩾ 3. Although this signature matrix is redundant, its

compressed form is singular. Rotating this gadget 90◦ clockwise and 90◦ counterclockwise,

(recall Figure 3.2) we get signatures h ′ and h ′′, respectively, with signature matrices

Mh ′ =



0 0 0 1

0 v 1 0

0 1 0 0

1 0 0 0


and Mh ′′ =



0 0 0 1

0 0 1 0

0 1 v 0

1 0 0 0


.

Then we build the gadget in Figure 3.13b, with h ′ assigned to the circle, h ′′ assigned to the

triangle, and ≠2 assigned to squares. The resulting signature r has a signature matrix

Mr =Mh ′



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


Mh ′′ =



0 0 0 1

0 v v2 + 1 0

0 1 v 0

1 0 0 0


.

Note that the effect of the ≠2 signatures is to reverse all four rows ofMh ′′ before multiplying it

to the right of Mh ′ . Although this signature matrix is not redundant, every entry of Hamming

weight 2 is nonzero since v is positive.
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...

(a) The circle is assigned f, the triangle is as-
signed g, and the squares are assigned ≠2.

(b) The circle is assigned h ′, the triangle is as-
signed h ′′, and the squares are assigned ≠2.

Figure 3.13: Gadget constructions used to obtain a hard and redundant arity 4
signature.

Let r ′ be the signature with its matrix

Mr ′ =



0 0 0 1

0
T

0

0 0

1 0 0 0


, (3.10)

where T = P
[
t 0
0 t−1

]
P−1, P =

[
1 1
p+ p−

]
, and p± = (v±

√
v2 + 4)/2, for some t ∈ C and t ≠ 0. We

claim that we can use r to interpolate r ′, for any t ≠ 0. We use the recursive construction in

Figure 3.14.

N1 N2

Ns

Ns+1

Figure 3.14: Recursive construction to interpolate a signature r ′ that is only a rota-
tion away from having a redundant signature matrix and nonsingular compressed
matrix. The circles are assigned r and the squares are assigned ≠2.

Consider an instanceΩ of Holant (≠2 | F ∪ {r ′}) with r ∈ F. Suppose that r ′ appears n times

in Ω. We construct from Ω a sequence of instances Ωs of Holant (≠2 | F) indexed by s ⩾ 1.

We obtain Ωs from Ω by replacing each occurrence of r ′ with the gadget Ns in Figure 3.14

with r assigned to circles and ≠2 assigned to squares. InΩs, the edge corresponding to the ith

significant index bit of Ns connects to the same location as the edge corresponding to the ith

significant index bit of r ′ in Ω.

The signature matrix of Ns is the sth power of the matrix obtained fromMr after reversing
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all rows, and then switching the first and last rows of the final product, namely,



0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0





1 0 0 0

0 1 v 0

0 v v2 + 1 0

0 0 0 1



s

=



0 0 0 1

0 1 v 0

0 v v2 + 1 0

1 0 0 0





1 0 0 0

0 1 v 0

0 v v2 + 1 0

0 0 0 1



s−1

.

The twist of the two input edges on the left side for the first copy of Mr switches the middle

two rows, which is equivalent to a total reversal of all rows, followed by the switching of the

first and last rows. The total reversals of rows for all subsequent s− 1 copies of Mr are due to

the presence of ≠2 signatures.

After such reversals of rows, it is clear that the matrix is a direct sum of block matrices

indexed by {00, 11} × {00, 11} and {01, 10} × {10, 01}. Furthermore, in the final product, the

block indexed by {00, 11} × {00, 11} is
[

0 1
1 0

]
. Thus in the gadget Ns, the only entries of MNs

that vary with s are the four entries in the middle. These middle four entries of MNs form the

2-by-2 matrix
[

1 v
v v2+1

]s
. Since

[
1 v
v v2+1

]
= P

[
λ+ 0
0 λ−

]
P−1, where λ± = (v2 + 2± v

√
v2 + 4)/2 are

the eigenvalues, we have that

1 v

v v2 + 1


s

= P

λs+ 0

0 λs−

P−1.

The determinant of
[

1 v
v v2+1

]
is λ+λ− = 1, so the eigenvalues are nonzero. Since v is positive,

the ratio of the eigenvalues λ+/λ− is not a root of unity, so neither λ+ nor λ− is a root of unity.

Now we determine the relationship between HolantΩ and HolantΩs . We can view our con-

struction of Ωs as first replacing Mr ′ with



1 0 0 0

0
P

0

0 0

0 0 0 1





0 0 0 1

0 t 0 0

0 0 t−1 0

1 0 0 0





1 0 0 0

0
P−1

0

0 0

0 0 0 1


,

which does not change the Holant value, and then replacing the new signature matrix in the
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middle with the signature matrix



0 0 0 1

0 λs+ 0 0

0 0 λs− 0

1 0 0 0


.

We stratify the assignments in Ωs based on the assignments to the n occurrences of the signa-

ture matrix



0 0 0 1

0 t 0 0

0 0 t−1 0

1 0 0 0


. (3.11)

The inputs to this matrix are from {0, 1}2 × {0, 1}2, which correspond to the four input bits.

Recall the way rows and columns of a signature matrix are ordered from Definition 3.17. Thus,

e.g., the entry t corresponds to the cyclic input bit pattern 0110 in counterclockwise order. We

only need to consider the assignments that assign

• i many times the bit pattern 0110,

• j many times the bit pattern 1001, and

• k many times the bit patterns 0011 or 1100,

since any other assignment contributes a factor of 0. Let cijk be the sum over all such assign-

ments of the products of evaluations of all signatures in Ωs except for the signature in (3.11).

Then,

HolantΩ =
∑

i+j+k=n

ti−jcijk
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and the value of the Holant on Ωs, for s ⩾ 1, is

HolantΩs =
∑

i+j+k=n

λsi+ λ
sj
−cijk =

∑
i+j+k=n

λ
s(i−j)
+ cijk.

This Vandermonde system does not have full rank. However, we can define for −n ⩽ ℓ ⩽ n,

c ′ℓ =
∑
i−j=ℓ

i+j+k=n

cijk.

Then the Holant of Ω is

HolantΩ =
∑

−n⩽ℓ⩽n
tℓc ′ℓ

and the Holant of Ωs is

HolantΩs =
∑

−n⩽ℓ⩽n
λsℓ+ c

′
ℓ.

Now this Vandermonde has full rank because λ+ is neither 0 nor a root of unity. Therefore, we

can solve for the unknowns c ′ℓ and obtain the value of HolantΩ. This completes our claim that

we can interpolate the signature r ′ in (3.10), for any nonzero t ∈ C.

Let t = (
√
v2 + 8+

√
v2 + 4)/2 so t−1 = (

√
v2 + 8−

√
v2 + 4)/2. Let a = (

√
v2 + 8− v)/2 and

b = (
√
v2 + 8 + v)/2, so ab = 2 ̸= 0. One can verify that

P

t 0

0 t−1

P−1 =

a 1

1 b

 .

Thus, the signature matrix for r ′ is

Mr ′ =



0 0 0 1

0 a 1 0

0 1 b 0

1 0 0 0


.

After a counterclockwise rotation of 90◦ on the edges of r ′, we have a signature r ′′ with a
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redundant signature matrix

Mr ′′ =



0 0 0 a

0 1 1 0

0 1 1 0

b 0 0 0


.

Its compressed signature matrix

M̃r ′′ =


0 0 a

0 2 0

b 0 0


is nonsingular. After a holographic transformation by Z−1, where Z = 1√

2

[
1 1
i −i

]
, the binary dis-

equality (≠2) = [0, 1, 0] is transformed to the binary equality (=2) = [1, 0, 1]. Thus the problem

Holant ([0, 1, 0] | r ′′) is transformed to Holant
(
=2 | Z⊗4r ′′

)
, which is the same as Holant(Z⊗4r ′′).

We conclude that this Holant problem is #P-hard by Corollary 3.30.

To end this section, we show two hardness results related to vanishing signatures. They

will be useful in the proof of the Pl-Holant dichotomy. The first is to show that M4 signatures

cannot be combined with =n in the Z basis.

Lemma 3.48. Let f ∈ V\M4 and g = Z⊗n (=n) be two non-degenerate signatures with aritiesm

and n respectively. If m,n ⩾ 3, then Pl-Holant(f,g) is #P-hard.

Proof. We may assume that f ∈ V+ \ M4. The case of f ∈ V− is similar. By Corollary 3.9, we

have rd+(f) = d < m
2 . Under a holographic transformation by Z, we have

Pl-Holant (=2 | f,g) ≡ Pl-Holant
(
[1, 0, 1]Z⊗2 | Z−1{f,g}

)
≡ Pl-Holant

(
≠2 | f,=n

)
,

where f = (Z−1)⊗mf. By Lemma 3.14, the support of f is on the first d entries. As f ∉ M4, we

have either d = 1 and f = [f0, 1, 0, . . . , 0] with f0 ̸= 0, or d ⩾ 2 and f = [f0, f1, . . . , fd−1, 1, 0, . . . , 0]

with fd−1 ≠ 0 (and up to a nonzero scalar in either case).

In the first case, a self-loop on f via ≠2 gives [1, 0]⊗m−2 on the right side. Let r = gcd(n,m−

2), and let ℓ1, ℓ2 be two positive integers such that ℓ1n − ℓ2(m − 2) = r. We connect ℓ1 copies



118

of =n with ℓ2 copies of [1, 0]⊗m−2 via ≠2’s to get [0, 1]⊗r. Since r | m − 2, we can also realize

[0, 1]⊗m−2 by putting m−2
r

copies of [0, 1]⊗r together. Now connect [0, 1]⊗m−2 to f via ≠2. The

resulting signature is [f0, 1, 0]. We can also move =n to the left using n copies of ≠2. Hence,

we have that

Pl-Holant(=n| [f0, 1, 0]) ⩽T Pl-Holant(≠2 | f,=n).

The former problem is #P-hard by Theorem 1.15 since f0 ̸= 0, so the latter problem is #P-hard

as well.

In the second case, we have m ⩾ 5 since 2 ⩽ d < m
2 . Furthermore, we may assume that

d = 2, since otherwise can we do d − 2 self-loops on f via ≠2. With this assumption, we do

two self-loops on f via ≠2 to get [1, 0]⊗m−4 on the right side. By a similar argument as in the

previous case, we can construct [0, 1]⊗m−4 by using [1, 0]⊗m−4 and =n via ≠2. Now connect

[0, 1]⊗m−4 back to f via ≠2. We get the arity 4 signature [f0, f1, 1, 0, 0]. Hence, we have that

Pl-Holant(≠2 | [f0, f1, 1, 0, 0]) ⩽T Pl-Holant(≠2 | f,=n).

Note that Pl-Holant(≠2 | [f0, f1, 1, 0, 0]) is equivalent to Pl-Holant(≠2 | [0, 0, 1, 0, 0]), Pl-4reg-#EO,

which is #P-hard by Theorem 3.21. Thus Pl-Holant(≠2 | f,=n) is #P-hard as well.

The second one concerns about signature with self-loops. If the signature with one self-loop

is vanishing, then the original one has to be vanishing as well, unless it is #P-hard.

Lemma 3.49. Let f be a non-degenerate symmetric signature of arity n ⩾ 5. Let f ′ be f with

a self loop. If f ′ is non-degenerate and vanishing, then Pl-Holant(f) is #P-hard unless {f, f ′} is

vanishing, in which case Pl-Holant(f) is tractable.

Proof. Since f ′ is vanishing, f ′ ∈ Vσ for some σ ∈ {+,−} by Theorem 3.12. For simplicity,

assume that f ′ ∈ V+. The other case is similar.

Note that f ′ is of arity n− 2 ⩾ 3. Suppose rd+(f ′) = d− 1, where 2d < n and d ⩾ 2 since f ′
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is non-degenerate. Under the transformation Z = 1√
2

[
1 1
i −i

]
, we have that

Pl-Holant
(
=2 | f, f ′

)
≡T Pl-Holant

(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf, (Z−1)⊗nf ′

)
≡T Pl-Holant

(
[0, 1, 0] | f, f ′

)
,

where f ′ = [f1, . . . , fd, 0, . . . , 0] with fd ≠ 0 by Lemma 3.14. Note that doing self-loop in the

standard basis is the same as connecting to [0, 1, 0] in the Z basis. Hence we may assume that

f = [f0, f1, . . . , fd, 0, . . . , 0, c], for some f0 and c. If c = 0, then {f, f ′} ⊂ V+ is vanishing. Hence we

may assume that c ≠ 0. We will show that Pl-Holant(f) is #P-hard.

Doing d− 2 self-loops by [0, 1, 0] on f, we get a signature h = [fd−2, fd−1, fd, 0, . . . , 0, 0/c] of

arity n − 2(d − 2) = n − 2d + 4 ⩾ 5. The last entry of h is c when d = 2 and is 0 when d > 2.

As n > 2d, we may do two more self loops and get [fd, 0, . . . , 0] of arity k = n − 2d ⩾ 1. This

signature is equivalent to [1, 0]⊗k. Now connect this signature back to f via [0, 1, 0]. It is the

same as getting the last n − k + 1 = 2d + 1 signature entries of f up to a nonzero scalar. We

may repeat this operation zero or more times until the arity k ′ of the resulting signature is less

than or equal to k. We claim that this signature has the form g = [0, . . . , 0, c]. In other words,

the k ′ + 1 entries of g consist of the last c and k ′ many 0’s from the signature f, all appearing

after fd. This is because there are n − d − 1 many 0 entries in the signature f after fd, and

n− d− 1 ⩾ k ⩾ k ′. Note that g = [0, 1]⊗k
′
.

Having both [1, 0]⊗k and g = [0, 1]⊗k
′
in the Z basis, we realize [0, 1]⊗t using the subtractive

Euclidean argument as in Lemma 3.41, where t = gcd(k,k ′). Then we put k
t

many copies of

[0, 1]⊗t together to get [0, 1]k. Connect hwith [0, 1]k by [0, 1, 0]. Note that due to [0, 1, 0] flipping

the bits, this gets the prefix of h of arity arity(h)−k. Recall that arity(h) = n−2d+4, and hence

arity(h) − k = n − 2d + 4 − (n − 2d) = 4. The resulting signature has arity 4. Moreover, the

signature is [fd−2, fd−1, fd, 0, 0]. The last entry is 0 (and not c), because k ⩾ 1 and arity(h) ⩾ 5.

However, Pl-Holant([0, 1, 0]|[fd−2, fd−1, fd, 0, 0]) is equivalent to Pl-Holant([0, 1, 0]|[0, 0, 1, 0, 0])

when fd ≠ 0. This is Pl-4reg-#EO and is #P-hard by Theorem 3.21.
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Chapter 4

Planar Counting CSP

In this chapter, we will show a dichotomy theorem for planar #CSP problems defined by complex

weighted symmetric Boolean functions. This may seem a little detour towards our goal of

classifying Holant problems, but in fact it will be a key ingredient to our main planar Holant

dichotomy. Recall that for any signature set F, F̂ denotes H2F, where H2 =
[

1 1
1 −1

]
. The

dichotomy theorem is stated as follows.

Theorem 4.1. Let F be any set of symmetric, complex-valued signatures in Boolean variables.

Then Pl-#CSP(F) is #P-hard unless F ⊆ A, F ⊆ P, or F ⊆ M̂, in which case the problem is

computable in polynomial time.

Recall that EQ denotes the set of all Equality signatures. Our focus is Pl-#CSP(F), which

is equivalent to Pl-Holant(EQ ∪ F), as explained in Section 1.4 and (1.1). We often study this

problem in the Hadamard basis, that is, under a holographic transformation by the Hadamard

matrix H2 =
[

1 1
1 −1

]
. In the Hadamard basis, the problem to classify becomes Pl-Holant(ÊQ∪F).

Results reported in this chapter are mainly from [GW13]. Prior to this work, dichotomy

theorems were known for complex weighted Boolean #CSP [DGJ09, BDG+09, CLX14], as well

as Boolean Pl-#CSP [CLX10] for real weighted symmetric functions. One important theme of

[CLX10] is that all problems that are tractable in planar graphs, but #P-hard in general graphs,

are captured precisely by holographic algorithms with matchgates (compare Theorem 1.16 to

Theorem 4.1). More precisely, the only planar tractable case is M̂ in the standard basis, or M in

the Hadamard basis. We will show that the theme still holds for complex functions. In contrast,
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as we will see in Chapter 6, it is not true for Pl-Holant. In fact, EQ is matchgate realizable only

in the Hadamard basis, up to a stabilizer of M, which makes the Hadamard basis the “right”

one to work in.

Another reason to work in the Hadamard basis is pinning. Pinning is the very first step to

show hardness in many previous dichotomy theorems for Boolean #CSP(F) [DGJ09, BDG+09,

CLX14]. The goal of pinning is to realize constant functions [1, 0] and [0, 1] and was always

achieved by a nonplanar reduction. In the nonplanar setting, [1, 0] and [0, 1] are contained in

each of the maximal tractable sets A and P (cf. [CLX14]). Therefore, pinning does not entail

any unexpected collapse of complexity classes. However, EQ with {[1, 0], [0, 1]} are not simulta-

neously realizable as matchgates. Hence Theorem 4.1 implies that pinning is not possible for

Pl-#CSP(F), unless #P collapses to P! Instead, apply the Hadamard transformation and consider

Pl-Holant(F̂∪ ÊQ). In this Hadamard basis, pinning becomes possible again since [1, 0] and [0, 1]

are included in each maximal tractable set. We prove our pinning result in this Hadamard basis

in Section 4.3. Note that as [1, 0] ∈ ÊQ, we only need to realize [0, 1] there.

One important result that we will use extensively is Theorem 1.15. In particular, we will

often apply Theorem 1.15 with G = EQ, in other words, d = 1 in Theorem 1.15. This is the

special case of Pl-#CSP(F) when F contains a single binary signature. Furthermore, under the

holographic transformation by H2 =
[

1 1
1 −1

]
, it is easy to see that conditions f0f2 = f21 and

f0f2 = −f21∧f0 = −f2 in Theorem 1.15 are invariant, while conditions f1 = 0 and f0 = f2 map to

each other. Therefore, by an apparent coincidence, the tractability conditions remain the same.

To be clear, we restate Theorem 1.15 both before and after a holographic transformation by H

with G = EQ.

Theorem 4.2 (Special case of Theorem 1.15). For any f0, f1, f2 ∈ C, both Pl-Holant ([f0, f1, f2] | EQ)

and Pl-Holant
(
[f0, f1, f2] | ÊQ

)
are #P-hard unless one of the following conditions hold, in which

case both problems are computable in polynomial time:

1. f0f2 = f21;

2. f1 = 0;

3. f0f2 = −f21 and f0 = −f2;
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4. f0 = f2.

As we concern Pl-Holant(ÊQ∪F), we will specialize and summarize tractability Lemmas 1.7,

1.9, and 1.10, as follows. We note that Â = H2A = A, and ÊQ is matchgate realizable in the

standard basis.

Lemma 4.3. LetF be a set of symmetric, complex-valued Boolean signatures. Then Pl-Holantc(F∪

ÊQ) is tractable if F ⊆ A, F ⊆ P̂, or F ⊆M.

Figure 4.1 is a Venn diagram of the tractable Pl-#CSP signature sets in the Hadamard basis.

Each signature may also take an arbitrary constant multiple from C. This figure is particularly

useful in Section 4.2, where we consider the complexity of multiple signatures from different

tractable sets. The definition of each tractable signature set is given in Section 1.5.

The notation “f⩾k” is short for signature f with “arity(f) ⩾ k”. Notice that M ∩ P̂ − A is

empty.

4.1 Domain Pairing

One important technique that we will use is domain pairing. Recall that we have used domain

pairing in Chapter 2, in particular, Lemma 2.21. The idea is to pair Boolean variables to simulate

a problem on a domain of size four and then reduces a problem in the Boolean domain to it.

As explained earlier, we will work in the Hadamard basis instead of the standard basis. The

goal is to classify Pl-Holant(F ∪ ÊQ).

We first prove a simple interpolation lemma for non-degenerate, generalized equality sig-

natures of arity at least 3.

Lemma 4.4. Let f = [a, 0, . . . , 0,b] with arity(f) ⩾ 3 for some a,b ∈ C. If ab ̸= 0, then for any set

F containing f,

Pl-Holant(F ∪ {=4}) ⩽T Pl-Holant(F).

Proof. Since a ̸= 0, we can normalize the first entry of f to get [1, 0, . . . , 0, x], where x ̸= 0. First,

we show how to obtain an arity 4 generalized equality signature. If r = 3, then we connect two
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A P̂

M

[1, 0,−1]

[1, 0, 1, 0, . . . ]

[0, 1, 0, 1, . . . ]

[1,±1]

[1,±i, 1,±i, . . . ]

[1, 0,±i]

[1, 0,−1, 0, 1, 0, . . . ]⩾3

[0, 1, 0,−1, 0, 1, . . . ]⩾3

[1, 0, . . . , 0,±1]⩾3

[1, 0, . . . , 0,±i]⩾3

[1,±1,−1,∓1, 1,±1, . . . ]⩾2

[1,b, 1,b, . . . ]

with b ̸= 0 ∧ b4 ̸= 1

[1, 0, r] with r ̸= 0 ∧ r4 ̸= 1

[1, 0, r, 0, r2, 0, . . . ]⩾3 with r ̸= 0 ∧ r2 ̸= 1

[0, 1, 0, r, 0, r2, . . . ]⩾3 with r ̸= 0 ∧ r2 ̸= 1

[0, 1, 0, . . . , 0]⩾3

[0, . . . , 0, 1, 0]⩾3

Figure 4.1: Venn diagram of the tractable Pl-#CSP signature sets in the Hadamard
basis. Each signature has been normalized for simplicity of presentation. For a
signature f, the notation “f⩾k” is short for “arity(f) ⩾ k”.

copies together by a single edge to get an arity 4 signature. For larger arities, we form self-loops

until realizing a signature of arity 3 or 4. By this process, we have a signature g = [1, 0, 0, 0,y],

where y ≠ 0. If y is a pth root of unity, then we can directly realize =4 by connecting p copies

of g together, two edges at a time as in Figure 3.7. Otherwise, y is not a root of unity and we

can interpolate =4 as follows.

Consider an instance Ω of Pl-Holant(F ∪ {=4}). Suppose that =4 appears n times in Ω. We

stratify the assignments σ’s in Ω based on the assignments to =4. We only need to consider
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σ’s which assign all zeroes or all ones to =4 since otherwise σ contributes 0. Let ci denote the

summation of the product of evaluations of signatures other than =4 in Ω over assignments

that give i many =4’s Hamming weight 0 (and n − i many =4’s Hamming weight 4). We can

rewrite the Holant on Ω as

HolantΩ =

n∑
i=0

ci.

We construct from Ω a sequence of instances Ωs of Pl-Holant(F) indexed by s ⩾ 1. Let gs

be the arity 4 signature of connecting s copies of [1, 0, 0, 0,y], two edges together one pair at a

time as in Figure 3.7. We obtain Ωs from Ω by replacing each occurrence of =4 with gs. The

Holant on Ωs is

HolantΩs =
n∑
i=0

(ys)ici.

For s ⩾ 1, this gives a coefficient matrix that is Vandermonde. Since y is neither 0 nor a root

of unity, ys is distinct for each s. Therefore, the Vandermonde system has full rank. We can

solve for the unknowns ci and obtain the value of HolantΩ.

By a simple parity argument, gadgets constructed with signatures of even arity can only

realize other signatures of even arity. In particular, this means that =4 cannot by itself be used

to construct =3. The domain pairing argument makes realizing =3 possible using =4 alone.

The catch is the domain changes from individual elements to pairs of elements. We prove a

generalization of the domain pairing lemma [CLX10, Lemma III.2] for complex weights.

Lemma 4.5. Let a,b, x,y ∈ C. If aby ̸= 0 and x2 ̸= y2, then for any set F of complex-valued

symmetric signatures containing [x, 0,y, 0] and [a, 0, . . . , 0,b] of arity at least 3, Pl-Holant(F∪ ÊQ)

is #P-hard.

Proof. We reduce from Pl-Holant ([x,y,y] | EQ) to Pl-Holant(F∪ÊQ). Since Pl-Holant ([x,y,y] | EQ)

is #P-hard if y ̸= 0 and x2 ̸= y2 by Theorem 4.2, this shows that Pl-Holant(F∪ÊQ) is also #P-hard.

An instance of Pl-Holant ([x,y,y] | EQ) is a signature grid Ω with underlying graph G =

(U,V ,E). In addition to G being bipartite and planar, every vertex in U has degree 2. We

replace every vertex in V of degree k (which is assigned =k ∈ EQ) with a vertex of degree 2k,

and bundle two adjacent variables to form k bundles of 2 edges each. The k bundles correspond
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to the k incident edges of the original vertex with degree k. By Lemma 4.4, we have =4, which

we use to construct =2k for any k. Then we assign =2k to the new vertices of degree 2k.

If the inputs to these equality signatures are restricted to {(0, 0), (1, 1)} on each bundle,

then these equality signatures take value 1 on ((0, 0), . . . , (0, 0)) and ((1, 1), . . . , (1, 1)) and take

value 0 elsewhere. Thus, if we project the domain [2] × [2] to {(0, 0), (1, 1)}, it is the equality

signature =k.

a1

a2

b1

b2

c

Figure 4.2: Gadget designed for the paired domain. One vertex is assigned [1, 0, 1, 0]
and the other is assigned [x, 0,y, 0].

To simulate [x,y,y], we connect f = [x, 0,y, 0] to g = [1, 0, 1, 0] ∈ ÊQ by a single edge as

shown in Figure 4.2 to form a gadget with signature

h(a1,a2,b1,b2) =
∑
c=0,1

f(a1,b1, c)g(a2,b2, c).

We replace every (degree 2) vertex inU (which is assigned [x,y,y]) by a degree 4 vertex assigned

h, where the variables of h are bundled as (a1,a2) and (b1,b2).

The vertices in this new graph G ′ are connected as in the original graph G, except that every

original edge is replaced by two edges that connect to the same side of the gadget in Figure 4.2.

Notice that h is only connected by (a1,a2) and (b1,b2) to some bundle of two incident edges

of an equality signature. Since this equality signature enforces that the value on each bundle is

either (0, 0) or (1, 1), we only need to consider the restriction of h to the domain {(0, 0), (1, 1)}.

On this domain, h behaves like [x,y,y] as a symmetric signature of arity 2. Therefore, the

signature gridΩ ′ with underlying graph G ′ has the same Holant value as the original signature

grid Ω.

One may notice the apparent similarity between the gadget in Figure 2.4 and the one in

Figure 4.2. It is not surprising as both are used for domain pairing arguments, although the

details are different.

There are two scenarios leading to Lemma 4.5, the first of which is immediate.
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Corollary 4.6. Let a,b, x,y ∈ C. If abxy ̸= 0 and x4 ̸= y4, then for any set F of complex-weighted

symmetric signatures containing [x, 0,y] and [a, 0, . . . , 0,b] of arity at least 3, Pl-Holant(F ∪ ÊQ)

is #P-hard.

Proof. Connect three copies of [x, 0,y] to [1, 0, 1, 0], with one on each edge. We get x[x2, 0,y2, 0].

Then apply Lemma 4.5.

The second scenario that leads to Lemma 4.5 is Lemma 4.8, the proof of which also uses

Corollary 4.6. We will apply Corollary 4.6 either directly or after interpolating a unary signature

in two possible ways. The next lemma deals with one possibility.

Lemma 4.7. Suppose x ∈ C and let f = [1, x, 1]. If x ̸∈ {0,±1} and Mf has infinite order modulo

a scalar, then for any set F of complex-weighted symmetric signatures containing f and for any

a,b ∈ C, we have

Pl-Holant(F ∪ {[a,b]} ∪ ÊQ) ⩽T Pl-Holant(F ∪ ÊQ).

Proof. Consider the unary recursive construction (Mf, s), where s =
[

1
0

]
∈ ÊQ. The determinant

of Mf is 1 − x2 ̸= 0. The determinant of [s Mfs] is x ̸= 0. By assumption, Mf has infinite order

modulo a scalar. Therefore, we can interpolate any unary signature by Lemma 3.32.

Lemma 4.8. Let a,b ∈ C. If ab ̸= 0 and a4 ̸= b4, then for any set F of complex-weighted

symmetric signatures containing f = [a, 0, . . . , 0,b] of arity at least 3, Pl-Holant(F ∪ ÊQ) is #P-

hard.

Proof. Since a ̸= 0, we normalize f to [1, 0, . . . , 0, x], where x ̸= 0 and x4 ̸= 1. If the arity of f

is even, then after some number of self-loops, we have [1, 0, x] and are done by Corollary 4.6.

Otherwise, the arity of f is odd. After some number of self-loops, we have g = [1, 0, 0, x].

If we had the signature [1, 1], then we could connect this to g to get [1, 0, x] and be done by

Corollary 4.6. We now show how to interpolate [1, 1] in one of two ways. In either case, we use

the signature [1, x], which we obtain via a self-loop on g.

Suppose ℜ(x), the real part of x, is not 0. Connecting [1, x] to [1, 0, 1, 0] gives h = [1, x, 1].

The eigenvalues of Mh are λ± = 1 ± x. Since ℜ(x) ̸= 0 if and only if
∣∣∣λ+λ− ∣∣∣ ̸= 1, the ratio of the
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eigenvalues is not a root of unity, so Mh has infinite order modulo a scalar. Therefore, we can

interpolate [1, 1] by Lemma 4.7.

Otherwise, ℜ(x) = 0 but x is not a root of unity since x ̸= ±i. Connecting [1, x] to g gives

h = [1, 0, x2]. Clearly
(
x2
)4
≠ 1. Hence we apply Corollary 4.6 on h and f, implying that

Pl-Holant(F ∪ ÊQ) is #P-hard..

4.2 Mixing of Tractable Signatures

In this section, we consider all kinds of cases when tractable signatures of different classes are

combined. Basically, each tractable class, A, P̂, or M, in Lemma 4.3 is maximal. Combining

signatures from any two of them gives #P-hardness. The Venn diagram in Figure 4.1 is helpful

to understand various cases considered in the following lemmas.

The first two lemmas consider the case when one of the signatures is unary.

Lemma 4.9. Let f ∈ A− P̂ be a symmetric signature. Let a,b ∈ C such that ab ̸= 0 and a4 ̸= b4.

For any set F of signatures containing f and [a,b], Pl-Holant(F ∪ ÊQ) is #P-hard.

Proof. Up to a nonzero scalar, the possibilities for f are

• [1, 0,±i];

• [1, 0, . . . , 0, x] of arity at least 3 with x4 = 1;

• [1,±1,−1,∓1, 1,±1,−1,∓1, . . . ] of arity at least 2;

• [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)] of arity at least 3;

• [0, 1, 0,−1, 0, 1, 0,−1, . . . , 0 or 1 or (−1)] of arity at least 3.

We handle these cases below.

1. Suppose f = [1, 0,±i]. Connecting [a,b] to [1, 0, 1, 0] gives [a,b,a] and connecting two

copies of [1, 0,±i] to [a,b,a], one on each edge, gives g = [a,±ib,−a]. Since ab ̸= 0

and a4 ̸= b4, Pl-Holant
(
g | ÊQ

)
is #P-hard by Theorem 4.2, so Pl-Holant(F ∪ ÊQ) is also

#P-hard.
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2. Suppose f = [1, 0, . . . , 0, x] of arity at least 3 with x4 = 1. Connecting [a,b] to f gives

g = [a, 0, . . . , 0,bx] of arity at least 2. Note that (bx)4 = b4 ̸= a4. If the arity of g is

exactly 2, then Pl-Holant({f,g} ∪ ÊQ) is #P-hard by Corollary 4.6, so Pl-Holant(F ∪ ÊQ) is

also #P-hard. Otherwise, the arity of g is at least 3 and Pl-Holant({g} ∪ ÊQ) is #P-hard by

Lemma 4.8, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

3. Suppose f = [1,±1,−1, . . . ] of arity n ⩾ 2. Connecting n−2 many copies of [1, 0] to f gives

[1,±1,−1] of arity exactly 2. Connecting [a,b] to [1, 0, 1, 0] gives [a,b,a] and connecting

two copies of [a,b,a] to [1,±1,−1], one on each edge, gives g = [a2 ± 2ab − b2,±(a2 +

b2),−a2 ± 2ab+ b2]. This is easily verified by

a b

b a


 1 ±1

±1 −1


a b

b a

 =

a2 ± 2ab− b2 ±(a2 + b2)

±(a2 + b2) −a2 ± 2ab+ b2

 .

Since ab ̸= 0 and a4 ̸= b4, Pl-Holant
(
g | ÊQ

)
is #P-hard by Theorem 4.2, so Pl-Holant(F ∪

ÊQ) is also #P-hard.

4. Suppose f = [1, 0,−1, 0, . . . ] of arity n ⩾ 3. Connecting n − 3 copies of [1, 0] to f gives

g = [1, 0,−1, 0] of arity exactly 3. Connecting [a,b] to g gives h = [a,−b,−a]. Since ab ̸= 0

and a4 ̸= b4, Pl-Holant
(
h | ÊQ

)
is #P-hard by Theorem 4.2, so Pl-Holant(F ∪ ÊQ) is also

#P-hard.

5. The argument for f = [0, 1, 0,−1, . . . ] is similar to the previous case.

Lemma 4.10. Let f ∈M−A be a symmetric signature. If ab ̸= 0, then for any set F of signatures

containing f and [a,b], Pl-Holant(F ∪ ÊQ) is #P-hard.

Proof. Up to a nonzero scalar, the possibilities for f are

• [1, 0, r] with r ̸= 0 and r4 ̸= 1;

• [1, 0, r, 0, r2, 0, . . . ] of arity at least 3 with r ̸= 0 and r2 ̸= 1;

• [0, 1, 0, r, 0, r2, . . . ] of arity at least 3 with r ̸= 0 and r2 ̸= 1;

• [0, 1, 0, . . . , 0] of arity at least 3;
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• [0, . . . , 0, 1, 0] of arity at least 3.

We handle these cases below.

1. Suppose f = [1, 0, r] with r4 ̸= 1 and r ̸= 0. Connecting [a,b] to [1, 0, 1, 0] gives [a,b,a]

and connecting two copies of [1, 0, r] to [a,b,a], one on each edge, gives g = [a,br,ar2]. If

a2 ̸= b2, then Pl-Holant
(
g | ÊQ

)
is #P-hard by Theorem 4.2, so Pl-Holant(F ∪ ÊQ) is also

#P-hard.

Otherwise, a2 = b2 and we begin by connecting [a,b] to [1, 0, r] to get [a,br]. Then by

the same construction, we have g = [a,br2,ar2] and Pl-Holant
(
g | ÊQ

)
is #P-hard by

Theorem 4.2, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

2. Suppose f = [1, 0, r, 0, . . . ] of arity n ⩾ 3 with r2 ̸= 1 and r ̸= 0. Connecting n−3 copies of

[1, 0] to f gives g = [1, 0, r, 0] of arity exactly 3. Connecting [a,b] to g gives h = [a,br,a]. If

a2 ̸= b2r, then Pl-Holant
(
h | ÊQ

)
is #P-hard by Theorem 4.2, so Pl-Holant(F ∪ ÊQ) is also

#P-hard.

Otherwise, a2 = b2r and we begin by connecting [1, 0] and [a,b] to [1, 0, r, 0] to get [a,br].

Then by the same construction, we have g = [a,br2,ar] and Pl-Holant
(
g | ÊQ

)
is #P-hard

by Theorem 4.2, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

3. The argument for f = [0, 1, 0, r, . . . ] is similar to the previous case.

4. Suppose f = [0, 1, 0, . . . , 0] of arity n ⩾ 3. Connecting n − 2 copies of [a,b] to f gives

g = ak−3[(k − 2)b,a, 0]. Since ab ̸= 0, Pl-Holant
(
g | ÊQ

)
is #P-hard by Theorem 4.2, so

Pl-Holant(F ∪ ÊQ) is also #P-hard.

5. The argument for f = [0, . . . , 0, 1, 0] is similar to the previous case.

Now we consider the general case of two signatures from two different tractable sets. The

three tractable sets, A, P̂, and M, give rise to three pairs of tractable sets to consider, each of

which is covered in one of the next three lemmas.

Lemma 4.11. Let f ∈ A − P̂ and g ∈ P̂ − A be two symmetric signatures. For any set F of

signatures containing f and g, Pl-Holant(F ∪ ÊQ) is #P-hard.
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Proof. The only possibility for g is [a,b,a,b, . . . ] of arity n, where ab ̸= 0 and a4 ̸= b4. Con-

necting n− 1 copies of [1, 0] to g gives [a,b] and we are done by Lemma 4.9.

Lemma 4.12. Let f ∈ A − M and g ∈ M − A be two symmetric signatures. For any set F of

signatures containing f and g, Pl-Holant(F ∪ ÊQ) is #P-hard.

Proof. Suppose f has arity n. If f does not contain any 0 entry, then after connecting n−1 copies

of [1, 0] to f, we have a unary signature [a,b] with ab ̸= 0. Then we are done by Lemma 4.10.

Otherwise, f contains a 0 entry. Then f = [x, 0, . . . , 0,y] of arity at least 3 with xy ̸= 0 (and

x4 = y4). (See Figure 4.1.)

Suppose g has arity k. Up to a nonzero scalar, the possibilities for g are (again, cf. 4.1):

• [1, 0, r] with r ̸= 0 and r4 ̸= 1;

• [1, 0, r, 0, r2, 0, . . . ] with k ⩾ 3, r ̸= 0, and r2 ̸= 1;

• [0, 1, 0, r, 0, r2, . . . ] with k ⩾ 3, r ̸= 0, and r2 ̸= 1;

• [0, 1, 0, 0, . . . , 0] with k ⩾ 3;

• [0, . . . , 0, 0, 1, 0] with k ⩾ 3.

We handle these cases below.

1. Suppose g = [1, 0, r] with r ̸= 0 and r4 ̸= 1. Then we are done by Corollary 4.6.

2. Suppose g = [1, 0, r, 0, . . . ] with k ⩾ 3, r ̸= 0, and r2 ̸= 1. After connecting k − 3 copies of

[1, 0] to g, we have h = [1, 0, r, 0] of arity exactly 3. Then Pl-Holant({f,h} ∪ ÊQ) is #P-hard

by Lemma 4.5, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

3. Suppose g = [0, 1, 0, r, . . . ] with k ⩾ 3, r ̸= 0, and r2 ̸= 1. After connecting k − 3 copies

of [1, 0] to g, we have h = [0, 1, 0, r] of arity exactly 3. Connecting two more copies of

[1, 0] to h gives [0, 1]. Then we apply a holographic transformation by T =
[

0 1
1 0

]
, so f is

transformed to f̂ = [y, 0, . . . , 0, x] and h is transformed to ĥ = [r, 0, 1, 0]. Every even arity

signature in ÊQ remains unchanged after a holographic transformation by T . By attaching

[0, 1]T = [1, 0] to every even arity signature in T ÊQ, we obtain all of the odd arity signatures
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in ÊQ again. Then Pl-Holant({f̂, ĥ} ∪ ÊQ) is #P-hard by Lemma 4.5, so Pl-Holant(F ∪ ÊQ) is

also #P-hard.

4. Suppose g = [0, 1, 0, . . . , 0] with k ⩾ 3. The gadget in Figure 4.3 with g assigned to both ver-

tices has signature h = [k−1, 0, 1]. Then Pl-Holant({f,h}∪ ÊQ) is #P-hard by Corollary 4.6,

so Pl-Holant(F ∪ ÊQ) is also #P-hard.

5. The argument for g = [0, . . . , 0, 1, 0] is similar to the previous case.

...

Figure 4.3: The vertices are assigned g = [0, 1, 0, . . . , 0].

Lemma 4.13. Let f ∈ M − P̂ and g ∈ P̂ − M be two symmetric signatures such that {f,g} ̸⊆ A.

Then for any set F of signatures containing f and g, Pl-Holant(F ∪ ÊQ) is #P-hard.

Proof. The only possibility for g is [a,b,a,b, . . . ], where ab ̸= 0. Suppose g has arity n > 0.

Connecting n − 1 copies of [1, 0] to g gives h = [a,b]. If f ̸∈ A, then Pl-Holant({f,h} ∪ ÊQ) is

#P-hard by Lemma 4.10, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

Otherwise, f ∈ A, so g ̸∈ A. Then Pl-Holant({f,g} ∪ ÊQ) is #P-hard by Lemma 4.11, so

Pl-Holant(F ∪ ÊQ) is also #P-hard.

We summarize this section with the following theorem, which says that the tractable sig-

nature sets cannot mix. More formally, signatures from different tractable sets, when put

together, lead to #P-hardness.

Theorem 4.14 (Mixing). Let F be any set of symmetric, complex-valued signatures in Boolean

variables. If F ⊆ A ∪ P̂ ∪M, then Pl-Holant(F ∪ ÊQ) is #P-hard unless F ⊆ A, F ⊆ P̂, or F ⊆ M,

in which case Pl-Holantc(F ∪ ÊQ) is tractable.

Proof. If F is a subset of A, P̂, or M, then the tractability is given in Lemma 4.3. Otherwise

F is not a subset of A, P̂, or M. Then F contains a signature g ∈ (P̂ ∪M) − A since F ̸⊆ A.

Suppose F contains a signature f ∈ A− P̂−M. If g ∈ P̂−A, then Pl-Holant(F ∪ ÊQ) is #P-hard

by Lemma 4.11. Otherwise, g ∈M−A and Pl-Holant(F ∪ ÊQ) is #P-hard by Lemma 4.12.
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Now assume that F ⊆ P̂∪M. Since (P̂∩M)−A is empty (see Figure 4.1, either g ∈ P̂−M−A

or g ∈ M − P̂ − A. If g ∈ P̂ − M − A, then there exists a signature f ∈ M − P̂ since F ̸⊆ P̂.

In which case, Pl-Holant(F ∪ ÊQ) is #P-hard by Lemma 4.13. Otherwise, g ∈ M − P̂ − A and

there exists a signature f ∈ P̂−M since F ̸⊆M. In which case, Pl-Holant(F ∪ ÊQ) is #P-hard by

Lemma 4.13.

4.3 Pinning for Planar #CSP

The idea of “pinning” is a common reduction technique between counting problems. For the

#CSP framework, pinning fixes some variables to specific values of the domain by means of

the constant functions [BD07, DGJ09, BDG+09, HL12]. In particular, for counting graph ho-

momorphisms, pinning is used when the input graph is connected and the target graph is

disconnected. In this case, pinning a vertex of the input graph to a vertex of the target graph

forces all the vertices of the input graph to map to the same connected component of the tar-

get graph [DG00a, BG05, GGJT10, Thu10, CCL13]. For the Boolean domain, the constant 0 and

constant 1 functions are the signatures [1, 0] and [0, 1] respectively.

From these works, the most relevant pinning lemma for the Pl-#CSP framework is by Dyer,

Goldberg, and Jerrum in [DGJ09], where they show how to pin in the #CSP framework. However,

the proof of this pinning lemma is intrinsically nonplanar. Cai, Lu, and Xia [CLX10] overcame

this difficultly in the proof of their dichotomy theorem for the real-weighted Pl-#CSP framework

by first applying a holographic transformation by the Hadamard matrix H2 =
[

1 1
1 −1

]
and then

pinning in this Hadamard basis.1 We stress that this holographic transformation is necessary.

Indeed, if one were able to pin in the standard basis of the Pl-#CSP framework, then P = #P

would follow since Pl-#CSP(M̂) is tractable but Pl-#CSP(M̂ ∪ {[1, 0], [0, 1]}) is #P-hard by our

main dichotomy in Theorem 4.1 (or, more specifically, by Lemma 4.10).

Since Pl-#CSP(F) is Turing equivalent to Pl-Holant(F ∪ EQ), the expression of Pl-#CSP(F) in

the Hadamard basis is Pl-Holant(F̂ ∪ ÊQ). Then we already have [1, 0] ∈ ÊQ, so pinning in the

Hadamard basis of Pl-#CSP(F) amounts to obtaining the missing signature [0, 1].

1The pinning in [CLX10], which is accomplished in Section IV, is not summarized in a single statement but is
implied by the combination of all the results in that section.



133

Figure 4.4: The circles are assigned [a, 0, 0, 0,b, c].

The Road to Pinning

We begin the road to pinning with a lemma that assumes the presence of [0, 0, 1] = [0, 1]⊗2,

which is the tensor product of two copies of [0, 1]. In our pursuit to realize [0, 1], this may

be as close as we can get, such as when every signature has even arity. Another roadblock to

realizing [0, 1] is when every signature has even parity. Recall that a signature has even parity

if its support is on entries of even Hamming weight. By a simple parity argument, gadgets

constructed with signatures of even parity can only realize signatures of even parity. However,

if every signature has even parity and [0, 0, 1] is present, then we can already prove a dichotomy,

which is Lemma 4.16.

Before proving Lemma 4.16, let us show the following technical lemma first. It will be used

in the proof of Lemma 4.16, as well as in Section 4.4.

Lemma 4.15. Let a,b, c ∈ C. If ab ̸= 0, then Pl-Holant([a, 0, 0, 0,b, c]) is #P-hard.

Proof. Let f be the signature of the gadget in Figure 4.4 with [a, 0, 0, 0,b, c] assigned to both

vertices. The signature matrix of f is

Mf =



a2 0 0 0

0 b2 b2 bc

0 b2 b2 bc

0 bc bc 3b2 + c2


,

which is redundant. It is easy to verify that det
(
M̃f

)
= 6a2b4 ̸= 0. Thus, Pl-Holant(f) is

#P-hard by Corollary 3.28, so Pl-Holant([a, 0, 0, 0,b, c]) is also #P-hard.

Lemma 4.16. SupposeF is a set of symmetric signatures with complex weights containing [0, 0, 1].

If every signature in F has even parity, then either Pl-Holant(F ∪ ÊQ) is #P-hard or F is a subset

of A, P̂, or M, in which case Pl-Holantc(F ∪ ÊQ) is tractable.
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Proof. The tractability is given in Lemma 4.3. If every non-degenerate signature in F is of arity

at most 3, then F ⊆M since all signatures in F satisfy the (even) parity condition.

Otherwise F contains some non-degenerate signature of arity at least 4. For every signature

f ∈ F with f = [f0, f1, . . . , fm] andm ⩾ 4, using [0, 0, 1] and [1, 0], we can obtain all subsignatures

of the form [fk−2, 0, fk, 0, fk+2] for any even k such that 2 ⩽ k ⩽ m − 2. If any subsignature g

of this form satisfies fk−2fk+2 ̸= f2k and fk ̸= 0, then Pl-Holant(g) is #P-hard by Corollary 3.28,

so Pl-Holant(F ∪ ÊQ) is also #P-hard.

Otherwise all subsignatures of signatures in F of the above form satisfy fk−2fk+2 = f2k or

fk = 0. There are two types of signatures with this property. In the first type, the signature

entries of even Hamming weight form a geometric progression. More specifically, the signatures

of the first type have the form

[αn, 0,αn−1β, 0, . . . , 0,αβn−1, 0,βn] or [αn, 0,αn−1β, 0, . . . , 0,αβn−1, 0,βn, 0]

for some α,β ∈ C, which are in M. In the second type, the signatures have arity at least 4

or 5 and are of the form [x, 0, . . . , 0,y] or [x, 0, . . . , 0,y, 0] respectively, with xy ≠ 0 and an odd

number of 0’s between x and y (since they have even parity). If all of the signatures in F are of

the first type, then F ⊆M.

Otherwise F contains a signature f of the second type. Suppose f = [x, 0, . . . , 0,y, 0] of arity

n ⩾ 5 with xy ̸= 0. Then n is odd as there are odd number of 0’s between x and y. With n−5
2

many self-loops, we have g = [x, 0, 0, 0,y, 0] of arity exactly 5. Then Pl-Holant(g) is #P-hard by

Lemma 4.15, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

Otherwise f = [x, 0, . . . , 0,y] of arity at least 4 with xy ̸= 0. If x4 ̸= y4, then Pl-Holant(F∪ ÊQ)

is #P-hard by Lemma 4.8. Otherwise x4 = y4. This puts every signature of the second type in

A. Therefore F ⊆ A ∪M and we are done by Theorem 4.14.

Every other result in the rest of this section states that we are able to pin (under various

assumptions on F). Formally speaking, we repeatedly prove that Pl-Holantc(F ∪ ÊQ) is #P-hard

(or in P) if and only if Pl-Holant(F ∪ ÊQ) is #P-hard (or in P). The difference between these

two counting problems is the presence of [0, 1] in Pl-Holantc(F ∪ ÊQ). We always prove this

statement in one of three ways:
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1. we show that Pl-Holantc(F ∪ ÊQ) is tractable (so Pl-Holant(F ∪ ÊQ) is as well);

2. or we show that Pl-Holant(F ∪ ÊQ) is #P-hard (so Pl-Holantc(F ∪ ÊQ) is as well);

3. or we show Pl-Holantc(F ∪ ÊQ) ⩽T Pl-Holant(F ∪ ÊQ) by realizing [0, 1] using signatures

in F ∪ ÊQ.

Lemma 4.17. Let F be any set of complex-weighted symmetric signatures containing [0, 0, 1].

Then Pl-Holantc(F∪ ÊQ) is #P-hard (or in P) if and only if Pl-Holant(F∪ ÊQ) is #P-hard (or in P).

Proof. If we had a unary signature [a,b] where b ̸= 0, then connecting [a,b] to [0, 0, 1] gives the

signature [0,b], which is [0, 1] after normalization. Thus, in order to reduce Pl-Holantc(F ∪ ÊQ)

to Pl-Holant(F ∪ ÊQ) by constructing [0, 1], it suffices to construct a unary signature [a,b] with

b ̸= 0.

For every signature f ∈ F with f = [f0, f1, . . . , fm], using [0, 0, 1] and [1, 0], we can obtain all

subsignatures of the form [fk−1, fk] for any odd k such that 1 ⩽ k ⩽ m. If any subsignature

satisfies fk ̸= 0, then we can construct [0, 1].

Otherwise all signatures in F have even parity and we are done by Lemma 4.16.

Figure 4.5: The circles are assigned [1, 0, 1, 0] and the triangles are assigned [1, 0, x].

There are two scenarios that lead to Lemma 4.17, which are the focus of the next two

lemmas.

Lemma 4.18. For x ∈ C, let F be a set of complex-weighted symmetric signatures contain-

ing [1, 0, x] such that x ̸∈ {0,±1}. Then Pl-Holantc(F ∪ ÊQ) is #P-hard (or in P) if and only if

Pl-Holant(F ∪ ÊQ) is #P-hard (or in P).

Proof. There are two cases. In either case, we realize [0, 0, 1] and finish by applying Lemma 4.17.

First we claim that the conclusion holds provided |x| ̸= 0, 1. Combining k copies of [1, 0, x]

gives [1, 0, xk]. Since |x| ̸∈ {0, 1}, x is neither zero nor a root of unity, so we can use polynomial

interpolation to realize [a, 0,b] for any a,b ∈ C, including [0, 0, 1].



136

Otherwise |x| = 1. The gadget in Figure 4.5 has signature [f0, f1, f2] = [1+x2, 0, 2x]. If x = ±i,

then we have [0, 0,±2i], which is [0, 0, 1] after normalization.

Otherwise x ≠ ±i, so f0 ≠ 0. Since x ≠ 0, f2 ≠ 0. Since x ≠ ±1, |f0| < 2. However,

|f2| = 2. Therefore, after normalization, the signature [1, 0,y] with y = 2x
1+x2 has |y| > 1, so it

can interpolate [0, 0, 1] by our initial claim since |y| ̸∈ {0, 1}.

Lemma 4.19. Let F be a set of complex-weighted symmetric signatures containing a signature f

that is not identically 0 but f0 = 0. Then Pl-Holantc(F ∪ ÊQ) is #P-hard (or in P) if and only if

Pl-Holant(F ∪ ÊQ) is #P-hard (or in P).

Proof. Suppose the first non-zero entry of f is fi where i > 0 and f has arity n. Connecting n− i

many copies of [1, 0] to f gives us [0, 0, · · · , 0, fi] of arity i. With
⌈
i−2

2

⌉
many self-loops, we get

[0, fi] or [0, 0, fi] depending on the parity of i, which is either [0, 1] or [0, 0, 1] after normalization.

If it is [0, 1], then we are done directly. If it is [0, 0, 1], then we are done by Lemma 4.17.

As a significant step toward pinning for any signature set F, we show how to pin given any

binary signature. Some cases resist pinning and are excluded.

Lemma 4.20. Let F be a set of complex-weighted symmetric signatures containing a binary

signature f. Then Pl-Holantc(F ∪ ÊQ) is #P-hard (or in P) if and only if Pl-Holant(F ∪ ÊQ) is

#P-hard (or in P) unless f ∈ {[0, 0, 0], [1, 0,−1], [1, r, r2], [1,b, 1]}, up to a nonzero scalar, for any

b, r ∈ C.

Proof. Let f = [f0, f1, f2]. If f0 = 0 and either f1 ̸= 0 or f2 ̸= 0, then we are done by Lemma 4.19.

Otherwise, f = [0, 0, 0] or f0 ̸= 0, in which case we normalize f0 to 1. If Pl-Holant
(
f | ÊQ

)
is

#P-hard by Theorem 4.2, then Pl-Holant(F ∪ ÊQ) is also #P-hard. Otherwise, f is one of the

tractable cases, which implies that

f ∈ {[0, 0, 0], [1, r, r2], [1, 0, x], [1,±1,−1], [1,b, 1]}.

If f = [1,±1,−1], then we connect f to [1, 0, 1, 0] to get [0,±2], which is [0, 1] after normalization.

If f = [1, 0, x], then we are done by Lemma 4.18 unless x ∈ {0,±1}. The remaining cases are all

excluded by assumption, so we are done.
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Pinning in the Hadamard Basis

Before we show how to pin in the Hadamard basis, we handle two simple cases.

Lemma 4.21. For any set F of complex-weighted symmetric signatures containing [1,±i], we

have Pl-Holantc(F ∪ ÊQ) ⩽T Pl-Holant(F ∪ ÊQ).

Proof. Connect two copies of [1,±i] to [1, 0, 1, 0] to get [0,±2i], which is [0, 1] after normaliza-

tion.

The next lemma considers the signature [1,b, 1,b−1], which we also encounter in Theo-

rem 4.24, the single signature dichotomy.

Lemma 4.22. Let b ∈ C. If b ̸∈ {0,±1}, then for any set F of complex-weighted symmetric

signatures containing f = [1,b, 1,b−1], Pl-Holant(F ∪ ÊQ) is #P-hard.

Proof. Connect two copies of [1, 0] to f to get [1,b]. Connecting this back to f gives g = [1 +

b2, 2b, 2]. Then Pl-Holant
(
g | ÊQ

)
is #P-hard by Theorem 4.2, so Pl-Holant(F ∪ ÊQ) is also #P-

hard.

Now we are ready to prove our pinning result.

Theorem 4.23 (Pinning). Let F be any set of complex-weighted symmetric signatures. Then

Pl-Holantc(F ∪ ÊQ) is #P-hard (or in P) if and only if Pl-Holant(F ∪ ÊQ) is #P-hard (or in P).

This theorem does not exclude the possibility that either framework can express a problem

of intermediate complexity. It merely says that if one framework cannot express a problem

of intermediate complexity, then neither can the other. Our goal is to prove a dichotomy for

Pl-Holant(F∪ÊQ). By Theorem 4.23, this is equivalent to proving a dichotomy for Pl-Holantc(F∪

ÊQ).

Proof of Theorem 4.23. For simplicity, we normalize the first nonzero entry of every signature

in F to 1. If F contains the degenerate signature [0, 1]⊗n for some n ⩾ 1, then we take self-loops

on this signature until we have either [0, 1] or [0, 0, 1] (depending on the parity of n). If we have

[0, 1], we are done. Otherwise, we have [0, 0, 1] and are done by Lemma 4.17.
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Now assume that any degenerate signature in F is not of the form [0, 1]⊗n. Then we can

replace these degenerate signatures in F by their unary versions using [1, 0]. This does not

change the complexity of the problem. Hence we may assume all degenerate signatures in F

are unary. If F contains only unary signatures, then F ⊆ P̂ and Pl-Holantc(F ∪ ÊQ) is tractable

by Lemma 4.3.

Otherwise F contains a non-degenerate signature f of arity k ⩾ 2. We connect k − 2 copies

of [1, 0] to f until we obtain a signature with arity exactly 2. We call the resulting signature the

binary prefix of f. If this binary prefix is not one of the exceptional forms in Lemma 4.20, then

we are done, so assume that it is one of the exceptional forms.

We do case analysis according to the exceptional forms in Lemma 4.20. There are five cases

below because we split the case of [1, r, r2] into [1, 0, 0] and [1, r, r2] with r ≠ 0 as two separate

cases. In each case, we either show that the conclusion of the theorem holds or that f ∈ A∪P̂∪M,

for each non-degenerate f ∈ F. After the case analysis, we have that F ⊆ A ∪ P̂ ∪M. Then we

are done by Theorem 4.14.

1. Suppose the binary prefix of f is [0, 0, 0]. Since f is not degenerate, then f is not identi-

cally 0, and we are done by Lemma 4.19. Thus, in this case, the theorem holds.

2. Suppose the binary prefix of f is [1, 0,−1]. If f is not of the form

[1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)], (4.1)

then after one self-loop, we have a signature of arity at least one with 0 as its first entry

but is not identically 0, so we are done by Lemma 4.19.

Thus, in this case, we may assume f has the form given in (4.1).

3. Suppose the binary prefix of f is [1, 0, 0]. Since f is not degenerate, f is not of the form

[1, 0, . . . , 0]. Suppose the second non-zero entry is fi = x ≠ 0 where i ⩾ 3. Then after

connecting k − i copies of [1, 0], where arity(f) = k, we have [1, 0, . . . , 0, x] of arity i. If

x4 ̸= 1, then Pl-Holant({f} ∪ ÊQ) is #P-hard by Lemma 4.8, so Pl-Holant(F ∪ ÊQ) is also

#P-hard.
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Otherwise, x4 = 1. If f = [1, 0, . . . , 0, x] with x4 = 1, then f ∈ A. Suppose that x is not the

last entry in f. Connecting k − i − 1 copies of [1, 0] to f, we have g = [1, 0, . . . , 0, x,y] of

arity i+ 1.

• If i is odd, then doing i−3
2 many self-loops, we have h = [1, 0, 0, x,y]. The determinant

of the compressed signature matrix of h is −2x2 ̸= 0. Thus, Holant(h) is #P-hard by

Corollary 3.28, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

• Otherwise, i is even. After i−4
2 many self-loops on g, we have h = [1, 0, 0, 0, x,y].

Then by Lemma 4.15, Holant(h) is #P-hard, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

Thus, in this case, we may assume that f = [1, 0, . . . , 0, x] with x4 = 1.

4. Suppose the binary prefix of f is [1, r, r2], where r ̸= 0. Since f is non-degenerate, f is not of

the form [1, r, . . . , rn]. Suppose the first term that breaks the pattern is fm+1 = y ≠ rm+1

with m ⩾ 2. Connecting k − m − 1 many copies of [1, 0], where arity(f) = k, we have

[1, r, . . . , rm,y]. Using [1, 0], we can get [1, r]. If r = ±i, then we are done by Lemma 4.21,

so assume that r ̸= ±i. Then we can attach [1, r] back to the initial signature k − 3 times

to get g = [1, r, r2, x] after normalization, where x ̸= r3. We connect [1, r] once more to

get h = [1 + r2, r(1 + r2), r2 + rx]. If h does not have one of the exceptional forms in

Lemma 4.20, then we are done, so assume that it does.

Since the second entry of h is not 0 and x ̸= r3, the only possibility is that h has the form

[1,b, 1] up to a scalar. This gives x = r−1. Note that r ̸= ±1 since x ̸= r3. A self-loop on

g = [1, r, r2, r−1] gives [1 + r2, r + r−1], which is [1, r−1] after normalization. Connecting

this back to g gives h ′ = [2, 2r, r2 + r−2]. We assume that h ′ has one of the exceptional

forms in Lemma 4.20 since we are done otherwise. If h ′ has the form [1, r, r2] up to a

scalar, then r4 = 1, a contradiction, so it must have the form [1,b, 1] up to a scalar. But

then r2 = 1, which is also a contradiction.

Thus, in this case, the theorem holds.

5. Suppose the binary prefix of f is [1,b, 1]. If b = ±1, then this binary prefix is degenerate

and was considered in the previous case, so assume that b ̸= ±1. If f is not of the form

[1,b, 1,b, . . . ], then let i be the index of the first entry in f to break the pattern. If i is



140

even, connecting k− i copies of [1, 0] to f, where k = arity(f), we have [1,b, 1, . . . ,b,y] with

y ̸= 1. We do i−4
2 more self-loops. After normalization, we get g = [1,b, 1,b, x], where

x ̸= 1. The determinant of its compressed signature matrix is (b2 − 1)(1 − x) ̸= 0. Thus,

Holant(g) is #P-hard by Corollary 3.28, so Pl-Holant(F ∪ ÊQ) is also #P-hard.

Otherwise, i is odd. Then connect k − i many [1, 0] to f, and we get [1,b, 1, . . . , 1,y] with

y ̸= b. We do i−3
2 self-loops. After normalization, we get [1,b, 1, x], where x ̸= b. One

more self-loop gives us g ′ = [2,b+ x].

• If b = 0, then connecting g ′ to [1, 0, 1, x] gives [2, x, 2+x2]. We assume that [2, x, 2+x2]

has one of the exceptional forms in Lemma 4.20 since we are done otherwise. Because

x ̸= 0, the only possibility is that [2, x, 2 + x2] has the form [1, r, r2] up to a scalar.

Then we get x2 = −4, so g = [2, x] = 2[1,±i] and we are done by Lemma 4.21.

• Otherwise, b ̸= 0. Using [1, 0], we can get h = [1,b, 1]. If the signature matrix Mh

of h has infinite order modulo a scalar, then we can interpolate [0, 1] by Lemma 4.7

since b ̸∈ {0,±1}, and we are done.

Hence we may assume thatMh has finite order modulo a scalar. There exists positive

integer ℓ and β ≠ 0 such that Mℓ
h = βI2. Thus after normalization, we can construct

the anti-gadget [1,−b, 1] by connecting ℓ − 1 copies of h together. Connecting [1, 0]

to [1,−b, 1] gives [1,−b] and connecting this to [1,b, 1, x] gives [1 − b2, 0, 1 − bx].

If 1−bx
1−b2 ̸∈ {0,±1}, then we are done by Lemma 4.18. Otherwise, y = 1−bx

1−b2 ∈ {0,±1}.

For y = 0, we get x = b−1 and are done by Lemma 4.22 since b ̸∈ {0,±1}. For y = 1,

we get b = x, a contradiction. For y = −1, we get 2 − b2 − bx = 0. Then connecting

[1,−b, 1] to g = [2,b + x] gives [2 − b2 − bx, x − b] = [0, x − b], which is [0, 1] after

normalization.

Thus, in this case, we may assume that f = [1,b, 1,b, . . . ].

To summarize, every non-degenerate signature in F must have one of the following forms:

• [1, 0,−1, 0, 1, 0,−1, 0, . . . , 0 or 1 or (−1)], which is in A ∩M;

• [1, 0, . . . , 0, x], where x4 = 1, which is in A;
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• [1,b, 1,b, . . . , 1 or b], which is in P̂.

Moreover, as unary signatures are all in P̂, we have that F ⊆ A ∪ P̂ ∪ M. We are done by

Theorem 4.14.

4.4 Planar #CSP Dichotomy

In this section, we prove our main dichotomy theorem. We begin with a dichotomy for a single

signature.

Theorem 4.24. Let f be a non-degenerate symmetric signature of arity n ⩾ 2 with complex

weights in Boolean variables. Then Pl-Holant({f}∪ ÊQ) is #P-hard unless f ∈ A∪ P̂∪M, in which

case the problem is computable in polynomial time.

Proof. When f ∈ A ∪ P̂ ∪M, the problem is tractable by Lemma 4.3. When f ̸∈ A ∪ P̂ ∪M, we

prove that Pl-Holantc({f}∪ÊQ) is #P-hard, which is sufficient because of pinning (Theorem 4.23).

Using [1, 0] and [0, 1], we can obtain any subsignature of f.

Notice that once we have [0, 1] and ÊQ, we can realize every signature in T ÊQ, where T =[
0 1
1 0

]
. In fact, every even arity signature in ÊQ is also in T ÊQ, and we obtain all the odd arity sig-

natures in T ÊQ by attaching [0, 1] to all the even arity signatures in ÊQ. Therefore, a holographic

transformation by T does not change the complexity of the problem. Furthermore, A ∪ P̂ ∪M

is closed under T . We will use these facts later.

The possibilities for f can be divided into three cases:

• f satisfies the parity condition;

• f does not satisfy the parity condition but does contain a 0 entry;

• f does not contain a 0 entry.

We handle these cases below.

1. Suppose that f satisfies the parity condition. If f has even parity, then we are done by

Lemma 4.16. Otherwise, f has odd parity.
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• If n, the arity of f, is odd, then under a holographic transformation by T =
[

0 1
1 0

]
, f is

transformed to f̂, which has even parity. Then either Pl-Holantc({f̂} ∪ ÊQ) is #P-hard

by Lemma 4.16 (and thus Pl-Holantc({f}∪ ÊQ) is also #P-hard), or f̂ ∈ A∪ P̂∪M (and

thus f ∈ A ∪ P̂ ∪M).

• Otherwise, n is even. Connect [0, 1] to f to get a signature g with even parity and

odd arity. Then either Pl-Holantc({g} ∪ ÊQ) is #P-hard by Lemma 4.16 (and thus

Pl-Holantc({f} ∪ ÊQ) is also #P-hard), or g ∈ A ∪ P̂ ∪M. In the latter case, it must be

that g ∈ M since non-degenerate generalized equality signatures cannot have both

even parity and odd arity (cf. Figure 4.1). In particular, the even parity entries of g

form a geometric progression. Therefore f ∈M since f has odd parity and the same

geometric progression among its odd parity entries.

2. Suppose that f does not satisfy the parity condition but contains a 0 entry. Since f does

not satisfy the parity condition, there must be at least two nonzero entries separated by

an even number of 0 entries. Thus, f contains a subsignature g = [a, 0, . . . , 0,b] of arity

k = 2ℓ+ 1 ⩾ 1, where ab ̸= 0.

If ℓ = 0, then k = 1 and we can shift either to the right or to the left and find the 0 entry in

f and obtain a binary subsignature h of the form [a,b, 0] or [0,a,b], where ab ̸= 0. Then

Pl-Holant
(
h | ÊQ

)
is #P-hard by Theorem 4.2, so Pl-Holant({f} ∪ ÊQ) is also #P-hard.

Otherwise ℓ ⩾ 1, so k ⩾ 3. If a4 ̸= b4, then Pl-Holant({g} ∪ ÊQ) is #P-hard by Lemma 4.8,

so Pl-Holant({f} ∪ ÊQ) is also #P-hard.

Otherwise, a4 = b4, so g ∈ A. If f = g, then we are done, so assume that f ̸= g, which im-

plies that there is another entry just before a or just after b. If this entry is nonzero, then f

has a subsignature h of the form [c,a, 0] or [0,b,d], where cd ̸= 0. Then Pl-Holant
(
h | ÊQ

)
is #P-hard by Theorem 4.2, so Pl-Holant({f} ∪ ÊQ) is also #P-hard.

Otherwise, this entry is 0 and f has a subsignature h of the form [0,a, 0, . . . , 0,b] or

[a, 0, . . . , 0,b, 0] of arity at least 4. If the arity of h is even, then after some number of

self-loops, we have a signature h ′ of the form [0,a, 0, 0,b] or [a, 0, 0,b, 0] of arity exactly 4.

Then Pl-Holant(h ′) is #P-hard by Corollary 3.28 since ab ̸= 0, so Pl-Holant({f}∪ ÊQ) is also
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#P-hard.

Otherwise, the arity of h is odd. After some number of self-loops, we have a signature

h ′ of the form [0,a, 0, 0, 0,b] or [a, 0, 0, 0,b, 0] of arity exactly 5. Then Pl-Holant(h ′) is

#P-hard by Lemma 4.15 since ab ̸= 0, so Pl-Holant({f} ∪ ÊQ) is also #P-hard.

3. Suppose f contains no 0 entry. If f has a binary subsignature g such that Pl-Holant
(
g | ÊQ

)
is #P-hard by Theorem 4.2, then Pl-Holant({f} ∪ ÊQ) is also #P-hard.

Otherwise every binary subsignature [a,b, c] of f satisfies the conditions of some tractable

case in Theorem 4.2. The three possible tractable cases are degenerate with condition

ac = b2 (case 1), affine A with condition ac = −b2 ∧ a = −c (case 3), and a Hadamard-

transformed product type P̂ with condition a = c (case 4). If every binary subsignature

[a,b, c] of f satisfiesac = b2, then f is degenerate, a contradiction. If every binary subsigna-

ture [a,b, c] of f satisfies ac = −b2∧a = −c, then f = [1,±1,−1,∓1, 1,±1,−1,∓1, . . . ] ∈ A

(up to a scalar) and we are done. If every binary subsignature [a,b, c] of f satisfies a = c,

then f ∈ P̂ and we are done.

Otherwise, there exists two binary subsignatures of f that do not satisfy the same tractable

case in Theorem 4.2. Hence f has arity n ⩾ 3. Let hi = [fi, fi+1, fi+2] for all 0 ⩽ i ⩽ n− 2

be binary subsignatures of f. Suppose there exists an i such that hi satisfies the affine

condition (case 3). We claim that there must exist two successive signatures h = [a,b, c]

that is affine and h ′ = [b, c,d] satisfying either the degenerate or the product-type con-

dition, up to a transformation of
[

0 1
1 0

]
. This is because we can start from hi and search

in both directions hi−1 and hi+1 until we found such h and h ′. It is always successful

because not all hi satisfies the affine condition. Let g = [a,b, c,d] be the tenary subsigna-

ture of f. Then for either case of h ′, we have g = [1, ε,−1, ε] after normalization, where

ε2 = 1. Connecting two copies of [0, 1] to g gives [−1, ε]. Connecting this back to g gives

g ′ = [0,−2ε, 2]. Then Pl-Holant
(
g ′ | ÊQ

)
is #P-hard by Theorem 4.2, so Pl-Holant({f}∪ ÊQ)

is also #P-hard.

Otherwise, up to the transformation
[

0 1
1 0

]
, there exists a ternary subsignature g = [a,b, c,d]

of f such that h = [a,b, c] satisfies the product-type condition (but not the degenerate con-

dition) and h ′ = [b, c,d] satisfies the degenerate condition. Then g = [1,b, 1,b−1] after
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normalization, where b2 ̸= 1. Then Pl-Holant
(
g | ÊQ

)
is #P-hard by Lemma 4.22, so

Pl-Holant({f} ∪ ÊQ) is also #P-hard.

Now we are ready to prove our main dichotomy theorem.

Theorem 4.25. Let F be any set of symmetric, complex-valued signatures in Boolean variables.

Then Pl-Holant(F ∪ ÊQ) is #P-hard unless F ⊆ A, F ⊆ P̂, or F ⊆M, in which case the problem is

computable in polynomial time.

Proof. The tractability is given in Lemma 4.3. When F is not a subset of A, P̂, or M, we prove

that Pl-Holantc(F ∪ ÊQ) is #P-hard, which is sufficient because of pinning (Theorem 4.23).

For any degenerate signature f ∈ F, we connect some number of [1, 0] or [0, 1] to f to get its

corresponding unary signature. We replace f by this unary signature, which does not change

the complexity. Thus, assume that the only degenerate signatures in F are unary signatures.

If F ̸⊆ A ∪ P̂ ∪M, then the problem is #P-hard by Theorem 4.24. Otherwise, F ⊆ A ∪ P̂ ∪M

and we are done by Theorem 4.14.

Transforming back to the standard basis, Theorem 4.25 is equivalent to Theorem 4.1.
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Chapter 5

A Closer Look at Tractable Signatures

Aside from vanishing signatures, major tractable sets are A-transformable in Lemma 1.7, P-

transformable in Lemma 1.9, and M-transformable in Lemma 1.10. In this chapter, we first

characterize these three sets, and then show various hardness results related to them. After

we finish these hardness results, we will utilize them to show Theorem 5.41, the single signature

dichotomy for Holant and Pl-Holant.

Throughout the chapter, we define α = 1+i√
2
=
√
i = e

πi
4 and use O2(C) to denote the group

of 2-by-2 orthogonal matrices over C. While the main results in this section assume that the

signatures involved are symmetric, we note that some of the lemmas also hold without this

assumption. We use F123 to denote F1 ∪ F2 ∪ F3, where F1, F2, and F3 are defined in (1.4).

Recall that by Definition 1.3, if a set of signatures F is C-transformable, then there exists a

T ∈ GL2(C) such that [1, 0, 1]T⊗2 ∈ C and F ⊆ TC. We first consider possible transformations

such that [1, 0, 1]T⊗2 ∈ A, P, or M. While there are many binary signatures in A, P, and M, it

turns out that it is sufficient to consider the following cases.

Proposition 5.1. Let T ∈ C2×2 be a matrix. Then the following hold:

1. [1, 0, 1]T⊗2 = [1, 0, 1] if and only if T ∈ O2(C);

2. [1, 0, 1]T⊗2 = [1, 0, i] if and only if there exists an H ∈ O2(C) such that T = H
[

1 0
0 α

]
;

3. [1, 0, 1]T⊗2 = [0, 1, 0] if and only if there exists an H ∈ O2(C) such that T = 1√
2
H
[

1 1
i −i

]
.



146

Proof. Recall (1.3). Case 1 is clear due to

[1, 0, 1]T⊗2 = [1, 0, 1] ⇐⇒ T⊺I2T = I2 ⇐⇒ T⊺T = I2,

the last of which is the definition of a (2-by-2) orthogonal matrix. Now we use this case to prove

the others.

Let D2 =
[

1 0
0 α

]
and D3 = Z = 1√

2

[
1 1
i −i

]
, let Tj = HDj (for j = 2, 3), where H ∈ O2(C). Then

we can directly verify that,

[1, 0, 1]T⊗2
j = [1, 0, 1](HDj)

⊗2 = [1, 0, 1]D⊗2
j = fj,

where f2 = [1, 0, i] and f3 = [0, 1, 0] are the binary signature in case 2 and 3.

On the other hand, suppose that [1, 0, 1](Tj)⊗2 = fj, for j = 2, 3. Then we have that

[1, 0, 1](TjD
−1
j )⊗2 = fj(D

−1
j )⊗2 = [1, 0, 1],

so H = TjD
−1
j ∈ O2(C) by case 1. Thus Tj = HDj as desired.

We also need the following lemma. Its proof is straightforward.

Lemma 5.2. If a symmetric signature f = [f0, f1, . . . , fn] can be expressed in the form f =

a[1, λ]⊗n + b[1,µ]⊗n, for some a,b, λ,µ ∈ C, then the fk’s satisfy the recurrence relation fk+2 =

(λ+ µ)fk+1 − λµfk for 0 ⩽ k ⩽ n− 2.

5.1 Characterization of A-transformable Signatures

We start with A-transformable signatures. We introduce the left and right stabilizer groups of

A:

LStab(A) = {T ∈ GL2(C) | TA ⊆ A};

RStab(A) = {T ∈ GL2(C) | AT ⊆ A}.
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In fact, these two groups are equal and coincide with the group of nonsingular signature ma-

trices of binary affine signatures. Recall (1.2). For a binary signature f = (f00, f01, f10, f11), its

signature matrix Mf is

Mf =

f00 f01

f10 f11

 .

Let

A2×2 = {Mf | f ∈ A, arity(f) = 2, and det(Mf) ≠ 0}

be the set of nonsingular signature matrices of the binary affine signatures. It is straightforward

to verify that A2×2 is closed under multiplication and inverses. Therefore A2×2 forms a group.

Let D2 =
[

1 0
0 i

]
and H2 = 1√

2

[
1 1
1 −1

]
. Also let X =

[
0 1
1 0

]
and Z = 1√

2

[
1 1
i −i

]
. Note that

Z = D2H2 and that D2
2Z = 1√

2

[
1 1
−i i

]
= ZX. Hence X = Z−1D2

2Z. Furthermore, D2,H2,X,Z ∈

LStab(A) ∩ RStab(A) ∩A2×2, as well as all nonzero scalar multiples of these matrices.

Not only are the groups LStab(A), RStab(A), and A2×2 equal, they are generated by D2 and

H2 with a nonzero scalar multiple.

Lemma 5.3. LStab(A) = RStab(A) = A2×2 = C∗ · ⟨D2,H2⟩.

Proof. Let

S := {S ∈ GL2(C) | F123S ⊆ F123}

be the right stabilizer group of F123. Since F123 ⊂ A, and symmetric signatures are still sym-

metric under any transformation, we have that RStab(A) ⊆ S. Moreover, as A is closed under

gadget construction, A2×2 ⊆ RStab(A). Hence, A2×2 ⊆ RStab(A) ⊆ S. Together with the fact

thatD2,H2 ∈ A2×2, we have C∗ · ⟨D2,H2⟩ ⊆ A2×2 ⊆ RStab(A) ⊆ S. To finish the proof, we show

that S ⊆ C∗ · ⟨D2,H2⟩. For LStab(A), the proof is similar.

Let T be an arbitrary element in S. For f = (=3), we have fT⊗3 ∈ F123. Then by the form

of F123, for some M ∈ ⟨D2,H2⟩, chosen to be either I, or H⊺
2 = H2, or Z⊺ = H2D2, we have

f(TM−1)⊗3 ∈ F1, which is a generalized equality signature. Then either TM−1 or TM−1X is a
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diagonal matrix T ′ = λ
[

1 0
0 d

]
. Furthermore, by applying T ′ to =4, we conclude that (=4)T

′⊗4 ∈

F1, since it is in F123 but not in F2 ∪F3 because T ′ is diagonal. It follows that d is a power of i,

and hence
[

1 0
0 d

]
is a power of D2. Thus T ∈ C∗ · ⟨D2,H2⟩.

Since LStab(A) = RStab(A), we simply write Stab(A) for this group. Of course each T under

which F is A-transformable is just a particular transformation that can be extended by any

element in Stab(A).

Lemma 5.4. Let F be a set of signatures. Then F is A-transformable under T if and only if F is

A-transformable under any T ′ ∈ T Stab(A).

Proof. Sufficiency is trivial since I2 ∈ Stab(A). If F is A-transformable under T , then by defini-

tion, we have (=2)T
⊗2 ∈ A and F ′ = T−1F ⊆ A. Let T ′ = TM ∈ T Stab(A) for any M ∈ Stab(A).

It then follows that (=2)T
′⊗2 = (=2)T

⊗2M⊗2 ∈ AM = A and T ′−1F = M−1F ′ ⊆ M−1A = A.

Therefore F is A-transformable under any T ′ ∈ T Stab(A).

After restricting by Proposition 5.1 and normalizing by Lemma 5.4, one only needs to check

a small subset of GL2(C) to determine if F is A-transformable.

Lemma 5.5. Let F be a set of signatures. Then F is A-transformable if and only if there exists

an H ∈ O2(C) such that F ⊆ HA or F ⊆ H
[

1 0
0 α

]
A.

Proof. Sufficiency is easily verified by checking that =2 is transformed into A in both cases. In

particular, H leaves =2 unchanged.

If F is A-transformable, then by definition, there exists a matrix T such that (=2)T
⊗2 ∈ A

and T−1F ⊆ A. Since =2 is non-degenerate and symmetric, (=2)T
⊗2 ∈ A is equivalent to

(=2)T
⊗2 ∈ F123.

Any signature in F123 is expressible as c(v⊗n1 + itv⊗n2 ), where t ∈ {0, 1, 2, 3} and (v1, v2) is a

pair of vectors in the set



1

0

 ,

0

1


 ,


1

1

 ,

 1

−1


 ,


1

i

 ,

 1

−i



 .
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We use Stab(A) to further normalize these three sets by Lemma 5.4. In particular, F1 =

H2F2 and F1 = (D2H2)
−1F3. Furthermore, binary signatures in F1 are just the four signa-

tures [1, 0, 1], [1, 0, i], [1, 0,−1], and [1, 0,−i] up to a scalar. We also normalize these four as

[1, 0, 1] = [1, 0,−1]D⊗2
2 and [1, 0, i] = [1, 0,−i]D⊗2

2 . Hence F being A-transformable implies that

there exists a matrix T such that (=2)T
⊗2 ∈ {[1, 0, 1], [1, 0, i]} and T−1F ⊆ A. Now we apply

Proposition 5.1.

1. If (=2)T
⊗2 = [1, 0, 1], then by case 1 of Proposition 5.1, we have T ∈ O2(C). Therefore

F ⊆ HA where H = T ∈ O2(C).

2. If (=2)T
⊗2 = [1, 0, i], then by case 2 of Proposition 5.1, there exists an H ∈ O2(C) such

that T = H
[

1 0
0 α

]
. Therefore F ⊆ TA = H

[
1 0
0 α

]
A where H ∈ O2(C).

Using these two lemmas, we can characterize all A-transformable signatures. We first define

three sets A1, A2, and A3.

Definition 5.6. A symmetric signature f of arity n is in A1 if there exists an H ∈ O2(C) and a

nonzero constant c ∈ C such that f = cH⊗n
([

1
1

]⊗n
+ β

[
1
−1

]⊗n)
, where β = αtn+2r for some

r ∈ {0, 1, 2, 3} and t ∈ {0, 1}.

When such an H exists, we say that f ∈ A1 with transformation H. If f ∈ A1 with I2, then

we say f is in the canonical form of A1. If f is in the canonical form of A1, then by Lemma 5.2,

for any 0 ⩽ k ⩽ n− 2, we have fk+2 = fk and one of the following holds:

• f0 = 0, or

• f1 = 0, or

• f1 = ±if0 ≠ 0, or

• n is odd and f1 = ±(1±
√

2)if0 ̸= 0 (all four sign choices are permissible).

Notice that when n is odd and t = 1 in Definition 5.6, it has some complication as described

by the factor αtn+2r.

Definition 5.7. A symmetric signature f of arity n is in A2 if there exists an H ∈ O2(C) and a

nonzero constant c ∈ C such that f = cH⊗n
([

1
i

]⊗n
+
[

1
−i

]⊗n)
.
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Similarly, when such an H exists, we say that f ∈ A2 with transformation H. If f ∈ A2 with

I2, then we say that f is in the canonical form of A2. If f is in the canonical form of A2, then by

Lemma 5.2, for any 0 ⩽ k ⩽ n− 2, we have fk+2 = −fk. Since f is non-degenerate, f1 ̸= ±if0 is

implied.

It is worth noting that {
[

1
i

]
,
[

1
−i

]
} is setwise invariant up to scalars under any transformation

in O2(C) up to nonzero constants. In other words, these two vectors are the eigenvectors of

orthogonal matrices. Thus for any H ∈ O2(C), we have that
[

1 1
i −i

]−1
H
[

1 1
i −i

]
= D, where D is

either diagonal or anti-diagonal. It is also helpful to view this equation as H
[

1 1
i −i

]
=
[

1 1
i −i

]
D.

Using this fact, the following lemma gives a characterization of A2. It says that any signature

in A2 is essentially in the canonical form.

Lemma 5.8. Let f be a symmetric signature of arity n. Then f ∈ A2 if and only if f = c
( [

1
i

]⊗n
+

β
[

1
−i

]⊗n )
for some nonzero constants c,β ∈ C.

Proof. Assume that f = c
([

1
i

]⊗n
+ β

[
1
−i

]⊗n)
for some c,β ̸= 0. Consider the orthogonal

transformation H =
[
a b
b −a

]
, where a = 1

2

(
β

1
2n + β− 1

2n

)
and b = 1

2i

(
β

1
2n − β− 1

2n

)
. We pick a

and b in this way so that a+ bi = β
1

2n , a− bi = β− 1
2n , and (a+ bi)(a− bi) = a2 + b2 = 1. Also(

a+bi
a−bi

)n
= β. Then

H⊗nf = c


 a+ bi

−ai+ b


⊗n

+ β

a− bi

ai+ b


⊗n

= c

(a+ bi)n

 1

−i


⊗n

+ (a− bi)nβ

1

i


⊗n

= c
√
β


 1

−i


⊗n

+

1

i


⊗n ,

so f can be written as

f = c
√
β(H−1)⊗n


1

i


⊗n

+

 1

−i


⊗n .

Therefore f ∈ A2.
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On the other hand, the desired form f = c
([

1
i

]⊗n
+ β

[
1
−i

]⊗n)
follows from the fact that

{
[

1
i

]
,
[

1
−i

]
} is fixed setwise up to nonzero constants under any orthogonal transformation.

Definition 5.9. A symmetric signature f of arity n is in A3 if there exists an H ∈ O2(C) and a

nonzero constant c ∈ C such that f = cH⊗n
(
[ 1
α ]

⊗n
+ ir

[
1

−α

]⊗n)
for some r ∈ {0, 1, 2, 3}.

Again, when such an H exists, we say that f ∈ A3 with transformation H. If f ∈ A3 with

I2, then we say f is in the canonical form of A3. If f is in the canonical form of A3, then by

Lemma 5.2, for any 0 ⩽ k ⩽ n− 2, we have that fk+2 = ifk and one of the following holds:

• f0 = 0, or

• f1 = 0, or

• f1 = ±αif0 ≠ 0.

Now we characterize A-transformable signatures.

Lemma 5.10. Let f be a non-degenerate symmetric signature. Then f is A-transformable if and

only if f ∈ A1 ∪A2 ∪A3.

Proof. Assume that f is A-transformable of arity n. By applying Lemma 5.5 to {f}, there exists

an H ∈ O2(C) such that f ∈ HA or f ∈ H
[

1 0
0 α

]
A. This is equivalent to (H−1)⊗nf ∈ A or

(H−1)⊗nf ∈
[

1 0
0 α

]
A. Since f is non-degenerate and symmetric, we can replace A in the previous

expressions with F123. Now we consider all possible cases. Let f = (H−1)⊗nf.

1. If f ∈ F1, then T⊗nf is in the canonical form of A1, where T = 1√
2

[
1 1
1 −1

]
∈ O2(C).

2. If f ∈ F2, then f is already in the canonical form of A1. Let T = I2 in this case.

3. If f ∈ F3, then f already has the equivalent form of A2 given by Lemma 5.8. Let T = I2 in

this case.

4. If f ∈
[

1 0
0 α

]
F1, then T⊗nf is in the canonical form of A1, where T = 1√

2

[
1 1
1 −1

]
∈ O2(C).

5. If f ∈
[

1 0
0 α

]
F2, then f is already in the canonical form of A3. Let T = I2 in this case.
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6. If f ∈
[

1 0
0 α

]
F3, then f has the form

[
1
α3

]⊗n
+ ir

[
1

−α3

]⊗n
, and T⊗nf is in the canonical

form of A3, where T =
[

0 −1
1 0

]
∈ O2(C). To see this,

0 −1

1 0


⊗n

 1

α3


⊗n

+ ir

 1

−α3


⊗n =

−α3

1


⊗n

+ ir

α3

1


⊗n

=
(
−α3

)n
 1

− 1
α3


⊗n

+ (−1)nir

 1

1
α3


⊗n

=
(
−α3

)n
1

α


⊗n

+ i2n+r

 1

−α


⊗n .

Let f
′
= T⊗nf, where T ∈ O2(C) is given in each case. Then f

′
is f after an orthogonal transfor-

mation TH−1. As shown above, f
′

is in the canonical form of A1 or A3, or is in the equivalent

form of A2 by Lemma 5.8. Hence f ∈ A1 ∪A2 ∪A3.

Conversely, if there exists a matrix H ∈ O2(C) such that H⊗nf is in one of the canonical

forms of A1, A2, or A3, then one can directly check that f is A-transformable by Definition 1.3.

In fact, transformations we applied above are all invertible.

5.2 Characterization of P-transformable Signatures

Turn our attention to P-transformable signatures next. Define the stabilizer group of P:

Stab(P) := {T ∈ GL2(C) | TP ⊆ P}.

Technically this set is the left stabilizer group of P. However, it is easy to see the left and right

stabilizers coincide. Furthermore, Stab(P) is generated by nonzero scalar multiples of matrices

of the form
[

1 0
0 ν

]
for any nonzero ν ∈ C and X =

[
0 1
1 0

]
. We start with an analogue of Lemma

5.5.

Lemma 5.11. Let F be a set of signatures. Then F is P-transformable if and only if F ⊆
[

1 1
i −i

]
P

or there exists an H ∈ O2(C) such that F ⊆ HP.
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Proof. Sufficiency is easily verified by checking that =2 is transformed into P in both cases. In

particular, H leaves =2 unchanged.

If F is P-transformable, then by definition, there exists a matrix T such that (=2)T
⊗2 ∈ P and

T−1F ⊆ P. The non-degenerate binary signatures in P are either [0, 1, 0] or of the form [1, 0,ν],

up to a scalar. However, notice that [1, 0, 1] = [1, 0,ν]
[ 1 0

0 ν
−

1
2

]⊗2
and

[ 1 0

0 ν
−

1
2

]
∈ Stab(P). Thus,

we only need to consider [1, 0, 1] and [0, 1, 0]. Now we apply Proposition 5.1.

1. If (=2)T
⊗2 = [1, 0, 1], then by case 1 of Proposition 5.1, we have T ∈ O2(C). Therefore

F ⊆ HP where H = T ∈ O(C).

2. If (=2)T
⊗2 = [0, 1, 0], then by case 3 of Proposition 5.1, there exists an H ∈ O2(C) such

that T = 1√
2
H
[

1 1
i −i

]
. Therefore F ⊆ H

[
1 1
i −i

]
P where H ∈ O2(C). Moreover, it is easy to

verify that H
[

1 1
i −i

]
=
[

1 1
i −i

]
D or

[
1 1
i −i

]
D
[

0 1
1 0

]
where D is non-singular and diagonal.

Hence D ∈ Stab(P) or D
[

0 1
1 0

]
∈ Stab(P), and in either case, F ⊆

[
1 1
i −i

]
P.

We also define P1 and P2 similar to Ai for i = 1, 2, 3.

Definition 5.12. A symmetric signature f of arity n is in P1 if there exists H ∈ O2(C) and a

nonzero constant c ∈ C such that f = cH⊗n
([

1
1

]⊗n
+ β

[
1
−1

]⊗n)
, where β ≠ 0.

When such an H exists, we say that f ∈ P1 with transformation H. If f ∈ P1 with I2, then we

say f is in the canonical form of P1. If f is in the canonical form of P1, then by Lemma 5.2, for

any 0 ⩽ k ⩽ n− 2, we have fk+2 = fk. Since f is non-degenerate, f1 ̸= ±f0 is implied.

It is easy to check that A1 ⊂ P1. The corresponding definition for P2 coincides with Defini-

tion 5.7 for A2. In other words, we define P2 = A2.

Now we characterize the P-transformable signatures as we did for the A-transformable

signatures in Lemma 5.10.

Lemma 5.13. Let f be a non-degenerate symmetric signature. Then f is P-transformable if and

only if f ∈ P1 ∪ P2.

Proof. Assume that f is P-transformable of arity n. By applying Lemma 5.11 to {f}, there exists

an H ∈ O2(C) such that f ∈ HP or f ∈ H
[

1 1
i −i

]
P. This is equivalent to (H−1)⊗nf ∈ P or

(H−1)⊗nf ∈
[

1 1
i −i

]
P. Let f = (H−1)⊗nf. It is sufficient to show that f ∈ P1 or P2.
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The symmetric signatures in P take the form [0, 1, 0], or [a, 0, . . . , 0,b] = a[1, 0]⊗n+b[0, 1]⊗n,

where ab ̸= 0 since f is non-degenerate. Now we consider all possible cases.

1. If f = [0, 1, 0], then f = 1
2i

([
1
i

]⊗2
−
[

1
−i

]⊗2
)

, which is the equivalent form of P2 = A2

given by Lemma 5.8.

2. If f = a
[

1
0

]⊗n
+ b

[
0
1

]⊗n
, then a further transformation by 1√

2

[
1 1
1 −1

]
∈ O2(C) puts f into

the canonical form of P1.

3. If f =
[

1 1
i −i

]⊗2
[0, 1, 0]T = 2[1, 0, 1] =

[
1
1

]⊗2
+
[

1
−1

]⊗2
, then f is already in the canonical

form of P1.

4. If f =
[

1 1
i −i

]⊗n (
a
[

1
0

]⊗n
+ b

[
0
1

]⊗n)
, then f is already of the equivalent form of P2 = A2

given by Lemma 5.8.

Conversely, if there exists a matrix H ∈ O2(C) such that H⊗nf is in one of the canonical

forms of P1 or P2, then one can directly check that f is P-transformable by Definition 1.3. In

fact, transformations that we applied above are all invertible.

Combining Lemma 5.10 and Lemma 5.13, we have a necessary and sufficient condition for

a single non-degenerate signature to be A- or P-transformable.

Corollary 5.14. Let f be a non-degenerate signature. Then f is A- or P-transformable if and only

if f ∈ P1 ∪ P2 ∪A3.

Notice that our definitions of P1, P2, and A3 each involve an orthogonal transformation.

For any single signature f ∈ P1 ∪ P2 ∪A3, Holant(f) is tractable. However, this does not imply

that Holant(P1), Holant(P2), or Holant(A3) is tractable. In fact, Holant(P2) is tractable while

Holant(P1) and Holant(A3) are #P-hard.

5.3 Characterization of M-transformable Signatures

Next come M-transformable signatures. Define the stabilizer group of M:

Stab(M) := {T ∈ GL2(C) | TM ⊆M}.
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Technically this set is the left stabilizer group of M. However, it is easy to see the left and right

stabilizers coincide. Moreover, Stab(M) is generated by nonzero scalar multiples of matrices

of the form
[

1 0
0 ν

]
for any nonzero ν ∈ C and X =

[
0 1
1 0

]
. In other words, Stab(M) = Stab(P).

Again, we have an analogue of Lemma 5.5. Notice that binary symmetric signatures in M

are exactly the same as those in P. The statement of Lemma 5.11 also holds for M.

Lemma 5.15. Let F be a set of signatures. Then F is M-transformable if and only if F ⊆
[

1 1
i −i

]
M

or there exists an H ∈ O2(C) such that F ⊆ HM.

We use four sets to characterize the M-transformable signatures. The function Symtn (−;−)

is defined in Definition 1.12.

Definition 5.16. A symmetric signature f of arity n is in Mi for k = 1, 2, 3, 4, if there exist an

H ∈ O2(C) and nonzero constants c,γ ∈ C such that f has the form (k) as follows:

(1) : cH⊗n
([

1
1

]⊗n ± in [ 1
−1

]⊗n)
;

(2) : cH⊗n
([

1
γ

]⊗n ± [ 1
−γ

]⊗n)
for some γ ≠ 0;

(3) : cH⊗n Symn−1
n

([
1
0

]
;
[

0
1

])
;

(4) : cH⊗n Symn−1
n

([
1
i

]
;
[

1
−i

])
.

For k ∈ {1, 2, 3, 4}, when such an H exists, we say that f ∈ Mk with transformation H. If

f ∈Mk with I2, then we say f is in the canonical form of Mk.

Recall that we have defined M±
4 in Section 3.7, right before Lemma 3.43. The definition

there is consistent with Definition 5.16 as ExactOnen = Symn−1
n

([
1
0

]
;
[

0
1

])
.

Notice that
{[

1
i

]
,
[

1
−i

]}
is set-wise invariant under any transformation in O2(C) up to non-

zero constants. Using this fact, the following lemma gives a characterization of M4. It says

that any signature in M4 is essentially in its canonical form.

Lemma 5.17. Let f be a symmetric signature of arity n. Then f ∈ M4 if and only if f =

c Symn−1
n

([
1
i

]
;
[

1
−i

])
or f = c Symn−1

n

([
1
−i

]
;
[

1
i

])
for some nonzero constant c ∈ C.

Proof. Suppose f ∈ M4 with the transformation H, that is, f = cH⊗n Symn−1
n

([
1
i

]
;
[

1
−i

])
. If

H ∈ SO2(C), then H =
[
a b
−b a

]
for some a,b ∈ C such that a2 +b2 = 1. In particular, a±bi ≠ 0.
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Since H
[

1
i

]
= (a + bi)

[
1
i

]
and H

[
1
−i

]
= (a − bi)

[
1
−i

]
, it follows that f = c(a + bi)n−1(a −

bi) Symn−1
n

([
1
i

]
;
[

1
−i

])
.

Otherwise, H ∈ O2(C) − SO2(C), so H =
[
a b
b −a

]
for some a,b ∈ C such that a2 + b2 = 1.

Then f = c(a+ bi)(a− bi)n−1 Symn−1
n

([
1
−i

]
;
[

1
i

]]
).

To show the other direction, suppose f = c Symn−1
n

([
1
i

]
;
[

1
−i

])
or f = c Symn−1

n

([
1
−i

]
;
[

1
i

])
.

The first case is already in the canonical form of M4. In the second case, we pick H =
[

1 0
0 −1

]
∈

O2(C). Then H⊗nf is in the canonical form of M4.

Next we show that Mk for k = 1, 2, 3, 4 captures all M-transformable signatures.

Lemma 5.18. Let f be a non-degenerate symmetric signature. Then f is M-transformable if and

only if f ∈M1 ∪M2 ∪M3 ∪M4.

Proof. Assume that f is M-transformable of arity n. By applying Lemma 5.15 to {f}, we have

f ∈
[

1 1
i −i

]
M or there exists anH ∈ O2(C) such that f ∈ HM. Proposition 1.13 lists all symmetric

signatures in M. Since we are only interested in non-degenerate signatures, we only consider

non-zero a, b, and λ. We divide into two cases.

1. Suppose f ∈
[

1 1
i −i

]
M.

• Further suppose f =
[

1 1
i −i

]⊗n (
[ ab ]

⊗n ± [ a−b ]
⊗n
)

for some nonzero a,b ∈ C. Let T =

1−i
2 [u v

v −u ], where u = a+ bi and v = i(a− bi). Then f = T⊗n
([

1
1

]⊗n ± in [ 1
−1

]⊗n)
.

Since T ∈ O2(C) up to a nonzero factor of
√

2ab, we have f ∈M1.

• Further suppose f = λ
[

1 1
i −i

]⊗n
Symn−1

n (
[

1
0

]
;
[

0
1

]
) for some nonzero λ ∈ C. Then we

have f = λ Symn−1
n

([
1
i

]
;
[

1
−i

])
, so f ∈M4.

• Further suppose f = λ
[

1 1
i −i

]⊗n
Symn−1

n (
[

0
1

]
;
[

1
0

]
) for some nonzero λ ∈ C. Then we

have f = λ Symn−1
n

([
1
−i

]
;
[

1
i

])
, so f ∈M4 by Lemma 5.17.

2. Suppose f ∈ HM.

• Further suppose f = H⊗n
(
[ ab ]

⊗n ± [ a−b ]
⊗n
)

for some nonzero a,b ∈ C. Then we

have f = anH⊗n
([

1
γ

]⊗n ± [ 1
−γ

]⊗n)
, where γ = b

a
, so f ∈M2.

• Further suppose f = λH⊗n Symn−1
n (

[
1
0

]
;
[

0
1

]
) for some nonzero λ ∈ C. Then f ∈M3.
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• Further suppose f = λH⊗n Symn−1
n (

[
0
1

]
;
[

1
0

]
) for some nonzero λ ∈ C. Let H ′ =

H
[

0 1
1 0

]
∈ O2(C). Then we have f = λH ′⊗n Symn−1

n (
[

1
0

]
;
[

0
1

]
), so f ∈M3.

Conversely, if there exists a matrix H ∈ O2(C) such that H⊗nf is in one of the canonical

forms of M1, M2, M3, or M4, then one can directly check that f is M-transformable by Definition

1.3. In fact, transformations that we applied above are all invertible.

Let g = [x,y, 0, . . . , 0, z] with arity n ⩾ 3, where xyz ≠ 0. As an example of the theory

developed in this section, we show that the signature Z⊗ng is not in any of the tractable sets.

We will use the following lemma in future.

Lemma 5.19. Let g = [x,y, 0, . . . , 0, z] with arity n ⩾ 3 and xyz ≠ 0. Then the signature Z⊗ng is

neither A-, P-, M-transformable, nor vanishing.

Proof. By Lemma 3.14 and Theorem 3.12, Z⊗ng is not vanishing. To show that Z⊗ng is not A-,

P-, M-transformable, we only need to show that Z⊗ng ̸∈ P1 ∪M2 ∪ A3 ∪M3 ∪M4 by Lemma

5.10, 5.13 and 5.18, and the fact that M1 ⊂ A1 ⊂ P1 and A2 = P2 ⊂ M2. See Figure 5.1. Note

that M4 ⊂ V. Since Z⊗ng is not vanishing, it is not in M4.

We first show that Z⊗ng ̸∈ P1 ∪M2 ∪ A3. We say a signature f = [f0, f1, . . . , fn] satisfies a

second order recurrence of type ⟨a,b, c⟩ if afk − bfk+1 + cfk+2 = 0 for 1 ⩽ k ⩽ n− 2, for some

a,b and c not all zero. Suppose Z⊗ng is a nonzero constant multiple of Hf ∈ P1 ∪M2 ∪ A3

in the forms given in Definitions 5.6, 5.7, 5.9, 5.12, and 5.16, then f, and hence also (Z−1)⊗nf,

satisfies a second order recurrence by Lemma 5.2. We have H−1Z = ZD or ZD
[

0 1
1 0

]
for some

non-singular diagonal D since H ∈ O2(C). Thus f = Z⊗ng ′ for some g ′ = [x ′,y ′, 0, . . . , 0, z ′] or

[x ′, 0, . . . , 0,y ′, z ′], with x ′y ′z ′ ̸= 0. We assume the former; the proof is similar for the latter.

However, for n ⩾ 4, g ′ does not satisfy any second order recurrence. For a contradiction

suppose g ′ does. By x ′y ′z ′ ≠ 0, ay ′ − b0 + c0 = 0 gives a = 0, ax ′ − by ′ + c0 = 0 gives b = 0,

and a0 − b0 + cz ′ = 0 gives c = 0; but a,b, c cannot be all zero.

Next suppose n = 3, and we show that g ′ = (Z−1)⊗nf is still impossible.

• For P1, f =
[

1
1

]⊗3
+ β

[
1
−1

]⊗3
. It is easy to check that (Z−1)⊗nf satisfies a second order

recurrence with its two eigenvalues sum to zero. However g ′ = [x ′,y ′, 0, z ′] has type

⟨y ′z ′, x ′z ′,−y ′2⟩, the sum of its two eigenvalues is −x ′z ′/y ′2 ≠ 0.
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• For M2, f =
[

1
γ

]⊗3 ±
[

1
−γ

]⊗3
. Since Z−1

[
1 1
γ −γ

]
has the form [u vv u ], (Z

−1)⊗nf = [uv ]
⊗3 ±

[ vu ]
⊗3. Thus the weight 1 and weight 2 entries of (Z−1)⊗nf are either equal or negative of

each other. If g ′ = (Z−1)⊗nf this would imply y ′ = 0, a contradiction.

• For A3, f = [ 1
α ]

⊗n
+ ir

[
1

−α

]⊗n
. Since Z−1

[
1 1
α −α

]
= [u vv u ], with u = 1−αi and v = 1+αi,

the weight 2 entry of (Z−1)⊗nf is uv2 + irvu2 = (uv)(v + iru). This is nonzero for all r.

However the weight 2 entry of g ′ = [x ′,y ′, 0, z ′] is 0.

It remains to show that Z⊗ng ̸∈ M3. If Z⊗ng ∈ M3, then Z⊗ng = cHf for some H ∈ O2(C)

and f = Symn−1
n

([
1
0

]
;
[

0
1

])
. Again f = (cH)−1Z⊗ng = Z⊗ng ′ for some g ′ having the same or

its reversal form as g. Then g ′ = (Z−1)⊗nf is the signature [n,n − 2, . . . ,−(n − 2),−n]. The

weight 1 entry and weight n− 1 entry have the same absolute value. By the form of g ′ this is a

contradiction.

Combine Lemma 5.19 with Theorem 1.14 and Theorem 3.39. For arity n = 3 or 4, Pl-Holant

(Z⊗ng) is #P-hard.

P1

A1

M1 A3

M2

A2 = P2

M3 M4

Figure 5.1: Relationships among A1, A2, A3, P1, P2, M1, M2, M3, and M4.

We note that M1 ⊂ A1 ⊂ P1 and A2 = P2 ⊂M2. Also note that P1∩M2 ⊆ A1. See Figure 5.1

for a visual description of the relationships among sets. Combine Corollary 5.14 with Lemma
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5.18.

Corollary 5.20. Let f be a non-degenerate signature. Then f is A-, P-, or M-transformable if and

only if f ∈ P1 ∪M2 ∪A3 ∪M∋ ∪M4.

To finish this section, we show that signatures in M3 are not A- or P-transformable.

Lemma 5.21. Let f ∈ M3 be a non-degenerate signature of arity n ⩾ 3 with H ∈ O2(C). Then

f is not A- or P-transformable. Moreover, f is M-transformable with only HD or H
[

0 1
1 0

]
D for

some diagonal matrix D.

Proof. Suppose f = [f0, f1, . . . , fn]. By Lemma 5.2, Definitions 5.6, 5.7, 5.9, and 5.12, and Corol-

lary 5.14, if f is A- or P-transformable, then f has to satisfy a second order recurrence relation

that afi+bfi+1+cfi+2 = 0, for a,b, c ∈ C such that not all a,b, c are 0 and b2−4ac ≠ 0. In other

words, the second order recurrence relation has to have distinct eigenvalues. Moreover, this

property is preserved by holographic transformations (cf. Lemma 6.2 in [CGW14]). However, f

is in M3. Hence f = H⊗nExactOnen for some H ∈ O2(C) up to a nonzero factor. On the other

hand, ExactOnen does not satisfy a second recurrence with distinct eigenvalues if n ⩾ 3, a

contradiction.

Moreover, notice that the only signatures in M that do not satisfy such second order re-

currence relations are ExactOnek and AllButOnek functions. If f is M-transformable, then

by Lemma 5.15, either f =
[

1 1
i −i

]⊗n
g for some g ∈ M, or there exists T ∈ O2(C) such that

f = T⊗ng for some g ∈ M. Hence g = ExactOnen or AllButOnen. On the other hand

f = H⊗nExactOnen up to a nonzero factor. It is easy to verify that f =
[

1 1
i −i

]⊗n
g is impossi-

ble. Therefore (T−1H)⊗nExactOnen = ExactOnen or AllButOnen up to a nonzero factor.

Let J = T−1H = [ x yz w ] and let h = J⊗nExactOnen. As ExactOnen = Symn−1
n (

[
1
0

]
;
[

0
1

]
),

h = ([ x yz w ])⊗nExactOnen = Symn−1
n ([ xz ] ; [

y
w ]). The first and last entries of h are xn−1y and

zn−1w. As h = ExactOnen or AllButOnen, we have that xn−1y = zn−1w = 0. It is easy to

see that x and z, or y and w cannot be both 0. Then x = w = 0 or y = z = 0. This implies that

J = D or J = D
[

0 1
1 0

]
for some diagonal matrix D. Thus T = HJ−1 = HD−1 or H

[
0 1
1 0

]
D−1.
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5.4 Related Hardness Results

Now we give dichotomy theorems when signatures from P1, M2\P2, A3, or M3 appear. A major

tool we use is the dichotomy for Pl-#CSP2, shown in [CFGW15]. Here Pl-#CSP2 denotes planar

#CSP problems where every variable appears a multiple of 2 times. The proof of Theorem 5.22

depends on Theorem 4.1, and is a complicated case analysis, which we will omit.

Theorem 5.22. Let F be a set of symmetric signatures. Then Pl-#CSP2(F) is #P-hard unless F

satisfies one of the following conditions:

1. there exists T ∈ T8 such that F ⊆ TA;

2. F ⊆ P;

3. there exists T ∈ T4 such that F ⊆ TM.

In each exceptional case, Pl-#CSP2(F) is computable in polynomial time.

We begin with P1. Recall that H2 is the 2-by-2 matrix 1√
2

[
1 1
1 −1

]
. We do some preparation

first.

Lemma 5.23. Let a,b ∈ C. If ab ̸= 0, then for any set F of complex-weighted signatures contain-

ing [a, 0, . . . , 0,b] of arity r ⩾ 3,

Pl-Holant(F ∪ {=4}) ⩽T Pl-Holant(F).

Proof. Since a ̸= 0, we can normalize the first entry to get [1, 0, . . . , 0, x], where x ̸= 0. First, we

show how to obtain an arity 4 generalized equality signature. If r = 3, then we connect two

copies together by a single edge to get an arity 4 signature. For larger arities, we form self-loops

until realizing a signature of arity 3 or 4. By this process, we have a signature g = [1, 0, 0, 0,y],

where y ≠ 0. If y is a pth root of unity, then we can directly realize =4 by connecting p copies

of g together, two edges at a time as in Figure 3.7. Otherwise, y is not a root of unity and we

can interpolate =4 as follows.

Consider an instance Ω of Pl-Holant(F ∪ {=4}). Suppose that =4 appears n times in Ω.

We stratify the assignments in Ω based on the assignments to =4. We only need to consider
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assignments that give all =4’s Hamming weights 0 and 4 since inputs of other Hamming weights

contributes 0. If there are imany =4’s having Hamming weight 0, then the rest n− imany have

Hamming weight 4. Let ci denote the summation of the product of evaluations of signatures

other than =4 inΩ over assignments which give imany =4’s Hamming weight 0. We can rewrite

the Holant on Ω as HolantΩ =
∑n
i=0 ci.

We construct from Ω a sequence of instances Ωs of Pl-Holant(F) indexed by s ⩾ 1. We

obtain Ωs from Ω by replacing each occurrence of =4 with a gadget gs created from s copies

of [1, 0, 0, 0,y], connecting two edges together at a time as in Figure 3.7. The Holant on Ωs is

HolantΩs =
n∑
i=0

(ys)ici.

For s ⩾ 1, this gives a coefficient matrix that is Vandermonde. Since y is neither 0 nor a root

of unity, ys is distinct for each s. Therefore, the Vandermonde system has full rank. We can

solve for the unknowns ci and obtain the value of HolantΩ.

Lemma 5.24. Let f ∈ P1 be a non-degenerate signature of arity n ⩾ 3 with an orthogonal trans-

formationH and F be a set of signatures containing f. Then Pl-#CSP2(H2H
−1F) ⩽T Pl-Holant(F).

Proof. By Definition 5.12, disregarding a nonzero constant factor, f has the following form:

f = H⊗n


1

1


⊗n

+ β

 1

−1


⊗n ,

where β ≠ 0. We do an orthogonal transformation by H2H
−1. By Theorem 1.2,

Pl-Holant(F) ≡ Pl-Holant(H2H
−1F).

Note that f =
(
H2H

−1
)⊗n

f ∈ H2H
−1F, and f = 2n/2

([
1
0

]⊗n
+
[

0
1

]⊗n)
. By Lemma 5.23, we

can obtain =4, the arity 4 equality signature. With this signature, we can realize any equality

signature of even arity. Thus, Pl-#CSP2(H2H
−1F) ⩽T Pl-Holant(F).

Combined with Theorem 5.22, Lemma 5.24 implies a dichotomy when P1 signatures appear.
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Corollary 5.25. Let F be a set of signatures. Suppose there exists f ∈ F which is a non-

degenerate signature of arity n ⩾ 3 in P1. Then Pl-Holant(F) is #P-hard unless F is A-, P-,

or M-transformable, in which case Pl-Holant(F) is tractable.

Proof. Assume that f ∈ P1 with H ∈ O2(C). Let H ′ = HH−1
2 ∈ O2(C). By Lemma 5.24 and Theo-

rem 5.22, Pl-Holant(F) is #P-hard unless (1) F ⊆ H ′P, or (2) F ⊆ H ′TA, or (3) F ⊆ H ′T ′ [ 1 1
1 −1

]
M,

where T ∈ T8 and T ′ ∈ T4. In case (1), F is P-transformable since (=2)H
′⊗2 = (=2) ∈ P. In case

(2), F is A-transformable since (=2)(H
′T)⊗2 = (=2)T

⊗2 ∈ A. In case (3), F is M-transformable.

If T ′ =
[

1 0
0 ±1

]
, then T ′ ∈ O2(C). So (=2)(H

′T ′ [ 1 1
1 −1

]
)⊗2 = (=2) ∈ M. If T ′ =

[
1 0
0 ±i

]
, then

T ′ [ 1 1
1 −1

]
=
[

1 1
i −i

]
, and (=2)(H

′T ′ [ 1 1
1 −1

]
)⊗2 = 2[0, 1, 0] ∈M.

In particular, we have the following corollary. It will be useful in Section 5.6 to prove the

single signature dichotomy for Pl-Holant.

Corollary 5.26. Suppose f is a non-degenerate signature of arityn ⩾ 5. Let f ′ be fwith a self loop.

If f ′ ∈ P1 is non-degenerate, then Pl-Holant(f) is #P-hard unless f is A-, P-, or M-transformable,

in which case Pl-Holant(f) is tractable.

We have similar results for A3.

Lemma 5.27. Let f ∈ A3 be a non-degenerate signature of arity n ⩾ 3 with an orthogonal

transformation H and F be a set of signatures containing f. Let α = eπi/4 and Y be the 2-by-2

matrix
[
α 1
−α 1

]
. Then Pl-#CSP2(YH−1F ∪ {[1,−i, 1]}) ⩽T Pl-Holant(F).

Proof. By Definition 5.9, disregarding a nonzero constant factor, f has the following form:

f = H⊗n


1

α


⊗n

+ ir

 1

−α


⊗n ,

for some integer r ∈ [4]. We do an orthogonal transformation H−1 and by Theorem 1.2,

Pl-Holant(F) ≡ Pl-Holant(H−1F). Let f =
(
H−1

)⊗n
f ∈ H−1F. It is easy to verify that fk+2 = ifk.

A self loop on f yields f
′
, where f

′
k = fk + fk+2 = (1 + i)fk. Thus up to the factor (1 + i),

f
′

is just the first n − 2 entries of f. By doing zero or more self loops, we eventually obtain
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a quaternary signature when n is even or a ternary one when n is odd. There are eight cases

depending on r ∈ [4] and the parity of n. We list all of them, disregarding nonzero factors:

[1, 0, i, 0], [0, 1, 0, i], [1,αi, i,−α], [1,−αi, i,α] for odd n;

[1, 0, i, 0,−1], [0, 1, 0, i, 0], [1,αi, i,−α,−1], [1,−αi, i,α,−1] for even n.

However, for any case, we can realize the signature [1, 0, i], due to the following. (In the calcu-

lations below, we omit certain nonzero constant factors without explanation.)

• [1, 0, i, 0]: Another self loop gives [1, 0]. Connect it back to the ternary to get [1, 0, i].

• [0, 1, 0, i]: Another self loop gives [0, 1]. Connect it back to the ternary to get [1, 0, i].

• [1,αi, i,−α]: Another self loop gives [1,αi]. Connect two copies of it to the ternary to get

[1,−α]. Then connect this back to the ternary to finally get [1, 0, i]. See Figure 5.2a.

• [1,−αi, i,α]: Same construction as the previous case.

• [1, 0, i, 0,−1]: Another self loop gives [1, 0, i] directly.

• [0, 1, 0, i, 0]: Another self loop gives [0, 1, 0]. Connect it back to the quaternary to get

[1, 0, i].

• [1,αi, i,−α,−1]: Another self loop gives [1,αi, i]. Connect two copies of it together to get

[1,−α,−i]. Connect this back to the quaternary to get [1, 0, i]. See Figure 5.2b.

• [1,−αi, i,α,−1]: Same construction as the previous case.

(a) Vertices assigned [1,αi, i,−α]. (b) Vertices assigned [1,αi, i,−α,−1].

Figure 5.2: Constructions to realize [1, 0, i].

With [1, 0, i] in hand, we can connect three copies of it to get [1, 0,−i]. Now we construct a

bipartite graph, withH−1F∪{=2} on the right side and [1, 0,−i] on the left, and do a holographic
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transformation by Y =
[
α 1
−α 1

]
to get

Pl-Holant
(
[1, 0,−i] | H−1F ∪ {f,=2}

)
≡T Pl-Holant

(
[1, 0,−i](Y−1)⊗2 | YH−1F ∪ {Y⊗nf,Y⊗2(=2)}

)
≡T Pl-Holant

(
1
2i [1, 0, 1] | YH−1F ∪ {[1, 0, . . . , 0, ik], [1,−i, 1]}

)
≡T Pl-Holant

(
YH−1F ∪ {[1, 0, . . . , 0, ik], [1,−i, 1]}

)
.

Notice that f becomes g := [1, 0, . . . , 0, ik] where k = r+2n (after normalizing the first entry) and

=2 on the right becomes [1,−i, 1]. On the other side, [1, 0,−i] becomes [1, 0, 1]. With g, we can

construct all Equality signatures of even arity as follows. First connect 4 copies of g together

arbitrarily to get an Equality =t of some arity t ⩾ 3. One or more self-loops of =t gives =3 or

=4 eventually. Then =4 is just two =3 connected by one edge. From =4 it is easy to construct

any Equality of even arity. Hence, Pl-#CSP2(YH−1F ∪ {[1,−i, 1]}) ⩽T Pl-Holant(F).

Corollary 5.28. Let F be a set of signatures. Suppose there exists f ∈ F which is a non-degenerate

signature of arity n ⩾ 3 in A3. Then Pl-Holant(F) is #P-hard unless F is A- or M-transformable,

in which case Pl-Holant(F) is tractable.

Proof. Assume that f ∈ A3 with H ∈ O2(C). By Lemma 5.27, we have Pl-#CSP2(YH−1F ∪

{[1,−i, 1]}) ⩽T Pl-Holant(F), where Y =
[
α 1
−α 1

]
and α = eπi/4. Let g = [1,−i, 1] and F ′ =

YH−1F ∪ {g}.

We apply Theorem 5.22 to Pl-#CSP2(F ′). Then Pl-#CSP2(F ′) (and hence Pl-Holant (F)) is #P-

hard unless F ′ ⊆ P, F ′ ⊆
[

1 0
0 ir
]
M for some integer 0 ⩽ r ⩽ 3, or F ′ ⊆

[
1 0
0 αr

]
A for some integer

0 ⩽ r ⩽ 7 where α = eiπ/4. Notice that g ̸∈ P and hence the first case is impossible.

Suppose F ′ ⊆
[

1 0
0 ir
]
M for some integer 0 ⩽ r ⩽ 3. Then as g ̸∈

[
1 0
0 ir
]
M for r = 1, 3, we have

that YH−1F ⊆
[

1 0
0 ±1

]
M. Moreover, notice that

[
1 0
0 −1

]
M =

[
1 1
1 −1

] [
0 1
1 0

]
M =

[
1 1
1 −1

]
M = M.

Hence YH−1F ⊆M. Rewrite Y as Y =
[

1 1
−1 1

] [
α 0
0 1

]
. We deduce that

H−1F ⊆ 1
2

[
α−1 0

0 1

] [
1 −1
1 1

]
M = 1

2

[
α−1 0

0 1

] [
1 −1
1 1

] [
1 1
1 −1

]
M

=
[
α−1 0

0 1

] [
0 1
1 0

]
M = M.
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Hence F is M-transformable in this case.

The last case is when F ′ ⊆
[

1 0
0 αr

]
A for some integer 0 ⩽ r ⩽ 7. It implies that r = 0, 2, 4, 6

as g ∈
[

1 0
0 αr

]
A and g ̸∈

[
1 0
0 α

]
A. That is, F ′ ⊆

[
1 0
0 il
]
A for some integer 0 ⩽ l ⩽ 3. Notice that[

1 0
0 il
]
∈ Stab(A). It implies that YH−1F ⊆ A. Again, rewriting Y as Y =

[
1 1
−1 1

] [
α 0
0 1

]
, we have

H−1F ⊆ 1
2

[
α−1 0

0 1

] [
1 −1
1 1

]
A = 1

2

[
α−1 0

0 1

]
A.

Therefore F is A-transformable. This finishes the proof.

Similarly, we specialize Corollary 5.28 to our need.

Corollary 5.29. Let f be a non-degenerate signature of arityn ⩾ 5. Let f ′ be fwith a self loop, and

f ′ is non-degenerate and f ′ ∈ A3. Then Pl-Holant(f) is #P-hard unless f is A- or M-transformable,

in which case Pl-Holant(f) is tractable.

The next case is when f is in M2 but not P2.

Lemma 5.30. Let f ∈M2 \ P2 be a non-degenerate signature of arity n ⩾ 3 with an orthogonal

transformation H. Then f = cH⊗n
([

1
γ

]⊗n ± [ 1
−γ

]⊗n)
for some c ≠ 0 and γ ≠ 0,±i.

Let F be a set of signatures containing f, T = H
[

1 1
γ −γ

]
, and g = [1+γ2, 1−γ2, 1+γ2]. Then,

Pl-#CSP2(T−1F,g) ⩽T Pl-Holant (F) . (5.1)

Proof. The first claim follows from Definition 5.16, Lemma 5.8, and the fact that A2 = P2. In

the rest we show (5.1). We will ignore the nonzero factor c.

First assume that f = H⊗n
([

1
γ

]⊗n
+
[

1
−γ

]⊗n)
with the + sign. We do the transformation

T :

Pl-Holant (=2 | f,F) ≡T Pl-Holant

(
[1, 0, 1]H⊗2

[
1 1
γ −γ

]⊗2
∣∣∣∣ ([ 1 1

γ −γ

]−1
)⊗n (

H−1
)⊗n

f, T−1F

)
≡T Pl-Holant

(
g | =n, T−1F

)
.

By connecting g to =n, we get =n−2 up to a constant factor of 1 + γ2 ≠ 0 as γ ≠ ±i. We repeat

this process. If n is even, then we get =2 eventually, which is on the right hand side. If n is odd,
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then eventually we get =3 and (=1) = [1, 1] on the right. Connecting [1, 1] to g we get 2[1, 1] on

the left. Then connecting [1, 1] to =3 we get =2 on the right. To summarize, we get that

Pl-Holant
(
g | =2,=n, T−1F

)
⩽T Pl-Holant

(
g | =n, T−1F

)
⩽T Pl-Holant (f,F) . (5.2)

Then we show that

Pl-Holant
(
=2,g | =2,=n, T−1F

)
⩽T Pl-Holant

(
g | =2,=n, T−1F

)
. (5.3)

Let N =
[

1+γ2 1−γ2

1−γ2 1+γ2

]
be the signature matrix of g. If there is a positive integer k and a nonzero

constant c ′ such that Nk = c ′I2, where I2 is the 2-by-2 identity matrix, then we may directly

implement =2 on the left by connecting k copies of [1 + γ2, 1 − γ2, 1 + γ2] via =2 on the right.

It implies (5.3) holds.

Otherwise such k and c ′ do not exist. The two eigenvalues of N are λ1 = 2 and λ2 = 2γ2.

If λ1 = λ2, then γ2 = 1 and N =
[

2 0
0 2

]
. Contradiction. Hence λ1 ̸= λ2, and N is diagonalizable.

Let N = P
[
λ1 0
0 λ2

]
P−1, for some non-singular matrix P. By connecting l many copies of N on

the left via =2 on the right, where l is a positive integer, we can implement Nl = P
[
λl1 0

0 λl2

]
P−1.

Since N does not have finite order up to a scalar, for any positive integer l, (λ1/λ2)
l ≠ 1.

Consider an instanceΩ of Pl-Holant
(
=2,g |=2,=n, T−1F

)
. Suppose that the left =2 appears

t times. Let l be a positive integer. We obtain Ωl from Ω by replacing each occurrence of =2

on the left with Nl.

SinceNl = P
[
λl1 0

0 λl2

]
P−1, we can view our construction ofΩl as replacingNl by 3 signatures,

with matrix P,
[
λl1 0

0 λl2

]
, and P−1, respectively. This does not change the Holant value,

We stratify the assignments in Ωl based on the assignments to the t occurrences of the

signature whose matrix is the diagonal matrix
[
λl1 0

0 λl2

]
. Suppose there are i many times it was

assigned 00 with function value λl1, and j times 11 with function value λl2. Clearly i + j = t if

the assignment has a nonzero evaluation. Let cij be the sum over all such assignments of the

products of evaluations of all signatures (including the signatures corresponding to matrices
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P and P−1) in Ωl except for this diagonal one. Then

HolantΩl =
∑
i+j=t

(
λl1
)i (
λl2
)j
cij

= λlt2
∑

0⩽i⩽t

((
λ1

λ2

)l)i
ci,t−i.

By an oracle of Pl-Holant
(
g |=2,=n, T−1F

)
, we can get HolantΩl for any 1 ⩽ l ⩽ t + 1. Recall

that for any positive integer l, (λ1/λ2)
l ≠ 1. This implies that for any two distinct integers

i, j ⩾ 0, (λ1/λ2)
i ≠ (λ1/λ2)

j. Therefore we get a non-singular Vandermonde system. We can

solve all cij for i+ j = t given HolantΩl for all 1 ⩽ l ⩽ t+ 1. Then notice that
∑
i+j=t cij is the

Holant value of Ωl by replacing both λl1 and λl2 with 1, which is the instance Ω as PI2P−1 = I2.

Therefore we may compute HolantΩ via t+ 1 many oracle calls to Pl-Holant
(
g | =2,=n, T−1F

)
.

This finishes the reduction in (5.3).

In the left hand side of (5.3) we have =2 on both sides. Therefore we may lift the bipartite

restriction. Combining it with (5.2), we get

Pl-Holant
(
=n,g, T−1F

)
⩽T Pl-Holant (f,F) .

Notice that given an equality of arity n ⩾ 3, we can always construct all equalities of even

arity in a planar way, regardless of the parity of n. Therefore, we have Pl-#CSP2(T−1F,g) ⩽T

Pl-Holant (F).

To prove (5.1), there is another case that f = H⊗n
([

1
γ

]⊗n
−
[

1
−γ

]⊗n)
, with the − sign.

Again we do the transformation T , where (T−1)⊗f = [1, 0, . . . , 0,−1] has arity n:

Pl-Holant (=2 | f,F) ≡T Pl-Holant
(
g | [1, 0, . . . , 0,−1], T−1F

)
.

We then do the same construction as in the previous case of connecting g to [1, 0, . . . , 0,−1]

repeatedly. Depending on the parity of n, we have two cases.

1. If n is odd, then eventually we get [1, 0, 0,−1] and [1,−1] on the right as γ ≠ ±i, and

therefore 2γ2[1,−1], i.e., [1,−1] on the left as γ ≠ 0. Then connecting [1,−1] to [1, 0, 0,−1]
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we get =2 on the right. Thus, for odd n,

Pl-Holant
(
g | =2, [1, 0, . . . , 0,−1], T−1F

)
⩽T Pl-Holant

(
g | [1, 0, . . . , 0,−1], T−1F

)
⩽T Pl-Holant (f,F) .

Notice that our previous binary interpolation proof only relies on g and =2. Hence we get

Pl-Holant
(
g | =2, [1, 0, . . . , 0,−1], T−1F

)
⩾T Pl-Holant

(
=2,g | =2, [1, 0, . . . , 0,−1], T−1F

)
≡T Pl-Holant([1, 0, . . . , 0,−1],g, T−1F).

Moreover it is straightforward to construct all even equalities from [1, 0, . . . , 0,−1] in the

normal Pl-Holant setting as n ⩾ 5. Combining everything together gives us

Pl-#CSP2(g, T−1F) ⩽T Pl-Holant (F) .

2. Otherwise n is even. By the same construction of connecting g to [1, 0, . . . , 0,−1] repeat-

edly, we get [1, 0, 0, 0,−1] and [1, 0,−1] on the right eventually. Then we connect two

copies of g via [1, 0,−1], resulting in
[

1+γ2 1−γ2

1−γ2 1+γ2

] [
1 0
0 −1

] [ 1+γ2 1−γ2

1−γ2 1+γ2

]
= 4γ2

[
1 0
0 −1

]
on the

left. Then connect [1, 0,−1] to [1, 0, 0, 0,−1] to get [1, 0, 1] on the right. At last we connect

two [1, 0,−1]’s on the left via [1, 0, 1] on the right to get [1, 0, 1] on the left. Then it reduces

to the previous case.

Corollary 5.31. Let F be a set of signatures. Suppose there exists f ∈ F which is a non-degenerate

signature of arity n ⩾ 3 in M2 \ P2. Then Pl-Holant (F) is #P-hard unless F is A-, P-, or M-

transformable, in which case Pl-Holant (F) is tractable.

Proof. By Lemma 5.30, we have (5.1). We apply Theorem 5.22 to Pl-#CSP2(T−1F,g). Then we

have that Pl-#CSP2(T−1F,g) (and hence Pl-Holant(F)) is #P-hard unless T−1F ∪ {g} ⊆ P, or

T−1F ∪ {g} ⊆
[

1 0
0 ir
]
M for some integer 0 ⩽ r ⩽ 3, or T−1F ∪ {g} ⊆

[
1 0
0 αr

]
A for some integer

0 ⩽ r ⩽ 7 where α = eiπ/4. We discuss each case.

1. The first case is that T−1F ∪ {g} ⊆ P. Recall that γ ≠ 0 or ±i, it can be verified that g ̸∈ P
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unless γ2 = 1. Hence γ = ±1. In either case we have that
[

1 1
γ −γ

]
is an orthogonal matrix

up to a nonzero scalar, and hence so is T . It implies that F is P-transformable.

2. Next suppose T−1F ∪ {g} ⊆
[

1 0
0 ir
]
M for some integer 0 ⩽ r ⩽ 3. If γ = ±1, then T is

an orthogonal matrix as
[

1 1
γ −γ

]
is, up to a factor of 1√

2
. Hence F is M-transformable,

as F ⊆ T
[

1 0
0 ir
] [

1 1
1 −1

]
M and (=2)

(
T
[

1 0
0 ir
] [

1 1
1 −1

])⊗2
is either [1, 0, 1] when r = 0, 2, or

[0, 1, 0] when r = 1, 3, up to a nonzero factor.

Otherwise γ2 ≠ 1 and it is straightforward to verify that g ̸∈
[

1 0
0 ir
]
M for r = 1, 3. Hence we

may assume that T−1F ⊆
[

1 0
0 ±1

]
M. Moreover,

[
1 0
0 −1

]
M =

[
1 1
1 −1

] [
0 1
1 0

]
M =

[
1 1
1 −1

]
M =

M. Then T−1F ⊆M. As T−1 =
[

1 1
γ −γ

]−1
H−1, it implies that

H−1F ⊆
[

1 1
γ −γ

]
M =

[
1 0
0 γ

] [
1 1
1 −1

] [
1 1
1 −1

]
M

=
[

1 0
0 γ

]
M = M.

Hence F ⊆ HM and F is M-transformable.

3. In the last case, T−1F ∪ {g} ⊆
[

1 0
0 αr

]
A for some integer 0 ⩽ r ⩽ 7. If γ = ±1, then T is

an orthogonal matrix as
[

1 1
γ −γ

]
is, up to a factor of 1√

2
. Hence F is A-transformable, as

F ⊆ T
[

1 0
0 αr

]
A and (=2)

(
T
[

1 0
0 αr

])⊗2
is [1, 0, ir] ∈ A, up to a nonzero factor.

Otherwise γ2 ≠ 1 and g ̸∈
[

1 0
0 αr

]
A for any integer r = 1, 3, 5, 7. Hence T−1F ∪ {g} ⊆ A

as
[

1 0
0 ir
]
A = A for any integer 0 ⩽ r ⩽ 3. If 1+γ2

1−γ2 ≠ ±i, then one can check that

g ̸∈ A. A contradiction. Otherwise 1+γ2

1−γ2 = ±i. It implies that γ = αl for some integer

l = 1, 3, 5, 7. We may assume l = 1 as other cases are similar. In this case it is possible

that T−1F ∪ {g} ⊆ A. As T−1 =
[

1 1
γ −γ

]−1
H−1 =

[
1 1
α −α

]−1
H−1, it implies that

H−1F ⊆
[

1 1
α −α

]
A =

[
1 0
0 α

] [
1 1
1 −1

]
A =

[
1 0
0 α

]
A.

Hence, F is A-transformable by Lemma 5.5. This finishes the proof.

Corollary 5.31 leads to the following specialization.
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Corollary 5.32. Let f be a non-degenerate signature of arity n ⩾ 5. Let f ′ be f with a self loop,

and f ′ is non-degenerate and f ′ ∈ M2 \ P2. Then Pl-Holant(f) is #P-hard unless f is A-, P-, or

M-transformable, in which case Pl-Holant(f) is tractable.

(a) Triangle gadget (b) Planar tetrahedron gadget

Figure 5.3: Two gadgets used to create a signature in M2 \ P2.

We can reduce the case of f ∈M3 to the previous case.

Lemma 5.33. Let F be a set of signatures. Suppose there exists f ∈ F which is a non-degenerate

signature of arity n ⩾ 3 in M3 with H ∈ O2(C). Then Pl-Holant(F) is #P-hard unless F ⊆ HM, in

which case F is M-transformable and Pl-Holant(F) is tractable.

Proof. We first claim that Pl-Holant(F) is #P-hard unless F is A-, P-, or M-transformable.

By the definition of M3, we may assume that f = ExactOnen is of arity n after an or-

thogonal transformation H. After zero or more self loops, we can further assume that either

f = ExactOne3 or f = ExactOne4 depending on the parity of n.

Suppose f = ExactOne3. Consider the gadget in Figure 5.3a. We assign f to all vertices.

The signature of the resulting gadget is g = [0, 1, 0, 1], which is in M2 and not in P2 = A2 by

Lemma 5.8. Thus, the claim follows from Corollary 5.31.

Otherwise, f = ExactOne4. Consider the gadget in Figure 5.3b. We assign f to all vertices.

Note that this is a matchgate. The signature of the resulting gadget is [0, 2, 0, 1, 0], which is in

M2 and not in P2 = A2 by Lemma 5.8. Thus, the claim follows from Corollary 5.31.

However, as f ∈ F and f ∈ M3, F cannot be A- or P-transformable by Lemma 5.21. Also by

Lemma 5.21, if F is M-transformable, then F ⊆ HDM or H
[

0 1
1 0

]
DM for some diagonal matrix

D. Notice that D ∈ Stab(M) and
[

0 1
1 0

]
D ∈ Stab(M). It implies that F ⊆ HM.

Once again, we specialize Lemma 5.33 to our needs.
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Corollary 5.34. Let f be a non-degenerate signature of arity n ⩾ 5. Let f ′ be f with a self loop,

and f ′ is non-degenerate and f ′ ∈M3. Then Pl-Holant(f) is #P-hard unless f is M-transformable,

in which case Pl-Holant(f) is tractable.

5.5 Hardness results for the Inductive Step

To finish this chapter, we will prove Theorem 5.41, which is the single signature dichotomy for

Holant and Pl-Holant problems. We prove Theorem 5.41 by induction on the arity. It relies on

the following key lemma. The important assumption here is that f ′ is non-degenerate.

Lemma 5.35. Suppose f is a non-degenerate signature of arity n ⩾ 5. Let f ′ be f with a self

loop. If f ′ ∈ P1 ∪ M2 ∪ A3 ∪ M3 ∪ V is non-degenerate, then Pl-Holant(f) is #P-hard unless

f ∈ P1 ∪M2 ∪A3 ∪M3 ∪ V.

Lemma 5.35 depends on several results, each of which handles a different case. In fact, the

proof of Lemma 5.35 is a straightforward combination of Lemma 3.49 (for V) from Section 3.7,

Corollary 5.26 (for P1), Corollary 5.29 (for A3), Corollary 5.32 (for M2 \ P2), and Corollary 5.34

(for M3) from Section 5.4, as well as Corollary 5.37 (for P2), which will be proved shortly.

...

(a) An arity-4 construction

...

(b) A binary construction

Figure 5.4: Two gadgets in the Z basis. In the normal basis, circles are assigned f
and squares are assigned =2. In the Z basis, circles are assigned f and squares are
assigned ≠2.

Lemma 5.36. Let f be a non-degenerate signature of arity n ⩾ 5. If f = Z⊗n[a, 1, 0, . . . , 0, 1,b]

for some a,b ∈ C, where the number of 0’s is n− 3. Then Pl-Holant(f) is #P-hard.

Proof. First we use the gadget in Figure 5.4a, where we put f on both circles, and squares are

=2. Let the resulting signature be h = Z⊗4h. It is easier to calculate h, that is, h in the Z basis.
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Indeed, h is not symmetric, but h has the following matrix representation as n ⩾ 5:

Mh =



0 a a ab+ (n− 2)

a 2 2 b

a 2 2 b

ab+ (n− 2) b b 0


.

Notice that this matrix is redundant, and det(M̃h) = −4(n − 2)(ab + n − 2). If ab ≠ 2 − n,

then by Corollary 3.30, Pl-Holant(h) is #P-hard, and so is Pl-Holant(f). Hence in the following

we assume that ab = 2 − n.

Let f ′ be f with a self loop. Then apply the Z transformation as follows:

Pl-Holant
(
=2 | f, f ′

)
≡T Pl-Holant

(
[0, 1, 0] | f, f ′

)
,

where f ′ = [1, 0, . . . , 0, 1] and f = [a, 1, 0, . . . , 0, 1,b] for some a,b ∈ C. We get this expression of

f ′ because doing a self loop commutes with the operation of holographic transformations.

We connect f ′ to f via [0, 1, 0], getting [a, 2,b]. Then we connect [a, 2,b] to f via [0, 1, 0] again,

getting g = [ab+ 4,b, 0, . . . , 0,a,ab+ 4] of arity n− 2.

If n ⩾ 7, then we use the gadget in Figure 5.4a again, where we put g on both vertices this

time. We get some signature h ′, which in Z basis has the following matrix representation as

n− 2 ⩾ 5:

Mh ′ =



0 a(ab+ 4) a(ab+ 4) (n− 4)ab+ (ab+ 4)2

a(ab+ 4) 2ab 2ab b(ab+ 4)

a(ab+ 4) 2ab 2ab b(ab+ 4)

(n− 4)ab+ (ab+ 4)2 b(ab+ 4) b(ab+ 4) 0


.

Once again this matrix is redundant. It can be simplified as ab = 2−n. The compressed matrix
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is

M̃h ′ =


0 −2(n− 6)a −6n+ 28

−(n− 6)a 8 − 4n −(n− 6)b

−6n+ 28 −2(n− 6)b 0

 .

It is easy to compute that det(M̃h ′) = −8(3n−14)(ab(n−6)2 −6n2 +40n−56) = 8(n−4)(n−

2)2(3n− 14). Since n ⩾ 7, det(M̃h ′) > 0. Then by Corollary 3.30, Pl-Holant(h ′) is #P-hard, and

so is Pl-Holant(f).

The remaining cases are n = 6 and n = 5. When n = 6, ab = 2 − n = −4. Moreover, g has

arity 4 and g = [ab+4,b, 0,a,ab+4] = [0,b, 0,a, 0]. We do one more self loop on g via [0, 1, 0] in

the Z basis, resulting in g ′ = [b, 0,a]. Connecting g ′ to f via [0, 1, 0], we get g1 = [a2,a, 0,b,b2].

Hence det(M̃g1) = −4a2b2 = −64 ≠ 0. Then we are done by Corollary 3.30.

At last, n = 5 and ab = 2 − n = −3. We also have g = [ab+ 4,b,a,ab+ 4] = [1,b,a, 1]. One

more self loop on g via [0, 1, 0] in the Z basis results in g ′′ = [b,a]. Connecting g ′′ to f via [0, 1, 0],

we get g2 = [a2+b,a, 0,b,b2+a]. Hence det(M̃g2) = −2(a3+2a2b2+b3) = −2(a3+b3+18). If

a3+b3+18 ≠ 0, then we are done by Corollary 3.30. Otherwise a3+b3 = −18, and we construct

a binary signature [a, 0,b] by doing a self-loop on g2 in the Z basis. Then we construct another

unary signature by connecting g ′′ = [b,a] to [a, 0,b] via [0, 1, 0], which gives [a2,b2]. Connecting

[a2,b2] to f via [0, 1, 0], we have another arity-4 signature g3 = [ab2 +a2,b2, 0,a2,a2b+b2]. We

compute det(M̃g3) = −2(a6 + a5b2 + a2b5 + b6) = −2(a6 + b6 − 162). If a6 + b6 − 162 ≠ 0,

again we are done by Corollary 3.30. Otherwise a6 + b6 = 162. Together with a3 + b3 = −18

and ab = −3, there is no solution of a and b. This finishes the proof.

This lemma essentially handles the case of f ′ ∈ P2 due to the following corollary.

Corollary 5.37. Suppose f be a non-degenerate signature of arity n ⩾ 5. Let f ′ be f with a self

loop. If f ′ ∈ P2 is non-degenerate, then Pl-Holant(f) is #P-hard.

Proof. Since f ′ ∈ P2, we have that f ′ = Z⊗n−2[1, 0, . . . , 0, 1] up to an orthogonal transformation

H. Since H does not change the complexity, we may assume we are under this transformation.

Then f is of the form Z⊗n[a, 1, 0, . . . , 0, 1,b]. The claim follows by Lemma 5.36.
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(a) ( ̸=2 | [0, 1, 0, 0, 0], [0, 0, 0, 1, 0],g)-gate on right
side

(b) Simpler construction with the same signature

Figure 5.5: Two gadgets with the same signature used in Lemma 5.39.

(a) Negating the second and fourth inputs (b) Movement of even Hamming weight en-
tries

Figure 5.6: The movement of the even Hamming weight entries in the signature
matrix of a quaternary signature under the negation of the second and fourth inputs
(i.e. the square vertices are assigned [0, 1, 0]).

(a) Gadget with a useful signature matrix

...

...

(b) Gadget that realizes a partial crossover

Figure 5.7: Two quaternary gadgets used in the proof of Lemma 5.39 and 5.40.
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Lemma 5.35 does not solve the case when f ′ is degenerate. In general, when f ′ is degenerate,

the inductive step is straightforward unless f ′ is also vanishing. Lemma 5.38 and 5.40 are the

two missing pieces to this end.

Lemma 5.38. Let a,b ∈ C. Suppose f is a signature of the form Z⊗n[a, 1, 0, . . . , 0,b] with arity

n ⩾ 3. If ab ≠ 0, then Pl-Holant(f) is #P-hard.

Proof. We prove by induction on n. For n = 3 or 4, it follows from Lemma 5.19, Theorem 1.14,

and Theorem 3.39 that Pl-Holant(f) is #P-hard.

Now assume n ⩾ 5. Under a holographic transformation by Z =
[

1 1
i −i

]
, we have

Pl-Holant (=2 | f) ≡T Pl-Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)
≡T Pl-Holant

(
[0, 1, 0] | f

)
,

where f = [a, 1, 0, . . . , 0,b]. Now consider the gadget in Figure 5.4b with f assigned to both

circles, and [0, 1, 0] both squares. This gadget has the binary signature g1 = [0,ab, 2b], which

is equivalent to [0,a, 2] since b ≠ 0. Translating back by Z to the original setting, this signature

is g1 = [a+ 1,−i,a− 1]. This can be verified as

1 1

i −i


0 a

a 2


1 1

i −i


T

= 2

a+ 1 −i

−i a− 1

 .

By the form of g1 = [0,ab, 2b] and b ≠ 0, it follows from Lemma 3.14 that g1 ̸∈ R+
2 . Moreover,

since a ≠ 0, g1 is non-degenerate.

Doing a self loop on f yields f ′ = Z⊗n−2[1, 0, . . . , 0]. Connecting f ′ back to f, we get a

binary signature g2 = Z⊗2[0, 0,b]. Once again we connect g2 to f, the resulting signature is

h = Z⊗n−2[a, 1, 0, . . . , 0] of arity n− 2 ⩾ 3 up to the constant factor of b ≠ 0.

Notice that h is non-degenerate and h ∈ V+. By Lemma 3.43, Pl-Holant(h,g1) is #P-hard,

hence Pl-Holant(f) is also #P-hard.

The next case is similar to Lemma 5.38 but a = 0. We need the following technical lemma.
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Lemma 5.39. Let g be the arity 4 signature whose matrix is

Mg =



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


. (5.4)

Then Pl-Holant (≠2 | [0, 1, 0, 0, 0], [0, 0, 0, 1, 0],g) is #P-hard.

Proof. Consider the gadget in Figure 5.5a. We assign [0, 0, 0, 1, 0] to the triangle vertices, [0, 1, 0,

0, 0] to the circle vertices, g to the pentagon vertex, and [0, 1, 0] to the square vertices. Let h

be the signature of this gadget. By adding two more disequality signatures and then grouping

appropriately, it is clear that the gadget in Figure 5.5b has the same signature of the gadget

in Figure 5.5a, where the circle vertices are still assigned [0, 1, 0, 0, 0], the square vertices are

still assigned [0, 1, 0], and the diamond vertex is assigned =4. To compute the signature h, first

compute the signature h
′
of the inner gadget enclosed by the dashed line, which has signature

matrix

M
h

′ =



3 0 0 1

0 1 0 0

0 0 1 0

1 0 0 1


. Then by Figure 5.6, the signature matrix of h is Mh =



0 0 0 1

0 1 3 0

0 1 1 0

1 0 0 0


.

One more gadget before we finish the proof using interpolation. Consider the gadget in Fig-

ure 5.7a. We assign h to the circle vertices and [0, 1, 0] to the square vertices. The signature of

the resulting gadget is r with signature matrix Mr (see Figure 3.2 for the signature of a rotated

copy of h that appears as the second circle vertex in Figure 5.7a), where

Mr =



0 0 0 1

0 1 3 0

0 1 1 0

1 0 0 0



0 1

1 0

⊗
0 1

1 0





0 0 0 1

0 1 1 0

0 3 1 0

1 0 0 0


=



0 0 0 1

0 6 4 0

0 4 2 0

1 0 0 0


.
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Consider an instance Ω of Pl-Holant (≠2 | F ∪ {r ′}) with r ∈ F, where the signature matrix of r ′

is

Mr ′ =



0 0 0 1

0 3 1 0

0 1 1 0

1 0 0 0


.

Suppose that r ′ appears n times in Ω. We construct from Ω a sequence of instances Ωs of

Pl-Holant (≠2 | F) indexed by s ⩾ 1. We obtain Ωs from Ω by replacing each occurrence of r ′

with the gadgetNs in Figure 3.7 with r assigned to the circle vertices and [0, 1, 0] assigned to the

square vertices. In Ωs, the edge corresponding to the ith significant index bit of Ns connects

to the same location as the edge corresponding to the ith significant index bit of r ′ in Ω.

We can express the signature matrix of Ns as

MNs = X(XMr)
s = XP diag

(
1, 4 + 2

√
3, 4 − 2

√
3, 1
)s
P−1,

where

X =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


and P =



1 0 0 0

0 1 1 0

0
√

3 −
√

3 0

0 0 0 1


.

Since Mr ′ = XP diag
(

1, 1 +
√

3, 1 −
√

3, 1
)
P−1, we can view our construction of Ωs as first

replacingMr ′ with XP diag
(

1, 1 +
√

3, 1 −
√

3, 1
)
P−1, which does not change the Holant value,

and then replacing the diagonal matrix with the diagonal matrix diag
(

1, 4 + 2
√

3, 4 − 2
√

3, 1
)s

.

We stratify the assignments in Ω based on the assignments to the n occurrences of the

signature whose signature matrix is the diagonal matrix



1 0 0 0

0 1 +
√

3 0 0

0 0 1 −
√

3 0

0 0 0 1


. (5.5)
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We only need to consider the assignments that assign

• i many times the bit patterns 0000 or 1111,

• j many times the bit pattern 0110, and

• k many times the bit pattern 1001,

since any other assignment contributes a factor of 0. Let cijk be the sum over all such assign-

ments of the products of evaluations of all signatures (including the signatures corresponding

to the signature matricesX, P, and P−1) inΩ except for signature corresponding to the signature

matrix in (5.5). Then

HolantΩ =
∑

i+j+k=n

(
1 +
√

3
)j (

1 −
√

3
)k
cijk

and the value of the Holant on Ωs, for s ⩾ 1, is

HolantΩs =
∑

i+j+k=n

((
4 + 2

√
3
)j (

4 − 2
√

3
)k)s

cijk =
∑

i+j+k=n

((
4 + 2

√
3
)j−k

4k
)s
cijk.

We argue that this Vandermonde system has full rank, which is to say that

(
4 + 2

√
3
)j−k

4k ̸=
(

4 + 2
√

3
)j ′−k ′

4k
′

unless (j, k) = (j ′, k ′). Suppose otherwise. Then we have that
(

4 + 2
√

3
)j−k−(j ′−k ′)

4k−k
′
= 1.

Since any nonzero integer power of 4 + 2
√

3 is not rational, we must have j − k = j ′ − k ′.

Moreover, 4k−k
′
= 1, and hence k = k ′ and j = j ′.

Therefore, we can solve for the unknown cijk’s and obtain the value of HolantΩ. Then after

a counterclockwise rotation of r ′ (c.f. Figure 3.2), we are done by Corollary 3.30.

With Lemma 5.39 at hand, we continue to prove Lemma 5.40.

Lemma 5.40. Let b ∈ C. Suppose f is a signature of the form Z⊗n[0, 1, 0, . . . , 0,b] with arity

n ⩾ 4. If b ≠ 0, then Pl-Holant(f) is #P-hard.

Remark For n = 3, Z⊗3[0, 1, 0,b] is tractable, as it is M-transformable.
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Proof. If n = 4, then we are done by Corollary 3.30. Thus, assume that n ⩾ 5.

Under a holographic transformation by Z =
[

1 1
i −i

]
, we have

Pl-Holant (=2 | f) ≡T Pl-Holant
(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf

)
≡T Pl-Holant

(
[0, 1, 0] | f

)
,

where f = [0, 1, 0, . . . , 0,b]. We show how to construct the following three signatures: [0, 0, 0, 1, 0],

[0, 1, 0, 0, 0], and g, where g is defined by (5.4). Then we are done by Lemma 5.39.

Consider the gadget in Figure 5.4a. We assign f to the circle vertices and [0, 1, 0] to the

square vertices. The signature of the resulting gadget is [0, 0, 0, 1, 0] up to a nonzero factor of

b.

Taking a [0, 1, 0] self loop on [0, 0, 0, 1, 0] gives [0, 0, 1] = [0, 1]⊗2. We connect this back to

f through [0, 1, 0] until the arity of the resulting signature is either 4 or 5, depending on the

parity of n. If n is even, then we have [0, 1, 0, 0, 0] as desired. Otherwise, n is odd and we have

[0, 1, 0, 0, 0,b/0], where the last entry is b if n = 5 and 0 if n > 5. Connection [0, 1]⊗2 through

[0, 1, 0] to f twice more gives [0, 1]. We connect this through [0, 1, 0] to [0, 1, 0, 0, 0,b/0] to get

[0, 1, 0, 0, 0] as desired.

Taking a [0, 1, 0] self loop on [0, 1, 0, 0, 0] gives [1, 0, 0] = [1, 0]⊗2. Now consider the gadget in

Figure 5.7b. We assign f to the circle vertices, [1, 0]⊗2 to the triangle vertices, and [0, 1, 0] to the

square vertices. Up to a factor of b2, the signature of the resulting gadget is g with signature

matrix Mg given in (5.4). To see this, first replace the two copies of the signatures [1, 0]⊗2

assigned to the triangle vertices with two copies of [1, 0] each. Then notice that f simplifies to

a weighted equality signature when connected to [1, 0] through [0, 1, 0].

5.6 Single Signature Dichotomy

Now we are ready to prove Theorem 5.41. By Corollary 5.20, f is A-, P-, or M-transformable

if and only if f ∈ P1 ∪M2 ∪ A3 ∪M3 ∪M4. Recall that M4 ⊂ V. We list M4 here for merely

conceptual reasons.
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Theorem 5.41. If f is a non-degenerate symmetric signature of arity n ⩾ 3 with complex weights

in Boolean variables, then Pl-Holant(f) is #P-hard unless f ∈ P1 ∪M2 ∪ A3 ∪M3 ∪M4 ∪ V, in

which case the problem is computable in polynomial time.

Holant(f) is #P-hard unless f ∈ P1 ∪ P2 ∪A3 ∪V, in which case the problem is computable in

polynomial time.

Proof. Tractability for both parts follow from Lemmas 1.7, 1.9, 1.10, Corollaries 5.14, 5.20, and

Theorem 3.12. We prove the first claim by induction on n. The base cases of n = 3 and n = 4

are proved in Theorem 1.14 and Theorem 3.39. Now assume n ⩾ 5.

With the signature f, we form a self loop to get a signature f ′ of arity at least 3. In general

we use prime to denote the signature with a self loop. We consider separately whether or not

f ′ is degenerate.

• Suppose f ′ = [a,b]⊗(n−2) is degenerate. Then there are three cases to consider.

1. If a = b = 0, then f ′ is the all zero signature. For f, this means fk+2 = −fk for

0 ⩽ k ⩽ n− 2, so f ∈ P2 by Lemma 5.8, and therefore Pl-Holant(f) is tractable.

2. If a2 + b2 ̸= 0, then f ′ is nonzero and [a,b] is not a constant multiple of either [1, i]

or [1,−i]. We may normalize so that a2 + b2 = 1. Then the orthogonal transforma-

tion
[
a b
−b a

]
transforms the column vector [a,b] to [1, 0]. Let f be the transformed

signature from f, and f ′ = [1, 0]⊗(n−2) the transformed signature from f ′.

Since an orthogonal transformation keeps =2 invariant, this transformation com-

mutes with the operation of taking a self loop, i.e., f ′ = (f) ′. Here (f) ′ is the function

obtained from f by taking a self loop. As (f) ′ = [1, 0]⊗(n−2), we have f0 + f2 = 1 and

for every integer 1 ⩽ k ⩽ n − 2, we have fk = −fk+2. With one or more self loops

on (f) ′, we eventually obtain either [1, 0] when n is odd or [1, 0, 0] when n is even. In

either case, we connect [1, 0] or [1, 0, 0] to f until we get an arity 4 signature, which

is g = [f0, f1, f2,−f1,−f2]. This is possible because that the parity matches and the

arity of f is at least 5. We show that Pl-Holant(g) is #P-hard. To see this, we first

compute det(M̃g) = −2(f0 + f2)(f
2
1 + f

2
2) = −2(f

2
1 + f

2
2), since f0 + f2 = 1. Therefore

if f
2
1 + f

2
2 ̸= 0, Pl-Holant(g) is #P-hard by Corollary 3.28. Otherwise f

2
1 + f

2
2 = 0, and
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we assume f2 = if1 since the other case is similar. Since f is non-degenerate, f is

non-degenerate, which implies f2 ≠ 0. We can rewrite g as [1, 0]⊗4 − f2[1, i]⊗4. Under

the holographic transformation by T =
[

1 (−f2)
1/4

0 i(−f2)
1/4

]
, we have

Pl-Holant (=2 | g) ≡T Pl-Holant
(
[1, 0, 1]T⊗2 | (T−1)⊗4g

)
≡T Pl-Holant

(
h | =4

)
,

where

h = [1, 0, 1]T⊗2 = [1, (−f2)
1/4, 0]

and g is transformed by T−1 into the arity 4 equality =4, since

T⊗4


1

0


⊗4

+

0

1


⊗4
 =

1

0


⊗4

− f2

1

i


⊗4

= g.

By Theorem 1.15, Pl-Holant
(
h | =4

)
is #P-hard as f2 ̸= 0.

3. If a2 + b2 = 0 but (a,b) ̸= (0, 0), then [a,b] is a nonzero multiple of [1,±i]. Ignoring

the constant multiple, we have f ′ = [1, i]⊗(n−2) or [1,−i]⊗(n−2). We consider the first

case since the other case is similar.

Under the holographic transformation Z = 1√
2

[
1 1
i −i

]
, we have that

Pl-Holant
(
=2 | f, f ′

)
≡T Pl-Holant

(
[1, 0, 1]Z⊗2 | (Z−1)⊗nf, (Z−1)⊗n−2f ′

)
≡T Pl-Holant

(
[0, 1, 0] | f, f ′

)
,

where f ′ := (Z−1)⊗n−2f ′ = [1, 0]⊗n−2 and f := (Z−1)⊗nf. Since f connecting with

[0, 1, 0] gives f ′, f must take the form [a, 1, 0, . . . , 0,b] with some a,b ∈ C. Depending

on whether a = 0 or not, we apply Lemma 5.40 or Lemma 5.38 and Pl-Holant(f) is

#P-hard.

• Suppose f ′ is non-degenerate. By inductive hypothesis, Pl-Holant(f) is #P-hard, unless

f ′ ∈ P1 ∪M2 ∪ A3 ∪M3 ∪M4 ∪ V. Note that f ′ has arity n − 2 ⩾ 3, and every signature
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in M4 of arity at least 3 is also in V. Hence the exceptional case is equivalent to f ′ ∈

P1 ∪M2 ∪A3 ∪M3 ∪V. In this case, we apply Lemma 5.35 to f ′ and f. Hence Pl-Holant(f)

is #P-hard, unless f ∈ P1 ∪M2 ∪A3 ∪M3 ∪ V. The exceptional cases imply that f is A- or

P- or M-transformable or vanishing, and Pl-Holant(f) is tractable.

This finishes the proof for Pl-Holant(f).

For Holant(f), suppose f ̸∈ P1 ∪ P2 ∪ A3 ∪ V. If f ̸∈ P1 ∪M2 ∪ A3 ∪M3 ∪ M4 ∪ V, then

Pl-Holant(f) is #P-hard, and so is Holant(f). As M4 ⊂ V, we only need to show that Holant(f) is

#P-hard, if f ∈M2 \ (P1 ∪ P2 ∪A3) or f ∈M3 (cf. Figure 5.1).

If f ∈ M2 \ (P1 ∪ P2 ∪ A3), then by Corollary 5.14, f is not A- or P-transformable. It can be

verified that reductions in Lemma 5.30 does not rely on planarity. Hence we have #CSP2(g) ⩽T

Holant(f) by (5.1), where f = H⊗n
([

1
γ

]⊗n ± [ 1
−γ

]⊗n)
for some γ ≠ 0,±i, and g = [1 + γ2, 1 −

γ2, 1+γ2]. Since g is binary, we can apply Theorem 1.15, or more conceptually, Theorem 1.15’.

Hence Holant(f) is #P-hard unless g satisfies one of the exceptional conditions in Theorem 1.15.

However it can be verified that all exceptional conditions imply that f is A- or P-transformable.

Hence Holant(f) is always #P-hard.

Lastly, if f ∈M3, then by Definition 5.16, it is easy to see that

Holant(f) ≡ Holant(ExactOnen).

With zero or more self-loops on ExactOnen, we get ExactOne3 or ExactOne4 eventually, de-

pending on the parity of n. Either case is #P-hard by Theorem 1.14 or Theorem 3.39, combined

with Lemma 5.21.
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Chapter 6

Dichotomy for Holant Problems

One way to look at Holant problems is #CSP where every variable appears exactly twice. As we

have seen so far, #CSP2, where every variable appears even number of times, plays a key role

in our single signature dichotomy, Theorem 5.41. In order to classify the complexity of Holant

problems, in both [HL12] (for real weights) and [CGW13] (for complex weights), a dichotomy

for #CSPd played a similar role. We state the #CSPd dichotomy as follows.

Theorem 6.1 (Theorem IV.1 in [HL12]). Let Tk =
{[

1 0
0 ω

]
∈ C2×2 | ωk = 1

}
, d ⩾ 1 be an integer,

and F be any set of symmetric, complex-valued signatures in Boolean variables. Then #CSPd(F)

is #P-hard unless there exists a T ∈ T4d such that TF ⊆ P or TF ⊆ A, in which case the problem

is computable in polynomial time.

Recall that we use EQd to denote the set {=kd| k ∈ N+}. Then #CSPd(F) ≡ Holant (EQd | F).

If we restrict the Boolean #CSP dichotomy, Theorem 1.16, to symmetric functions, then it is a

special case (d = 1) of Theorem 6.1.

Given that M-transformable signatures are the only newly tractable planar case for sym-

metric Boolean #CSP (cf. Theorem 1.16 and Theorem 4.1), one would conjecture that this is

also the case generalizing Theorem 6.1 to planar graphs. Surprisingly, the putative form of a

Pl-#CSPd dichotomy does not hold. For example, Pl-#CSPd([0, 1, 0, 0]) is #P-hard when d ⩽ 4,

but tractable when d ⩾ 5, while the set {[0, 1, 0, 0]}∪ EQd is not M-transformable. We will show

this in Section 6.1.



184

Let f ∈ P2 be a symmetric signature, that is, f = Z⊗d(=d). Then for any signature set F, we

do a transformation of Z = 1√
2

[
1 1
i −i

]
,

Holant({f} ∪ F) ≡ Holant
(
=2 Z

⊗2 | Z−1({f} ∪ F)
)

≡ Holant
(
≠2| {=d} ∪ Z−1F

)
.

If d ⩾ 3, then with ≠2 on the left and =d on the right, we can realize all signatures in EQd on

the left, as follows. We construct =kd inductively on k. For k = 1, we just need to attach ≠2

on every edge of =d, which effectively moves =d to the left. Suppose we have =kd, and we

want to construct =(k+1)d. We can connect =kd and two copies of =d’s on the left to one =d

on the right, using up all edges of the =d on the right. Since d ⩾ 3, we can make sure that the

resulting signature is connected. The order of the connection does not matter. The resulting

signature is an Equality, and its arity is kd+2d−d = (k+1)d, which is what we want. Hence,

we have that

#CSPd(Z−1F) ⩽T Holant({f} ∪ F).

Moreover, clearly the construction above can be done in a planar way, implying that,

Pl-#CSPd(Z−1F) ⩽T Pl-Holant({f} ∪ F).

If #CSPd(Z−1F) is #P-hard, then Holant({f} ∪ F) is #P-hard as well. It is easy to verify that all

tractable cases in Theorem 6.1 also make Holant({f}∪F) tractable. Hence, in a sense, classifying

#CSPd(F) is necessary to classify Holant problems.

On the other hand, in the planar setting, due to the newly tractable cases that we will see

shortly in Section 6.1, proving a dichotomy for Pl-#CSPd seems overly complicated. In fact, we

will take a different route to achieve the dichotomy for Pl-Holant than that in [HL12, CGW13].

Only necessary results related to these new planar tractable cases are derived. We show the

dichotomy for Holant afterwards, which does use Theorem 6.1.
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6.1 Another Planar Tractable Case

Given a set F of symmetric signatures, by Theorem 5.41, Pl-Holant(F) is #P-hard unless every

single non-degenerate signature f of arity at least 3 in F is in P1∪M2∪A3∪M3∪M4∪V. We have

already proved that the desired full dichotomy holds if F contains such an f in P1, A3, M2 \P2,

or M3 due to Corollary 5.25, Corollary 5.28, Corollary 5.31, or Lemma 5.33, respectively.

The remaining cases are when all non-degenerate signatures of arity at least 3 in F are

contained in P2 ∪M4 ∪V. In this section, we consider the mixing of P2 and M4. For this, we do

a holographic transformation by Z. Then the problem becomes Pl-Holant (≠2 | =k, ExactOned)

with various arities k and d. Recall that ExactOned denotes the exact one function [0, 1, 0, . . . , 0]

of arity d. These are the signatures for Perfect Matchings and they are the basic components

of Matchgates.

A big surprise, against the putative form of a complexity classification for planar counting

problems, is that we found out the complexity of Pl-Holant (≠2 | =k, ExactOned) depends on

the values of d and k, and the problem is tractable for all large k. These problems cannot be

captured by a holographic reduction to Kasteleyn’s algorithm, or any other known algorithm.

Thus for planar problems the paradigm of holographic algorithms using matchgates (i.e., being

M-transformable) is not universal.

We show that if k ⩾ 5, then Pl-Holant (≠2 | =k, ExactOned) is tractable. We first show this

for k ⩾ 6, and then return to =5. Let EO = {ExactOned | d ⩾ 3}.

To prove this, we first observe some possible degeneracy. Let G be the underlying graph

of an instance Ω of Pl-Holant (≠2 | =k,EO). Any self loop on an ExactOned by a ≠2 makes it

[1, 0]⊗(d−2) with a factor of 2. Pinning signatures like [1, 0]⊗(d−2) can be applied recursively.

Any [1, 0] is first transformed to [0, 1] via ≠2 on LHS and then applied either to =k producing

[0, 1]⊗(k−1), or to ExactOned (for some d) producing [1, 0]⊗(d−1). Similarly, any [0, 1] is first

transformed to [1, 0] via ≠2 on LHS and then applied either to =k producing [1, 0]⊗(k−1), or to

ExactOned (for some d) producing ExactOned−1. Note that if d = 3 then ExactOned−1 is

just ≠2 on RHS, which combined with its adjacent two copies of ≠2 of LHS, is equivalent to a

single ≠2 of LHS. Moreover, whenever an ExactOned and another ExactOneℓ are connected

by a ≠2, we replace it by a single ExactOned+ℓ−2, contracting the edge between (and remove
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the connecting ≠2). On the other hand, consider a connected component made of =k and ≠2.

We call such a component an Ek-block. Notice that each Ek-block has either exactly two or zero

support vectors. This depends on whether or not there exists a contradiction, which is formed

by an odd cycle of =k’s connected by ≠2’s. We say an Ek-block is trivial if it has no support. It is

easy to check the triviality. The two support vectors of a nontrivial Ek-block are complements

of each other. We mark dangling edges of a nontrivial Ek-block by “+” or “−” signs. Dangling

edges marked by the same sign take the same value on both support vectors while dangling

edges marked by different signs take opposite values on both support vectors. Let n± be the

number of dangling edges marked ±. Then it is easy to verify by induction that

n+ ≡ n− mod k. (6.1)

An example of E6-block is illustrated in Figure 6.1, with 8 + signs and 2 − signs.

+

+

+

+

+

+

+

+

−

−

Figure 6.1: Example E6-block. Circle vertices are assigned =6 and square vertices
are assigned ≠2.

After contracting all edges between ExactOned’s and forming Ek-block’s, we obtain a bi-

partite graph connected between ExactOned’s and Ek-block’s by edges labeled =2.

A key observation is that a planar (bipartite) graph cannot be simple, i.e., it must have

parallel edges, if its degrees are large.

Lemma 6.2. Let G = (L∪ R,E) be a planar bipartite graph with parts L and R. If every vertex in

L has degree at least 6 and every vertex in R has degree at least 3, then G is not simple.

Proof. Suppose G is simple. Let v, e and f be the total number of vertices, edges, and faces,

respectively. Let vi be the number of vertices of degree i in L, where i ⩾ 6, and uj be the

number of vertices of degree j in R, where j ⩾ 3. Since G is simple and bipartite, each face has
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at least 4 edges. Thus,

2e ⩾ 4f. (6.2)

Furthermore, it is easy to see that

v =
∑
i⩾6

vi +
∑
j⩾3

uj and e =
∑
i⩾6

ivi =
∑
j⩾3

juj. (6.3)

Then starting from Euler’s characteristic equation for planar graphs, we have

2 = v− e+ f

⩽ v− e

2
(By (6.2))

=
∑
i⩾6

vi +
∑
j⩾3

uj −
1

6

∑
i⩾6

ivi −
1

3

∑
j⩾3

juj (By (6.3))

=
∑
i⩾6

6 − i

6
vi +

∑
j⩾3

3 − j

3
uj ⩽ 0,

a contradiction.

Lemma 6.2 does not give us tractability for the case of k ⩾ 6 yet. The reason is that given an

instance of Pl-Holant (≠2 | =k,EO), after the preprocessing and forming Ek-blocks to make the

graph bipartite, it is possible to have Ek-blocks of arity less than 6, in which case Lemma 6.2

does not apply. However, for k ⩾ 6 and a nontrivial Ek-block of arity n where n < 6, by (6.1)

and the fact that 0 ⩽ n+,n− ⩽ n < k, we see that n+ = n−, and n = n+ + n− must be even.

Moreover, if n = 2, then this means that the Ek-block is just ≠2, in which case we can replace it

by a single ≠2 connecting signatures from EO to produce a new ExactOne signature. The only

problematic case is when n = 4. There are two possibilities of such Ek-blocks up to a rotation,

shown in Figure 6.2a.

+ +

− −

+ −

− +

(a) Two different arity 4 Ek-blocks.

+ +

− −

+ −

− +

(b) Replace them by parallel ≠2’s.

Figure 6.2: Arity 4 Ek-blocks.
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Formally we define a contraction process on the connected graph of Ek-block with dangling

edges. Recursively, for any non-dangling non-loop edge e, we shrink it to a point, maintaining

planarity. The local cyclic orders of incident edges of the two vertices of e are spliced along e

to form the cyclic order of the new vertex. For any loop we simply remove it. This contraction

process ends in a single point with a cyclic order of the dangling edges.

Figure 6.2a depicts the two possibilities of Ek-blocks of arity 4 up to a rotation. An Ek-block

of arity 4 can be viewed as a pair of ≠2 in parallel, but there is a correlation between them,

namely their support vectors are paired up in a unique way. If we replace the contracted Ek-

block of arity 4 by two parallel edges as indicated in Fig 6.2b, one can revert back to a planar

realization in the Ek-block as it connects to the rest of the graph. This can be seen by reversing

the contraction process step by step.

To prove the following lemma, we will show how to replace Ek-block of arity 4 by some

other signatures while keeping track of the Holant value. We also observe that this tractable

set is compatible with binary ≠2 and unary [1, 0] or [0, 1] signatures.

Lemma 6.3. For any integer k ⩾ 6, Pl-Holant (≠2 | =k,EO,≠2, [1, 0], [0, 1]) is tractable.

Proof. LetΩ be an instance of Pl-Holant (≠2 | =k,EO,≠2, [1, 0], [0, 1]). Without loss of generality,

we assume that Ω is connected. Any occurrence of ≠2 of the right hand side can be removed

as follows: It is connected to two adjacent copies of ≠2 of the left hand side. We replace these

3 copies of ≠2 by a single ≠2 from the left hand side.

The given signatures have no weight, however the proof below can be adapted to the

weighted case. For the unweighted case, we only need to count the number of satisfying as-

signments. We call an edge pinned if it has the same value in all satisfying assignments, if there

is any. Clearly any edge incident to a vertex assigned [1, 0] or [0, 1] is pinned.

When an edge is pinned to a known value, we can get a smaller instance of the problem

Pl-Holant(≠2 |=k,EO,≠2, [1, 0], [0, 1]) without changing the number of satisfying assignments.

In our algorithm we may also find a contradiction and simply return 0. If e is a pinned edge, then

it is adjacent to another edge e ′ via ≠2 on the left hand side, and both e and e ′ are pinned. We

remove e, e ′, and ≠2, and perform the following on e (and on e ′ as well). If the other endpoint

of e is u = [1, 0] or [0, 1] we either remove that u if the pinned value on e is consistent with u, or
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return 0 otherwise. If the other endpoint of e is =k, then all edges of this =k are pinned to the

same value which we can recursively apply. If the other endpoint of e is ExactOned ∈ EO, then

we replace this signature by ExactOned−1 when the pinned value is 0; or if the pinned value

is 1 then the remaining d − 1 edges of this ExactOned are pinned to 0 which we recursively

apply. Notice that we may create an ExactOne2 (i.e. ≠2) on the right hand side when we pin 0

on ExactOne3. Such ≠2’s are replaced as described at the beginning. It is easy to see that all

these procedures do not change the number of satisfying assignments, and work in polynomial

time.

We claim that there always exists an edge in Ω that is pinned, unless Ω does not contain

=k, or does not contain ExactOned functions (for some d ⩾ 3), or there is a contradiction.

Furthermore if there are =k or ExactOned functions (for some d ⩾ 3), in polynomial time we

can find a pinned edge with a known value, or return that there is a contradiction. (If there is a

contradiction in Ω, we may still return a purported pinned edge with a known value, which we

can apply and simplify Ω. The contradiction will eventually be found.) If Ω does not contain

=k, or does not contain ExactOned functions (for some d ⩾ 3), then the problem is tractable,

since Ω is an instance of M, or an instance of P. The lemma follows from the claim, for we

either recurse on a smaller instance or have a tractable instance.

Suppose Ω is an instance where at least one =k and at least one ExactOned ∈ EO appear.

We assume no ≠2 appears on the right hand side. If any [1, 0] or [1, 0] appear, then we have

found a pinned edge with a known value. Hence we may assume neither [1, 0] nor [1, 0] appears

in Ω.

If a signature ExactOned ∈ EO is connected to itself by a self-loop through a ≠2, then there

are two choices for the assignment on this pair of edges through the ≠2, but the remaining

d − 2 ⩾ 1 edges are pinned to 0. We can keep track of the factor 2 and have found a pinned

edge with a known value. Thus we may assume there are no self-loops via ≠2 on ExactOne

signatures.

Next we consider the case that two separate signatures ExactOned and ExactOneℓ from

EO are connected by some number of ≠2’s. Depending on the number of connecting edges,

there are three cases:
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1. The connection is by a single ≠2. We contract the connecting edge, maintaining planarity,

and replace these three signatures by an ExactOned+ℓ−2 to get a new instance Ω ′. If an

edge is pinned in Ω ′ then it is also pinned in Ω to the same value. We continue with Ω ′.

2. The connection is by two ≠2’s. There are two choices for the assignment on these two

pairs of edges through ≠2, but the remaining d+ ℓ− 4 ⩾ 2 edges are pinned to 0.

3. The connection is by at least three ≠2’s. The three ≠2’s cannot be all satisfied, so there is

no satisfying assignment, a contradiction. We return the value 0.

Hence, we may assume there is no connection via any number of ≠2’s among ExactOne signa-

tures.

Define an Ek-block as a connected component composed of =k and≠2. All external connect-

ing edges of each Ek-block are marked with+ or− and this can be found by testing bipartiteness

of a Ek-block where we treat ≠2’s as edges. If any Ek-block is not bipartite, we return 0. We

contract all Ek-blocks and maintain planarity. For each Ek-block we contract two vertices that

are connected by an edge, one edge at a time, and remove self loops in this contraction process.

If a trivial Ek-block appears, then there is no satisfying assignment, and we return 0. Thus we

may assume all Ek-blocks are nontrivial. If there is a nontrivial Ek-block of arity 2, as discussed

earlier, its signature is ≠2. We replace it with an edge labeled by ≠2 to form an instance Ω ′,

maintaining planarity, such that any pinned edge inΩ ′ corresponds to a pinned edge inΩ. This

new edge is between ExactOne signatures and can be dealt with as described earlier. So we

may assume the arity of any Ek-block is at least 4. Since k ⩾ 6, the only possible Ek-blocks of

arity 4 are those in Figure 6.2a up to a rotation. Since there is at least one ExactOned signature

with d ⩾ 3, forming Ek-blocks does not consume all of Ω.

After these steps we may considerΩ a bipartite graph, with one side consisting of Ek-blocks

and the other side ExactOne signatures. Edges are now labeled by =2.

Suppose there are parallel edges between an Ek-block and an ExactOned signature. We

show that this always leads to some pinned edges. If two parallel edges are marked by the

same sign in the Ek-block, then they must be pinned to 0. If they are marked by different

signs, then the remaining d − 2 ⩾ 1 edges of the ExactOned signature must be pinned to 0.
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Therefore, we may assume that there are no parallel edges between any Ek-block and any

ExactOne signature.

++

− −

+−

+ −

(a) An EO-Eq-4-block. Triangles are assigned
ExactOne signatures and circles are Ek-
blocks of arity 4.

(b) Break the EO-Eq-4-block into three com-
ponents. Squares are assigned ≠2. The
component in the middle contains a cycle,
and hence is degenerate. The other two are
equivalent to ExactOne signatures.

Figure 6.3: EO-Eq-4-blocks

The next thing we do is to consider Ek-blocks of arity 4 with ExactOne signatures together.

Call a connected component consisting of Ek-blocks of arity 4 and ExactOne an EO-Eq-4-block.

Figure 6.3a illustrates an example. Notice that the two possibilities of Ek-blocks of arity 4 can

be viewed as two parallel ≠2’s but with some correlation between them. This is illustrated in

Figure 6.2b. Note that the two dotted lines in Figure 6.2b represent different correlations.

At this point we would like to replace every arity 4 Ek-block by two parallel ≠2’s. However

this replacement destroys the equivalence of the Holant values, before and after.

The surprising move of this proof is that we shall do so anyway!

Suppose we ignore the correlation for the time being and replace every arity 4 Ek-block by

two parallel ≠2’s as in Figure 6.2b. This replacement produces a planar signature grid Ω1.

Every edge in Ω1 corresponds to a unique edge in Ω. The set of satisfying assignments of Ω1

is a superset of that of Ω. Moreover, if there is an edge pinned in Ω1 to a known value, the

corresponding edge is also pinned in Ω to the same value. Once we find that in Ω1 we revert

back to work in Ω and apply the pinning to the pinned edge.

All that remains to be shown is that pinning always happens in Ω1. Each EO-Eq-4-block

splits into some number of connected components in Ω1. If any component contains a cycle

(which must alternate between≠2, which are the newly created ones from the Ek-blocks of arity
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4, and ExactOned signatures for d ⩾ 3), then any edges not in the cycle but incident to some

vertex in the cycle is pinned to 0. Moreover such edges must exist, for ExactOned signatures

in the cycle are of arity at least 3. Note that the cycle has even length, and there are exactly two

satisfying assignments, which assign exactly one 0 and one 1 to the two cycle edges incident

to each ExactOned signature. This produces pinned edges.

Hence we may assume there are no cycles in these components, and every such component

forms a tree, whose vertices are ExactOne functions and edges are ≠2’s. Suppose there are

n ⩾ 2 vertices in such a tree. As discussed in item 1 above, the whole tree is an ExactOnet

function for some arity t. Since each vertex in the tree has degree at least 3, t ⩾ 3n−2(n−1) =

n+ 2 ⩾ 4. We replace these components by ExactOnet’s.

Thus, each connected component in the graph underlying Ω1 is a planar bipartite graph

with Ek-blocks of arity at least 6 on one side and ExactOned signatures of arity at least 3 on

the other. By Lemma 6.2, no component is simple, which means that there are parallel edges

between some Ek-block and some ExactOned signature. As discussed earlier, there must exist

some pinned edge, and we can find a pinned edge with a known value in polynomial time. This

finishes the proof.

Unlike the situation in Lemma 6.2, a planar (5, 3)-regular bipartite graph can be simple.

However, we show that such graphs must have a special induced subgraph. We call this struc-

ture a “wheel”, which is pictured in Figure 6.4. There is a vertex v of degree 5 in the middle,

and all faces adjacent to this vertex are 4-gons (i.e. quadrilaterals). Moreover, at least four

neighbors of v have degree 3. Depending on the degree of the fifth neighbor (whether it is 3 or

not), we have two types of wheel, pictured in Figure 6.4a and Figure 6.4b.

Lemma 6.4. Let G = (L∪ R,E) be a planar bipartite graph with parts L and R. Every vertex in L

has degree at least 5 and every vertex in R has degree at least 3. If G is simple, then there exists

one of the two wheel structures in Figure 6.4 in G.

Proof. Let V = L ∪ R be the set of vertices and let F be the set of faces. We assign a score sv to

each vertex v ∈ V . We will define sv so that
∑
v∈V sv = |V | − |E| + |F| = 2 > 0. The base score

is +1 for each vertex, which accounts for |V |. For each k-gon face, we assign 1
k

to each of its
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· · ·

· · ·· · ·

(a) Type 1

· · · · · ·

· · ·· · ·

(b) Type 2

Figure 6.4: Two types of wheels. Each circle is an E5-block and triangle an ExactOne
signature.

vertex. This accounts for |F|. As G is a bipartite and a simple graph, k ⩾ 4 and a score from a

face to a vertex is at most 1
4 .

For −|E|, we separate two cases. For any edge if one of the two endpoints has degree 3, we

give the degree 3 vertex a score of − 7
12 , and the other one − 5

12 . This is well defined because all

degree 3 vertices are in R. If the endpoints are not of degree 3, we give each endpoint −1
2 . This

accounts for −|E|.

Now we claim that sv ⩽ 0 unless v ∈ L and has degree 5. Suppose v ∈ L and has degree

d ⩾ 6, then

sv ⩽ 1 +
d

4
−

5

12
d = 1 −

d

6
⩽ 0.

Now suppose v ∈ R and v has degree d ⩾ 4. Then every edge adjacent to v gives a score −1
2 .

Hence,

sv ⩽ 1 +
d

4
−

1

2
d = 1 −

d

4
⩽ 0.

The remaining case is that v ∈ R and v has degree 3. Then,

sv ⩽ 1 +
d

4
−

7

12
d = 1 −

d

3
⩽ 0.
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The claim is proved.

Since the total score is positive, there must exist v ∈ L, v has degree 5 and sv > 0. We then

claim that there must exist such a v so that all adjacent faces are 4-gons. Suppose otherwise.

Then any such v is adjacent to at least one k-gon with k ⩾ 6. In this case,

sv ⩽ 1 +
1

4
· 4 +

1

6
−

5

12
· 5 =

1

12
.

Moreover, if v is adjacent to more than one k-gon with k ⩾ 6, Then

sv ⩽ 1 +
1

4
· 3 +

1

6
· 2 −

5

12
· 5 = 0,

contrary to the assumption that sv > 0. Hence v is adjacent to exactly one k-gon with k ⩾ 6.

Call this face Fv.

In Fv, v has two neighbors in R. We match each vertex v that has a positive score to the

vertex on Fv that is the next one in clockwise order from v. By the bipartiteness, every such v

is matched to a vertex in R. We do this matching in all faces containing at least one positively

scored vertex. It is possible that more than one such v are matched to the same u ∈ R. Suppose

a vertex u ∈ R is matched to from ℓ different such vertices of positive score. This means that

u is adjacent to at least ℓ many k-gons with k ⩾ 6. Then, if u has degree 3 then u has score

su ⩽ 1 +
1

4
· (3 − ℓ) +

1

6
· ℓ− 7

12
· 3 = −

ℓ

12
.

If u has degree d ⩾ 4 then u has score

su ⩽ 1 +
1

4
· (d− ℓ) +

1

6
· ℓ− 1

2
· d ⩽ −

ℓ

12
.

Hence in any case, we have su ⩽ − ℓ
12 . It implies that the total score of u and all positively

scored vertices matched to u is at most 0. However each positively scored vertex is matched

to a vertex in R. Hence the total score cannot be positive. This is a contradiction.

Therefore there exists v ∈ L such that sv > 0, and has degree 5, and all adjacent faces are
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4-gons. We further note that at most one neighbor of v can have degree ⩾ 4, for otherwise,

sv ⩽ 1 +
5

4
−

1

2
· 2 −

5

12
· 3 = 0.

If all neighbors of v have degree 3, that is a wheel of type 1 as in Figure 6.4a. If one neighbor

of v has degree ⩾ 4, that is a wheel of type 2 as in Figure 6.4b.

As we shall see, either structure in Figure 6.4 leads to pinned edges.

Lemma 6.5. Pl-Holant (≠2 | =5,EO,≠2, [1, 0], [0, 1]) is tractable.

Proof. We proceed as in Lemma 6.3 up until the point of getting Ω1. Note that due to (6.1) the

only nontrivial E5-blocks of arity ⩽ 4 are≠2 and those in Figure 6.2a. Moreover, each connected

component of Ω1 is planar and bipartite with vertices on one side having degree at least 5 and

those on the other at least 3. We only need to show that there are edges pinned in Ω1.

Unlike in Lemma 6.3, these components do not satisfy the condition of Lemma 6.2 but that

of Lemma 6.4. If any such component is not simple, then there are pinned edges similar to

Lemma 6.3. Otherwise by Lemma 6.4, the wheel structure in Figure 6.4 appears. All we need to

show is that wheel structures of either type contain pinned edges.

e2e1

Eo

+−

E1 P1

· · · · · ·

· · ·· · ·

(a) Different signs of an E5-block along the cycle
lead to pinning

Eo

e

e ′P1

· · · · · ·

· · ·· · ·

(b) Edges e and e ′ are pinned in wheels of type 2

Figure 6.5: Degeneracies in the wheel structure.

First we claim that if a wheel of either type has a E5-block, call it E1, on the outer cycle

which has different signs on the two edges incident to it along the cycle, then the middle =5,
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denoted by Eo, is pinned. This is pictured in Figure 6.5a. It does not matter whether the wheel

is type 1 or 2, or the position of E1 relative to the special triangle P1 in type 2. Because Eo is an

equality, both e1 and e2, the two edges incident to Eo that are connected to the two ExactOne

signatures flanking E1, must take the same value. If both e1 and e2 are assigned 1, then the

two incoming wires of E1 along the cycle have to be both assigned 0, whereas they are marked

by different signs. This is a contradiction. Hence both e1 and e2 are pinned to 0 as well as all

edges of Eo.

We may therefore assume that each E5-block has same signs along the outer cycle, either

++ or −−. If the wheel is of type 1, then there is no valid assignment such that Eo is assigned

0 because the cycle has odd length. In fact if Eo is assigned 0, then we can remove Eo and its

incident edges, and effectively the five ExactOne signatures are now ≠2’s forming a 5-cycle

linked by binary equalities. Hence Eo and all its edges are pinned to 1.

Otherwise the wheel is of type 2, and each E5-block has signs ++ or −− along the outer

cycle. We denote by P1 the special ExactOned function that has arity d > 3. We claim that the

two edges e and e ′ incident to P1 along the cycle are both pinned to 0. This is illustrated in

Figure 6.5b. As P1 is ExactOned, at most one of e and e ′ is 1. If one of e and e ′ is 1, the other

is 0, and as P1 is an ExactOned function its edge to Eo is also 0, and thus all edges incident to

Eo are 0. As all five neighbors of Eo are ExactOne functions, the four ExactOne3 functions

effectively become (≠2) functions along the wheel, and we can remove Eo and its incident edges.

This becomes the same situation as in the previous case of type 1, where effectively a cycle of

five binary equalities are linked by five binary disequalities, which has no valid assignment. It

implies that both e and e ′ are pinned to 0. This finishes the proof.

6.2 Complementing Hardness Results

On the other hand, we show that Pl-Holant (≠2 | =k, ExactOned) is #P-hard when k = 3, 4. Note

that when k = 2 it is tractable as every signature is a matchgate.

Lemma 6.6. Pl-Holant (≠2 | =3, [0, 1, 0, 0]) is #P-hard.

Proof. By connecting two copies of [0, 1, 0, 0] together via ≠2, we have [0, 1, 0, 0, 0] on the right.
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Consider the gadget in Figure 6.6a. We assign =3 to the triangle vertices, [0, 1, 0, 0] to the circle

vertices, ≠2 to the square vertices, and [0, 1, 0, 0, 0] on the diamond vertex in the middle. Let f

be the signature of this gadget.

(a) Cycle-like gadget used twice (b) Gadget to realize g

Figure 6.6: Two gadgets used in the proof of Lemma 6.6.

Figure 6.7: The whole gadget to realize [0, 0, 0, 1, 0].

We claim that the support of f is {0011, 0110, 1100, 1001}. To see this, notice that [0, 1, 0, 0, 0]

in the middle must match exactly one of the half edges, which forces the corresponding equality

signature to take the value 0 and all other equality signatures to take value 1. The two [0, 1, 0, 0]’s

adjacent to the equality assigned 0 must have 0 going out, and the other two [0, 1, 0, 0]’s have 1
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going out.

Now we consider the gadget in Figure 6.6a again. This time we place [0, 1, 0, 0] on each tri-

angle, =3 on each circle, f on the middle diamond, and again ≠2 on each square. Now notice

that each support of f makes two [0, 1, 0, 0]’s that are cyclically adjacent on the outer cycle

to become [0, 1, 0] and the other two [1, 0, 0]. It is easy to see that the support of the result-

ing signature is {0111, 1011, 1101, 1110}. Therefore it is the reversed ExactOne4 signature

[0, 0, 0, 1, 0] (namely AllButOne4). The whole gadget is illustrated in Figure 6.7, where each

circle is assigned [0, 1, 0, 0], triangle =3, and square ≠2.

Finally, we build the gadget in Figure 6.6b. We place =3 on each circle and ≠2 on each

square. It is easy to see that there are only two support vectors of the resulting signature,

which are 0101 and 1010. Recall (5.4), the definition of the partial crossover g. This gadget

realizes exactly g.

By Lemma 5.39, Pl-Holant (≠2 | [0, 1, 0, 0, 0], [0, 0, 0, 1, 0],g) is #P-hard. We have constructed

[0, 1, 0, 0, 0], [0, 0, 0, 1, 0], and g on the right side. Therefore Pl-Holant (≠2 | =3, [0, 1, 0, 0]) is #P-

hard.

For k = 4, we need the following lemma.

Lemma 6.7. Let g be the arity 4 signature whose matrix is

Mg =



2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

Then Pl-Holant(g) is #P-hard.

Proof. Let h = [2, 1, 1]. We show that Pl-#CSP(h) ⩽T Pl-Holant(g) in two steps. In each step,

we begin with a signature grid and end with a new signature grid such that the Holants of

both signature grids are the same. Then we are done by Theorem 4.1, or more explicitly, since

Pl-#CSP(h) ≡ Pl-Holant (EQ | h) by (1.1), we are done by Theorem 4.2.
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For step one, let G = (U,V ,E) be an instance of Pl-Holant (EQ | h). Fix an embedding of G

in the plane. This defines a cyclic ordering of the edges incident to each vertex. Consider a

vertex u ∈ U of degree k. It is assigned the signature =k. We decompose u into k vertices.

Then we connect the k edges originally incident to u to these k new vertices so that each vertex

is incident to exactly one edge. We also connect these k new vertices in a cycle according to the

cyclic ordering induced on them by their incident edges. Each of these vertices has degree 3,

and we assign them =3. Clearly the Holant value is unchanged. This completes step one. An

example of this step applied to a vertex of degree 4 is given in Figure 6.8a. The resulting graph

has the following properties: (1) it is planar; (2) every vertex is either degree 2 (in V and assigned

h) or degree 3 (newly created and assigned =3); (3) each degree 2 vertex is connected to two

degree 3 vertices; and (4) each degree 3 vertex is connected to one degree 2 vertex and two

other degree 3 vertices.

(a) Step one: Degree 4 vertex example (b) Step two: Contract edges

Figure 6.8: A reduction from Pl-Holant (EQ | h) to Pl-Holant(g) for any binary sig-
nature h and a quaternary signature g that depends on h. The circle vertices are
assigned =4 or =3 respectively, the triangle vertex is assigned h, and the square
vertex is assigned the signature of the gadget to its left.

Now step two. For every v ∈ V , v has degree 2. We contract the two edges incident to v, or

equivalently, we replace the two circle vertices and one triangle vertex boxed in Figure 6.8b with

a single (square) vertex of degree 4. The resulting graph G ′ = (V ′,E ′) is planar and 4-regular.

Next we determine what is the signature on v ′ ∈ V ′ after this contraction. Clearly the two in-

puts to each original circle have to be the same. Therefore its support is 0000, 0110, 1001, 1111,

listed starting from the diamond and going counterclockwise. Moreover, due to the triangle

assigned h in the middle, the weight on 0000 is 2, and every other weight is 1. Hence it is exactly

the signature g, with the diamond in Figure 6.8b marking the first input bit. This finishes the

proof.
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Remark From the planar embedding of the graph G, treating h vertices as edges, the resulting

graph G ′ is known as the medial graph of G, which we have met before. See Figure 3.3 for

an example. The (constructive) definition is usually phrased in the following way. The medial

graph Gm of plane graph G has a vertex on each edge of G and two vertices in Gm are joined by

an edge for each face of G in which their corresponding edges occur consecutively. However,

our construction described in the proof above clearly extends to nonplanar graphs as well.

Lemma 6.8. Pl-Holant (≠2 | =4, [0, 1, 0, 0]) is #P-hard.

Proof. Consider the gadget in Figure 6.9. We assign binary disequality≠2 to the square vertices,

=4 to the circle vertices, and [0, 1, 0, 0] to the triangle vertices. We show that the support of

the resulting signature is the set {00110011, 11001100, 11111111}, where each vector is the

assignment ordered counterclockwise starting from the diamond point.

We call the equality signature =4 in the middle the origin. There are two possible assign-

ments at the origin. If it is assigned 0, then every adjacent perfect matching signature [0, 1, 0, 0]

is matched to the half edge towards the origin, and every equality =4 is forced to be 1. This

gives the support vector 11111111.

The other possibility is that the origin is 1. In this case, we can remove the origin leaving the

outer cycle, with every [0, 1, 0, 0] becoming [0, 1, 0]. This is effectively a cycle of four equalities

connected by ≠2. It is easy to see that there are only two support vectors, which are exactly

00110011 and 11001100.

Every pair of half edges at each corner always take the same value. We further connect

each pair of these edges to different copy of =4 via two copies of ≠2. This results in a

gadget with signature f whose support is the complement of the original support, that is,

{11001100, 00110011, 00000000}.

Now consider the gadget in Figure 6.10a. We assign ≠2 to the square vertices, =4 to the

circle vertices, [0, 1, 0, 0] to the triangle vertices, and f to the pentagon vertex. Notice that each

pair of edges coming out of the pentagon vertex are from the same corner of the gadget in

Figure 6.9 used to realize f. We now study the signature of this gadget.

Notice that if a =4 on the outer cycle is assigned 0, then the two adjacent perfect matchings

must match half edges toward that =4, and their outgoing edges must be 0. Furthermore, the
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Figure 6.9: Grid-like gadget used in the proof of Lemma 6.8, whose support vec-
tors are 00110011, 11001100, and 11111111. Each square is assigned a binary
disequality ≠2, circle =4, and triangle [0, 1, 0, 0].

f1

f2

(a) Gadget with signature g. Each square is
assigned a binary disequality ≠2, circle =4,
triangle [0, 1, 0, 0], and pentagon f.

f1 f2 g

00000000 00000000 11111111
00110011 00000000 01111000
11001100 00000000 11110000
00000000 00110011 10000111
00110011 00110011 00000000
11001100 00110011 -
00000000 11001100 00001111
00110011 11001100 -
11001100 11001100 00000000

(b) Support of g. Each vector is an assign-
ment ordered counterclockwise from the di-
amond.

Figure 6.10: Another gadget used in the proof of Lemma 6.8 and a Table listing the
support of its signature.
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two =4 one more step away must be 1. A further observation is that any pair of consecutive =4’s

cannot be both 0, and if a pair of consecutive =4’s are both 1, then the [0, 1, 0, 0] in the middle

must have a 1 going out. In Figure 6.10a, we call the pentagon connecting to four equalities =4

on the upper right f1 and the other one f2. Let g be the signature of resulting gadget. We further

order the external wires of f1, f2, and g counterclockwise, each starting from edge marked with

a diamond. With this notation and these observations, we get Table 6.10b listing the support

of g. The support of g is {11111111, 01111000, 11110000, 10000111, 00000000, 00001111,

00000000}, and 00000000 has multiplicity 2.

Next we use a domain pairing argument. First we move =4 to the left hand side, by contract-

ing four ≠2 into it. We apply the domain pairing on the problem Pl-Holant (=4| g). Specifically,

we use =4 as =2, by pairing each pair of edges together. We also pair adjacent two outputs of

g clockwise, starting from the diamond point. Each pair of output wires of g are connected to

a pair of wires from =4 on the left hand side. Note that =4 enforces that each pair of edges

always takes the same value. We re-interpret 00 or 11 as 0 or 1 in the Boolean domain. In this

way, we can treat g as an arity 4 signature g ′ in the Boolean domain. So the reduction is

Pl-Holant
(
=2 | g ′) ⩽T Pl-Holant (=4 | g) .

We get the expression of g ′ next. The two support bit strings 01111000 and 10000111 of g are

eliminated as they do not agree on adjacent paired outputs. So in the paired (Boolean) domain,

the support of g ′ becomes {1111, 1100, 0011, 0000} where 0000 has multiplicity 2. We further

rotate g ′ as a Boolean domain signature such that the support is {1111, 0110, 1001, 0000} (cf.

Figure 3.2). Now it is easy to see that the matrix of g ′, an arity 4 signature in the Boolean

domain, is

Mg ′ =



2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.

By Lemma 6.7 Pl-Holant(g ′) is #P-hard. Hence Pl-Holant (≠2 | =4, [0, 1, 0, 0]) is #P-hard.
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To extend Lemma 6.6 and Lemma 6.8 to general ExactOned functions, we show that we

can always realize constant functions [1, 0] and [0, 1] in this setting.

Lemma 6.9. For any integer k ⩾ 3 and d ⩾ 3 and any signature set F,

Pl-Holant (≠2 | =k, ExactOned, [0, 1], [1, 0],F) ⩽T Pl-Holant (≠2 | =k, ExactOned,F) .

Proof. Given an instanceΩ of Pl-Holant (≠2 | =k, ExactOned, [0, 1], [1, 0],F) with an underlying

planar graph G, if there is any [1, 0] on the right hand side, then it can be combined with ≠2 as

a [0, 1] on the left hand side, and then contracted into whatever function it is attached to. If it

is connected to [1, 0] or [0, 1], we either know the Holant is 0 or remove the two vertices. If it is

connected to ExactOned, then the contraction gives us d−1 many [1, 0] pinnings. Similarly, if

it is connected to =k, the whole function decomposes into k−1 many [0, 1]’s. These additional

pinnings by [1, 0]’s or [0, 1]’s can be recursively applied.

By a similar analysis, it is easy to show that the only nontrivial occurrences of [0, 1]’s are

those attached to ExactOned via ≠2. We may therefore assume there is no [1, 0] in Ω, and the

only appearances of [1, 0]’s are those applied to ExactOned via ≠2.

We can construct =ℓk for any integer ℓ ⩾ 1, by ≠2 on the left and =k on the right. In fact

if we connect two copies of =k via ≠2 we get a signature of arity 2k− 2 with k− 1 consecutive

external wires labeled + and the others labeled −. As k ⩾ 3, we can take 2 wires of the k − 1

wires labeled − and attach to two copies of =k via two ≠2. This creates a signature of arity

3(k − 1) + (k − 3) with 3(k − 1) consecutive wires labeled + and the other k − 3 wires labeled

−. Finally connect k − 3 pairs of adjacent +/− labeled wires by ≠2 recursively. This creates a

planar gadget with an equality signature of arity 3(k− 1) − (k− 3) = 2k. This can be extended

to any =ℓk by applying the same process on any consecutive k wires.

Next we construct [0, 1]⊗r for some integer r ⩾ 1. We get [1, 0]⊗d−2 by a self-loop of

ExactOned via ≠2, ignoring the factor 2. We pick an integer ℓ large enough so that d− 2 < ℓk.

Then we connect [1, 0]⊗d−2 to =ℓk via ≠2 to get [0, 1]⊗(ℓk−d+2). This is what we claim with

r = ℓk− d+ 2.

One more construction we will use is ExactOne2+ℓ(d−2) for any integer ℓ ⩾ 1. This is

realizable by connecting ℓ many copies of ExactOned sequentially via ≠2.
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Consider the dual graph G∗ of G. Take a spanning tree T of G∗, with the external face as

the root. In each face F, let cF be the number of [0, 1]’s in the face. We start from the leaves

to recursively move all the pinnings of [0, 1] to the external face. Suppose we are working on

the face F as a leaf of T . If cF = 0 then we just remove the leaf from T and recurse on another

leaf. Otherwise we remove all [0, 1]’s in F. Let s be the smallest integer such that sr ⩾ cF. We

replace the ≠2 edge bordering between F and its parent F ′ by a sequence of three signatures:

≠2, ExactOne2+ℓ(d−2) and ≠2, where ℓ is a sufficiently large integer such that ℓ(d−2) ⩾ sr−cF.

From ExactOne2+ℓ(d−2) there are two edges connected to the two adjacent copies of ≠2. Of

the other ℓ(d − 2) edges we will put sr − cF many dangling edges in F, and the remaining

ℓ(d − 2) − (sr − cF) dangling edges in F ′. Hence there are sr dangling edges in F, including

those cF many that were connected to [0, 1]’s before we removed the [0, 1]’s. We put s copies of

[0, 1]⊗r inside the face F to pin all of them in a planar way. We add ℓ(d − 2) − (sr − cF) to cF ′ .

Remove the leaf F from T , and recurse.

After the process, all [0, 1]’s are in the external face of G. Suppose the number is p. We put r

disjoint copies ofG together to form a planar signature grid. Apply a total of prmany [0, 1]’s by

p copies of [0, 1]⊗r in a planar way. This is now an instance of Pl-Holant (≠2 | =k, ExactOned,F)

and the Holant value is the rth power of that ofΩ. Since the Holant value ofΩ is a nonnegative

integer, we can take the rth root and finish the reduction.

Remark Note that the spanning tree argument in the proof above is similar to the alternative

algorithm to find a planar pairing mentioned after Lemma 3.37.

Once we have constant functions [0, 1] and [1, 0], it is easy to construct ExactOne3 from

ExactOned. Therefore combining Lemma 6.9 with Lemma 6.6 and Lemma 6.8 we get the

following corollary.

Corollary 6.10. If d ⩾ 3 and k ∈ {3, 4}, then Pl-Holant (≠2 | =k, ExactOned) is #P-hard.

6.3 Mixing M4 and P2 with Other Signatures

Now we prove some lemmas relating to M4 and P2 that are used in the proof of the full di-

chotomy.
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Recall that AllButOned is the signature [0, . . . , 0, 1, 0] of arity d, which is the reverse of

ExactOned. After a Z transformation, M4 contains both AllButOned and ExactOned. If

both appear, then with any =k the problem is hard.

Lemma 6.11. If integers d1,d2,k ⩾ 3, then Pl-Holant
(
≠2 | =k, ExactOned1 , AllButOned2

)
is

#P-hard.

Proof. We apply Lemma 6.9 to create constant functions [1, 0] and [0, 1] first. Then we construct

ExactOne4 and AllButOne4. With both [1, 0] and [0, 1] in hand, we may reduce d1 or d2 to 4

if d1 > 4 or d2 > 4. If either of the two arities is 3, then we connect two copies together via ≠2

to realize an arity 4 copy.

Figure 6.11: Gadget to realize g in Lemma 6.11. Circle vertices are assigned =k and
square vertices are assigned ≠2. The number of parallel edges is k− 2.

Moreover, we use the gadget illustrated in Figure 6.11 to create the function g in Lemma 5.39

as an Ek-block. Then by Lemma 5.39, Pl-Holant
(
≠2 | =k, ExactOned1 , AllButOned2

)
is #P-

hard.

In general signatures in P2 are non-degenerate weighted equalities under the Z transforma-

tion. The next several lemmas show that the hardness criterion is the same regardless of the

weight.

Lemma 6.12. Let f ∈ P2, g1 ∈M+
4 , g2 ∈M−

4 be non-degenerate signatures with arity ⩾ 3. Then

Pl-Holant(f,g1,g2) is #P-hard.

Proof. Suppose the arities of f, g1, and g2 are n, m1, and m2 respectively. Under a holographic
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transformation by Z, we have

Pl-Holant(f,g1,g2) ≡ Pl-Holant

(
≠2 |

(
Z−1

)⊗n
f,
(
Z−1

)⊗m1
g1,
(
Z−1

)⊗m2
g2

)
≡ Pl-Holant

(
≠2 | f, ExactOnem1 , AllButOnem2

)
,

where f = (Z−1)⊗nf which has the form [1, 0, . . . , 0, c] up to a nonzero constant, with c ≠ 0, as

f ∈ P2. We do another diagonal transformation by D =
[

1 0
0 c1/n

]
. Then

Pl-Holant(f,g1,g2)

≡ Pl-Holant
(
(≠2)D

⊗2
∣∣∣ (D−1)⊗nf, (D−1)⊗m1ExactOnem1 , (D−1)⊗m2AllButOnem2

)
≡ Pl-Holant

(
≠2 | =n, ExactOnem1 , AllButOnem2

)
,

where in the last line we ignored several nonzero factors. The lemma follows from Lemma 6.11.

We also need to consider the mixture of P2 and binary signatures.

Lemma 6.13. Let F be a set of symmetric signatures. Suppose F contains a non-degenerate

signature f ∈ P2 of arity n ⩾ 3 and a binary signature h. Then Pl-Holant(F) is #P-hard unless

h ∈ ZP, or Pl-#CSP2(DZ−1F) ⩽T Pl-Holant(F) for some diagonal transformation D.

Proof. We do a Z transformation and get

Pl-Holant(F) ≡ Pl-Holant(F,h, f)

≡ Pl-Holant

(
≠2 | Z−1F,

(
Z−1

)⊗2
h, f

)
,

where f = (Z−1)⊗nf = [1, 0, . . . , 0, t] up to a nonzero constant with t ≠ 0. We further do another
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diagonal transformation of D1 =
[

1 0
0 t1/n

]
. Then

Pl-Holant(F) ≡ Pl-Holant

(
(≠2)D

⊗2
1 | (D−1

1 )⊗nf, (ZD1)
−1F,

(
(ZD1)

−1
)⊗2

h

)
≡ Pl-Holant

(
≠2 | =n, (ZD1)

−1F,
(
(ZD1)

−1
)⊗2

h

)
⩾T Pl-Holant

(
=n | (ZD1)

−1F,
(
(ZD1)

−1
)⊗2

h

)
,

where in the second line we ignore a nonzero factor on≠2. Hence by Theorem 1.15, Pl-Holant(F)

is #P-hard unless
(
(ZD1)

−1
)⊗2

h ∈ P (cases 1, 2 or 3 in Theorem 1.15) or
(
(ZD1)

−1
)⊗2

h =

[a,b, c] for some a,b, c ∈ C such that ac ≠ 0 and (a/c)2n = 1 (cases 4 or 5 in Theorem 1.15).

In the former case,
(
(ZD1)

−1
)⊗2

h ∈ P. Then h ∈ ZD1P = ZP as D1 ∈ Stab(P). In the latter

case, we construct =2n on the right by connecting three copies of =n to one copy of =n via ≠2.

We do the same construction again to realize =4n using =2n. We connect n− 1 many [a,b, c]’s

to =2n via ≠2 to realize a binary weighted equality [1, 0, r] with r = (a/c)n−1 ≠ 0 ignoring a

factor of cn−1. Note that r2n = (a/c)2n(n−1) = 1. Then we do another diagonal transformation

of D2 =
[

1 0
0 r1/2

]
to get Pl-Holant

(
≠2 | (ZD1D2)

−1F,=2,
(
D−1

2

)⊗4n
(=4n)

)
. Notice that

(
D−1

2

)⊗4n
(=4n) = [1, 0, . . . , 0, r−2n] = (=4n),

as r2n = 1.

Hence we have =2 and =4n on the right. With ≠2 on the left, we get =2 on the left and

therefore equalities of all even arities on the right. Let D = (D1D2)
−1. Then we have the

reduction chain:

Pl-Holant(F) ⩾T Pl-Holant
(
≠2 | DZ−1F ∪ {=2,=4n}

)
⩾T Pl-Holant

(
≠2 | DZ−1F ∪ EQ2

)
⩾T Pl-Holant

(
EQ2 | DZ−1F

)
.

The last problem is Pl-#CSP2(DZ−1F). Thus Pl-#CSP2(DZ−1F) ⩽T Pl-Holant(F).

At last, we strengthen Corollary 6.10, Lemma 6.3, and Lemma 6.5 to weighted equalities.
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We split the hardness and tractability cases. For a set F of signatures, denote by F
⩾3
nd the set

of non-degenerate signatures in F of arity at least 3. Moreover denote by F∗ the signature set

that is the same as F but with each degenerate signature [a,b]⊗m in F replaced by the unary

[a,b].

Notice that F ∩ P2 and F∗ ∩ P2 agree on signatures of arity at least 2, since signatures in

P2 of arity at least 2 are non-degenerate. So F ∩ P2 ⊆ F∗ ∩ P2, and the only possible extra

elements are some unary [x,y]’s from [x,y]⊗m ∈ F for some integer m ⩾ 2 and [x,y] is not a

multiple of [1,±i]. Equivalently the only possible extra elements are unary signatures of the

form Z[a,b] for ab ≠ 0, i.e., not of the form a multiple of Z[1, 0] or Z[0, 1], when Z−1F contains

some degenerate signatures of the form [a,b]⊗m for some integer m ⩾ 2 and ab ≠ 0.

Lemma 6.14. Let F be a set of symmetric signatures. Let F
⩾3
nd be the set of non-degenerate

signatures in F of arity at least 3. Suppose F⩾3
nd contains f ∈M4 of arity d ⩾ 3. Moreover, suppose

F
⩾3
nd ∩ P2 is nonempty, and let k be the greatest common divisor of the arities of signatures in

F∗ ∩ P2. If k ⩽ 4, then Pl-Holant(F) is #P-hard.

Proof. We may assume that f ∈M+
4 . Since F

⩾3
nd ∩P2 is nonempty, there exists g ∈ F

⩾3
nd ∩P2. By

the definition of F⩾3
nd, g has arity n ⩾ 3. We do a Z transformation,

Pl-Holant(F) ≡ Pl-Holant
(
≠2 | g, ExactOned,Z−1F

)
,

where g = (Z−1)⊗ng has the form [1, 0, . . . , 0, c] of arity n for some c ≠ 0 up to a nonzero factor.

We further do a diagonal transformation D =
[

1 0
0 c1/n

]
and get

Pl-Holant(F) ≡ Pl-Holant
(
≠2 | =n, ExactOned, (ZD)−1F

)
,

where we ignore nonzero factors on ≠2 and ExactOned. Then by Lemma 6.9,

Pl-Holant(F) ⩾T Pl-Holant
(
≠2 | =n, ExactOned, [0, 1], [1, 0], (ZD)−1F

)
.

By a weighted equality we mean a signature of the form [a, 0, . . . , 0,b] of some arity ⩾ 1, where

ab ̸= 0. Recall that P2 consists of all weighted equalities in the Z basis. Let G be the set of
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weighted equalities in (ZD)−1F. In other words, G = (ZD)−1 (F ∩ P2) as (ZD)−1P2 contains all

weighted equalities. Moreover, up to a nonzero factor, (=n) ∈ G.

Let k ′ be the gcd of all arities of signatures in G, or equivalently the gcd of all arities of

signatures in F ∩ P2. If k ′ ≠ k, then the only possibility is that (ZD)−1F contains a degenerate

signature [a,b]⊗m for some m ⩾ 2 with ab ≠ 0. In this case we use pinnings [1, 0] or [0, 1] to

realize [a,b] from [a,b]⊗m and put [a,b] in G. Hence we may assume that k ′ = k.

Pick any g1,g2 ∈ G of arities ℓ1 and ℓ2. Let r = gcd(ℓ1, ℓ2). Let t1, t2 be two positive integers

such that t1ℓ1−t2ℓ2 = r. Then connecting t1 copies of g1 and t2 copies of g2 via≠2 in a bipartite

and planar way, we get a weighted equality signature of arity r.

Apply the same argument repeatedly. Eventually we construct a weighted equality h of arity

k. We further do a diagonal transformation D1 to make it =k, that is,

Pl-Holant(F) ⩾T Pl-Holant (≠2 | G, ExactOned)

⩾T Pl-Holant (≠2 | h, ExactOned,G)

⩾T Pl-Holant

(
(≠2)D

⊗2
1 | =k,

(
D−1

1

)⊗d
ExactOned,D−1

1 G

)
⩾T Pl-Holant

(
≠2 | =k, ExactOned,D−1

1 G
)

,

where in the last line we ignored nonzero factors of ExactOned and ≠2. If k = 3 or 4, then the

hardness follows from Corollary 6.10.

If k = 1 or 2, then on the right hand side we have =k, which is =1 or =2, and a weighted

equality
(
D−1

1

)⊗n
(=n) ∈ D−1

1 G. Call it g ′. We move the =k to the left hand side via ≠2. Then

we connect zero or more copies of this =k, which is =1 or =2, to g ′ such that its arity is 3 or 4.

It is possible that n = 3 or 4 to begin with, and if so we do nothing. We are done by yet another

diagonal transformation and Corollary 6.10.

Lemma 6.15. Let F be a set of symmetric signatures. Suppose F ⊆ ZP∪Mσ
4 for some σ ∈ {+,−}

and the greatest common divisor of the arities of all signatures in F∗ ∩ P2 is k ⩾ 5. Then

Pl-Holant(F) can be computed in polynomial time.

Proof. We may assume that σ = + and the case of σ = − is similar. We do a Z transformation

on Pl-Holant(F), and get a problem of Pl-Holant
(
≠2 | Z−1F

)
.
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In this bipartite setting, given =n on the right hand side, we can realize =ℓn for any in-

teger ℓ ⩾ 1 as an En-block on the right. The problem Pl-Holant (≠2 | EQn,EO,≠2, [1, 0], [0, 1])

is tractable for any n ⩾ 5 by Lemma 6.3 and Lemma 6.5, where EQn denotes the set of all

equalities of arity ℓn for all integers ℓ ⩾ 1.

The symmetric signatures in the set ZP consist of P2, Z⊗2(≠2), and degenerate signatures. If

there is any degenerate signature of the form (Z[a,b])⊗m ∈ F with ab ≠ 0, then Z[a,b] ∈ F∗∩P2.

This contradicts k ⩾ 5. Hence all degenerate signatures in F are of the form (Z[1, 0])⊗m

or (Z[0, 1])⊗m, if any. Since F ⊆ ZP ∪ M+
4 , after a Z transformation, Pl-Holant(F) is an in-

stance of Pl-Holant (≠2 | EQk,EO,≠2, [1, 0], [0, 1]) except for the weights on the equalities. It can

be checked that the tractability results of Lemma 6.3 and Lemma 6.5 also apply to weighted

equalities. The lemma follows.

6.4 #PM in Planar Hypergraphs

Let G = {=k | k ∈ S} be a set of Equality signatures, where S is a set of positive integers

containing at least one r ⩾ 3. Moreover let EO+ := {ExactOned | d ∈ Z+} = EO ∪ {≠2, [0, 1]}.

Then Pl-Holant
(
G | EO+

)
is the problem of counting perfect matchings over hypergraphs with

planar incidence graphs, where the hyperedge sizes are prescribed by S. In the incidence

graph, vertices assigned signatures in G on the left represent hyperedges, and vertices as-

signed signatures in EO+ on the right represent vertices of the hypergraph. Let t = gcd(S). By

Lemma 6.3 and 6.5, this problem is tractable if t ⩾ 5 since we can reduce Pl-Holant
(
G | EO+

)
to

Pl-Holant (≠2 | =t,EO,≠2, [0, 1]). The reduction goes as follows. With ≠2 on the left hand side

and =t on the right hand side, we can construct all Et-blocks and hence all of EQt on the right.

Note that G ⊆ EQt. Then we move all signatures in G to the left via ≠2.

If t ⩽ 4, then Pl-Holant
(
G | EO+

)
is #P-hard due to Corollary 6.10. The reason is as follows.

We construct ≠2 on the left using the gadget pictured in Figure 5.4b with (=r) ∈ G on the left

side assigned to circle vertices and ≠2 on the right side assigned to square vertices. Then we

move G to the right side via ≠2 on the right side. We construct =t on the right side in the

subtractive Euclidean process using G of the right side and ≠2 of the left side. This gives us a

reduction from Pl-Holant (≠2 | =t,EO), which is #P-hard by Corollary 6.10 if t = 3, 4. Otherwise
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t = 1, 2. Recall that (=r) ∈ G for some r ⩾ 3. We use =t to reduce the arity of =r to 3 or 4, if

necessary. Again we are done by Corollary 6.10.

If we do not assume there is at least one hyperedge of size ⩾ 3 in Pl-Holant
(
G | EO+

)
, and

t = gcd(S) ⩽ 2, then the problem is tractable if and only if S ⊆ {1, 2}. The tractability is due to

Kasteleyn’s algorithm, as there is no hyperedge. In summary, we have the following theorem.

Theorem 6.16. The problem Pl-Holant
(
G | EO+

)
counts perfect matchings over hypergraphs

with planar incidence graphs, where the hyperedge sizes are prescribed by a set S of positive

integers. Let t = gcd(S). If t ⩾ 5 or S ⊆ {1, 2}, then the problem is computable in polynomial

time. Otherwise t ⩽ 4, S ̸⊆ {1, 2}, and the problem is #P-hard.

6.5 The Full Dichotomy

We are finally ready to prove our full dichotomy theorem. Recall that for a set F of signatures,

F
⩾3
nd denotes the set of non-degenerate signatures in F of arity at least 3, and F∗ denotes F with

all degenerate signatures [a,b]⊗m replaced by unary [a,b].

Theorem 6.17. Let F be any set of symmetric, complex-valued signatures in Boolean variables.

Then Pl-Holant(F) is #P-hard unless F satisfies one of the following conditions:

1. All non-degenerate signatures in F are of arity at most 2;

2. F is A-transformable;

3. F is P-transformable;

4. F ⊆ Vσ ∪ {f ∈ Rσ2 | arity(f) = 2} for some σ ∈ {+,−};

5. All non-degenerate signatures in F are in Rσ2 for some σ ∈ {+,−}.

6. F is M-transformable;

7. F ⊆ ZP ∪Mσ
4 for some σ ∈ {+,−}, and the greatest common divisor of the arities of the

signatures in F∗ ∩ P2 is at least 5.
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In each exceptional case, Pl-Holant(F) is computable in polynomial time. If F satisfies conditions

1 to 5, then Holant(F) is computable in polynomial time without planarity; otherwise Holant(F)

is #P-hard.

Proof. Tractability for Cases 1 to 7 follows from Lemma 1.5, 1.7, 1.9, 3.15, 3.16, 1.10, and 6.15,

respectively.

We may assume that F contains no identically 0 signatures. We note that removing any

identically 0 signature from a set does not affect its complexity, being either tractable or #P-

hard, and it does not affect the set F satisfying any of the exceptional conditions in Case 1 to

7.

Next we prove the claim for Pl-Holant(F). Suppose Pl-Holant(F) is not #P-hard. If all non-

degenerate signatures inF are of arity at most 2, then the problem is tractable case 1. Otherwise,

there is a non-degenerate signature f ∈ F of arity at least 3. By Theorem 5.41, Pl-Holant(F) is

#P-hard unless f ∈ P1 ∪M2 ∪A3 ∪M3 ∪M4 or f is vanishing. If f ∈ P1 or f ∈M2 \ P2 or f ∈ A3

or f ∈ M3, then we are done by Corollary 5.25, or Corollary 5.31, or Corollary 5.28, or Lemma

5.33 respectively. Therefore, we assume that none of these is the case. This implies that F⩾3
nd

is nonempty and that each of its signatures is in P2 or in M4 or vanishing. That is,

∅ ≠ F
⩾3
nd ⊆ P2 ∪M4 ∪ V.

Suppose there exists some f ∈ F
⩾3
nd which is in V \ M4. We assume f ∈ V+ since the other

case V− is similar. In this case, we show that Pl-Holant(F) is #P-hard, unless F is in Case 4 or

Case 5. Assume that Pl-Holant(F) is not #P-hard. We will discuss non-degenerate signatures of

arity ⩾ 3, of arity 2, and degenerate signatures separately.

1. For any g ∈ F
⩾3
nd, we claim that g ∈ V+. Suppose otherwise, then g ∈ P2 or g ∈ V−. Notice

that the latter covers the case where g ∈ M4 but g ̸∈ V+ (namely g ∈ M−
4 ). If g ∈ P2,

then Pl-Holant(f,g) is #P-hard by Lemma 3.48 and Lemma 5.8, with a possible diagonal

transformation in the Z basis. Notice that a diagonal in the Z basis is equivalent to an

orthogonal in the standard basis, which does not affect the complexity. If g ∈ V−, then

Pl-Holant(f,g) is #P-hard by Lemma 3.45 as f ̸∈M4.
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2. For any non-degenerate binary signature h ∈ F, it must be that h ∈ R+
2 as otherwise

Pl-Holant(f,h) is #P-hard by Lemma 3.43.

3. If rd+(g) = 1 for all g ∈ F
⩾3
nd, then F

⩾3
nd ⊆ R+

2 by Lemma 3.14. Together with the fact just

proved that all non-degenerate binary in F are in R+
2 , Case 5 is satisfied.

Otherwise there exists g ∈ F
⩾3
nd such that rd+(g) ⩾ 2. Then g ∈ V+ by the first item above.

If F contains any degenerate signature v = u⊗m for m ⩾ 1 and some unary u that is not

a multiple of [1, i], then by Lemma 3.41, Pl-Holant(g, v) is #P-hard. Hence all degenerate

signatures are multiples of tensor powers of [1, i], which are in V+. It implies that F is in

Case 4.

Now we may assume that ∅ ≠ F
⩾3
nd ⊆ P2 ∪M4. We handle this in three cases.

1. Suppose F
⩾3
nd ⊆ M4. First suppose F

⩾3
nd ⊆ Mσ

4 for some σ ∈ {+,−}. Assume σ = +

as σ = − is similar. Then F
⩾3
nd ⊆ R+

2 by Lemma 5.17 and 3.14. If all non-degenerate

binary signatures are in R+
2 as well, then this is Case 5 and tractable. Let h be a non-

degenerate binary signature in F that is not in R+
2 . We apply Lemma 3.44, and Pl-Holant(F)

is #P-hard unless h = Z⊗2[a, 0, 1] up to a nonzero factor, where a ≠ 0. In this case we

apply a Z transformation, and get Pl-Holant
(
≠2| [a, 0, 1],Z−1F

)
. Then we do a diagonal

transformation D =
[
a1/2 0

0 1

]
. Note that this only changes ≠2 on the left hand side to a

nonzero multiple of ≠2. Hence we have the reduction chain:

Pl-Holant(F) ≡ Pl-Holant
(
≠2 | [a, 0, 1],Z−1F

)
≡ Pl-Holant

(
≠2 | [1, 0, 1],D−1Z−1F

)
⩾T Pl-Holant(D−1Z−1F)

Notice that D−1Z−1F contains ExactOnek with k ⩾ 3 that is in M3 with I2. Then by

Lemma 5.33, Pl-Holant(F) is #P-hard unless D−1Z−1F ⊆ I2M = M, i.e., F ⊆ ZDM = ZM.

The exceptional case implies that F is M-transformable via Z, and we are in the tractable

Case 6.
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Otherwise F
⩾3
nd contains both f ∈M+

4 and g ∈M−
4 . Similarly as above, by Lemma 3.44, any

non-degenerate binary signature in F has to be in R+
2 ∩R

−
2 = {Z⊗2(≠2)} (cf. Lemma 3.14), or

is a nonzero constant multiple of Z⊗2[a, 0, 1] where a ≠ 0, as otherwise Pl-Holant(F) is #P-

hard. Moreover, by Lemma 3.46, Pl-Holant(F) is #P-hard, unless all degenerate signatures

in F are of the form [1,±i]⊗m. Note that [1, i] = Z[1, 0] and [1,−i] = Z[0, 1]. When this is

the case, F is M-transformable via Z.

2. Suppose F
⩾3
nd ⊆ P2. If F contains a non-degenerate binary signature h, then we ap-

ply Lemma 6.13 and Pl-Holant(F) is #P-hard unless h ∈ ZP, or Pl-#CSP2(DZ−1F) ⩽T

Pl-Holant(F) for some diagonal transformation D. If it is the latter case, then by Theo-

rem 5.22, either Pl-Holant(F) is #P-hard, or DZ−1F is a subset of TA, P, or T
[

1 1
1 −1

]
M, for

some diagonal matrix T . We claim that in any of these cases Pl-Holant(F) is tractable. In

fact,

a) if DZ−1F ⊆ TA, then F is A-transformable as F ⊆ ZD−1TA and [1, 0, 1] (as a row

vector) is transformed into [1, 0, 1](ZD−1T)⊗2, which is [0, 1, 0] ∈ A up to a nonzero

constant;

b) if DZ−1F ⊆ P, then F is P-transformable as F ⊆ ZD−1P and [1, 0, 1](ZD−1)⊗2 is

[0, 1, 0] ∈ P up to a nonzero constant;

c) if DZ−1F ⊆ T
[

1 1
1 −1

]
M, then F is M-transformable as F ⊆ ZD−1T

[
1 1
1 −1

]
M and

[1, 0, 1] is transformed to [1, 0, 1](ZD−1T
[

1 1
1 −1

]
)⊗2, which is [1, 0,−1] ∈ M up to a

nonzero constant.

Hence we may assume that every non-degenerate binary in F is in ZP. Notice that degen-

erate signatures are always in P under any transformation. Also F
⩾3
nd is a subset of ZP

because F
⩾3
nd ⊆ P2 and P2 is just weighted equalities under Z-transformation. It implies

that F is P-transformable under the Z transformation. Hence we are in Case 3.

3. Finally, suppose neither of the above is the case. Then there are f,g ∈ F
⩾3
nd with f ∈ M4

and g ∈ P2. If F
⩾3
nd contains both f ∈ M+

4 and f ′ ∈ M−
4 , then Pl-Holant(F) is #P-hard

by Lemma 6.12. Otherwise F
⩾3
nd ∩M4 ⊆ M+

4 or M−
4 . Let G = F∗ ∩ P2, and let d be the

gcd of the arities of the signatures in G. Then G contains at least one non-degenerate
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signature g of arity ⩾ 3. If d ⩽ 4, then Pl-Holant(F) is #P-hard by Lemma 6.14. Otherwise

d ⩾ 5. If F contains a non-degenerate binary signature h, then we apply Lemma 6.13

and by a similar analysis as in the case of “F⩾3
nd ⊆ P2” above, we are done unless every

such h is in ZP. Ignoring a nonzero factor, it implies that either h = Z⊗2[1, 0,a] where

a ≠ 0 or h = Z⊗2(≠2). If h = Z⊗2[1, 0,a], then h ∈ F∗ ∩ P2, and it contradicts d ⩾ 5.

Hence h = Z⊗2(≠2). If there is any degenerate v = (Z[a,b])⊗m in F with ab ≠ 0, then

Z[a,b] ∈ F∗ ∩ P2 and it also contradicts to d ⩾ 5.

In summary, Pl-Holant(F) is #P-hard unless F
⩾3
nd ⊆ P2 ∪M4, F⩾3

nd ∩M4 ⊆ Mσ
4 for some

σ ∈ {+,−}, the greatest common divisor of the arities of the signatures in F∗ ∩ P2 is at

least 5. Every non-degenerate binary in F is of the form Z⊗2(≠2), and every degenerate

in F is of the form (Z[1, 0])⊗m or (Z[0, 1])⊗m. Notice that P2, Z⊗2(≠2), (Z[1, 0])⊗m, and

(Z[0, 1])⊗m are all in ZP. Hence the exceptional case implies that F ⊆ ZP ∪Mσ
4 for some

σ ∈ {+,−} and the greatest common divisor of the arities of the signatures in F∗ ∩ P2 is

at least 5. This is tractable Case 7.

Next we turn to Holant(F). Unless F is in Case 1, F⩾3
nd ≠ ∅. By Theorem 5.41, any f ∈ F

⩾3
nd

has to be in P1 ∪ P2 ∪A3 ∪ V and otherwise Holant(F) is #P-hard.

We deal with P1, P2, and A3 first. It is easy to check that reductions in Lemmas 5.24 and

5.27 do not require the planarity constraint. We will use them below.

• If there exists f ∈ F
⩾3
nd such that f ∈ P1, then by Lemma 5.24, #CSP2(HF) ⩽T Holant(F)

for some H ∈ O2(C). Then by Theorem 6.1, #CSP2(HF) ⩽T Holant(F) is #P-hard, and so

is Holant(F), unless F is A- or P-transformable.

• If there exists f ∈ F
⩾3
nd such that f ∈ A3, then by Lemma 5.27, #CSP2(YH−1F∪{[1,−i, 1]}) ⩽T

Holant(F), where Y =
[
α 1
−α 1

]
and α = eπi/4. Again by Theorem 6.1, it is easy to verify that

#CSP2(YH−1F ∪ {[1,−i, 1]}) is #P-hard, and so is Holant(F), unless F is A-transformable.

• Otherwise there exists f ∈ F
⩾3
nd such that f ∈ P2. By Lemma 5.8, we may assume that

f =
[

1
i

]⊗d
+ β

[
1
−i

]⊗d
where arity(f) = d and β ≠ 0. We do a transformation by ZD,
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where D =
[

1 0
0 β1/d

]
,

Holant(F) ≡ Pl-Holant
(
≠2|=d, (ZD)−1F

)
.

With ≠2 and =d, we can realize any singature in EQd on the left as an Ed-block. (A

detailed argument is provided at the beginning of this chapter.) Hence, we have that

#CSPd((ZD)−1F) ⩽T Holant(F). By Theorem 6.1, one can verify that #CSPd((ZD)−1F) is

#P-hard, and so is Holant(F), unless F is A- or P-transformable.

These are tractable Cases 2 and 3.

Now we may assume that ∅ ≠ F
⩾3
nd ⊆ V and Holant(F) is not #P-hard. By Lemma 3.45 and

Lemma 3.47, F⩾3
nd must be a subset of V+ or V−. Suppose F

⩾3
nd ⊆ V+ as the other case is similar.

By Lemma 3.43, any non-degenerate binary signature in F has to be in R+
2 . Now we have two

cases.

• If there exists f ∈ F ⊆ V+ such that rd+(f) ⩾ 2, then by Lemma 3.41, the only unary

signatures allowed in F are some multiples of [1, i], and all degenerate signatures in F are

some multiples of a tensor power of [1, i]. Thus, all non-degenerate signatures of arity at

least 3 as well as all degenerate signatures belong to V+, and all non-degenerate binary

signatures belong to R+
2 . This is tractable Case 4.

• Otherwise F
⩾3
nd ⊆ R+

2 . Since all non-degenerate binary signatures are also in R+
2 , we have

that all non-degenerate signatures in F are in R+
2 . This is Case 5.
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Chapter 7

Anti-Ferromagnetic 2-Spin Systems

Starting from this chapter, we will show some results on approximate counting. Unlike sweep-

ing dichotomy theorems for exact counting, such as Theorem 6.17, we have only delineated

easy to approximate problems in very restricted settings. In the following several chapters, we

will turn our attention to spin systems, which are well studied in the areas of Statistical Physics,

Applied Probability and Computer Science as a general framework to model nearest-neighbour

interactions in graphs. We will focus on 2-state spin systems, or 2-spin systems for short.

7.1 Definitions and Backgrounds

Let Σ be a finite alphabet. We want to approximate the value of a function f : Σ∗ → R. A

randomized approximation scheme is an algorithm that takes an instance x ∈ Σ∗ and a rational

error tolerance ε > 0 as inputs, and outputs a rational number z such that, for every x and ε,

Pr[e−εf(x) ⩽ z ⩽ eεf(x)] ⩾ 3

4
.

A fully polynomial randomized approximation scheme (FPRAS) is a randomized approximation

scheme which runs in time bounded by a polynomial in |x| and ε−1. Note that the quantity 3
4 can

be changed to any value in the interval
(

1
2 , 1
)

or even 1 − 2−nc for a problem of size n without

changing the set of problems that have fully polynomial randomized approximation schemes

since the higher accuracy can be achieved with only polynomial delay by taking a majority vote
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of multiple samples.

Dyer et al. [DGGJ03] introduced the notion of approximation-preserving reductions. Sup-

pose f and g are two functions from Σ∗ to R. An approximation-preserving reduction (AP-

reduction) from f to g is a randomized algorithm A to approximate f using an oracle for g. The

algorithm A takes an input (x, ε) ∈ Σ∗ × (0, 1), and satisfies the following three conditions: (i)

every oracle call made by A is of the form (y, δ), where y ∈ Σ∗ is an instance of g, and 0 < δ < 1

is an error bound satisfying δ−1 ⩽ poly(|x|, ε−1); (ii) the algorithm A meets the specification for

being a randomized approximation scheme for f whenever the oracle meets the specification

for being a randomized approximation scheme for g; (iii) the run-time of A is polynomial in |x|

and ε−1.

If an AP-reduction from f to g exists, we write f⩽APg, and say that f is AP-reducible to g.

If f⩽APg and g⩽APf, then we say that f and g are AP-interreducible or AP-equivalent, and write

f≡APg.

An instance of a 2-spin system is a graphG = (V ,E). A configuration σ assigns one of the two

spins “0” and “1” to each vertex, that is, σ is one of the 2|V | possible assignments σ : V → {0, 1}.

The local interaction along an edge is characterized by a matrix A =
[
A0,0 A0,1
A1,0 A1,1

]
, where Ai,j is

the local weight (or energy) when the two endpoints are assigned i and j respectively. Moreover,

there is also an external field, specified by b =
[
b0
b1

]
on each vertex, where bi is the local weight

when the vertex is assigned spin i. All parameters are non-negative. The total weight w(σ) of

a configuration σ is given by the following product

w(σ) =
∏

(u,v)∈E

Aσ(u),σ(v)

∏
v∈V

bσ(v).

We study symmetric edge interactions, that is, A0,1 = A1,0. We normalize A and b so that

A =
[
β 1
1 γ

]
and b =

[
λ
1

]
. In this case, w(σ) simplified into

w(σ) = βm0(σ)γm1(σ)λn0(σ) (7.1)

where m0(σ) is the number of (0, 0) edges given by the configuration σ, m1(σ) is the number

of (1, 1) edges, and n0(σ) is the number of vertices assigned 0. A 2-spin system is specified by
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these parameters β,γ ⩾ 0 and λ > 0. Two important special cases are the Ising model, where

β = γ, and the hardcore gas model, where β = 0 and γ = 1.

We say a real number z ≠ 0 is efficiently approximable if there is an FPRAS for the problem

of computing z. We will always assume parameters β,γ, λ are efficiently approximable. Notice

that in statistic physics literature, parameters are usually chosen to be the logarithms of our

parameters above. Parameterizations do not affect the complexity of the system.

The Gibbs measure is a natural distribution in which each configuration σ is drawn with

probability proportional to its weight, that is, PrG;β,γ,λ(σ) ∼ w(σ). The normalizing factor of

the Gibbs measure is called the partition function, defined by

Zβ,γ,λ(G) =
∑

σ:V→{0,1}

w(σ). (7.2)

The partition function encodes rich information regarding the macroscopic behavior of the

spin system. We consider the following computation problem.

Name #2Spin(β,γ, λ)

Instance A graph G = (V ,E).

Output Zβ,γ,λ(G).

#2Spin(β,γ, 1) is exactly the problem Holant (EQ | f) where f is a binary signature such that

Mf =
[
β 1
1 γ

]
. Thus by Theorem 4.2, #2Spin(β,γ, 1) is #P-hard unless β = γ = 0 or βγ = 1.

Moreover, on ∆-regular graphs where ∆ ⩾ 3, #2Spin(β,γ, λ) becomes Holant ([λ, 0, · · · , 0, 1] | f).

We do a holographic transformation
[

1 0
0 λ1/∆

]
to normalize the left to =∆. Again by Theorem

1.15, #2Spin(β,γ, λ) is #P-hard to compute unless β = γ = 0 or βγ = 1.

Due to the apparent intractability of exact evaluation, much effort has focused on approxi-

mating #2Spin(β,γ, λ). The system is called ferromagnetic if the edge interaction is attractive

(βγ > 1), and anti-ferromagnetic if repulsive (βγ < 1). As it turns out, the behavior of the

system depends heavily on this property.

For ferromagnetic systems, a seminal result by Jerrum and Sinclair [JS93] gave the first

fully polynomial-time randomized approximation scheme (FPRAS) for the Ising model, that is,

β = γ > 1. Their algorithm is based on Markov Chain Monte Carlo (MCMC) techniques. It was
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later generalized to other ferromagnetic cases by Goldberg et al. [GJP03], which was in turn

improved by Liu et al. [LLZ14a]. For β ⩽ γ, the current best approximable bound is that λ ⩽ γ
β

[LLZ14a]. In Chapter 9, we will improve it to λ ⩽
(
γ
β

)∆0
when β ⩽ 1, where ∆0 =

√
βγ√
βγ−1

. The

other case of β ⩾ γ is completely symmetric.

The very first step of aforementioned MCMC algorithms is to transform the spin system

to the so-called “subgraph world”, which is essentially a holographic transformation by H2 =[
1 1
1 −1

]
. For anti-ferromagnetic systems (βγ < 1), a transformation by H2 will inevitably make

signature entries negative, which prevents us to define a Markov chain properly. It is not clear

how to generalize the “subgraph world” to the anti-ferromagnetic case.

A breakthrough result by Weitz [Wei06] gave the first fully polynomial-time approximation

scheme (FPTAS) of the hardcore model up to the uniqueness threshold on graphs with degree

bound ∆. This threshold characterizes the uniqueness of the Gibbs measure on infinite (∆−1)-

regular trees. Weitz’s algorithm introduces a completely different idea, called correlation decay.

In fact, our aforementioned results for ferromagnetic systems are also based on correlation

decay.

Formally, we define the problem #2Spin(β,γ, λ) on bounded degree graphs.

Name #∆-2Spin(β,γ, λ)

Instance A graph G = (V ,E) with maximum degree ∆.

Output Zβ,γ,λ(G).

Since Weitz’s result [Wei06], it is widely believed that, for anti-ferromagnetic 2-spin systems,

the phase transition of Gibbs measures on infinite regular trees coincides with the computa-

tional complexity transition of approximating partition functions. In this chapter, we will give

positive answer of this conjecture on the algorithmic side.

On the hardness side, the inapproximability of partition functions has in fact been exten-

sively studied. In [JS93], Jerrum and Sinclair showed that there is no FPRAS for #2Spin(β,β, λ)

where 0 < β < 1 and λ > 0. This hardness result is later generalized to all 0 < β,γ ⩽ 1 and

slightly beyond [GJP03]. Using gadgets based on random regular bipartite graphs, the hard-

core gas model, that is #∆-2Spin(0, 1, λ), is showed to be inapproximable for a small interval

of λ beyond the uniqueness threshold via a series of research [DFJ02, MWW09, Sly10]. Sly and
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Sun [SS14] finally showed that beyond the uniqueness threshold, unless NP = RP, there is no

FPRAS for the partition function of #∆-2Spin(β,β, λ) where 0 < β < 1 and λ > 0, as well as #∆-

2Spin(0, 1, λ) where λ > 0. Note that the result of Sly and Sun [SS14] is proved independently

by Galanis, S̆tefankovic̆ and Vigoda [GŠV12] for #∆-2Spin(β,β, 1) where 0 < β < 1 and λ > 0,

as well as #∆-2Spin(0, 1, λ) where λ > 0, under the same assumption of beyond the uniqueness

threshold.

On ∆-regular graphs, the system with parameters (β,γ, λ) satisfies the uniqueness condi-

tion if and only if the system (
√
βγ,
√
βγ, λ(β/γ)∆/2) does. It is easy to see this through a

diagonal transformation by
[

1 0
0 (β/γ)1/2

]
. Therefore hardness results by Sly and Sun [SS14] can

be translated to all anti-ferromagnetic 2-spin systems. We should note that we are not aware

of transformations of the same property when the graph is not regular. The aforementioned

conjecture is thus almost confirmed. The only problem only is at the critical threshold.

Unlike the clear picture of anti-ferromagnetic 2-spin models, approximating #2Spin(β,γ, λ)

where βγ > 1 is not completely understood. The complexity is at most as hard as approximat-

ing independent sets in bipartite graphs (#BIS) [GJ07], which is conjectured to have no approxi-

mation algorithms [DGGJ03]. As mentioned earlier, the celebrated Jerrum-Sinclair [JS93] chain

for ferromagnetic Ising models is generalized to a broader range of parameters [GJP03, LLZ14a].

It is not likely that the rest region is all as hard as #BIS and some surprising hardness re-

sults have been shown recently [LLZ14a]. Their results are achieved via reduction from anti-

ferromagnetic 2-spin systems in bipartite graphs, which were studied in [CGG+14]. In bipartite

graphs, the uniqueness threshold turns out to be the correct approximability boundary again

except for the special case of #2Spin(β,β, 1). We will return to hardness results in Chapter 8.

The understanding of multi-spin systems, either ferromagnetic or anti-ferromagnetic is also

much less complete. Hardness results are obtained regarding the special case of ferromagnetic

Potts models [GJ12a] and below the first order phase transition threshold [GŠV14, GŠVY14].

Correlation decay and FPTAS are also studied [LY13], but the whole picture is still far from

clear.

The idea of approximate counting via correlation decay is introduced independently by

Weitz [Wei06] and Bandyopadhyay and Gamarnik [BG08]. Aside from results presented in this

dissertation, other important examples include [GK07, BGK+07, LWZ14, LLL14, LLZ14b, LL15b,
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LL15a].

In this chapter, we will give algorithmic results regarding anti-ferromagnetic 2-spin systems.

Throughout this chapter, we will assume that β ⩽ γ as the two parameters are symmetric. With

a slight abuse of notation, we call (β,γ, λ) anti-ferromagnetic if 0 ⩽ β ⩽ γ, γ > 0, βγ < 1, and

λ > 0. Due to the symmetry of β and γ, and the triviality of β = γ = 0, it in fact captures all

nontrivial anti-ferromagnetic two-state spin systems.

7.2 The Self-Avoiding Walk Tree

We briefly describe Weitz’s algorithm [Wei06] in bounded degree graphs. Our algorithms pre-

sented later will follow roughly the same paradigm.

The Gibbs measure defines a marginal distribution of spins for each vertex. Let pv denote

the probability of a vertex v colored blue. Since the system is self-reducible, #2Spin(β,γ, λ) is

equivalent to computing pv [JVV86] (for details, see for example Lemma 7.15).

Let σΛ ∈ {0, 1}Λ be a configuration of Λ ⊂ V . We call vertices in Λ fixed and other vertices

free. We use pσΛv to denote the marginal probability of v being assigned “0” conditional on the

configuration σΛ of Λ.

Suppose the instance is a tree T with root v. Let RσΛT := pσΛv /(1 − pσΛv ) be the ratio between

the two probabilities that the root v is 0 and 1, while imposing some condition σΛ (with the

convention that RσΛT = ∞ when pσΛv = 1). Suppose that v has d children vi, . . . vd. Let Ti be

the subtree with root vi. Due to the independence of subtrees, it is straightforward to get the

following recursion for calculating RσΛT :

R
σΛ
T = Fd

(
R
σΛ
T1

, . . . ,RσΛTd

)
, (7.3)

where the function Fd(x1, . . . , xd) is defined as

Fd(x1, . . . , xd) := λ
d∏
i=1

βxi + 1

xi + γ
.

We allow xi’s to take the value ∞ as in that case the function Fd is clearly well defined. In

general we use capital letters like F,G,A, . . . to denote multivariate functions, and small letters
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f,g,α, . . . to denote their symmetric versions. Here we define fd(x) := λ
(
βx+1
x+γ

)d
to be the

symmetric version of Fd(x).

Let G(V ,E) be a graph. Similarly define that RσΛG,v := p
σΛ
v /(1 − pσΛv ). In contrast to the

case of trees, there is no easy recursion to calculate RσΛG,v for a general graph G. The reason

is dependencies caused by cycles. Weitz [Wei06] reduced computing the marginal distribution

of v in a general graph G to that in a tree, called the self-avoiding walk (SAW) tree, denoted

by TSAW(G, v). To be specific, given a graph G = (V ,E) and a vertex v ∈ V , TSAW(G, v) is a tree

with root v that enumerates all self-avoiding walks originating from v in G, with additional

vertices closing cycles as leaves of the tree. Each vertex in the new vertex set VSAW of TSAW(G, v)

corresponds to a vertex in G, but a vertex in G may be mapped to more than one vertices

in VSAW. A boundary condition is imposed on leaves in VSAW that close cycles. The imposed

color of such leaves depends on whether the cycle is formed from a small vertex to a large

vertex or conversely, where the ordering is arbitrarily chosen in G. Vertex sets S ⊂ Λ ⊂ V are

mapped to respectively SSAW ⊂ ΛSAW ⊂ VSAW, and any configuration σΛ ∈ {0, 1}Λ is mapped to

σΛSAW ∈ {0, 1}ΛSAW . With abuse of notations we may write S = SSAW and σΛ = σΛSAW when no

ambiguity is caused.

Theorem 7.1 (Theorem 3.1 of Weitz [Wei06]). Let G = (V ,E) be a graph, v ∈ V , σΛ ∈ {0, 1}Λ be

a configuration on Λ ⊂ V , and S ⊂ V . Let T = TSAW(G, v) be constructed as above. It holds that

R
σΛ
G,v = R

σΛ
T .

Moreover, the maximum degree of T is at most the maximum degree of G, distG(v,S) = distT (v,

SSAW), and any neighborhood of v in T can be constructed in time proportional to the size of the

neighborhood.

The SAW tree construction does not solve a #P-hard problem, since TSAW(G, v) is potentially

exponential in size of G. For a polynomial time approximation algorithm, we may run the tree

recursion within some polynomial size, or equivalently a logarithmic depth. At the boundary

where we stop, we may plug in some randomly guessed values. The question is then how large

is the error of our random guess. To guarantee the performance of the algorithm, we need the
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following notion of strong spatial mixing.

For a subset of vertices Λ ⊆ V , a configuration σΛ is feasible if there exists a σ ∈ {0, 1}E with

Gibbs measure ρ(σ) > 0 such that σ is consistent with σΛ on Λ. Notice that if β,γ > 0 then all

configurations are feasible.

Definition 7.2. A spin system on a family G of graphs is said to exhibit strong spatial mixing

(SSM) if for any graph G = (V ,E) ∈ G, any v ∈ V ,Λ ⊂ V and any feasible σΛ, τΛ ∈ {0, 1}Λ,

|pσΛv − pτΛv | ⩽ exp(−Ω(dist(v,S))),

where S ⊂ Λ is the subset on which σΛ and τΛ differ, and dist(v,S) is the shortest distance from

v to any vertex in S.

The weak spatial mixing can be defined by measuring the decay with respect to dist(v,Λ)

instead of dist(v,S). The spatial mixing property is also called correlation decay in Statistical

Physics.

If SSM holds, then the error caused by early termination in TSAW(G, v) and random boundary

values is only exponentially small in the depth. Hence our algorithm is an FPTAS. In a lot of

cases, the existence of FPTASes then boils down to showing SSM holds.

The Uniqueness Condition

Recall that the Gibbs distribution is the distribution in which a configuration σ is drawn with

probability

PrG;β,γ,λ(σ) =
w(σ)

Zβ,γ,λ(G)
. (7.4)

Let T∆ denote the infinite ∆-regular tree, also known as the Bethe lattice or the Cayley tree.

A Gibbs measure on T∆ is a measure such that for any finite subtree T ⊂ T∆, the induced

distribution on T conditioned on the outer boundary is the same as that given by (7.4). There

may be one or more Gibbs measures (see, e.g., [Geo11] for more details). A Gibbs measure

is called translation-invariant if it is invariant under all automorphisms of T∆, and is semi-

translation-invariant if it is invariant under all parity-preserving automorphisms of T∆. In



225

our context, the Gibbs measures that will be of interest are the two extremal semi-translation-

invariant Gibbs measures corresponding to the all 1’s and all 0’s boundary conditions. These

two measures are different in the non-uniqueness region of T∆.

If we pick an arbitrary vertex as the root of Td, then the root has d children and every other

vertex has d − 1 children. Notice that the difference between Td and an infinite (d − 1)-ary

tree, denoted by T̂d−1, is only the degree of the root. We consider the uniqueness of Gibbs

measures on Td. Due to the symmetric structure of Td, the standard recursion (7.3) thus

becomes Rv = fd−1(Rvi) for any child vi of v, where fd(x) = λ
(
βx+1
x+γ

)d
is the symmetrized

version of Fd(x).

Notice that f ′d(x) < 0 for any βγ < 1 and x > 0. It implies that there exists a unique positive

fixed point x̂d such that x̂d = f(x̂d). Denote Ctr(β,γ, λ,d) := |f ′d(x̂d)|. It is straightforward to

calculate that

Ctr(β,γ, λ,d) =
λd(1 − βγ)(βx̂d + 1)d−1

(x̂d + γ)d+1 =
d(1 − βγ)x̂d

(βx̂d + 1)(x̂d + γ)
.

It is known [Kel85, Geo11, MSW07] that the Gibbs measure of anti-ferromagnetic two-state spin

systems in Td is unique if and only if

Ctr(β,γ, λ,d− 1) = |f ′d−1(x̂d−1)| ⩽ 1. (7.5)

Roughly speaking this is because |f ′d−1(x̂d−1)| ⩽ 1 if and only if the dynamical system defined by

fd−1(x) converges to its unique fixed point x̂d−1. If |f ′d−1(x̂d−1)| > 1 then the dynamical system

will eventually be oscillating between x1 ≠ x2 such that x1 = fd−1(x2) and x2 = fd−1(x1). This

motivates the following definition.

Definition 7.3. Let (β,γ, λ) be anti-ferromagnetic and d ⩾ 1 be an integer. Then (β,γ, λ,d)

satisfies the strict uniqueness condition, or StrUnique(β,γ, λ,d) holds, if and only if

Ctr(β,γ, λ,d) < 1

In particular, (β,γ, λ) is called universally strictly unique if StrUnique(β,γ, λ,d) holds for any
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integer d ⩾ 1.

See Figure 7.1 for the universally strictly uniqueness region of the λ = 1 plane.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

β

γ

0< β, γ <1

βγ = 1 uniqueness threshold

threshold achieved by

heatbath random walk

Figure 7.1: The universally strictly uniqueness region of the λ = 1 plane. In gen-
eral graphs, our FPTAS works for the region between the red critical curve of the
uniqueness threshold and the black curve βγ = 1. The heat-bath random walk in
[GJP03] works for the region between the blue dashed line and βγ = 1.

Proposition 7.4. For any integer d ⩾ 2, if |f ′d−1(x̂d−1)| > 1, then weak spatial mixing fails in Td,

and therefore so does strong spatial mixing.

We will discuss various thresholds of the uniqueness condition in Section 7.7.

At the end of this section we observe two properties of the universal strict uniqueness.

Lemma 7.5. Let (β,γ, λ) be anti-ferromagnetic. If (β,γ, λ) is universally strictly unique then

γ > 1.

Proof. Suppose γ ⩽ 1. Suppose for the sake of contradiction that x̂d goes to 0 as d goes to

infinity. It is easy to see that this violates x̂d = λ
(
βx̂d+1
x̂d+γ

)d
. Hence there exists a increasing

subsequence di such that x̂di is bounded away from 0 as i goes to ∞. Then
∣∣∣f ′di(x̂di)∣∣∣ > 1 for

sufficiently large i, which violates universally strictly uniqueness.
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The uniqueness condition is defined by |f ′d(x̂d)| < 1. The following lemma shows that if

(β,γ, λ) is universally strictly unique |f ′d(x̂d)| is bounded away from 1. The same statement is

obviously true if StrUnique(β,γ, λ,d) holds for finitely many d.

Lemma 7.6. Let (β,γ, λ) be anti-ferromagnetic. If (β,γ, λ) is universally strictly unique, then

α := maxd⩾1{Ctr(β,γ, λ,d)} < 1.

Proof. If (β,γ, λ) is universally strictly unique, by Lemma 7.5, γ > 1. For anti-ferromagnetic

(β,γ, λ), β ⩽ 1
γ

, thus the fixed point x̂d = λ
(
βx̂d+1
x̂d+γ

)d
⩽ λ

γd
. Therefore Ctr(β,γ, λ,d) =

|f ′d(x̂d)| =
d(1−βγ)x̂d

(βx̂d+1)(x̂d+γ)
⩽ dλγ−d.

Clearly there exists d0 such that for any d ⩾ d0, dλγ−d is decreasing. Let d1 ⩾ d0 be the first

such d so that d1λγ
−d1 < 1. For any d ⩾ d1, we have that Ctr(β,γ, λ,d) ⩽ dλγ−d ⩽ d1λγ

−d1 < 1.

Let c be the larger of max1⩽d⩽d1
{Ctr(β,γ, λ,d)} and d1λγ

−d1 . Clearly α ⩽ c and c < 1 due to

universally strict uniqueness.

7.3 The Potential Method

We would like prove the strong spatial mixing in arbitrary trees, sometimes with bounded

degree ∆, under certain conditions. This is sufficient for approximation algorithms due to

the self-avoiding walk tree construction. Our main technique in the analysis is the potential

method.

To study correlation decay on trees, we use the standard recursion given in (7.3). Recall

that T is a tree with root v. Vertices v1, . . . , vd are d children of v, and Ti is the subtree rooted

by vi. A configuration σΛ is on a subset Λ of vertices, and RσT denote the ratio of marginal

probabilities at v given a partial configuration σ on T .

We want to study the influence of another set of vertices, say S, upon v. In particular, we

want to study the range of ratios at v over all possible configurations on S. To this end, we

define the lower and upper bounds as follows. Notice that as S will be fixed, we may assume

that it is a subset of Λ.

Definition 7.7. Let T , v,Λ,σΛ,S,RσT be as above. Define Rv := minτΛ R
τΛ
T and Rv := maxτΛ R

τΛ
T ,

where τλ can only differ from σΛ on S. Define δv := Rv − Rv.



228

Our goal is thus to prove that δv ⩽ exp(−Ω(dist(v,S))). We can recursively calculate Rv and

Rv as follows. The base cases are:

1. v ∈ S, in which case Rv = 0 and Rv = ∞ and δv = ∞;

2. v ∈ Λ \ S, i.e. v is fixed to be the same value in all τΛ, in which case Rv = Rv = 0 (or ∞) if

v is fixed to be blue (or green), and δv = 0;

3. v ̸∈ Λ and v is the only node of T , in which case Rv = Rv = λ and δv = 0.

For v ̸∈ Λ, since Fd is monotonically decreasing with respect to any xi for any anti-ferromagnetic

(β,γ, λ),

Rv = Fd(R
v1 , ...,Rvd) and Rv = Fd(Rv1 , ...,Rvd),

where Rvi and Rvi are recursively defined lower and upper bounds of RτΛTi for 1 ⩽ i ⩽ d.

Our goal is to show that δv decays exponentially in the depth of the recursion when the

uniqueness holds. A straightforward approach would be to prove that δv contracts by a con-

stant ratio at each recursion step. This is a sufficient, but not necessary condition for the

exponential decay. Indeed there are circumstances that δv does not necessarily decay in every

step but does decay in the long run. To amortize this behaviour, we use a potential function

Φ(x) and show that the correlation of a new recursion decays by a constant ratio.

To be more precise, the potential function Φ : R+ → R+ is a differentiable and mono-

tonically increasing function. It maps the domain of the original recursion to a new one. Let

yi = Φ(xi). We want to consider the recursion for yi’s. The new recursion function, which is

the pullback of Fd, is defined as

Gd(y1, . . . ,yd) := Φ(Fd(Φ
−1(x1), . . . ,Φ

−1(xd))).

The relationship between Fd(x) and Gd(y) is illustrated in Figure 7.2.

Morally we can choose whatever function as the potential function. However, we would like
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x y

Fd(x) Gd(y)

Φ

Fd Gd

Φ−1

Φ

Φ−1

Figure 7.2: Commutative diagram between Fd and Gd.

to pick “good” ones so as to help the analysis of the contraction Define φ(x) := Φ ′(x) > 0 and

Cφ,d(x) := φ(Fd(x)) ·
d∑
i=1

∣∣∣∣∂Fd∂xi
∣∣∣∣ 1

φ(xi)
.

Definition 7.8. Let Φ : R+ → R+ be a differentiable and monotonically increasing function. Let

φ(x) and Cφ,d(x) be defined as above. Then Φ(x) is a good potential function for degree d if it

satisfies the following conditions:

1. there exists a constant C1,C2 > 0 such that C1 ⩽ φ(x) ⩽ C2 for any x ∈ [λβd, λγ−d] if

βγ < 1 or x ∈ [λγ−d, λβd] if βγ > 1;

2. there exists a constant α < 1 such that Cφ,d(x) ⩽ α for all xi ∈ [λβd, λγ−d] if βγ < 1 or

xi ∈ [λγ−d, λβd] if βγ > 1.

In Definition 7.8, Condition 1 is rather easy to satisfy. The crux is in fact Condition 2. We

call α in Condition 2 the contraction ratio of Φ(x).

Lemma 7.9. LetΦ(x) be a good potential function with contraction ratioα. Thenα ⩾ Ctr(β,γ, λ,d).

Proof. Recall that Ctr(β,γ, λ,d) =
∣∣f ′d(x̂d)∣∣, where x̂d is unique fixed point of the symmetrized

recursion such that fd(x̂d) = x̂d. By Definition 7.8, α ⩾ Cφ,d(x) for all xi ∈ [λβd, λγ−d].
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Plugging in xi = x̂d for all 1 ⩽ i ⩽ d, we have that

α ⩾ Cφ,d(x̂d, · · · , x̂d)

= φ(Fd(x̂d, . . . , x̂d)) ·
d∑
i=1

∣∣∣∣∂Fd∂xi (x̂d, . . . , x̂d)

∣∣∣∣ 1

φ(x̂d)

= φ(fd(x̂d)) ·
d∑
i=1

∣∣∣∣∂Fd∂xi (x̂d, . . . , x̂d)

∣∣∣∣ 1

φ(x̂d)

= φ(x̂d) ·
d∑
i=1

∣∣∣∣∂Fd∂xi (x̂d, . . . , x̂d)

∣∣∣∣ 1

φ(x̂d)

=

d∑
i=1

∣∣∣∣∂Fd∂xi (x̂d, . . . , x̂d)

∣∣∣∣
= d · (1 − βγ)fd(x̂d)

(βx̂d + 1)(x̂+ γ)
=
∣∣f ′d(x̂d)∣∣ = Ctr(β,γ, λ,d).

Recall Definition 7.3. We then have the following corollary.

Corollary 7.10. A good potential function for degree d exists only if StrUnique(β,γ, λ,d) holds.

We also define the upper and lower bounds of y. Define yv = Φ(Rv) and accordingly yvi =

Φ(Rvi), for 1 ⩽ i ⩽ d, as well as yv = Φ(Rv) and yvi = Φ(Rvi), for 1 ⩽ i ⩽ d. We have that

yv = Gd(y
v1 , . . . ,yvd) and yv = Gd(yv1 , . . . ,yvd). (7.6)

Let εv = yv − yv. For a good potential function, exponential decay of εv is sufficient to imply

that of δv.

Lemma 7.11. Let Φ(x) be a good potential function. Then there exists a constant C such that

δv ⩽ Cεv for any dist(v,S) ⩾ 2.

Proof. By (7.6) and the Mean Value Theorem, there exists an R̃ ∈ [Rv,Rv] such that

εv = Φ(Rv) −Φ(Rv) = Φ
′(R̃) · δv = φ(R̃) · δv. (7.7)

Since dist(v,S) ⩾ 2, we have that Rv ⩾ λβd and Rv ⩽ λγ−d. Hence R̃ ∈ [λβd, λγ−d], and

by Condition 1 of Definition 7.8, there exists a constant C1 such that φ(R̃) ⩾ C1. Therefore
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δv ⩽ 1/C1εv.

The next lemma explains Condition 2 of Definition 7.8.

Lemma 7.12. Let Φ(x) be a good potential function with contraction ratio α. Then,

εv ⩽ α max
1⩽i⩽d

{εvi}.

Proof. First we use (7.6):

εv = y
v − yv = Gd(yv1 , . . . ,yvd) −Gd(y

v1 , . . . ,yvd).

Let y0 = (yv1 , . . . ,yvd) and y1 = (yv1 , . . . ,yvd). Let z(t) = ty1+(1−t)y0 be a linear combination

of y0 and y1 where t ∈ [0, 1]. Then we have that

εv = Gd(z(1)) −Gd(z(0)).

By the Mean Value Theorem, there exist t̃ such that εv =
dGd(z(t))

d t

∣∣∣
t=t̃

. Let ỹi = t̃yvi+(1− t̃)yvi

for all 1 ⩽ i ⩽ d. Then we have that

εv =
∣∣∇Gd(ỹ1, . . . , ỹd) · (εv1 , . . . , εvd)

∣∣ . (7.8)

It is straightforward to calculate that

∂Gd(y)

∂yi
=
φ(Fd(R))

φ(Ri)
· ∂Fd(R)

∂Ri
, (7.9)

where Ri = Φ−1(yi) and y and R are vectors composed by yi’s and Ri’s. Plugging (7.9) into

(7.8) we get that

εv = φ(Fd(R̃)) ·
d∑
i=1

∣∣∣∣∂Fd∂Ri
∣∣∣∣ 1

φ(R̃i)
· εvi

⩽ Cφ,d(R̃1, . . . , R̃d) · max
1⩽i⩽d

{εvi} ⩽ α max
1⩽i⩽d

{εvi},
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where R̃i = Φ−1(ỹi), R̃ is the vector composed by R̃i’s, and in the last line we use Condition 2

of Definition 7.8.

Note that the two conditions of a good potential function does not necessarily deal with all

cases in the tree recursion. At the root we have one more child than other vertices in a SAW

tree. Also, if v has a child u ∈ S, then εu = ∞ and the range in both conditions of Definition

7.8 does not apply. To bound the recursion at the root, we have the following straightforward

bound of the original recursion.

Lemma 7.13. Let v be a vertex and vi be its children for 1 ⩽ i ⩽ d. Suppose δvi ⩽ C0 for some

C0 > 0 and all 1 ⩽ i ⩽ d. Then,

δv ⩽ dλγ−d+1C0.

Proof. By the same argument as in Lemma 7.12 and (7.3), there exists xi’s such that

δv =
∣∣∇Fd(x1, . . . , xd) · (δv1 , . . . , δvd)

∣∣
⩽ C0

d∑
i=1

∣∣∣∣∂Fd(x)∂xi

∣∣∣∣ ,
where x is the vector composed by xi’s. Then, we have that

∣∣∣∣∂Fd(x)∂xi

∣∣∣∣ = d(1 − βγ)Fd(x)

(xi + γ)(βxi + 1)
⩽ dλγ−d+1,

where we use the fact that Fd(x) ⩽ λγ−d for any xi ∈ [0,∞).

Lemma 7.14. For a set of anti-ferromagnetic parameters (β,γ, λ) , if a good potential function

Φ(x) exists for all integers d ∈ [1,∆ − 1], then strong special mixing holds for any graphs with

degree bound ∆.

Proof. Let G be the graph with degree bound ∆ and v be a vertex. We construct the SAW tree

T = TSAW(G, v). Due to Theorem 7.1, we only need to show strong special mixing in T with

respect to v and an arbitrary vertex set S. Let σΛ be a configuration on Λ where S ⊆ Λ. Let
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δv be defined as in Definition 7.7 with respect to T , v, Λ, σΛ, and S. We want to show that

δv = exp(−Ω(dist(v,S))).

The maximum degree of T is at most ∆. Thus the root v has at most ∆ children in T , and any

other vertex in T has at most ∆− 1 children. Assume v has k ⩾ 1 children as otherwise we are

done. We may also assume that v ̸∈ S and let t = dist(v,S) − 1 ⩾ 1. We recursively construct a

path u0 = v, u1,…,ul of length l ⩽ t as follows. Given ui, if there is no child of ui, then we stop

and let l = i. Otherwise ui has at least one child. If i = t then we stop and let l = t. Otherwise

l < t and let ui+1 be the child of ui such that εui+1 takes the maximum ε among all children of

ui. In other words, by Lemma 7.12, we have that

εui ⩽ αεui+1 , (7.10)

for all 1 ⩽ i ⩽ l − 1. Notice that (7.10) may not hold for i = 0 since v = u0 has possibly ∆

children.

First we note that for all 1 ⩽ i ⩽ l, dist(v,ui) = i ⩽ l ⩽ t, and therefore ui ̸∈ S. If we met

any vertex ul with no child, then we claim that εul = 0. This is because ul is either a free vertex

with no child or ul ∈ Λ but ul ̸∈ S. However since εul takes the maximum ε among all children

of ul−1, we have that for all children of ui−1, ε = 0, which implies that εui−1 = 0. Recursively

we get that εv = εu0 = 0 and clearly the theorem holds by (7.7).

Hence we may assume that l = t. Since ul ̸∈ S, we have that δul ⩽ λγ−(∆−1) if γ ⩽ 1,

or δul ⩽ λ if γ > 1. Hence by (7.7), we have that εul ⩽ C0 for some constant C0. Moreover

applying (7.10) inductively we have that

εu1 ⩽ αlεul ⩽ αtC0.

Hence by Lemma 7.11, we there exists another constant C1 such that δu1 ⩽ αtC1. To get a

bound on δu0 , we use Lemma 7.13, which states that

δu0 ⩽ d0λγ
−d0−1δu1 ⩽ d0λγ

−d0−1αtC1,

where d0 ⩽ ∆ is the degree of v = u0. Hence we have that δv = exp(−Ω(t)) and the lemma
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holds.

It has the following algorithmic implication.

Lemma 7.15. Let (β,γ, λ) be a set of anti-ferromagnetic parameters. If there exists a good

potential function for all d ∈ [1,∆−1] with contraction ratio α < 1, then #∆-2Spin(β,γ, λ) can be

approximated within ε in deterministic timeO

(
n
(
n
ε

) log(∆−1)
− logα

)
, where n is the number of vertices

of the instance.

Proof. Let G be a graph with degree bound ∆ and v be a vertex in G. A self-avoiding walk tree

T = TSAW(G, v) can be constructed so that RσΛG,v = R
σΛ
T by Theorem 7.1. We use the recursive

procedure described above to compute upper and lower bounds of RσΛT , with the base case that

for any vertex u at level t that is not fixed, trivial bounds Ru = 0 and Ru = ∞ are used. In other

words, we let S be the set of vertices whose distance to v is larger than t. Since a good potential

function exists for all d ∈ [1,∆− 1], by Lemma 7.14 the recursive procedure returns Rv and Rv

such that Rv ⩽ R
σΛ
T ⩽ Rv, and Rv − Rv = O(αt) where α < 1 is the contraction ratio. Note that

R
σΛ
T = RσΛG,v =

p
σΛ
v

1−p
σΛ
v

. Let p0 = Rv
Rv+1 and p1 = Rv

Rv+1 . Then p0 ⩽ pσΛv ⩽ p1 and

p1 − p0 =
Rv

Rv + 1
−

Rv

Rv + 1
⩽ Rv − Rv = O(αt). (7.11)

The recursive procedure runs in time O(∆t) since it only needs to construct the first t levels

of the self-avoiding walk tree. For any ε > 0, let t = O(logα ε). As ∆ is bounded, this gives an

algorithm which approximates pσΛv within an additive error ε in time O

(
ε

log(∆−1)
logα

)
.

Then we use self-reducibility to reduce computing Zβ,γ,λ(G) to computing marginal proba-

bilities with certain boudary conditions. To be specific, let σ be a configuration on a subset of V

and τ be sampled according to the Gibbs measure. Let pσv := Pr (τ(v) = 1 | σ) be the conditional

marginal probability. We can compute Zβ,γ,λ(G) from pσv by the following standard procedure.

Let v1, . . . , vn enumerate vertices in G. For 0 ⩽ i ⩽ n, let σi be the configuration fixing the first

i vertices v1, . . . , vi as follows: σi(vj) = σi−1(vj) for 1 ⩽ j ⩽ i− 1 and σi(vi) is fixed to the spin

s so that pi := Pr (τ(vi) = s | σi−1) ⩾ 1/3. This is always possible because clearly

Pr (τ(vi) = 0 | σi−1) + Pr (τ(vi) = 1 | σi−1) = 1.
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In particular, σn ∈ {0, 1}V is a configuration of V . The Gibbs measure of σn is ρ(σn) =
w(σn)
Zβ,γ,λ(G) .

On the other hand, we can rewrite ρ(σn) = p1p2 · · ·pn by conditional probabilities. Thus

Zβ,γ,λ(G) =
w(σn)
p1p2···pn . The weightw(σn) =

∏
(u,v)∈EAσn(u),σn(v)

∏
v∈V bσn(v) can be computed

exactly in time polynomial in n. Note that pi equals to either p
σi−1
vi or 1 − p

σi−1
vi . Since we can

approximate pσΛv within an additive error ε in time O

(
ε

log(∆−1)
logα

)
, the configurations σi can

be efficiently constructed, which guarantees that all pi’s are bounded away from 0. Thus the

product p1p2 · · ·pn can be approximated within a factor of (1 ± nε ′) in time O

(
nε ′

log(∆−1)
logα

)
.

Now let ε ′ = ε
n

. We get the claimed FPTAS for Zβ,γ,λ(G).

When the degree is unbounded, there is a slight problem since the SAW tree may grow super

polynomially even if the depth is of order logn. We use a refined metric replacing the naive

graph distance used in Definition 7.2. Strong spatial mixing under this metric is also called

computationally efficient correlation decay.

Definition 7.16. Let T be a rooted tree and M > 1 be a constant. For any vertex v in T , define

the M-based depth of v, denoted ℓM(v), such that ℓM(v) = 0 if v is the root, and ℓM(v) =

ℓM(u) + ⌈logM(d+ 1)⌉ if v is a child of u and u has degree d.

We then define a slightly stronger notion of potential functions.

Definition 7.17. LetΦ : R+ → R+ be a differentiable and monotonically increasing function. Let

φ(x) and Cφ,d(x) defined in the same way as in Definition 7.8. Let β,γ > 0 be two parameters

such that βγ < 1 and β > 1 or γ > 1. Then Φ(x) is a universal potential function for (β,γ, λ) if

it satisfies the following conditions:

1. there exists a constant C1 > 0 such that φ(x) > C1 for any x ∈ (0, λ);

2. φ(x) is decreasing and there exists a constant C2 > 0 such that φ(x) < C2x
−1 for any

x ∈ (0, λ);

3. there exists a constant α < 1 and M > 1 such that for all d, Cφ,d(x) ⩽ α⌈logM(d+1)⌉ for all

xi ∈ (0,∞);

We also call α the contraction ratio and M the base.
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Then we have the following analogue of Lemma 7.14. Note that the condition γ > 1 is

necessary due to Lemma 7.5.

Lemma 7.18. For a set of anti-ferromagnetic parameters (β,γ, λ) where γ > 1, if a good potential

functionΦ(x) exists for all integers d ∈ [1,∆−1], then strong spatial mixing holds for any graphs

with degree bound ∆.

Proof. The proof goes almost the same as in Lemma 7.14. Let G be a graph and v be a vertex.

We construct the SAW tree T = TSAW(G, v). Let t > 0 be an integer which denotes the boundary

distance. Let S be the set of vertices whose distance to v is larger than t. Since γ > 1, for any

vertex v that is not in S, Rv < λ and Rv > 0. Construct the path v = u0,u1, · · · ,ut as in Lemma

7.14.

For the base case ofut, we use Condition 2 of Definition 7.17. Sinceut ̸∈ S, then δut ⩽ λγ−dt ,

where dt is the degree of ut. Moreover, Rut ⩾ λβdt . By (7.7) and Condition 2, we have that

εut = δutφ(R̃) ⩽ λγ−dtφ(λβdt) ⩽ C2(βγ)
−dt ⩽ C2,

where R̃ ∈ [Rut ,R
ut ].

By Condition 3 and Lemma 7.12, we get stepwise decay until the last level, such that εu1 ⩽

αtC2. By Condition 1 of Definition 7.17 and (7.7), we have that δu1 = εu1/φ(R̃
′) < αtC2/C1,

for some R̃ ′ ∈ [Ru1 ,Ru1 ] ⊂ (0, λ). Then by Lemma 7.13, we have that

δu0 ⩽ d0λγ
−d0−1αtC2/C1,

where d0 is the degree of v = u0. Clearly there is a constant bound on d0λγ
−d0−1 when γ > 1,

and hence δu0 = exp(Ω(−t)) holds.

Lemma 7.19. Let (β,γ, λ) be a set of anti-ferromagnetic parameters where γ > 1. If there exists

a universal potential function Φ(x) with contraction ratio α and base M, then #2Spin(β,γ, λ)

can be approximated within ε in deterministic time O

(
n3
(
n
ε

) logM
− logα

)
, where n is the number of

vertices of the instance.
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Proof. By the same proof of Lemma 7.15, we only need to approximate the marginal probability

at the root v of a tree T . By Condition 3 of Definition 7.17, there exists a constant M > 1 such

that for all d ⩾ M, Cφ,d(x1, · · · , xd) < α⌈logM(d+1)⌉. Denote by B(ℓ) the set of all vertices

whose M-based depths is at most ℓ. It can be verified by induction that |B(ℓ)| ⩽ Mℓ. Let

S = {u | dist(u,B(ℓ)) > 1}, which is essentially the same S as in Lemma 7.14 and Lemma 7.18.

We can recursively compute upper and lower bounds Rv and Rv of RσΛT such that Rv ⩽ RσΛT ⩽ Rv,

with the base case that for any vertex u ∈ S trivial bounds Ru = 0 and Ru = ∞ are used.

We proceed as in the proof of Lemma 7.18. Without loss of generality, we construct a path

u0u1 · · ·uk in T from the root u0 = v to a uk with ℓM(uk−1) ⩽ ℓ and ℓM(uk) > ℓ. As in the proof

of Lemma 7.12, εuj ⩽ Cφdj(xj,1, . . . , xj,dj) · εuj+1for all 0 ⩽ j ⩽ k − 1, where dj is the number of

children of uj and xj,i ∈ [0,∞), 1 ⩽ i ⩽ dj. Hence we have that

εv ⩽ εuk ·
k−1∏
j=0

α⌈logM(dj+1)⌉ ⩽ εuk · α
∑k−1
j=0 ⌈logM(dj+1)⌉

= εuk · α
ℓM(uk) ⩽ εuk · αℓ.

Note that dist(uk,B(ℓ)) = 1 and hence uk ̸∈ S. So εuk ⩽ C2 as in Lemma 7.18. The rest of the

proof is the same as that of Lemma 7.15. The running time has an extra n2 factor since we

need to go down two more levels (in the worst case) outside of B(ℓ).

7.4 A Degree Dependent Potential Function

In this section, we show that there exists a good potential function for any degree d with

contraction ratio Ctr(β,γ, λ,d). However, the potential function does depend on d, and hence

it does not always satisfy the condition of Lemma 7.15, which requires a good potential function

for all d ⩽ ∆− 1. As a result, this potential function implies FPTASes only when γ < 1.

To find a good potential function, it all boils down to satisfying Condition 2 of Definition

7.8. Essentially, we want the function Cφ,d(x) to take its maximum at x = x̂d := (x̂d, · · · , x̂d),

since Cφ,d(x̂d) = Ctr(β,γ, λ,d). We break it down into two promises. First, Cφ,d(x) should be

a concave function so that its maximum is achieved when all xi’s are equal. Second, cφ,d(x)

should take its maximum when x = x̂d, where cφ,d(x) = Cφ,d(x, x, · · · , x) is the symmetrized
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version.

To satisfy the second condition, we would like x̂d to be the unique root to c ′φ,d(x) = 0. We

will derive a potential function using this condition, and then go back to verify the rest. We

will pick Φ(x) to be monotonically increasing, It is straightforward to calculate that

cφ,d(x) =
φ(fd(x))(−f

′
d(x))

φ(x)

and

c ′φ,d(x)

cφ,d(x)
=
φ ′(fd(x))f

′
d(x)

φ(fd(x))
+
f ′′d(x)

f ′d(x)
−
φ ′(x)

φ(x)
. (7.12)

Moreover, by direct calculation,

f ′d(x)

fd(x)
= −

d(1 − βγ)

(βx+ 1)(x+ γ)
(7.13)

and

f ′′d(x)

f ′d(x)
=
f ′d(x)

fd(x)
−

β

βx+ 1
−

1

x+ γ
. (7.14)

Plugging (7.13) and (7.14) into (7.12), we get

(βx+ 1)(x+ γ)
c ′φ,d(x)

cφ,d(x)
= − d(1 − βγ)

(
φ ′(fd(x))fd(x)

φ(fd(x))
+ 1

)
−

(
2βx+ 1 + γβ+

φ ′(x)(βx+ 1)(x+ γ)

φ(x)

)
. (7.15)

Note that in the right hand side of (7.15), we have separated terms involving fd(x) from those

involving x. Now let p(y) := −d(1−βγ)
(
φ ′(y)y
φ(y) + 1

)
and q(x) := 2βx+1+γβ+φ

′(x)(βx+1)(x+γ)
φ(x) .

Hence we want p(fd(x)) = q(x) if and only if x = x̂d, or in other words, x = fd(x). We rewrite

p(y) and q(x) as

p(y) = −d(1 − βγ)
φ(y) +φ ′(y)y

φ(y)
=

(−d(1 − βγ)φ(y)y) ′

φ(y)
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and

q(x) =
(2βx+ 1 + γβ)φ(x) +φ ′(x)(βx+ 1)(x+ γ)

φ(x)

=
(φ(x)(βx+ 1)(x+ γ)) ′

φ(x)
.

An obvious pick is to let p(y) and q(x) to be the same function in each own variables, so that

p(y) = q(x) when x = y. To ensure that, we would like to let d(1−βγ)φ(x)x+φ(x)(βx+1)(x+

γ) = C for some constant C > 0. The value of C does not matter here, and we pick C = 1. This

leads to our choice of potential functions:

φd(x) :=
1

d(1 − βγ)x+ (βx+ 1)(x+ γ)
. (7.16)

Let Φd(x) :=
∫x

0 φ
′
d(t)dt. In fact, Φd(x) takes the form

Φd(x) =
β

K2 − K1
log

x+ K1

x+ K2
, (7.17)

where K2 > K1 > 0 are the two roots of

K1 + K2 =
d(1 − βγ) + 1 + βγ

β
,

K1K2 =
γ

β
.

It is easy to verify that K1,K2 ∈ R and Φd(x) is well defined. Note that φd(x) is a rational

function. Therefore we can factor out fd(x)− x from p(fd(x))−q(x). We still need to verify the

factor leftover is positive.

Lemma 7.20. Let (β,γ, λ) be anti-ferromagnetic and d be an integer such that StrUnique(β,γ, λ,d)

holds. Then Cφd,d(x) ⩽ Ctr(β,γ, λ,d) for any xi ⩾ 0, where Φd(x) is defined by (7.17).

Proof. We first claim that Cφd,d(x) ⩽ cφd,d(x̂), where x = (x1, · · · , xd) and x̂ is the unique solu-

tion such that fd(x̂) = Fd(x). To show this, we do a change of variables. Let h(x) := log βxi+1
xi+γ

,

zi = h(xi) for all 1 ⩽ i ⩽ d, and ẑ = h(x̂). Moreover, let D(z) := Cφd,d(h
−1(z1), · · · ,h−1(zd))

where z = (z1, · · · , zd). Since
∑d
i=1 zi = dẑ, we only need to show D(z) is a concave function
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to prove the claim. Indeed, this can be directly verified since the Hessian matrix of D(z) is

negative semidefinite.

Next we show that cφd,d(x) takes its maximum at x̂d where x̂d = fd(x̂d). Let y = fd(x).

Recall (7.12) and (7.15). The derivative is

c ′φd,d(x)

cφd,d(x)
=
φ ′
d(fd(x))f

′
d(x)

φd(fd(x))
+
f ′′d(x)

f ′d(x)
−
φ ′
d(x)

φd(x)

=
1

(βx+ 1)(x+ γ)

(
− d(1 − βγ)

(
φ ′
d(y)y

φd(y)
+ 1

)

−

(
2βx+ 1 + γβ+

φ ′
d(x)(βx+ 1)(x+ γ)

φd(x)

))

=
1

(βx+ 1)(x+ γ)

(
d(1 − βγ)(βy2 − γ)

d(1 − βγ)y+ (βy+ 1)(y+ γ)
−

d(1 − βγ)(βx2 − γ)

d(1 − βγ)x+ (βx+ 1)(x+ γ)

)

=
d(1 − βγ)(y− x)

(βx+ 1)(x+ γ)
· 2βγ(x+ y) + (βxy+ γ)(d+ 1 − βγ(d− 1))

(d(1 − βγ)y+ (βy+ 1)(y+ γ))(d(1 − βγ)x+ (βx+ 1)(x+ γ))
.

Note that βγ < 1 and hence d + 1 > βγ(d − 1). Moreover, fd(x) is monotonically decreasing

in x. If x < x̂d, we have that fd(x) > x and c ′φd,d(x) > 0. Similarly, if x > x̂d, fd(x) < x

and c ′φd,d(x) < 0. Hence c ′φd,d(x) > 0 takes its maximum at x = x̂d. It is easy to verify that

cφd,d(x̂d) = Ctr(β,γ, λ,d). This finishes the proof.

The potential functionΦd achieves the optimal contraction ratio. However, to apply Lemma

7.15, we need a good potential function for all degrees d ⩽ ∆−1, where ∆ is the degree bound.

We may pick Φ∆−1, but it only works when γ ⩽ 1. This is because Ctr(β,γ, λ,d) is monotone if

and only if γ ⩽ 1. We will see this in Section 7.6.

Lemma 7.21. Let (β,γ, λ) be anti-ferromagnetic and ∆ an integer such that StrUnique(β,γ, λ,∆)

holds and γ ⩽ 1. Then Φ∆(x) defined by (7.17) is a good potential function for all degrees

d ∈ [1,∆] with contraction ratio Ctr(β,γ, λ,∆).

Proof. We verify the two conditions in Definition 7.8. Condition 1 for any d ⩽ ∆ is straightfor-

ward. Lemma 7.20 implies Condition 2 for ∆. We are left to show that Cφ∆,d(x) ⩽ Ctr(β,γ, λ,∆)

for all integers 1 ⩽ d < ∆.

Fix such a d. We will show that Cφ∆,d(x) ⩽ Ctr(β,γ, λ,∆) where x = {x1, · · · , xd} and

xi ⩾ 0. Let ρ = 1−γ
1−β ⩾ 0. Then βρ+1

ρ+1 = 1. By Lemma 7.20, we have that Cφ∆,∆(x, ρ, · · · , ρ) ⩽
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Ctr(β,γ, λ,∆), where we append x by∆−dmany ρ’s. On the other hand, we see that F∆(x, ρ, · · · , ρ) =

Fd(x) and hence

Cφ∆,∆(x, ρ, · · · , ρ) =φ(F∆(x, ρ, · · · , ρ)) ·
∆∑
i=1

∣∣∣∣∂F∆∂xi (x, ρ, · · · , ρ)

∣∣∣∣ 1

φ(xi)

=φ(Fd(x)) ·
d∑
i=1

∣∣∣∣∂F∆∂xi (x, ρ, · · · , ρ)

∣∣∣∣ 1

φ(xi)

+φ(Fd(x)) ·
∆∑

i=d+1

∣∣∣∣∂Fd∂xi (x, ρ, · · · , ρ)

∣∣∣∣ 1

φ(xi)

⩾φ(Fd(x)) ·
d∑
i=1

∣∣∣∣∂F∆∂xi (x, ρ, · · · , ρ)

∣∣∣∣ 1

φ(xi)

=φ(Fd(x)) ·
d∑
i=1

∣∣∣∣∂Fd∂xi (x)
∣∣∣∣ 1

φ(xi)
,

where we use the fact that for 1 ⩽ i ⩽ d,

∂F∆

∂xi
(x, ρ, · · · , ρ) =

βγ− 1

(βxi + 1)(xi + γ)
F∆(x, ρ, · · · , ρ)

=
βγ− 1

(βxi + 1)(xi + γ)
Fd(x) =

∂Fd

∂xi
(x).

Combining Lemma 7.21 with Lemma 7.15, we have the following Theorem.

Theorem 7.22. Let (β,γ, λ) be anti-ferromagnetic and ∆ an integer such that StrUnique(β,γ, λ,

∆ − 1) holds and γ ⩽ 1. Then #∆-2Spin(β,γ, λ) can be approximated within additive error ε

in deterministic time O

((
n
ε

) log(∆−1)
− logα

)
, where n is the number of vertices of the instance and

α = Ctr(β,γ, λ,∆− 1).

7.5 An Improved Potential Function

We will derive another potential function using a different approach. This potential function

has the advantage to work for all βγ < 1, not restricted to γ ⩽ 1. In particular, it gives the

approximation algorithm when (β,γ, λ) is universally strictly unique. On the other hand, the

contraction ratio achieved is not optimal. If γ ⩽ 1, the contraction ratio is
√

Ctr(β,γ, λ,∆− 1),

worse than Ctr(β,γ, λ,∆− 1) achieved by Φd introduced in Section 7.4, (7.17).
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Choosing the Potential Function

We assume that the system is at the critical threshold of the uniqueness condition for a certain

degree d, that is Ctr(β,γ, λ,d) = 1, or equivalently f ′d(x̂d) = −1, where x̂d = fd(x̂d) is the unique

positive fixed point of the recursion fd(x). We then have the following two equations:

x̂d = λ

(
βx̂d + 1

x̂d + γ

)d
and

d(1 − βγ)x̂d
(βx̂d + 1)(x̂d + γ)

= 1. (7.18)

We want to find a potential function to satisfy Condition 2 of Definition 7.8, which states that

Cφ,d(x) ⩽ α for someα < 1. We might as well consider the symmetrized version, which is easier

to analyze. Hence we want cφ,d(x) :=
φ(fd(x))|f ′d(x)|

φ(x) ⩽ α. Again, we have that cφ,d(x̂d) = 1.

Similar to the analysis in Section 7.4, cφ,d(x) should achieve its maximum at x = x̂d. We

therefore want that c ′φ,d(x̂d) = 0, that is

(
f ′d(x)φ(fd(x))

φ(x)

) ′
∣∣∣∣∣
x=x̂d

= 0.

We can rewrite the above equation as:

(
f ′d(x)φ(fd(x))

φ(x)

) ′
∣∣∣∣∣
x=x̂d

= 0

a
[
f ′d(x)φ(fd(x))

] ′
φ(x)

∣∣∣
x=x̂d

= f ′d(x)φ(f(x))φ
′(x)

∣∣
x=x̂d

a
[
f ′′d(x̂d)φ(fd(x̂d)) + f

′
d(x̂d)φ

′(fd(x̂d))f
′
d(x̂d)

]
φ(x̂d) = f

′
d(x̂d)φ(fd(x̂d))φ

′(x̂d)

af ′′d(x̂d)φ(x̂d) +φ
′(x̂d) = −φ ′(x̂d)

a−
f ′′d(x̂d)

2
=
φ ′(x̂d)

φ(x̂d)
= (log(φ(x̂d)))

′ ,

where in the fourth line we use facts that x̂d = fd(x̂d) and f ′d(x̂d) = −1. It all amounts to solve

an equation

(log(φ(x̂d)))
′ = −

f ′′d(x̂d)

2
. (7.19)
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To solve (7.19), we need to calculate the second derivative of fd(x), which is,

f ′′d(x) = λd(βγ− 1)
(βx+ 1)d−2

(x+ γ)d+2 · ((d− 1)β(x+ γ) − (d+ 1)(βx+ 1)) .

Using this expression, we are already able to solve the equation (7.19). However the solution

is too complicated, and more importantly, it depends on the degree d. We want the potential

function to work for various degrees, and it is better to be independent from d. Keeping this

in mind, we use (7.18) to simplify the expression of f ′′d(x) at x = x̂d:

f ′′d(x̂d) =λd(βγ− 1)
(βx̂d + 1)d−2

(x̂d + γ)d+2 · ((d− 1)β(x̂d + γ) − (d+ 1)(βx̂d + 1))

=
(d+ 1)(βx̂d + 1) − (d− 1)β(x̂d + γ)

(βx̂d + 1)(x̂d + γ)

=
d+ 1

x̂d + γ
−

(d− 1)β

βx̂d + 1
=

d(1 − βγ)

(βx̂d + 1)(x̂d + γ)
+

1

x̂d + γ
+

β

βx̂d + 1

=
1

x̂d
+

1

x̂d + γ
+

β

βx̂d + 1
. (7.20)

Plugging (7.20) into (7.19), we have that

(log (φ(x̂))) ′ = −
1

2
(

1

x̂d
+

1

x̂d + γ
+

β

βx̂d + 1
). (7.21)

Now we make our guess and impose that (7.21) holds for all x. This gives us a differential

equation, to which the solution is

log(φ(x)) = −
1

2
log(x(x+ γ)(βx+ 1)) + C1,

where C1 is some arbitrary constant. Hence we get

φ(x) =
C2

(x(βx+ 1)(x+ γ))
1
2

,

where C2 ≠ 0 is some arbitrary constants. We set C2 = 1 and define

φ∗(x) :=
1

(x(βx+ 1)(x+ γ))
1
2

. (7.22)
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Let Φ∗(x) :=
∫x
s φ∗(t)dt where s > 0 such that Φ ′

∗(x) = φ∗(x). Clearly Φ∗(x) is well defined for

any x ∈ [s,∞). Since after at least one step of recursion, there is a lower bound on the range of

Rv, we will set s to be the lower bound. There is no elementary expression for Φ∗(x) in general.

However, in Definition 7.8 and Definition 7.17, all it matters is φ∗(x). This will be the potential

function we choose in this section.

Verifying the Potential Function

We will verify that Φ∗ given by (7.22) is a good potential function for all degrees d ⩽ ∆ if for all

d ⩽ ∆, StrUnique(β,γ, λ,d) holds. We will also verify that Φ∗ is a universal potential function

if (β,γ, λ) is universally strictly unique.

We first do some calculation:

Cφ∗,d(x) = −φ∗(Fd(x)) ·
d∑
i=1

∂Fd

∂xi

1

φ∗(xi)

=
(1 − βγ) (Fd(x))

1
2

(βFd(x) + 1)
1
2 (Fd(x) + γ)

1
2

·
d∑
i=1

x
1
2
i

(βxi + 1)
1
2 (xi + γ)

1
2

,

where we used that ∂Fd
∂xi

= −
Fd(x)(1−βγ)

(βxi+1)(xi+γ)
. It is easy to see that Cφ∗,d(x) > 0 unless xi = 0 for

all 1 ⩽ i ⩽ d.

Similar to the proof of Lemma 7.20, we will bound Cφ∗,d(x) in two steps. The first step is

to show that the symmetrized version dominates Cφ∗,d(x), which is

cφ∗,d(x) = d(1 − βγ) ·
(

x

(βx+ 1)(x+ γ)

) 1
2

·
(

fd(x)

(βfd(x) + 1) (fd(x) + γ)

) 1
2

.

We will then show that cφ∗,d(x) takes its maximum at x̂d.

Lemma 7.23. Let (β,γ, λ) be anti-ferromagnetic. For any integer d and any xi ∈ [0,+∞), 1 ⩽

i ⩽ d, there exists x̂ ∈ [0,+∞) such that Cφ∗,d(x) ⩽ cφ∗,d(x̂).

Proof. Let zi =
βxi+1
xi+γ

. Then zi ∈ (β, 1
γ
] as xi ⩾ 0, and xi =

1−γzi
zi−β

. Express Cφ∗,d(x) in terms of
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zi’s:

Cφ∗,d(x) =

(
λ
∏d
i=1 zi

) 1
2

(
βλ

∏d
i=1 zi + 1

) 1
2
(
λ
∏d
i=1 zi + γ

) 1
2

·
d∑
i=1

(z−1
i − γ)

1
2 (zi − β)

1
2 . (7.23)

By the Cauchy-Schwarz inequality, we have

d∑
i=1

(z−1
i − γ)

1
2 (zi − β)

1
2 ⩽ d

(
1

d

d∑
i=1

(z−1
i − γ)(zi − β)

) 1
2

= d

(
1 + βγ−

1

d

d∑
i=1

(ziγ+ βz−1
i )

) 1
2

. (7.24)

The inequality of arithmetic and geometric means implies that

d

(
1 + βγ−

1

d

d∑
i=1

(ziγ+ βz−1
i )

) 1
2

⩽ d

1 + βγ− γ

(
d∏
i=1

zi

) 1
d

− β

(
d∏
i=1

zi

)− 1
d


1
2

= d
(

1 + βγ− γẑ− βẑ−1
) 1

2
, (7.25)

where ẑ =
(∏d

i=1 zi

) 1
d
. Plugging (7.24) and (7.25) into (7.23) we have

Cφ∗,d(x) ⩽
(λẑd)

1
2 · d(1 + βγ− γẑ− βẑ−1)

1
2

(βλẑd + 1)
1
2 (λẑd + γ)

1
2

= d ·
(
λẑd(ẑ−1 − γ)(ẑ− β)

(βλẑd + 1)(λẑd + γ)

) 1
2

.

Let x̂ = 1−γẑ
z−β , and therefore βx̂+1

x̂+γ = ẑ. It is easy to see that ẑ ∈ (β, 1
γ
] as zi ∈ (β, 1

γ
] for any

1 ⩽ i ⩽ d. Then x̂ ∈ [0,+∞). By substituting βx̂+1
x̂+γ with ẑ, we have

Cφ∗,d(x) ⩽ d(1 − βγ) ·
(

x̂

(βx̂+ 1)(x̂+ γ)

) 1
2

·
(

fd(x̂)

(βfd(x̂) + 1) (fd(x̂) + γ)

) 1
2

= cφ∗,d(x̂).

This finishes the proof.
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Lemma 7.24. Let (β,γ, λ) be anti-ferromagnetic and ∆ ⩾ 2 be an integer or ∆ = ∞. If StrUnique

(β,γ, λ,d) holds for any integer 1 ⩽ d < ∆, then α := max1⩽d<∆{Ctr(β,γ, λ,d)} < 1 and

cφ∗,d(x) ⩽ α
1
2 for all x ⩾ 0.

Proof. We first characterize the maximum of cφ∗,d(x). Let cφ∗,d(x) = d(1 − βγ)hd(x)
1
2 , where

hd(x) :=
x

(βx+ 1)(x+ γ)
· fd(x)

(βfd(x) + 1)(fd(x) + γ)
.

Recall that fd(x) = λ
(
βx+1
x+γ

)d
. Then take the derivative of cφ∗,d(x) with respect to x,

c ′φ∗,d(x) = d(1 − βγ) · 1

2
h ′
d(x)hd(x)

− 1
2 .

The derivative of hd(x) is

h ′
d(x) =

fd(x) · d(1 − βγ)x

(βfd(x) + 1)(fd(x) + γ)(βx+ 1)2(x+ γ)2
·
(

γ− βx2

d(1 − βγ)x
−

γ− βfd(x)
2

(βfd(x) + 1)(fd(x) + γ)

)
.

As x ranges over [0,∞), the function γ−βx2

d(1−βγ)x is strictly decreasing in x and ranges from +∞
to −∞. On the other hand, the function γ−βfd(x)

2

(βfd(x)+1)(fd(x)+γ)
is strictly increasing in x as fd(x)

is decreasing in x, and it has a bounded range since fd(x) is bounded. Thus, the equation

γ− βx2

d(1 − βγ)x
=

γ− βfd(x)
2

(βfd(x) + 1) (fd(x) + γ)
. (7.26)

has a unique solution in (0,∞), denoted by xd. In addition, it holds that

h ′
d(x)


> 0 if 0 ⩽ x < xd,

= 0 if x = xd,

< 0 if x > xd.

(7.27)

Since hd(x) > 0 and 1−βγ > 0, the sign of c ′φ∗,d(x) is the same as that of h ′
d(x). Thus, for any

integer d, cφ∗,d(x) achieves its maximum when x = xd.
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We define a new function αd(x) that

αd(x) :=

(
d(1 − βγ) · γ− βx2

(βx+ 1)(x+ γ)
· fd(x)

γ− βfd(x)2

) 1
2

.

Therefore, for all x ⩾ 0,

cφ∗,d(x) ⩽ cφ∗,d(xd)

= d(1 − βγ)

(
x

(βxd + 1)(xd + γ)
· fd(xd)

(βfd(xd) + 1) (fd(xd) + γ)

) 1
2

= αd(xd), (7.28)

where in the last equation we substituted (βfd(xd) + 1) (fd(xd) + γ) with
d(1−βγ)xd(γ−βfd(xd)2)

γ−βx2
d

by (7.26).

We claim that for any integer 1 ⩽ d < ∆,

αd(xd) ⩽ αd(x̂d), (7.29)

where x̂d is the unique positive fixed point of fd(x), that is, x̂d = fd(x̂d). We will use the

assumption that StrUnique(β,γ, λ,d) holds for any integer 1 ⩽ d < ∆.

To prove the claim, there are two cases depending on the ordering of x̂d and xd. Observe

that both γ−βx2

(βx+1)(x+γ) and fd(x)

γ−βfd(x)2 are decreasing for any x ⩾ 0 as fd(x) is decreasing in x.

• Case 1: x̂d ⩽ xd. We would like to show that αd(x) is decreasing in the range x ∈ [x̂d, xd].

Due to the observation above, it suffices to show that both γ−βx2

(βx+1)(x+γ) and fd(x)

γ−βfd(x)2 are

positive for x ∈ [x̂d, xd].

By (7.27), we have h ′
d(x̂d) ⩾ 0. Note that

h ′
d(x̂d) =

d(1 − βγ)(γ− βx̂2
d)x̂

2
d

(βx̂d + 1)3(x̂d + γ)3
·
(

1

d(1 − βγ)x̂d
−

1

(βx̂d + 1)(x̂d + γ)

)
.

Because StrUnique(β,γ, λ,d) holds, we have that |f ′d(x̂d)| =
d(1−βγ)x̂d

(βx̂d+1)(x̂d+γ)
< 1, which

implies that 1
d(1−βγ)x̂d

− 1
(βx̂d+1)(x̂d+γ)

> 0. Therefore h ′
d(x̂d) ⩾ 0 implies that γ−βx̂2

d ⩾
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0. Since fd(x) is monotonically decreasing in x and x̂d is its fixed point, we have that

γ− βfd(xd)
2 ⩾ γ− βfd(x̂d)

2

= γ− βx̂2
d ⩾ 0.

Since xd satisfies (7.26), γ − βx2
d and γ − βfd(xd)

2 must be simultaneously positive or

negative. Thus it also holds that γ − βx2
d ⩾ 0. Then both γ−βx2

(βx+1)(x+γ) and fd(x)

γ−βfd(x)2

are positive and monotonically decreasing in the range x ∈ [x̂d, xd], and so is αd(x). We

conclude that αd(xd) ⩽ αd(x̂d) as x̂d ⩽ xd and (7.29) holds.

• Case 2: x̂d > xd. By a similar argument to the one above, it holds that

γ− βfd(x̂d)
2 = γ− βx̂2

d < 0,γ− βfd(xd)
2 < 0, and γ− βx2

d < 0.

Thus both γ−βx2

(βx+1)(x+γ) and fd(x)

γ−βfd(x)2 are negative and monotonically decreasing in x ∈

[xd, x̂d]. It implies that their product is positive and increasing in x ∈ [xd, x̂d], and so is

αd(x). We conclude that αd(xd) ⩽ αd(x̂d) as x̂d > xd and (7.29) holds.

Combining (7.28) and (7.29), we have that for any x ⩾ 0,

cφ∗,d(x) ⩽ cφ∗,d(xd) = αd(xd) ⩽ αd(x̂d)

=

√
d(1 − βγ)x̂d

(βx̂d + 1)(x̂d + γ)
= (Ctr(β,γ, λ,d))

1
2 .

If ∆ is finite, then α = max1⩽d<∆{Ctr(β,γ, λ,d)} < 1 since StrUnique(β,γ, λ,d) holds for any

integer d ∈ [1,∆), and cφ∗,d(x) ⩽ α
1
2 for any integer d ∈ [1,∆) and all x ⩾ 0.

Otherwise ∆ = ∞, and (β,γ, λ) is universally strict unique. By Lemma 7.6, we have that

α = maxd⩾1{Ctr(β,γ, λ,d)} < 1. Also, cφ∗,d(x) ⩽ α
1
2 for any integer d ∈ [1,∞) and all x ⩾ 0.

Lemma 7.23 and Lemma 7.24 together imply that Φ∗ is a good potential function for all

d ∈ [1,∆) if StrUnique(β,γ, λ,d) holds for all d ∈ [1,∆). Hence, we have the following theorem,

which applies to a wider range of parameters than Theorem 7.22. Note that the running time

is quadratic in that of Theorem 7.22.
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Theorem 7.25. Let (β,γ, λ) be anti-ferromagnetic and∆ an integer such that StrUnique(β,γ, λ,d)

holds for all integers d ∈ [1,∆). Then #∆-2Spin(β,γ, λ) can be approximated within additive er-

ror ε in deterministic time O

((
n
ε

) 2 log(∆−1)
− logα

)
, where n is the number of vertices of the instance

and α = max1⩽d⩽∆−1 Ctr(β,γ, λ,d).

In addition, the strength of Φ∗ is that it also applies to cases without degree bound.

Theorem 7.26. Let (β,γ, λ) be anti-ferromagnetic and universally strictly unique. Then #2Spin

(β,γ, λ) can be approximated within additive error ε in deterministic time O

((
n
ε

) 2 logM
− logα

)
, where

n is the number of vertices of the instance, α = maxd⩾1 Ctr(β,γ, λ,d), and M is a constant.

Proof. We only need to verify that Φ∗ is a universal potential function with contraction ratio α.

Condition 1 of Definition 7.17 is straghtforward. Condition 2 clearly holds with C2 = 1.

For Condition 3, by Lemma 7.23 and Lemma 7.24,Cφ∗,d(x) ⩽ α. Moreover, note that γ > 1 by

Lemma 7.5 since (β,γ, λ) is universally strictly unique. Hence Fd(x) ⩽ λγ−d for any xi ∈ [0,∞)

and
(

z
(βz+1)(z+γ)

) 1
2 ⩽ 1

1+
√
βγ

⩽ 1 for any z ∈ [0,∞). It implies that,

Cφ∗,d(x) =
(1 − βγ) (Fd(x))

1
2

(βFd(x) + 1)
1
2 (Fd(x) + γ)

1
2

·
d∑
i=1

x
1
2
i

(βxi + 1)
1
2 (xi + γ)

1
2

⩽ λγ−
d
2

γ
1
2

· d = dλγ−
d+1

2 .

Hence there exists an integer M > 1 such that for any integer d < M, Cφ∗,d(x) ⩽ α ⩽

α⌈logM(d+1)⌉, and for any d ⩾ M, Cφ∗,d(x) ⩽ dλγ−
d+1

2 ⩽ α⌈logM(d+1)⌉. Condition 3 holds

as well.

7.6 Monotonicity of the Uniqueness

In this section, we study the monotonicity of the uniqueness with respect to the degree d. There

are two cases, summarized as follows. Proofs are given in the two subsections following.

Theorem 7.27. For an anti-ferromagnetic 2-spin system with parameters (β,γ, λ) , if β ⩽ 1 and

γ ⩽ 1, then there exists a unique integer ∆c = ∆c(β,γ, λ) such that StrUnique(β,γ, λ,d) holds

for all integers 1 ⩽ d < ∆c, and StrUnique(β,γ, λ,d) fails for all integers d ⩾ ∆c.
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Theorem 7.28. For an anti-ferromagnetic 2-spin system with parameters (β,γ, λ) , if β > 1

or γ > 1, then either (β,γ, λ) is universally strictly unique, or there exists two critical integers

∆c ⩽ ∆c such that StrUnique(β,γ, λ,d) holds for any integer d ∈ [1,∆c) or d ∈ (∆c,∞), and

StrUnique(β,γ, λ,d) fails for any integer d ∈ [∆c,∆c].

Due to Theorem 7.28, if γ > 1, the uniqueness condition for some large∆ does not necessar-

ily imply uniqueness for smaller d < ∆. In fact, for a fixed set of anti-ferromagnetic parameters

(β,γ, λ) with γ > 1, there always exists a large enough integer ∆0, such that StrUnique(β,γ, λ,∆)

holds for any integer ∆ ⩾ ∆0, but apparently not all such parameters are universally strictly

unique.

Recall Definition 7.3. Our proofs of Theorem 7.27 and Theorem 7.28 relies heavily on the

analysis of Ctr(β,γ, λ,d) as d varies. To simplify the notation, let

c(d) := Ctr(β,γ, λ,d) = |f ′d(x̂d)| =
d(1 − βγ)x̂d

p(x̂d)
,

where p(x) = (βx+ 1)(x + γ) and x̂d is the unique fixed point of fd(x). Notice that c(1) < 1 as

(βx+ 1)(x+γ) − (1−βγ)x > 0 for any x > 0. Hence StrUnique(β,γ, λ, 1) always holds. In most

analysis of the following two sections we will treat d as a real positive parameter. Also notice

that c(d) actually depends on (β,γ, λ) as well but we will focus on its dependence on d in this

section.

We always assume that 0 ⩽ β ⩽ γ, γ > 0, βγ < 1, and λ > 0. It turns out that if 0 ⩽ β ⩽

γ ⩽ 1, then c(d) is monotone increasing in d; otherwise c(d) is a single-peaked function in d,

and there exists a unique maximum point. Moreover, c(d) is increasing before its maxima and

decreasing afterwards. Figure 7.3 illustrates two examples.

Take the derivative of c(d) against d, we get

c ′(d) = (1 − βγ)

(
x̂d

p(x̂d)
+ d · ∂x̂d

∂d

p(x̂d) − x̂dp
′(x̂d)

p2(x̂d)

)
(7.30)

However, x̂d satisfies that x̂d = f(x̂d), that is:

x̂d = λ

(
βx̂d + 1

x̂d + γ

)d
.
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Figure 7.3: The function c(d) = |f ′d(x̂d)| with argument d. The green line is the
threshold c(d) = 1. For the other two curves, we fix β = 0 and λ = 150. The red
curve above is for γ = 1 and the blue one below is for γ = 1.001. The red curve is
monotone whereas the blue one has a unique maximum. Moreover, (0, 1.001, 150)
is universally strictly unique, while StrUnique(0, 1, 150,d) holds only for integer
d ∈ [1, 409].

Let q(x) := βx+1
x+γ . As x̂d > 0, we take logarithm on both sides,

log x̂d = log λ+ d logq(x̂d),

and then take the partial derivative with respect to d,

1

x̂d
· ∂x̂d
∂d

= logq(x̂d) + d
∂x̂d

∂d
· βγ− 1

p(x̂d)
.

Hence, we have:

∂x̂d

∂d
= logq(x̂d) ·

p(x̂d)x̂d
p(x̂d) + d(1 − βγ)x̂d

(7.31)

Using (7.31) we substitute ∂x̂d
∂d

in (7.30) and get

c ′(d) = (1 − βγ)

(
x̂d

p(x̂d)
+ d logq(x̂d) ·

p(x̂d)x̂d
p(x̂d) + d(1 − βγ)x̂d

· p(x̂d) − x̂dp
′(x̂d)

p2(x̂d)

)
=

(1 − βγ)x̂d
p(x̂d)

(
1 − d logq(x̂d) ·

βx̂2
d − γ

p(x̂d) + d(1 − βγ)x̂d

)
.
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Since x̂d
p(x̂d)

> 0 for any x̂d > 0, we will focus on the sign inside the parentheses. We define the

following function:

s(d) := 1 − d logq(x̂d)
βx̂2
d − γ

p(x̂d) + d(1 − βγ)x̂d
.

Hence the sign of c ′(d) will be the same as that of s(d). We will show that if γ ⩽ 1, then

s(d) > 0 for all d > 0; otherwise γ > 1, then there exists a unique dc = dc(β,γ, λ) such that the

sign of s(d) is the same as that of (dc − d).

The proof of Theorem 7.27

In this section we will establish the monotonicity of the case 0 ⩽ β ⩽ γ ⩽ 1. We have the

following lemma.

Lemma 7.29. Let (β,γ, λ) be anti-ferromagnetic. If γ ⩽ 1, then c(d) is strictly increasing in d for

all d > 0.

Proof. As discussed above it is enough to show that if γ ⩽ 1, then s(d) > 0 and therefore

c ′(d) > 0 for all d > 0. We discuss cases based on the sign of βx̂2
d − γ.

1. βx̂2
d − γ = 0, then s(d) = 1 and the lemma holds.

2. βx̂2
d − γ > 0. This implies that x̂d >

1−γ
1−β , because the function βx2 − γ is increasing in

x and β
(

1−γ
1−β

)2
− γ =

(β−γ)(1−γβ)
(1−β)2 ⩽ 0. Also notice that q(x) is decreasing in x, and

q
(

1−γ
1−β

)
= 1. It implies that in this case q(x̂d) < 1. So we have

d logq(x̂d)
βx̂2
d − γ

p(x̂d) + d(1 − βγ)x̂d
< 0

and hence s(d) > 1 > 0.

3. βx̂2
d − γ < 0. To show s(d) > 0 we only need to show that

p(x̂d) + d(1 − γβ)x̂d

βx̂2
d − γ

> d logq(x̂d).
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Note that β ⩽ γ ⩽ 1, and thus d logq(x̂d) ⩽ d log q(x̂d)
β

. We apply the inequality log x ⩽

x− 1 on log q(x̂d)
β

and get

d logq(x̂d) ⩽ d log
q(x̂d)

β

⩽ d
(

1

β
· βx̂d + 1

x̂d + γ
− 1

)
=
d(1 − βγ)

β(x̂d + γ)
=
d(1 − βγ)x̂d

βx̂2
d + γx̂d

⩽ d(1 − βγ)x̂d

βx̂2
d − γ

<
p(x̂d) + d(1 − γβ)x̂d

βx̂2
d − γ

.

It implies that s(d) > 0.

To sum up, we always have that s(d) > 0 and hence c ′(d) > 0.

Moreover, we show that c(d) has no upper bound if γ ⩽ 1 as d goes to infinity.

Lemma 7.30. Let (β,γ, λ) be anti-ferromagnetic. If γ ⩽ 1, then c(d) goes to ∞ as d goes to ∞.

Proof. First we claim that as d goes to infinity, x̂d is bounded away from ∞ and 0. Note that

x̂d = λ
(
βx̂d+1
x̂d+γ

)d
. Assume otherwise there is a subsequence of x̂d that goes to infinity, then the

left hand side goes to infinity, while the right goes to λβd → 0 or λ. Contradiction. Similarly if

there is a subsequence of x̂d goes to 0, then the left hand side goes to 0, while the right goes

to λ
γd
→∞ or λ > 0. Also contradiction.

Recall that c(d) =
d(1−βγ)x̂d
p(x̂d)

=
d(1−βγ)x̂d

βx̂2
d+(1+βγ)x̂d+γ

. Since x̂d is bounded away from infinity

and 0, it follows that x̂d
βx̂2

d+(1+βγ)x̂d+γx̂d
is bounded away from 0. Then c(d) must go to infinity

as d goes.

Now we are ready to prove Theorem 7.27.

Proof of Theorem 7.27. Recall that c(1) < 1. By Lemma 7.29 and Lemma 7.30, there must exist

a unique integer ∆c ⩾ 2 such that c(∆c) ⩾ 1 and c(∆c − 1) < 1. Again by Lemma 7.29, for any

integer 1 ⩽ d < ∆c, c(d) < 1 and for any integer d ⩾ ∆c, c(d) ⩾ 1. Since StrUnique(β,γ, λ,d)

holds if and only if c(d) < 1, the theorem follows.
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The proof of Theorem 7.28

In this section we deal with the case that (β,γ) is not in the unit square, that is, γ > 1. We

will show that there exists a unique d0 such that c(d) takes its maximum at d = d0, and c(d) is

increasing if d < d0 and decreasing if d > d0.

First, we claim that x̂d is decreasing in d under our assumption. Recall that q(x̂d) =
βx̂d+1
x̂d+γ

<

1 under our assumption. Therefore, by (7.31),

∂x̂d

∂d
= logq(x̂d) ·

p(x̂d)x̂d
p(x̂d) + d(1 − βγ)x̂d

< 0.

Moreover, as d goes to ∞, x̂d goes to 0 since x̂d = λ
(
βx̂d+1
x̂d+γ

)d
< λ
γd

.

Define a new function

r(x) := logq(x)(βx2 − γ) − (1 − βγ)x.

We will see the use of r(x) in the proof of Lemma 7.32 and need the following technical lemma.

Lemma 7.31. For x ∈ [0,∞), if γ > 1 > β ⩾ 0, then there exists a unique xc such that r(xc) = 0.

Moreover r(x) > 0 when x < xc and r(x) < 0 when x > xc.

Proof. Clearly r(x) is continuous for x ⩾ 0. It is easy to calculate that

r ′(x) = 2βx logq(x) − (1 − βγ)
x(2βx+ (1 + βγ))

p(x)
.

Since logq(x) < − logγ < 0, r ′(x) < 0 for all x ⩾ 0. Moreover, r(0) = r log r > 0 and r(x)→ −∞
as x→∞. There must exist xc such that r(xc) = 0, r(x) > 0 if x < xc, and r(x) < 0 if x > xc.

Now we are ready to show the key lemma of this section.

Lemma 7.32. Let (β,γ, λ) be anti-ferromagnetic. If γ > 1, then there exists a unique dc =

dc(β,γ, λ) < ∞ such that c(d) reaches its maximum at dc for all positive d. Moreover, c(d) is

increasing for d < dc, and decreasing for d > dc.

Proof. By the argument before, it is enough to show that there exists a unique dc = dc(β,γ, λ)

such that s(dc) = 0, s(d) > 0 if d < dc, and s(d) < 0 if d > dc.
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We rewrite s(d) as follows,

s(d) = 1 − d logq(x̂d)
βx̂2
d − γ

p(x̂d) + d(1 − βγ)x̂d

=
1

p(x̂d) + d(1 − βγ)x̂d

(
p(x̂d) − d

(
logq(x̂d)(βx̂

2
d − γ) − (1 − βγ)x̂d

))
=

p(x̂d) − dr(x̂d)

p(x̂d) + d(1 − βγ)x̂d

where r(x) = logq(x)(βx2 − γ) − (1 − βγ)x is defined above.

Now consider the function t(x) =
p(x)

r(x)
. By Lemma 7.31 there is a unique pole xc for t(x) on

x ⩾ 0. On the continuous intervals [0, xc) and (xc,∞) of t(x), we have

t ′(x) = −
logq(x)

(logq(x)(βx2 − γ) − (1 − βγ)x)
2

(
(1 + βγ)βx2 + 4βγx+ (1 + βγ)γ

)

Notice that logq(x) < log(1/γ) < 0 for γ > 1. We have t(x) is increasing in x on each continuous

interval for x > 0. Moreover t(0) = 1
logγ .

Depending on whether the discontinuous point xc is achievable for x̂d, there are two cases.

1. If xc ⩾ x̂0, then x̂d < xc for all d > 0 as x̂d is decreasing in d. Furthermore r(x̂d) > 0

for all d > 0 by Lemma 7.31 and t(x̂d) > 0 for all d > 0 as well. On the other hand,

t(x̂d) is strictly increasing in x̂d and hence strictly decreasing in d. Moreover t(x̂d) goes

to 1
logγ < ∞ as d goes to ∞. Therefore d as a function intersects with t(x̂d) at a unique

point dc = dc(β,γ, λ) > 0 such that dc = t(x̂dc). Moreover d < t(x̂d) if d < dc and

d > t(x̂d) if d > dc. Since r(x̂d) > 0, it implies that s(dc) = 0, s(d) > 0 if d < dc, and

s(d) < 0 if d > dc.

2. Otherwise xc < x̂0. There exists d0 such that x̂d0 = xc as x̂d goes to 0 as d goes to ∞.

Then

s(d0) =
p(x̂d0)

p(x̂d0) + d0(1 − βγ)x̂d0

> 0

For d ∈ (0,d0], we have that x̂d ⩾ x̂d0 = xc and r(x̂d) ⩽ 0 by Lemma 7.31. Hence s(d) > 0

for d ∈ (0,d0].
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On the interval (d0,∞), it reduces to case (1). By a similar analysis, there exists a unique

point dc = dc(β,γ, λ) ∈ (d0,∞) such that s(dc) = 0, s(d) > 0 if d0 < d < dc, and s(d) < 0

if d > dc.

This completes our proof.

The condition of γ > 1 in the above proof is crucial in order to show that t(x̂d) is decreasing

in d. If γ ⩽ 1, such t(x̂d) may not decrease for all d, and the analysis would fail. In fact, since

we have shown s(d) > 0 for all d > 0 if γ ⩽ 1, d and t(x̂d) do not intersect for any positive d.

Proof of Theorem 7.28. Recall that c(d) = d(1−βγ)x̂d
p(x̂d)

. If γ > 1, as d goes to ∞, x̂d < 1/γd goes

to 0, and therefore c(d) goes to 0.

By Lemma 7.32, c(d) achieve its unique maximum at dc > 0. If dc < 1, then as c(1) < 1,

for all integer d ⩾ 1, c(d) < 1, and (β,γ, λ) is universally strictly unique. Otherwise dc ⩾ 1,

let d0 = ⌊dc⌋ ⩾ 1 and d1 = d0 + 1. Then c(d) is increasing in [1,d0] and decreasing in [d1,∞).

If c(d0) < 1 and c(d1) < 1, then again (β,γ, λ) is universally strictly unique as for any integer

d ⩾ 1, c(d) < 1.

Otherwise, c(d0) ⩾ 1 or c(d1) ⩾ 1 or both. Assume c(d0) ⩾ 1 but c(d1) < 1 first. Since

c(1) < 1, c(d0) ⩾ 1 and c(d) is increasing in [1,d0], there exists a unique ∆c ∈ [1,d0] such that

c(∆c) ⩾ 1 and c(∆c − 1) < 1. Moreover, let ∆c = d0. Then StrUnique(β,γ, λ,d) holds for any

integer d ∈ [1,∆c) or d ∈ (∆c,∞), and StrUnique(β,γ, λ,d) fails for any integer d ∈ [∆c,∆c].

The case of c(d0) < 1 but c(d1) ⩾ 1 is similar. We pick ∆c = d1. Since c(d)→ 0 as d→∞,

there exists a ∆c ∈ [d1,∞) such that c(∆c) ⩾ 1 and c(∆c + 1) < 1 as required.

The last case is that c(d0) ⩾ 1 and c(d1) ⩾ 1. In this case, there exists ∆c ∈ [1,d0] such that

c(∆c) ⩾ 1 and c(∆c − 1) < 1 and ∆c ∈ [d1,∞) such that c(∆c) ⩾ 1 and c(∆c + 1) < 1. As c(d)

is increasing in [1,d0] and decreasing in [d1,∞), the theorem follows.

7.7 Uniqueness Thresholds

In this section, we recast the uniqueness condition into various threshold forms. We have four

parameters, (β,γ, λ) and the degree d. We may fix any three and discuss the threshold of the

last one. Thresholds about d while fixing (β,γ, λ) has been shown in Section 7.6. In this section
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we fix any set of other three parameters. Due to the symmetry between β and γ, we only need

to consider fixing either (β, λ) and d, or (β,γ) and d.

Thresholds of γ

The threshold of γ while fixing (β, λ) and d is summarized in the following theorem. For the

hardness, we use results from [SS14].

Theorem 7.33. For any β ∈ [0, 1), λ > 0, and an integer ∆ ⩾ 2, exactly one of the following two

cases is true:

• for any γ ∈ [0, 1/β), there exists an FPTAS for #∆-2Spin(β,γ, λ);

• there exists a critical threshold γc = γc(β, λ,∆) such that

1. if γ ∈ (γc, 1/β), then there exists an FPTAS for #∆-2Spin(β,γ, λ);

2. if γ ∈ [0,γc), then there is no FPRAS for #∆-2Spin(β,γ, λ) unless NP=RP.

Moreover, γ∞c = limd→∞ γc(β, λ,d) ⩾ 1 exists and γ∞c < 1/β. It holds that

1. if γ ∈ (γ∞c , 1
β
) , then there is an FPTAS for #2Spin(β,γ, λ);

2. if γ ∈ [0,γ∞c ), then there is no FPRAS for #∆c-2Spin(β,γ, λ) unless NP=RP, where

∆c = arg max
d⩾1

Ctr(β,γ, λ,d).

We first show a lemma.

Lemma 7.34. Let 0 ⩽ β < 1 and λ > 0. For any integer ∆ ⩾ 2, either StrUnique(β,γ, λ,d) holds

for all 1 ⩽ d < ∆ and γ ∈ [0, 1/β), or there exists a critical threshold γc = γc(β, λ,∆) such that

StrUnique(β,γ, λ,d) holds for all 1 ⩽ d < ∆ if and only if γ ∈ (γc,
1
β
).

Proof. Let fγ(x) := λ
(
βx+1
x+γ

)d
. Notice that the definition is the same as that of fd(x), but we

want to make clear the dependence on γ, instead of that on d. Let x̂γ be the unique positive

fixed point of fγ(x) such that x̂γ = λ
(
βx̂γ+1
x̂γ+γ

)d
.
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We first claim that |f ′γ(x̂γ)| is decreasing in γ. For any γ ′ > γ, let x̂γ ′ be the unique fixed

point of fγ ′(x), that is, x̂γ ′ = λ
(
βx̂γ ′+1
x̂γ ′+γ ′

)d
. We claim that x̂γ ′ < x̂γ. Assume for contradiction

that x̂γ ′ ⩾ x̂γ. Since for any anti-ferromagnetic (β,γ, λ), the function fγ(x) is monotonically

decreasing in x, we have that

x̂γ = λ

(
βx̂γ + 1

x̂γ + γ

)d
⩾ λ

(
βx̂γ ′ + 1

x̂γ ′ + γ

)d
> λ

(
βx̂γ ′ + 1

x̂γ ′ + γ ′

)d
= x̂γ ′ .

Contradiction.

Therefore x̂γ ′ < x̂γ, which implies that

λ

(
β+

(1 − βγ ′)

x̂γ ′ + γ ′

)d
= x̂γ ′ < x̂γ = λ

(
β+

(1 − βγ)

x̂γ + γ

)d
.

So we have that (1−βγ ′)
x̂γ ′+γ ′ <

(1−βγ)
x̂γ+γ

. For x̂γ ′ < x̂γ, it also holds that
x̂γ ′

βx̂γ ′+1 <
x̂γ

βx̂γ+1 . Multiplying

above two inequalities together, we have that

|f ′γ ′(x̂γ ′)| =
d(1 − βγ ′)x̂γ ′

(βx̂γ ′ + 1)(x̂γ ′ + γ ′)
<

d(1 − βγ)x̂γ
(βx̂γ + 1)(x̂γ + γ)

= |f ′γ(x̂γ)|.

Next we show that for any 0 ⩽ β < 1, λ > 0, and integer d ⩾ 1, |f ′γ(x̂γ)| goes to 0 as γ

goes to 1/β. Notice that x̂γ ⩾ λβd. It implies that dx̂γ
(βx̂γ+1)(x̂γ+γ)

⩽ d
λβd+1 . Hence |f ′γ(x̂γ)| =

d(1−βγ)x̂γ
(βx̂γ+1)(x̂γ+γ)

⩽ d(1−βγ)
λβd+1 goes to 0 as γ goes to 1/β.

Since |f ′γ(x̂γ)| is decreasing in γ, if |f ′0(x̂0)| < 1, then for all γ ∈ [0, 1/β), |f ′γ(x̂γ)| < 1. In this

case let γd = −1. Otherwise |f ′0(x̂0)| ⩾ 1. Since |f ′γ(x̂γ)| goes to 0 as γ goes to 1/β, there exists

a unique γd such that |f ′γd(x̂γd)| = 1, and |f ′γ(x̂γ)| < 1 for all γ ∈ (γd, 1/β).

If γd = −1 for all 1 ⩽ d < ∆, then StrUnique(β,γ, λ,d) holds for all 1 ⩽ d < ∆ and

γ ∈ [0, 1/β). Otherwise let γc = γc(β, λ,∆) = max1⩽d<∆ γd ⩾ 0. Then StrUnique(β,γ, λ,d)

holds for all 1 ⩽ d < ∆ if and only if γ ∈ (γc,
1
β
).

Now we are ready to prove Theorem 7.33.

Proof of Theorem 7.33. All claims regarding hardness are due to Sly and Sun [SS14].
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The first part of Theorem 7.33 follows from Lemma 7.34 and Theorem 7.25.

For the second part, the existence of ∆c is guaranteed by Lemma 7.32. We want to apply

Theorem 7.26. We only need to show that γ∞c = limd→∞ γc(β, λ,d) exists, and γ∞c ∈ [1, 1/β).

It is easy to see that γc(β, λ,d) is non-decreasing in d and γc(β, λ,d) ⩽ 1/β by the definition

of γc(β, λ,d). Hence γ∞c exists. Assume for contradiction that γ∞c < 1. Then there exists

γ ∈ (γ∞c , 1] such that (β,γ, λ) is universally strictly unique, contradicting to Lemma 7.5.

We still need to show that γ∞c < 1/β. It is sufficient to show that there exists a 1 ⩽ γ < 1/β

such that (β,γ, λ) is universally strictly unique. First pick an arbitrary γ0 ∈ (1, 1/β). By Theorem

7.28, there exists a ∆c such that for any integer d > ∆c, StrUnique(β,γ0, λ,d) holds. Let γ1 =

max

{
1
β

(
∆c
∆c+2

)2
,γ0

}
. Clearly γ1 < 1/β. For any d > ∆c, as γ1 > γ0, StrUnique(β,γ1, λ,d)

holds due to the monotonicity of |f ′γ(x̂γ)| showed in the proof of Lemma 7.34. Moreover, by

our choice 1−
√
βγ1

1+
√
βγ1

< 1
∆c+1

. For any 1 ⩽ d ⩽ ∆c,

|f ′d(x̂d)| =
d(1 − βγ1)x̂d

(βx̂d + 1) (x̂d + γ1)
⩽
d
(
1 −
√
βγ1

)
1 +
√
βγ1

⩽ d

∆c + 1
< 1.

Hence for any 1 ⩽ d ⩽ ∆c, StrUnique(β,γ1, λ,d) holds as well. To sum up, (β,γ1, λ) is univer-

sally strictly unique. The theorem follows.

Thresholds of λ

Here we discuss thresholds about λ while fixing (β,γ) and ∆. This setup is closer to studies

about the hardcore gas model. Cases are more complicated than those of Theorem 7.33. We

need to distinguish between hard constraints (β = 0) and soft constraints (β > 0).

Hard constraints

We deal with hard constraints first. Let λc(0,γ,∆) := min1⩽d<∆
γd+1dd

(d−1)d+1 . In particular, for any

γ > 0, λc(0,γ, 2) = ∞. Then we have the following lemma.

Lemma 7.35. Let β = 0, γ > 0, and ∆ ⩾ 2 be an integer. There exists a critical threshold

λc = λc(0,γ,∆) such that StrUnique(β,γ, λ,d) holds for all 1 ⩽ d < ∆ if and only if λ ∈ (0, λc).
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Proof. For ∆ = 2, it is easy to verify that c(1) < 1 for any anti-ferromagnetic (β,γ, λ) . Hence

StrUnique(0,γ, λ, 1) always holds and λc = ∞. In the following we assume that ∆ ⩾ 3 and

2 ⩽ d < ∆.

As β = 0, |f ′d(x̂d)| =
d(1−βγ)x̂d

(βx̂d+1)(x̂d+γ)
= dx̂d
x̂d+γ

, and StrUnique(0,γ, λ,d) holds if and only if

x̂d <
γ
d−1 . Recall that x̂d = λ

(
1

x̂d+γ

)d
. Then x̂d <

γ
d−1 if and only if

λ = x̂d(x̂d + γ)d <
γd+1dd

(d− 1)d+1 .

Hence StrUnique(0,γ, λ,d) holds for all 1 ⩽ d < ∆ if and only if λ < λc = λc(0,γ,∆) =

min1⩽d<∆
γd+1dd

(d−1)d+1 .

Now we are ready to state and prove our theorem.

Theorem 7.36. Let β = 0, γ > 0, and ∆ ⩾ 2 be an integer. There exists a critical threshold

λc = λc(0,γ,∆) such that

1. if λ ∈ (0, λc), then there exists an FPTAS for #∆-2Spin(0,γ, λ);

2. if λ ∈ (λc,∞), then there is no FPRAS for #∆-2Spin(0,γ, λ) unless NP=RP.

Moreover,

1. if γ ⩽ 1, then for any λ > 0 then there is no FPRAS for #∆γ,λ-2Spin(0,γ, λ) unless NP=RP

where ∆γ,λ is a sufficiently large integer depending on γ and λ;

2. if γ > 1, then there exists a critical λ∞c such that

a) if λ ∈ (0, λ∞c ), then there exists an FPTAS for #2Spin(0,γ, λ);

b) if λ ∈ (λ∞c ,∞), then there is no FPRAS for #∆c-2Spin(0,γ, λ) unless NP=RP where

∆c = arg max
d⩾1

Ctr(0,γ, λ,d).

Proof. Again, all hardness statements are due to Sly and Sun [SS14].

The first part of Theorem 7.36 follows from Lemma 7.35 and Theorem 7.25.
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For the second part, if γ ⩽ 1, then γd+1dd

(d−1)d+1 is strictly decreasing in d and goes to 0. Hence

there is no λ such that (0,γ, λ) is universally strictly unique. By Lemma 7.30, if γ ⩽ 1, then

there is a sufficiently large integer ∆γ,λ such that StrUnique(0,γ, λ,∆γ,λ) fails.

Otherwise assume γ > 1. The existence of∆c is guaranteed by Lemma 7.32. To get tractabil-

ity results, we want to apply Lemma 7.35 and Theorem 7.26. Let l(d) = γd+1dd

(d−1)d+1 for d > 1.

Then

l ′(d) = l(d)

(
logγ+ log

(
d

d− 1

)
−

2

d− 1

)
.

The function − log
(
d
d−1

)
+ 2
d−1 is decreasing for all d > 1. If logγ ⩾ − log

(
2

2−1

)
+ 2

2−1 =

− log 2 + 2, that is, γ ⩾ e2/2 ≈ 3.69453, then l ′(d) ⩾ 0 for all d ⩾ 2. Recall that l(1) = ∞, we

have that λ∞c = mind⩾1 l(d) = l(2) = 4γ3 where the minimum is taken with respect to integers

d.

Otherwise, γ < e2/2 and there exists a unique d0 > 2 such that logγ = − log
(
d0
d0−1

)
+ 2
d0−1 .

The function l(d) takes its minimum at this point l ′(d0) = 0 in d > 1. Let D0 = ⌊d0⌋ and

D1 = D0 + 1. Then λ∞c = mind⩾1 l(d) = min{l(D0), l(D1)}, where the first minimum is taken

with respect to integers d.

Soft constraints

Next we deal with soft constraints. The main result is summarized as follows.

Theorem 7.37. Let 0 < β ⩽ γ, βγ < 1, and ∆ ⩾ 2 be an integer. We have the following cases:

1. if
√
βγ > ∆−2

∆
, then for any λ > 0, then there exists an FPTAS for #∆-2Spin(β,γ, λ);

2. if
√
βγ ⩽ ∆−2

∆
, then there exist two critical thresholds λc = λc(β,γ,∆) and λc = λc(β,γ,∆)

such that

a) if λ ∈ (0, λc) ∪ (λc,∞), there exists an FPTAS for #∆-2Spin(β,γ, λ);

b) if λ ∈ (λc, λc), there is no FPRAS for #∆-2Spin(β,γ, λ) unless NP=RP.

Moreover,
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1. if γ ⩽ 1, then for any λ > 0 then there is no FPRAS for #∆γ,λ-2Spin(0,γ, λ) unless NP=RP

where ∆γ,λ is a sufficiently large integer depending on γ and λ;

2. if γ > 1, then there exists a critical λ∞c such that

a) if λ ∈ (0, λ∞c ), then there exists an FPTAS for #2Spin(β,γ, λ);

b) if λ ∈ (λ∞c ,∞), then there is no FPRAS for #∆c-2Spin(0,γ, λ) unless NP=RP where

∆c = arg max
d⩾1

Ctr(β,γ, λ,d).

We first observe that if
√
βγ > ∆−2

∆
, then the uniqueness holds for any λ > 0.

Lemma 7.38. Let 0 ⩽ β ⩽ γ, βγ < 1, and ∆ ⩾ 2 be an integer. If
√
βγ > ∆−2

∆
, then for any λ > 0

and any integer 1 ⩽ d < ∆, StrUnique(β,γ, λ,d) holds.

Proof. We note that |f ′d(x̂d)| =
d(1−βγ)x̂d

(βx̂d+1)(x̂d+γ)
, as a rational function in x̂d, is not monotone. It

achieves its maximum value at x̂d =
√
γ/β. Therefore, if for any 1 ⩽ d < ∆,

d(1−βγ)
√
γ/β

(β
√
γ/β+1)(

√
γ/β+γ)

< 1, then StrUnique(β,γ, λ,d) holds for any λ > 1. In fact, the condition is equivalent to
√
βγ > d−1

d+1 . If
√
βγ > ∆−2

∆
, then for all integers 1 ⩽ d < ∆,

√
βγ > d−1

d+1 , and hence

StrUnique(β,γ, λ,d) holds for any λ > 0.

Otherwise
√
βγ ⩽ d−1

d+1 (denote d = ∆− 1) and d ⩾ 1+
√
βγ

1−
√
βγ

. We have two thresholds, instead

of just one as in Lemma 7.35. We need to do some technical preparation first. If
√
βγ ⩽ d−1

d+1 ,

then the equation d(1−βγ)x = (βx+1)(x+γ) has two real roots x1(d) ⩽ x2(d). To be specific,

x1(d) =
1

2β

(
−1 − βγ+ d(1 − βγ) −

√
(−1 − βγ+ d(1 − βγ))2 − 4βγ

)
,

x2(d) =
1

2β

(
−1 − βγ+ d(1 − βγ) +

√
(−1 − βγ+ d(1 − βγ))2 − 4βγ

)
. (7.32)

Moreover, x1(d) + x2(d) =
d(1−βγ)−(1+βγ)

β
⩾ (1+

√
βγ)2−(1+βγ)

β
> 0 and x1(d)x2(d) = γ/β.

Hence both x1(d) and x2(d) are positive. It is easy to see that x2(d) is monotonically increasing

in d and goes to ∞ as d grows. As x1(d)x2(d) = γ/β, x1(d) is monotonically decreasing in d

and goes to 0 as d grows.. Let λi(d) = xi(d)
(
xi(d)+γ
βxi(d)+1

)d
, for i = 1, 2. We need the following

technical lemma.
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Lemma 7.39. If γ ⩽ 1, then λ1(d) is decreasing in d and goes to 0 as d grows. If γ > 1, then

there exists a unique integer d0 such that λ1(d) takes its minimum at d = dc among integers

d ⩾ 1+
√
βγ

1−
√
βγ

. The function λ2(d) is increasing in d and goes to ∞ as d grows.

Proof. It is easy to calculate that

λ ′i(d)

λi(d)
=
x ′i(d)

xi(d)
+ log

xi(d) + γ

βxi(d) + 1
+

d(1 − βγ)x ′i(d)

(xi(d) + γ)(βxi(d) + 1)

=
2x ′i(d)

xi(d)
+ log

xi(d) + γ

βxi(d) + 1
, (7.33)

as d(1 − βγ)xi(d) = (xi(d) + γ)(βxi(d) + 1). Since x2(d) ⩾ x1(d) and γ ⩾ β, we have that

x2(d) ⩾
√
γ
β

⩾ 1−γ
1−β . Hence x2(d)+γ

βx2(d)+1 ⩾ 1. Together with x ′2(d) > 0, from (7.33) we have that

λ ′2(d) > 0.

Moreover we can calculate that

x ′1(d)

x1(d)
= −

1 − βγ√
((1 − βγ)d− 1 − βγ)2 − 4βγ

,

and

λ ′′1 (d)

λ1(d)
=

(1 − βγ)3(d2 − 1)

d
(
((1 − βγ)d− 1 − βγ)2 − 4βγ

)3/2
+

(
2x ′1(d)

x1(d)
+ log

x1(d) + γ

βx1(d) + 1

)2

> 0.

Hence λ ′1(d) is increasing goes from −∞ to logγ as d goes from 1+
√
βγ

1−
√
βγ

to ∞.

If γ ⩽ 1, then λ ′1(d) < 0 for all d ⩾ 1+
√
βγ

1−
√
βγ

. Hence λ1(d) is decreasing in d.

If γ > 1, then there exists a unique d0 such that λ ′1(d0) = 0, λ ′1(d) < 0 if 1+
√
βγ

1−
√
βγ

⩽ d < d0,

and λ1(d)
′ > 0 if d > d0. Hence λ1(d) takes its minimum at d = d0 in the range

[
1+

√
βγ

1−
√
βγ

,∞).

Notice that we only care about integers. Let D0 = max
{⌈

1+
√
βγ

1−
√
βγ

⌉
, ⌊d0⌋

}
and D1 = D0 + 1.

Then dc = Di where i ∈ {0, 1} such that λ1(Di) ⩽ λ1(D1−i).

Next we analyze the uniqueness condition for a single integer d.

Lemma 7.40. Let 0 < β ⩽ γ, βγ < 1, and d ⩾ 1 be an integer. If
√
βγ ⩽ d−1

d+1 , then

StrUnique(β,γ, λ,d) holds if and only if λ ∈ (0, λ1(d)) ∪ (λ2(d),∞).



264

Proof. Recall that under our assumption the equation d(1−βγ)x
(βx+1)(x+γ) = 1 has two positive roots

x1(d) and x2(d) as in (7.32). It then holds that |f ′d(x̂d)| =
d(1−βγ)x̂d

(βx̂d+1)(x̂d+γ)
< 1 if and only if

x̂d < x1(d) or x̂d > x2(d). Note that x
(
x+γ
βx+1

)d
is monotonically increasing in x for any fixed d.

Thus x̂d < x1(d) if and only if

λ = x̂d

(
x̂d + γ

βx̂d + 1

)d
< x1(d)

(
x1(d) + γ

βx1(d) + 1

)d
= λ1(d),

and x̂d > x2(d) if and only if

λ = x̂d

(
x̂d + γ

βx̂d + 1

)d
> x2(d)

(
x2(d) + γ

βx2(d) + 1

)d
= λ2(d).

Therefore, |f ′d(x̂d)| < 1 if and only if λ < λ1(d) or λ > λ2(d).

Then we have the following two lemmas.

Lemma 7.41. Let 0 < β ⩽ γ, βγ < 1, and∆ ⩾ 2 be an integer. If
√
βγ ⩽ ∆−2

∆
, then there exist two

critical thresholds λc = λc(β,γ,∆) and λc = λc(β,γ,∆) = λ2(∆−1) such that StrUnique(β,γ, λ,d)

holds for all integers 1 ⩽ d < ∆ if and only if λ ∈ (0, λc) ∪ (λc,∞).

Proof. Let ∆ be the largest integer such that ∆ <
1+

√
βγ

1−
√
βγ

and therefore
√
βγ > ∆−1

∆+1
. Since

√
βγ ⩽ ∆−2

∆
, ∆ − 1 > ∆. Moreover, we have that

√
βγ > d−1

d+1 for all 1 ⩽ d ⩽ ∆ and
√
βγ ⩽ d−1

d+1

for all ∆ < d < ∆. By Lemma 7.38, for all λ > 0, StrUnique(β,γ, λ,d) holds for all d ∈ [1,∆].

For any integer d ∈ (∆,∆), we have that
√
βγ ⩽ d−1

d+1 . Hence by Lemma 7.40, StrUnique

(β,γ, λ,d) holds if and only if λ ∈ (0, λ1(d)) ∪ (λ2(d),∞). Let

λc = λc(β,γ,∆) = min
∆<d<∆

λ1(d),

λc = λc(β,γ,∆) = max
∆<d<∆

λ2(d) = λ2(∆− 1),

where min and max are taken over integers, and we get the second line since λ ′2(d) > 0 by

Lemma 7.39. It holds that StrUnique(β,γ, λ,d) holds for any integer d ∈ [1,∆) if and only if

λ ∈ (0, λc) ∪ (λc,∞).
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We remark that if β = γ < 1, that is, the system is an Ising model, then λ1(d)λ2(d) = 1.

Moreover, by Lemma 7.39, λ1(d) is decreasing, and hence λc = λ1(∆ − 1). We then get that

λc · λc = 1. In this case, StrUnique(β,γ, λ,d) holds for all integers 1 ⩽ d < ∆ if and only if

| log λ| > log λc. In particular, we have the following lemma for the Ising model, which will be

useful in Section 9.6.

Lemma 7.42. Let 0 < β < 1 and ∆ =
⌊

1+β
1−β

⌋
+ 1 be an integer. Then for any C > 1, there exists

λC > 0 such that λC > 1, 1/C < λC < C, and Ctr(β,β, λC,∆) > 1.

Proof. We claim that for any integer d such that β < d−1
d+1 , Ctr(β,β, 1,d) > 1. The lemma follows

from continuity and the fact that ∆ > 1+β
1−β .

To show the claim, notice that if λ = 1, then the fixed point x̂d = 1 for any d > 0. Hence

Ctr(β,β, 1,d) = d(1−β2)

(1+β)2 =
d(1−β)

1+β > 1 if d > 1+β
1−β .

At last we discuss universally strictly uniqueness.

Lemma 7.43. If β > 0 and γ > 1, there exists a constant λ∞c = λc(β,γ) such that (β,γ, λ) is

universally strictly unique if and only if λ ∈ (0, λ∞c ).
Proof. Let ∆ be the largest integer such that ∆ < 1+

√
βγ

1−
√
βγ

. Then by Lemma 7.38, for any integer

1 ⩽ d ⩽ ∆ and λ > 0, StrUnique(β,γ, λ,d) holds. By Lemma 7.40, for any integer d > ∆,

StrUnique(β,γ, λ,d) holds if and only if λ ∈ (0, λ1(d)) ∪ (λ2(d),∞). By Lemma 7.39, λ2(d) goes

to infinity as d grows. Since γ > 1, then again by Lemma 7.39, λ∞c = mind>∆ λ1(d) = λ1(dc).

Therefore, (β,γ, λ) is universally strictly unique if and only if λ ∈ (0, λ∞c ).
Now we are ready to show Theorem 7.37.

Proof of Theorem 7.37. Once again, all hardness statements are due to Sly and Sun [SS14].

Statements about FPTAS in the first part of Theorem 7.37 follows from Lemma 7.41 and

Lemma 7.25. Statements about FPTAS in the second part follows from Lemma 7.5, Lemma

7.43, and Theorem 7.26.
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7.8 Correlation Decay at the Threshold

In this section, we show that correlation decays at the rate of O(ℓ−1/2) when (β,γ, λ) and ∆ are

right at the uniqueness threshold. That is,

f ′d(x̂d) =
d(βγ− 1)x̂d

(βx̂d + 1)(x̂d + 1)
= −1.

where x̂d is the unique solution such that x̂d = fd(x̂d). Here we are still working under the

assumption that γ > 0, β ∈ [0,γ], βγ < 1, λ > 0, and d is an integer. Derivatives of fd(x) are

f ′d(x) =
d(βγ− 1)fd(x)

(βx+ 1)(x+ γ)
,

f ′′d(x) = f
′
d(x) ·

(
(d− 1)β

βx+ 1
−
d+ 1

x+ γ

)
,

f ′′′d (x) = f ′′d(x)

(
(d− 1)β

βx+ 1
−
d+ 1

x+ γ

)
− f ′d(x) ·

(
(d− 1)β2

(βx+ 1)2
−

d+ 1

(x+ γ)2

)
=
f ′′d(x)

2

f ′d(x)
− f ′d(x) ·

(
(d− 1)β2

(βx+ 1)2
−

d+ 1

(x+ γ)2

)
.

Hence we have that

f ′′d(x̂d) =
1

x̂d
+

β

βx̂d + 1
+

1

x̂d + γ
, (7.34)

f ′′′d (x̂d) = −f ′′d(x̂d)
2 −

β

x̂d(βx̂d + 1)
−

1

x̂d(x̂d + γ)
−

β2

(βx̂d + 1)2
−

1

(x̂d + γ)2
, (7.35)

where in the last equation we use the fact that

d

(
β

βx̂d + 1
−

1

x̂d + γ

)
= −

1

x̂d
, (7.36)

since f ′d(x̂d) = −1. We will use Φ∗(x) as our potential function, that is

φ∗(x) = Φ
′
∗(x) =

1√
x(βx+ 1)(x+ γ)

.
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Recall that we pick this potential function such that

φ ′(x̂d)

φ(x̂d)
= −

f ′′d(x̂d)

2
. (7.37)

We consider the recursion with this potential function, that is gd(y) := Φ(fd(Φ
−1(y))). We see

that ŷd = Φ−1(x̂d) is the unique fixed point of gd(y). Derivatives of gd(y) of the first three

orders are

g ′
d(y) =

φ(fd(x))

φ(x)
f ′d(x),

g ′′
d(y) =

g ′
d(y)

φ(x)

(
φ ′(fd(x))f

′
d(x)

φ(fd(x))
+
f ′′d(x)

f ′d(x)
−
φ ′(x)

φ(x)

)
,

g ′′′
d (y) =

g ′′
d(y)

2

g ′
d(y)

− g ′′
d(y)

φ ′(x)

φ(x)
+
g ′
d(y)

φ(x)

(
f ′′′d (x)

f ′d(x)
−

(
f ′′d(x)

f ′d(x)

)2

−
φ ′′(x)

φ(x)
+

(
φ ′(x)

φ(x)

)2

+
φ ′′(fd(x))f

′
d(x)

2

φ(fd(x))
+
φ ′(fd(x))f

′′
d(x)

φ(fd(x))
−

(
φ ′(fd(x))f

′
d(x)

φ(fd(x))

)2
)

,

where x = Φ−1(y). Plugging in ŷd we get that

g ′
d(ŷd) = f

′
d(x̂d) = −1, g ′′

d(ŷd) = 0, (7.38)

and hence

g ′′′
d (ŷd) = −

1

φ(x̂d)

(
−f ′′′d (x̂d) − f

′′
d(x̂d)

2 +
φ ′(x̂d)f

′′
d(x̂d)

φ(x̂d)

)
(by (7.38))

= −
1

φ(x̂d)

(
−f ′′′d (x̂d) −

3f ′′d(x̂d)
2

2

)
(by (7.37))

= −
1

2φ(x̂d)

(
β2

(βx̂d + 1)2
+

1

(x̂d + γ)2
−

2β

(βx̂d + 1)(x̂d + γ)
−

1

x̂2
d

)
(by (7.34) and (7.35))

= −
1

2φ(x̂d)

((
β

βx̂d + 1
−

1

x̂d + γ

)2

−
1

x̂2
d

)

=
1

2φ(x̂d)x̂2
d

(
1 −

1

d2

)
. (by (7.36))
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It is easy to see that 1
φ(x)x2 is decreasing in x. Let C := 1

2φ(λβd)λ2β2d

(
1 − 1

d2

)
> 0 and C ′ :=

γ2d

2φ(λ/γd)λ2

(
1 − 1

d2

)
> 0 be two constants. Since x̂d ∈ (λβd, λ/γd), we have that

C ′ < g ′′′
d (x̂d) < C. (7.39)

The Taylor expansion gd(y) at y = ŷd with the Peano reminder is

gd(y) = gd(ŷd) + g
′
d(ŷd)(y− ŷd) +

g ′′
d(ŷd)

2
(y− ŷd)

2 +
g ′′′
d (ŷd)

6
(y− ŷd)

3 + h(y)(y− ŷd)
4

= 2ŷd − y+
g ′′′
d (ŷd)

6
(y− ŷd)

3 + h(y)(y− ŷd)
4, (7.40)

where h(y) is a continuous function such that limy→ŷd h(y) = 0.

We will now consider an infinite d-ary tree T̂d with arbitrary but uniform boundary condi-

tion. That is to say, we have y0 ⩾ 0 as the starting point of our recursion and yk+1 = gd(yk). If

yk > ŷd, then yk+1 < ŷd. Similarly for the case yk < ŷd. Moreover, if for some integer k0 > 0,

|yk0 − ŷd| < δ, then for all k ⩾ k0, |yk − ŷd| < δ.

Theorem 7.44. |yn − ŷd| = Ω(1/
√
n).

Proof. Let εn = |yn − ŷd|. Notice that limn→∞ εn = 0. We first show that εn = O(1/
√
n). By

(7.40), it is easy to see that

εn+1 = |yn+1 − ŷd| = |gd(yn) − ŷd|

=

∣∣∣∣2ŷd − yn +
g ′′′
d (ŷd)

6
(yn − ŷd)

3 + h(yn)(yn − ŷd)
4 − ŷd

∣∣∣∣
= εn

∣∣∣∣1 − ε2
n

(
g ′′′
d (ŷd)

6
± h(yn)εn

)∣∣∣∣ . (7.41)

As limn→∞ h(yn) = 0 and limn→∞ εn = 0, there exists a constant N0 such that for all n ⩾ N0,

|h(yn)εn| <
C ′

12
and ε2

n <
12

2C+ C ′ .
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Hence for any n ⩾ N0, we can use (7.39) to simplify (7.41) and get

εn+1 = εn

(
1 − ε2

n

(
g ′′′
d (ŷd)

6
± h(yn)εn

))
< εn(1 − C1ε

2
n),

where C1 = C ′

12 . Let AN0 = 1√
C/6+C1

, and for any n ⩾ N0, An+1 = An(1 − C1A
2
n). Notice

that A2
N0

= 12
2C+C ′ > ε2

N0
. This will be our induction bases. It is easy to see by induction

that εn ⩽ An for all n ⩾ N0. Moreover, by induction, we can verify that for any n ⩾ N0,

An ⩽ 1√
2C1(n−N0)+C/6+C1

. Therefore εn = O(1/
√
n).

Next we lower bound εn. Again we use (7.39) and (7.41). It holds that, for all n ⩾ N0,

εn+1 = εn

(
1 − ε2

n

(
g ′′′
d (x̂d)

6
± h(xn)εn

))
> εn(1 − C2ε

2
n),

where C2 = C/6 + C1. We now pick another constant N1 > N0 such that for all n ⩾ N1,

εn <
1√
2C2

.

We define BN1 = εN1 and for all n ⩾ N1, Bn+1 = Bn(1 − C2Bn). By induction we can show

that εn ⩾ Bn. Moreover, we can verify by induction that Bn ⩾
(

4C2(n−N1) +
1
ε2
N1

)−1/2

. This

finishes our proof.

7.9 Concluding and Bibliographic Remarks

Restrepo et al. [RST+13] showed a broader region beyond the uniqueness threshold for which

the hardcore model exhibits strong spatial mixing in the grid lattice Z2. Their starting point

is a special case of the potential function introduced in Section 7.4, and then they made some

“educated guess” and solve certain optimization problems by intensive computer search. In the

end, their potential function depends on specific structures of grid lattices. Under the name of

message-passing, essentially the same potential method was also used by Sinclair et al. [SST12]
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to give an FPTAS for anti-ferromagnetic Ising models in bounded degree graphs below the

uniqueness threshold. Their potential function is also a special case of the one introduced in

Section 7.4.

The potential function introduced in Section 7.5 is from [LLY13, GLLY15]. The same po-

tential function has been employed quite a few times in other situations. Notable examples

include showing strong spatial mixing of 2-spin systems for graphs with bounded connective

constant [SSY13, SSŠY15]. Moreover, its special case of β = 0 and γ = 1 was used to design

approximate counting algorithms for monotone CNFs [LL15b].

When we choose the potential function in Section 7.5, the simplification of f ′′d(x̂d) in (7.20) is

not unique. Our particular choice is guided by the hope of eliminating the degree d. Different

choices of simplifications resulted in different potential functions. For example, we can use

(7.18) to rewrite f ′′d(x̂d) as

f ′′d(x̂d) =
1

x̂d
+

1

x̂d + γ
+

β

βx̂d + 1
=
d+ 1

dx̂d
+

2β

βx̂d + 1
.

Plugging this into (7.19) gives us that

(log(φ(x̂d)))
′ = −

d+ 1

2dx̂d
−

β

βx̂d + 1
.

If we impose the equation above to hold for all x, we can solve that

φ1(x) =
C

x
d+1
2d (βx+ 1)

,

for some arbitrary constant C. This is the potential function used in [LLY12].

Weitz [Wei06] showed that for the hardcore model strong spatial mixing on an infinite ∆-

regular tree implies the strong spatial mixing on graphs of maximum degree at most∆ (Theorem

2.3 in [Wei06]). Sinclair et al. [SST12] showed similar results for the anti-ferromagnetic Ising

model (Theorem 2.8 in [SST12]). For the hardcore model, we have that β = 0, γ < 1. For the

anti-ferromagnetic Ising mode, we have that β = γ < 1. Hence both cases satisfy the condition

of Theorem 7.27. They can be seen as special cases of Theorem 7.27 combined with Theorem

7.25. In fact, they are consequences of the following fact.
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Proposition 7.45. For 0 ⩽ β,γ ⩽ 1, strong spatial mixing on infinite ∆-regular tree implies

strong spatial mixing and FPTAS of Zβ,γ,λ(G) in graphs of maximum degree at most ∆.

We may use some of our results to prove it, but it can be shown straightforwardly.

Proof. As noted before the FPTAS follows from strong spatial mixing. Given a graph G and

vertex v, we construct the SAW tree T = TSAW(G, v). In T , for each vertex of k children with

k < ∆− 1, we can attach ∆− 1− k dummy vertices as its children. Instead of fixing their spins,

we fix marginal probabilities or distributions that will be used in the recursion of these dummy

vertices. We want to fix it so that it has no effect on its parent in the recursion. Therefore for

each dummy vertex v, we set Rv = pv
1−pv

= 1−γ
1−β so that βRv+1

Rv+γ
= 1. As 0 ⩽ β,γ ⩽ 1, we have

that Rv ⩾ 0, and therefore pv = Rv
1+Rv

satisfies 0 ⩽ pv ⩽ 1 and is a valid probability. Suppose

that dummy vertices are k + 1-th to ∆ − 1-th children of the parent. Then this choice satisfy

our needs as

F∆(R1, . . . ,R∆) = λ
∆−1∏
i=1

βRi + 1

Ri + γ
= λ

k∏
i=1

βRi + 1

Ri + γ

= Fk(R1, . . . ,Rk)

where Ri is the ratio at the i-th child. Then we have appended T into a tree where the recursion

of each step is with respect to ∆− 1 children. Strong spatial mixing in ∆-regular trees implies

the required correlation decay of such recursions.

This appending method is used in both [Wei06] and [SST12]. Essentially the same idea has

also appeared in the proof of Theorem 7.22. For the hardcore model dummy children are fixed

to be unoccupied and for the anti-ferromagnetic Ising model dummy children are fixed with

uniform distributions over the two spins. In both cases, the dummy children have no effect

on their parent. However, it is easy to see that if γ > 1 > β, in order to have no effect on

the parent, Rv = 1−γ
1−β < 0 and therefore Rv does not induce a valid distribution. In fact, when

γ > 1, by Theorem 7.28 the claim of Proposition 7.45 is no longer true.
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Chapter 8

Phase Transitions and Computational

Hardness

In this chapter, we give some complementing hardness results about anti-ferromagnetic 2-spin

systems. Beyond the uniqueness threshold, #2Spin(β,γ, λ) has no FPRAS unless NP = RP. We

will then study anti-ferromagnetic 2-spin systems in bipartite graphs.

8.1 Phase Transitions in Anti-Ferromagnetic Systems

Recall that if Ctr(β,γ, λ,∆) > 1, then the Gibbs measure in infinite (∆ + 1)-regular tree T∆+1

or infinite ∆-ary tree T̂∆ is not unique. There is a long line of research [DFJ02, MWW09, Sly10,

GGS+14, GŠV12, SS14] studying the relationship between the phase transition of the uniqueness

of Gibbs measures in T̂∆ and the approximation complexity of #∆-2Spin(β,γ, λ). The upshot

[SS14, GŠV12] is that if Ctr(β,γ, λ,∆) > 1, then #∆-2Spin(β,γ, λ) has no FPRAS unless NP = RP.

The core of the hardness reduction in all papers above except [SS14] is the analysis of

gadgets based on random regular graphs. Most notably is the construction by Sly [Sly10]. For

integers r,n, let Grn be the following graph distribution:

1. Grn is supported on bipartite graphs. The two parts of the bipartite graph are labelled by

+,− and each is partitioned as Vπ := Uπ ∪Wπ where |Uπ| = n, |Wπ| = r for π = {+,−}. U

denotes the set U+ ∪U− and similarly W denotes the set W+ ∪W−.
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2. To sample G ∼ Grn, sample uniformly and independently ∆ matchings: (i) (∆− 1) random

perfect matchings betweenU+∪W+ andU−∪W−, (ii) a random perfect matching between

U+ and U−. The edge set of G is the union of the ∆ matchings. Thus, vertices in U have

degree ∆, while vertices in W have degree ∆− 1.

The case r = 0 will also be important, in which case we denote the distribution as Gn. Note

that Gn is supported on bipartite ∆-regular graphs. Strictly speaking, Grn,Gn are supported on

multi-graphs, but it is well known that every statement that holds asymptotically almost surely

on these spaces continues to hold asymptotically almost surely conditioned on the event that

the graph is simple [JLR00].

For positive integers ∆, t and n where n is even and is at least 2t, let T− and T+ be disjoint

vertex sets of size t and let V− be a size-n/2 superset of T− and V+ be a size-n/2 superset

of T+ which is disjoint from V−. Let T = T−∪T+ and V(t,n) = V−∪V+. Let G(t,n,∆) be the set

of bipartite graphs with vertex partition (V−,V+) in which every vertex has degree at most ∆

and every vertex in T has degree at most ∆ − 1. We refer to the vertices in T as “terminals”.

Vertices in T+ are “positive terminals” and vertices in T− are “negative terminals”.

The construction goes as follows. For constants 0 < θ,ψ < 1/8, let

m ′ := (∆− 1)⌊θ log∆−1n⌋+2⌊ψ2 log∆−1n⌋.

Note that m ′ = o(n1/4). First, sample G from the distribution Gm
′

n conditioning on G being

simple. Next, for π ∈ {+,−}, attach t disjoint (∆ − 1)-ary trees of even depth ℓ (with t =

(∆− 1)⌊θ log∆−1n⌋ and ℓ = 2⌊ψ2 log∆−1 n⌋) to Wπ, so that every vertex in Wπ is a leaf of exactly

one tree (this is possible since m ′ = |W| = t(∆ − 1)ℓ). Denote by Tπ the roots of the trees, so

that |Tπ| = t. The trees do not share common vertices with the graph G, apart from the vertices

in W. The final graph G̃ is the desired gadget, where the terminals T are the roots of the trees.

We denote the family of graphs that can be constructed this way by G̃(t,n(t),∆). Note that the

size of the construction is (2 + o(1))n which is bounded above by a polynomial in t when ∆ is

a fixed constant. Moreover, any G̃ drawn from G̃(t,n(t),∆) is bipartite. The terminals of G̃ are

T(G) = T+ ∪ T−, and T+ and T− are on distinct partitions of the bipartite graph.

The key property of Sly’s gadget is what we call nearly-independent phase-correlated spins.
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When the gadget G is drawn from G(t,n,∆), we use the notation T(G) to refer to the set of

terminals. Each configuration σ : V(t,n) → {0, 1} is assigned a unique phase Y(σ) ∈ {−,+}.

Roughly in our applications of the definitions below the phase of a configuration σ is π if Vπ

contains more vertices with spin 1 than does V−π.

Consider the two extremal semi-translation-invariant Gibbs measures corresponding to the

all 1’s and all 0’s boundary conditions. Let 0 < q− < q+ < 1 be the two marginal probabilities of

the root having spin 0 in these two measures. More precisely, one can define q+,q− as follows.

For s ∈ {0, 1}, let qℓ,s denote the probability that the root is assigned spin 0 in the ∆-ary tree of

depth ℓ in the Gibbs distribution where the leaves are fixed to spin s. In standard terminology,

fixing the configuration on the leaves to all 0’s or all 1’s is most commonly referred to as the

+,− boundary conditions, respectively (and hence the indices +,− in our notation of q+,q−). It

is not hard to show that q2ℓ,0 is decreasing in ℓ, while q2ℓ,1 is increasing. Let q+ := limℓ→∞ q2ℓ,0

and let q− := limℓ→∞ q2ℓ,1. The two quantities q+ and q− satisfy the standard tree recursion

in the following sense. Let rπ = qπ

1−qπ for π ∈ {−,+}, and f∆(x) = λ
(
βx+1
x+γ

)∆
. Then r+ = f∆(r

−)

and r− = f∆(r
+)

We define measures Q+ and Q−. Fix 0 < q− < q+ < 1. For any positive integer t,

• Q+ is the distribution on configurations τ : T → {0, 1} such that, for every v ∈ T+, τ(v) = 0

independently with probability q+ and, for every v ∈ V−, τ(v) = 0 independently with

probability q−;

• Q− is the distribution on configurations τ : T → {0, 1} such that, for every v ∈ T−, τ(v) = 0

independently with probability q+ and, for every v ∈ T+, τ(v) = 0 independently with

probability q−.

To prove the hardness we need a gadget where the spins of the terminals are drawn from

distributions close to Q+ or Q− conditioned on the phase + or −.

Definition 8.1. A tuple of parameters (β,γ, λ,∆) supports nearly-independent phase-correlated

spins if there are efficiently-approximable values 0 < q− < q+ < 1 such that the following is

true. There are functions n(t, ε), m(t, ε), and f(t, ε), each of which is bounded from above by a

polynomial in t and ε−1, and for every t and ε there is a distribution on graphs in G(t,n(t, ε),∆)
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such that a gadget G = (V ,E) with terminals T can be drawn from the distribution withinm(t, ε)

time, and the probability that the following inequalities hold is at least 3/4:

1. The phases are roughly balanced, i.e.,

PrG;β,γ,λ(Y(σ) = +) ⩾ 1

f(t, ε)
and PrG;β,γ,λ(Y(σ) = −) ⩾ 1

f(t, ε)
. (8.1)

2. For a configuration σ : V → {0, 1} and any τ : T → {0, 1},

∣∣∣∣PrG;β,γ,λ(σ|T = τ | Y(σ) = +)

Q+(τ)
− 1

∣∣∣∣ ⩽ ε and

∣∣∣∣PrG;β,γ,λ(σ|T = τ | Y(σ) = −)

Q−(τ)
− 1

∣∣∣∣ ⩽ ε. (8.2)

In fact, given a gadget with the above property, one can construct a gadget where the phases

are (nearly) uniformly distributed as detailed in the following definition.

Definition 8.2. We say that the tuple of parameters (β,γ, λ,∆) supports balanced nearly-indepen-

dent phase-correlated spins if Definition 8.1 holds with (8.1) replaced by:

PrG;β,γ,λ(Y(σ) = +) ⩾ 1 − ε

2
and PrG;β,γ,λ(Y(σ) = −) ⩾ 1 − ε

2
, (8.3)

where ε is quantified as in Definition 8.1.

Balanced phases are very important in later AP-reductions. Later in Lemma 8.7 we will need

to assume the existence of a gadget with balanced phases. The following lemma shows that

for essentially all 2-spin systems, Definition 8.1 implies Definition 8.2.

Lemma 8.3. If the parameter tuple (β,γ, λ,∆) with βγ ≠ 1 supports nearly-independent phase-

correlated spins, then it supports balanced nearly-independent phase-correlated spins.

Sly [Sly10, Theorem 2.1] showed that for every ∆ ⩾ 3, there exists ε∆ such that the hard-

core model (1, 0, λ,∆) supports nearly-independent phase-correlated spins for any λ satisfying

λc(T̂∆) < λ < λc(T̂∆) + ε∆. This region is a small interval just above the uniqueness threshold.

In the same paper Sly also showed that (1, 0, 1, 6) supports nearly-independent phase-correlated

spins. The quantities defining measures Q± in Definition 8.1 are exactly the marginal proba-

bilities q± on T̂∆.
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Galanis et al. [GGS+14] extended the applicable region of Sly’s gadget for the hard-core

model to all λ > λc(T∆) for ∆ = 3 and ∆ ⩾ 6. The gap of ∆ = 4 and ∆ = 5 is later closed

[GŠV12]. In the later paper Galanis et al. [GŠV12] also verified Sly’s gadget for parameters

(β,γ, λ,∆) such that βγ < 1,
√
βγ ⩾

√
∆−1−1√
∆−1+1

, and (β,γ, λ) is in the non-uniqueness region of

infinite treeT∆. Using techniques from [GŠV14] the applicable region of Sly’s gadget is extended

to the entire non-uniqueness region for all 2-spin anti-ferromagnetic models [CGG+14].

Lemma 8.4. For all ∆ ⩾ 3, all β,γ, λ > 0 where βγ < 1, if Ctr(β,γ, λ,∆) > 1 then the tuple of

parameters (β,γ, λ,∆) supports nearly-independent phase-correlated spins.

Roughly speaking, if a set of parameters (β,γ, λ,∆) supports balanced nearly-independent

phase-correlated spins, then #Sat ⩽AP #∆-2Spin(β,γ, λ).

8.2 Spin Systems in Bipartite Graphs

As we have seen, for example in Theorem 6.17, counting problems can usually be classified

into tractable and hard classes. Interestingly, in approximate counting, there has emerged a

third distinct class of natural problems, which seems to be of intermediate complexity. It is

conjectured [DGGJ03] that the problems in this class do not have an FPRAS but that they are

not as hard as #Sat to approximate. A canonical problem in this class has been identified,

which is to count the number of independent sets in a bipartite graph (#BIS). Despite many

attempts, nobody has found an FPRAS for #BIS nor an AP-reduction from #Sat to #BIS. The

conjecture is that neither exists. Mossel et al. [MWW09] showed that the Gibbs sampler for

sampling independent sets in bipartite graphs mixes slowly even if degrees are at most 6.

Another interesting attempted Markov Chain for #BIS by Ge and Stefankovic [GŠ12] was also

shown later to be slowly mixing by Goldberg and Jerrum [GJ12b].

Name #BIS

Instance A bipartite graph B.

Output The number of independent sets in B.



277

#BIS plays an important role in classifying counting problems with respect to approxima-

tion. A trichotomy theorem is shown for the complexity of approximately solving unweighted

Boolean counting CSPs, where in addition to problems that are solvable by FPRASes and those

that are AP-reducible from #Sat, there is the intermediate class of problems which are equiv-

alent to #BIS [DGJ10]. Many counting problems are shown to be #BIS-hard and hence are con-

jectured to have no FPRAS [BDG+13, CDG+15], including estimating the partition function of

the ferromagnetic Potts model [GJ12a]. Moreover, under AP-reductions #BIS is complete in a

logically defined class of problems, called #RHΠ1, to which an increasing variety of problems

have been shown to belong. Other typical complete problems in #RHΠ1 include counting the

number of downsets in a partially ordered set [DGGJ03] and computing the partition function

of the ferromagnetic Ising model with local external fields [GJ07].

Motivated by #BIS, in the rest of this chapter, we will focus on 2-spin systems over bounded

or unbounded degree bipartite graphs parametrized by a tuple (β,γ, λ). For efficiently approx-

imable non-negative real numbers β,γ, λ and a positive integer ∆, we define the problem of

computing the partition function of the 2-spin system (β,γ) with external field λ on bipartite

graphs of bounded degree ∆, as follows.

Name #(∆-)Bi-(M-)2Spin(β,γ, λ)

Instance A bipartite (multi)graph B = (V ,E) (with degree bound ∆).

Output The quantity Zβ,γ,λ(B).

Notice that we in fact introduced four problems, depending on whether there is a degree

bound and whether the graph is simple.

We found the notion of non-uniform external field useful in the reductions. The following

problems are introduced as intermediate problems. We also introduce its multigraph version,

but as intermediate problems we do not need the bounded degree variant.

Name #Bi-(M-)Nonuniform-2Spin(β,γ, λ)

Instance A bipartite (multi)graph B = (V ,E) and a subset U ⊆ V .
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Output The quantity

Zβ,γ,λ(B;U) =
∑

σ:V→{0,1}|V |

λ
∑
v∈U 1−σ(v)

∏
(v,u)∈E

β(1−σ(v))(1−σ(u))γσ(v)σ(u).

It turns out that the notion of nearly-independent phase-correlated spins (Definitions 8.1

and 8.2) is not sufficient to imply #BIS-hardness. In order to study spin systems in bipartite

graphs, we want the gadget to satisfy another property, which we call symmetry breaking.

Definition 8.5. We say that a tuple of parameters (β,γ, λ,∆) supports symmetry-breaking if

there is a bipartite graph H whose vertices have degree at most ∆ which has a distinguished

degree-1 vertex vH such that PrH;β,γ,λ(σvH = 0) ̸∈ {0, λ/(1 + λ), 1}.

We will prove in Section 8.4 that symmetry breaking holds for all 2-spin models except for

two cases.

Lemma 8.6. Assume ∆ ⩾ 3. The parameters (β,γ, λ,∆) support symmetry breaking unless

(i) βγ = 1, or (ii) β = γ and λ = 1.

Lemma 8.7. Suppose a set of parameters (β,γ, λ,∆) with βγ ≠ 1 and ∆ ⩾ 3 supports balanced

nearly-independent phase-correlated spins and symmetry-breaking. Then #∆-Bi-2Spin(β,γ, λ)

is #BIS-hard to approximate.

Let Ctr(β,γ, λ,∞) := maxd⩾1 Ctr(β,γ, λ,d). By Lemma 7.30, ifβ,γ < 1, then Ctr(β,γ, λ,∞) =

∞. Combining Lemma 8.7 with Lemmas 8.4, 8.3, and 8.6, we get the following theorem.

Theorem 8.8. Let (β,γ, λ) be a set of parameters such that βγ < 1 and ∆ ⩾ 3 be an integer or

∆ = ∞. Then #∆-Bi-2Spin(β,γ, λ) is #BIS-hard to approximate unless Ctr(β,γ, λ,d) ⩽ 1 for all

integers d ∈ [1,∆) or β = γ and λ = 1.

We note that if Ctr(β,γ, λ,d) < 1 for all integers d ∈ [1,∆), then #∆-2Spin(β,γ, λ) has an

FPTAS by Theorem 7.25 or Theorem 7.26 and so does #∆-Bi-2Spin(β,γ, λ). If β = γ < 1 and

λ = 1, then we can reduce #Bi-2Spin(β,β, 1) to ferromagnetic Ising models without external

fields, which has an FPTAS by Jerrum and Sinclair [JS93]. Hence #Bi-2Spin(β,β, 1) also has an

FPTAS. Details can be found in Corollary 8.10.
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8.3 Balancing Nearly-Independent Phase-Correlated Spins

In this section we prove Lemma 8.3 that a gadget with nearly-independent phases can be used

to construct a gadget with balanced phases.

Before proving the lemma, we introduce some notations. Let q+ and q− be the quantities

from Definition 8.1. Let

M :=

β 1

1 γ

 and M+ :=

q+ 1 − q+

q− 1 − q−

 .

The two columns of M+ correspond to spin 0 and spin 1. The first row corresponds to the

distribution induced on a positive terminal fromQ+
t and the second to the distribution induced

from Q−
t . Similarly the first row also corresponds to the distribution induced on a negative

terminal from Q−
t and the second to the distribution induced from Q+

t . Notice that det(M+) =

q+ − q− > 0.

When the parameters β, γ and λ are clear from the context, we make the notation more

concise, by referring to the partition function as ZG rather than as Zβ,γ,λ(G). Also, given a

configuration σ : V(G)→ {0, 1} and a subset S of V(G), we often use the notation σS to denote

the restriction σ|S. For a gadgetG drawn from G(t,n(t, ε),∆), letZπG be the contribution of phase

π ∈ {−,+} to the partition function ZG. Moreover, for a subset S ⊆ T(G), suppose τS : T(G) →

{0, 1} is a configuration on terminals in S. Let ZπG(τS) be the contribution of configurations that

are consistent with τS and belong to phase π, that is,

ZπG(τS) =
∑

σ : Y(σ)=π
σS=τS

w(σ),

where w(σ) is the weight of configuration σ defined in (7.1). It is easy to see that for π ∈ {−,+},

PrG;β,γ,λ(Y(σ) = π) =
ZπG
ZG

,

and

PrG;β,γ,λ(σT(G) = τT(G) | Y(σ) = π) =
ZπG(τT(G))

ZπG
.
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We are now prepared to prove the lemma which is the focus of this section.

Proof of Lemma 8.3. Let ε satisfy 0 < ε < 1. By assumption we may draw a gadget G from

G(t+ t ′,n(t+ t ′, ε ′),∆) such that it satisfies (8.1) and (8.2) with probability at least 3/4, where

t ′ and ε ′ will be specified later. Assume G does. Otherwise the construction fails.

We consider first the anti-ferromagnetic case βγ < 1. We construct a gadget K such that K

satisfies (8.3) and (8.2). We make two copies of G, say G1 and G2. Let the terminals of Gi be

T(Gi) = T+(Gi) ∪ T−(Gi) for i = 1, 2. For each π ∈ {−,+}, we add a set of edges that form a

perfect matching between t ′ terminals in Tπ(G1) and t ′ terminals in Tπ(G2). Denote by P the

edges of the two perfect matchings.K is the resulting graph. Denote by Ci the vertices of Gi

that are endpoints of P. The terminals of K are those 2t terminal nodes in T(G1) that are still

unmatched, that is Tπ(K) = Tπ(G1)\C1 for π ∈ {−,+}, and T(K) = T+(K) ∪ T−(K). Denote by I

the terminals of G2 that are unmatched.

We define the phase of K to be the phase of G1, that is, K is said to have phase + or −

if and only if G1 has the same + or − phase regardless of the phase of G2. Let (π1,π2) be

a vector denoting the phases of G1 and G2 where π1,π2 ∈ {−,+}. Then the + phase of K

corresponds to the vector {(+,+), (+,−)} and the − phase corresponds to {(−,+), (−,−)}. For

two configurations τV and τU with V ∩U = ∅, let (τV , τU) be the joint configuration on V ∪U.

Then we have the following:

ZπK(τT(K)) =
∑

τC1
,τC2

,τI

ZπG1
(τT(K), τC1)

(
Z+
G2

(τC2 , τI)w(τC1 , τC2) + Z
−
G2

(τC2 , τI)w(τC1 , τC2)
)

=
∑

τC1
,τC2

ZπG1
(τT(K), τC1)w(τC1 , τC2)

(
Z+
G2

(τC2) + Z
−
G2

(τC2)
)

, (8.4)

where w(τC1 , τC2) denote the contribution from edges of P given configurations τC1 and τC2 ,

and ZπK =
∑
τT(K)

ZπK(τT(K)). Moreover by (8.2), for i = 1, 2 and any subset S ⊆ T(Gi), we have

(1 − ε ′)Qπ(τS)Z
π
Gi

⩽ ZπGi(τS) ⩽ (1 + ε ′)Qπ(τS)Z
π
Gi

,

where we have used Qπ(τS) to denote the probability that the configuration on terminals in S
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is τS in the distribution Qπ. Therefore by (8.4),

Z+
K(τT(K)) ⩽ (1 + ε ′)2Q+(τT(K))Z

+
G1
Z−
G2

∑
τC1

,τC2

Q+(τC1)w(τC1 , τC2)

(
Z+
G2

Z−
G2

Q+(τC2) +Q
−(τC2)

)
.

(8.5)

We need to calculate the quantity

µ(π1,π2) :=
∑

τC1
,τC2

Qπ1(τC1)Q
π2(τC2)w(τC1 , τC2). (8.6)

Recall our definitions of M and M+. Let N = M+M(M+)T where the superscript T means

transposition. Then det(N) = (q+ − q−)2(βγ− 1) < 0. We write

N =

N++ N−+

N+− N−−


and let c = N++N−−

N+−N−+
< 1. Here Nπ1π2 is the edge contribution when one end point is chosen

with probability qπ1 and the other qπ2 . Also notice that each edge is independent under Q± so

we can count them separately. Then the quantity in (8.6) is

µ(+,+) = µ(−,−) = (N++N−−)
t ′ ;

µ(+,−) = µ(−,+) = (N+−N−+)
t ′ . (8.7)

Plug (8.7) in (8.5),

Z+
K(τT(K)) ⩽ (1 + ε ′)2Z+

G1
Z−
G2

(
Z+
G2

Z−
G2

(N++N−−)
t ′ + (N+−N−+)

t ′

)
·Q+(τT(K))

= (1 + ε ′)2Z+
G1
Z−
G2

(N+−N−+)
t ′

(
Z+
G2

Z−
G2

ct
′
+ 1

)
·Q+(τT(K)). (8.8)

Summing over τT(K) in (8.8) we get

Z+
K ⩽ (1 + ε ′)2Z+

G1
Z−
G2

(N+−N−+)
t ′

(
Z+
G2

Z−
G2

ct
′
+ 1

)
. (8.9)
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Similarly we get an estimate for Z−
K :

Z−
K ⩾ (1 − ε ′)2Z−

G1
Z+
G2

(N+−N−+)
t ′

(
Z−
G2

Z+
G2

ct
′
+ 1

)
. (8.10)

Let r =
Z−
G2
Z+
G2

. Notice that ZπG1
= ZπG2

as G1 and G2 are identical copies. Combine (8.9) and (8.10),

Z−
K

Z+
K

⩾
(

1 − ε ′

1 + ε ′

)2

· 1 + ct
′
r

1 + ct
′
/r

. (8.11)

By (8.1) there is f(t+ t ′, ε ′) such that

1

f(t+ t ′, ε ′)
⩽ r ⩽ f(t+ t ′, ε ′),

and f(t + t ′, ε ′) is bounded above by a polynomial in t + t ′ and 1/ε ′. To show (8.3) it suffices

to show
Z−
K

Z+
K

⩾ 1−ε
1+ε and

Z+
K

Z−
K

⩾ 1−ε
1+ε . Clearly

Z−
K

Z+
K

⩾ 1−ε
1+ε can be achieved by picking ε ′ = ε

3 and

t ′ = O(log(t+ ε−1)) in (8.11). To show
Z+
K

Z−
K

⩾ 1−ε
1+ε is similar and therefore omitted.

Establishing (8.2) is easy. We will show

Z+
K(τT(K))

Z+
K

⩾ (1 − ε)Q+(τT(K)),

and the other bounds are similar. By an argument similar to (8.5), we have

Z+
K(τT(K)) ⩾ (1−ε ′)2Q+(τT(K))Z

+
G1
Z−
G2

∑
τC1

,τC2

Q+(τC1)w(τC1 , τC2)

(
Z+
G2

Z−
G2

Q+(τC2) +Q
−(τC2)

)
.

Moreover, summing over τT(K) in (8.5) we get:

Z+
K ⩽ (1 + ε ′)2Z+

G1
Z−
G2

∑
τC1

,τC2

Q+(τC1)w(τC1 , τC2)

(
Z+
G2

Z−
G2

Q+(τC2) +Q
−(τC2)

)
.

The desired bound follows as ε ′ = ε
3 .

The other case is ferromagnetic, that is, βγ > 1. We construct K in the same way as in the

previous case, but with the following change. To form the perfect matching P, we match +/−

terminals of G1 to −/+ terminals of G2. The proof goes similarly but det(N) = (q+−q−)2(βγ−
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1) > 0. However since we made a twist in connecting G1 and G2, it follows that

µ(+,+) = µ(−,−) = (N+−N−+)
t ′ ;

µ(+,−) = µ(−,+) = (N−−N++)
t ′ .

Therefore we continue with the new constant c ′ = N+−N−+

N++N−−
< 1 and the rest of the proof is the

same.

8.4 Symmetry Breaking

In this section we prove Lemma 8.6 that almost all 2-spin models support symmetry breaking.

Proof of Lemma 8.6. Consider the sequence of gadgets (Hk : k ∈ N), defined as follows. The

vertex set of Hk is V(Hk) = {u,u ′,u ′′, v1, v2, . . . , vk}, and u is considered the attachment vertex.

The edge set of Hk is

E(Hk) =
{
{u ′, vi} : 1 ⩽ i ⩽ k

}
∪
{
{vi,u

′′} : 1 ⩽ i ⩽ k
}
∪
{
{u ′′,u}

}
.

We shall argue that if the first three graphs in the sequence, namely H0, H1 and H2, all fail to be

symmetry breakers then one of conditions (i) or (ii) holds. The graph H0 has an isolated vertex

that could clearly be removed; we leave it in to make the calculations uniform. Note that the

maximum degree of any vertex in these graphs is 3.

Let a = β2 + λ, b = β + λγ and c = 1 + λγ2. Then the effective weight of vertex u is given

by the column vector,

ρk =

λ 0

0 1


β 1

1 γ


λ 0

0 1


ak bk

bk ck


λ

1

 = T

λak + bk
λbk + ck


where

T =

λ2β λ

λ γ

 .
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For hk to be a symmetry breaker we require the vector ρk not to be a multiple of

λ
1

.

Suppose ρ0, ρ1 and ρ2 all fail to be symmetry breakers. Then they must all lie in a one-

dimensional subspace of R2. One way this can happen is if the matrix T is rank 1, i.e., if βγ = 1.

This is case (i). Otherwise,

1 + λ

1 + λ

 and

λa+ b

λb+ c

 and

λa2 + b2

λb2 + c2

 lie in a one-dimensional

subspace, namely the one generated by

1

1

. This implies a+λb = b+λc and a2+λb2 = b2+λc2,

or recasting,

a− b = λ(c− b)

(a− b)(a+ b) = λ(c− b)(c+ b).

So either a = b = c, or (dividing the second equation by the first) a = c and λ = 1. In either

case, substituting for a, b and c in terms of β, γ, λ, we obtain either β = γ = 1 (which belongs

to case (i)) or β = γ and λ = 1 (which is case(ii)).

There are two exceptional cases. The first is βγ = 1. It is well-known that in this case the

2-spin system can be decomposed and hence tractable. The other case of β = γ and λ = 1

is perfectly symmetric and this symmetry cannot be broken. This system is the Ising model

without external fields. For this system, the marginal probability of any vertex in any graph is

exactly 1/2.

Regarding the ferromagnetic case, Jerrum and Sinclair [JS93] presented an FPRAS for the fer-

romagnetic Ising model with consistent external fields. On the other hand, anti-ferromagnetic

Ising models without external field on bipartite graphs are actually equivalent to ferromagnetic

Ising models. The trick is to flip the assignment on only one part of the bipartition, which has

been used before by Goldberg and Jerrum [GJ07].

Lemma 8.9. For 0 < α < 1, #Bi-2Spin(α,α, 1) ≡T #Bi-2Spin(1/α, 1/α, 1).

Proof. Let B = (V1,V2,E) be a bipartite graph where V1 and V2 are two partitions of vertices.
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Let |E| = m. Then we have

ZB (α,α, 1) =
∑

σV1
:V1→{0,1}|V1|

∑
σV2

:V2→{0,1}|V2|

∏
(v,w)∈E

α(1−σV1
(v))(1−σV2

(w))ασV1
(v)σV2

(w)

=
∑

σV1
:V1→{0,1}|V1|

∑
σV2

:V2→{0,1}|V2|

∏
(v,w)∈E

α(1−σV1
(v))σV2

(w)ασV1
(v)(1−σV2

(w))

=
∑

σV1
:V1→{0,1}|V1|

∑
σV2

:V2→{0,1}|V2|

∏
(v,w)∈E

ασV2
(w)−σV1

(v)σV2
(w)+σV1

(v)−σV1
(v)σV2

(w))

= αm
∑

σV1
:V1→{0,1}|V1|

∑
σV2

:V2→{0,1}|V2|

∏
(v,w)∈E

α−(1−σV1
(v))(1−σV2

(w))−σV1
(v)σV2

(w)

= αmZB

(
α−1,α−1, 1

)
,

where in the second line we flip the assignment of σV2 .

Combining Lemma 8.9 with the FPRAS by Jerrum and Sinclair [JS93] for the ferromagnetic

Ising model yields the following corollary.

Corollary 8.10. For any α > 0, #Bi-2Spin(α,α, 1) has an FPRAS.

This corollary explains why the notion of symmetry breaking is necessary to achieve #BIS-

hardness.

8.5 The Reduction from #BIS

In this section we show our main reduction, Lemma 8.7, namely that the two properties of

“nearly-independent phase-correlated spins” and “symmetry-breaking” lead to #BIS-hardness.

Lemma 8.7 follows directly from Lemma 8.11 and Lemma 8.12, which will be proved in the

following two subsections.

An Intermediate Problem

The goal of this section is to show that it is #BIS-hard to approximate the partition function

of anti-ferromagnetic Ising models with non-uniform non-trivial external fields on bipartite

graphs.
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Lemma 8.11. For any 0 < α < 1, λ > 0 and λ ≠ 1,

#BIS ⩽AP #Bi-M-Nonuniform-2Spin(α,α, λ).

Proof. By flipping 0 to 1 and 1 to 0 for each configuration σ, we see that #Bi-M-Nonuniform-

2Spin(α,α, λ) is in fact the same as #Bi-M-Nonuniform-2Spin(α,α, 1/λ). Hence we may assume

that λ > 1.

Let M :=
[
α 1
1 α

]
, and

[ ρ0
ρ1

]
:=M

[
λ
1

]
=
[
αλ+1
α+λ

]
. Since α < 1 and λ > 1, ρ1 > ρ0.

Let B = (V ,E) be an input to #BIS with n = |V | and m = |E|. Let IB be the number of

independent sets of B. Let ε be the desired accuracy of the reduction. We will construct

an instance B ′ = (V ′,E ′) with a specified vertex subset U ⊂ V ′ for #Bi-M-Nonuniform-

2Spin(α,α, λ) such that

exp
(
−
ε

2

)
IB ⩽ Zα,α,λ(B

′;U)

C
⩽ exp

( ε
2

)
IB,

where C is a quantity that is easy to approximate. Therefore it suffices to call oracle #Bi-M-

Nonuniform-2Spin(α,α, λ) on B ′ with the specified subsetU with accuracy ε4 and approximate

C within ε
4 .

The construction of B ′ involves two positive integers t1 and t2. Let t1 be the least positive

integer such that

α2t1 ⩽ ε

6 · 2n
. (8.12)

Note that t1 depends onn and ε and there is a polynomial p inn and ε−1 such that t1 ⩽ p(n, ε−1).

Let t2 be the least positive integer depending on n, ε and t1 such that

(
ρ0

ρ1

)t2

⩽ αt1m · ε
6 · 22t1m+n

. (8.13)

Once again, t2 is bounded from above by a polynomial in n and ε−1.

Given the integers t1 and t2, the graph B ′ is constructed as follows. Let Wv = {wv,j | 1 ⩽

j ⩽ t1 deg(v)} for each v ∈ V where deg(v) is the degree of v in B. Let Uv,j = {uv,j,k | 1 ⩽ k ⩽ t2}
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for any v ∈ V and 1 ⩽ j ⩽ t1 deg(v). Let

W =
∪
v∈V

Wv and U =
∪
v∈V

∪
1⩽j⩽t1 deg(v)

Uv,j.

The vertex set of B ′ is V ′ = V ∪U ∪W. Note that |W| = 2t1m and |U| = 2t1t2m.

We add t1 parallel edges in B ′ between u and v for each (u, v) ∈ E and add edges between v

and every vertex in Wv, and between wv,j and every vertex in Uv,j for each v ∈ V and 1 ⩽ j ⩽

t1 deg(v). Formally the edge set of B ′ is

E ′ =

 ⊎
1⩽i⩽t1

E

 ∪ ∪
v∈V

Ev ∪
∪
v∈V

1⩽j⩽t1 deg(v)

Ev,j,

where
⊎

denotes a disjoint union as a multiset of t1 copies of E, Ev = {(v,w)|w ∈ Wv} and

Ev,j = {(wv,j,u)|u ∈ Uv,j} for each v and j.

Let C = ρ2t1t2m
1 αt1m and N =

[
1 1
1 α2t1

]
.

For each σ : V ∪W → {0, 1}, let w(σ) be the contribution to Zα,α,λ(B
′;U) of configurations

that are consistent with σ. First consider configurations σ such that σ(w) = 1 for all w ∈ W.

Denote by Σ the set of all such configurations on V ∪W. Then for σ ∈ Σ,

w(σ) = ρ
t2|W|

1

∏
(u,v)∈E

(M1,σ(u)Mσ(u),σ(v)Mσ(v),1)
t1

= C
∏

(u,v)∈E

Nσ(u),σ(v).

Let Σind ⊂ Σ be the subset of configurations which induce an independent set on the vertices V

and Zind be its contribution to Zα,α,λ(B
′;U). Let Σbad = Σ\Σind and Zbad be its contribution.

If σ ∈ Σind then w(σ) = C. Otherwise, w(σ) ⩽ α2t1C. It implies

Zind = IB · C and Zbad ⩽ 2nα2t1C ⩽ ε

6
· C, (8.14)

since t1 satisfies (8.12).

Next consider configurations σ on V ∪W such that σ(w) = 0 for at least one w ∈W. Denote
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this set by Σ ′ and its contribution by Zsmall. Then for σ ∈ Σ ′,

w(σ) ⩽
(
ρ0ρ

|W|−1
1

)t2 ⩽
(
ρ0

ρ1

)t2

ρ
t2|W|

1 =

(
ρ0

ρ1

)t2 C

αt1m
.

It implies

Zsmall ⩽ 22t1m+n

(
ρ0

ρ1

)t2 C

αt1m
⩽ ε

6
· C, (8.15)

since |Σ ′| ⩽ 22t1m+n and t2 satisfies (8.13).

By (8.14) and (8.15) we have

Zα,α,λ(B
′;U) = Zind + Zbad + Zsmall

⩽ IB · C+
ε

6
· C+

ε

6
· C

⩽ exp
( ε

3

)
IB · C,

and clearly Zα,α,λ(B
′;U) ⩾ IB · C. It is also clear that C can be approximated accurate enough

given FPRASes for λ and α. This finishes our proof.

Simulating the Anti-Ferromagnetic Ising Model

In this section we show Lemma 8.12.

Lemma 8.12. Suppose β, γ and λ are efficiently approximable reals satisfying β,γ ⩾ 0, λ > 0

and βγ ≠ 1. Suppose that ∆ is either an integer that is at least 3 or ∆ = ∞ (indicating that we do

not have a degree bound). If (β,γ, λ,∆) supports balanced nearly-independent phase-correlated

spins and symmetry breaking, then there exist efficiently approximable 0 < α < 1 and λ ′ > 0

such that λ ′ ≠ 1 and

#Bi-M-Nonuniform-2Spin(α,α, λ ′) ⩽AP #∆-Bi-2Spin(β,γ, λ).

Proof. We prove the anti-ferromagnetic case first, that is, βγ < 1. α and λ ′ are chosen as
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follows. Let M :=

β 1

1 γ

 and M+ :=

q+ 1 − q+

q− 1 − q−

. Let N = M+M(M+)T =

N++ N−+

N+− N−−

.

Then det(N) = (βγ−1)(q+−q−)2 < 0. ThereforeN−−N++ < N−+N+− and let α = N−−N++

N−+N+−
<

1. Moreover, suppose H is the symmetry breaking gadget with distinguished vertex vH. Let

ρ =

ρ0

ρ1

 where ρi denote PrH;β,γ,λ(σvH = i) for spin i ∈ {0, 1} and ρ0 +ρ1 = 1. Let ρ ′ =

ρ ′0
ρ ′1

 =

M+

 ρ0

ρ1/λ

, and λ ′ =
ρ ′

0
ρ ′

1
. It is easy to verify that λ ′ ≠ 1 as ρ0 ≠ λ/(1 + λ) by the symmetry

breaking assumption.

Given 0 < ε < 1 and a bipartite multigraph B = (V ,E) with a subset U ⊆ V where |V | = n,

|E| = m, and |U| = n ′, our reduction first constructs a bipartite graph B ′ with degree at most

∆. The construction of B ′ involves a gadget G. Since (β,γ, λ,∆) supports nearly-independent

phase-correlated spins, by Lemma 8.3 (β,γ, λ,∆) also supports balanced nearly-independent

phase-correlated spins. Therefore we draw G ∼ G(t,n(t, ε ′),∆) such that (8.3) and (8.2) hold

with probability at least 3/4, where t = m + 1 and ε ′ = ε
8n . Assume G satisfies them and

otherwise the reduction fails. We will construct B ′ such that

exp
(
−
ε

2

)
Zα,α,λ ′(B;U) ⩽ ZB ′

(N+−N−+)
m
(
ρ ′1ZH

)n ′ (
ZG
2

)n ⩽ exp
( ε

2

)
Zα,α,λ ′(B;U),

where we use the abbreviated expressions ZB ′ = Zβ,γ,λ(B
′), ZH = Zβ,γ,λ(H), and ZG =

Zβ,γ,λ(G). The lemma follows by one oracle call for ZB ′ with accuracy ε6 , one oracle call for ZG

with accuracy ε
6n , and an approximation of other terms in the denominator with accuracy ε

6

using FPRASes for q−, q+, β, γ and λ.

The graph B ′ is constructed as follows. For each vertex v ∈ V we introduce a copy of

G, denoted by Gv with vertex set V(Gv). Moreover, for each vertex u ∈ U we introduce a

copy of H, denoted by Hu. Whenever a terminal vertex is used in the construction once, we

say it is occupied. For each (u, v) ∈ E, we connect one currently unoccupied positive (and

respectively negative) terminal of Gu to one currently unoccupied positive (and respectively

negative) terminal of Gv. Denote by E ′ all these edges between terminals. For each u ∈ U, we

identify an unoccupied positive terminal of Gu with the distinguished vertex vHu of Hu. We
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denote this terminal by tu. The resulting graph is B ′. It is clear that B ′ is bipartite and has

bounded degree ∆.

Let σ̃ : V → {−,+} be a configuration of the phases of theGv’s. Let ZB ′(σ̃) be the contribution

to ZB ′ from the configurations σ that are consistent with σ̃ in the sense that, for each v ∈ V ,

Y(σV(Gv)) = σ̃(v). Then ZB ′ =
∑
σ̃ ZB ′(σ̃). Let T be the set of all terminals T = ∪v∈VT(Gv)

and τ : T → {0, 1} be a configuration on T . Let τT(Gv) be the configuration τ restricted to T(Gv).

Recall that for π ∈ {−,+}, ZπGv(τT(Gv)) is the contribution to ZGv from configurations that have

phase π and are consistent with τT(Gv). Also,

PrGv;β,γ,λ(τT(Gv) | Y(σV(Gv)) = π) =
ZπGv(τT(Gv))

ZπGv
.

Moreover, for each u ∈ U and each spin i ∈ {0, 1}, let ZHu(i) be the contribution to ZHu from

configurations σ with σ(tu) = i. Hence,

ρi = PrHu;β,γ,λ(σ(tu) = i) =
ZHu(i)

ZHu
.

We express ZB ′(σ̃) as

ZB ′(σ̃) =
∑

τ : T→{0,1}

wE ′(τ)
∏
v∈V

Z
σ̃(v)
Gv

(τT(Gv))
∏
u∈U

ZHu(τ(tu))

λ1−τ(tu)
,

where wE ′(τ) is the contribution of edges in E ′ given configuration τ. Notice that we divide the

last factor by λ when τ(tu) = 0 because we counted the vertex weight twice in that case. Define

Z̃B ′(σ̃) to be an approximation version of the partition function where on each T(Gv) the spins

are chosen exactly according to Qσ̃(v). That is,

Z̃B ′(σ̃) =
∑

τ : T→{0,1}

wE ′(τ)
∏
v∈V

Z
σ̃(v)
Gv

Qσ̃(v)(τT(Gv))
∏
u∈U

ZHu(τ(tu))

λ1−τ(tu)

=

(∏
v∈V

Z
σ̃(v)
Gv

)
·

 ∑
τ : T→{0,1}

wE ′(τ)
∏
v∈V

Qσ̃(v)(τT(Gv))
∏
u∈U

ZHu(τ(tu))

λ1−τ(tu)

 . (8.16)
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Let Z̃B ′ =
∑
σ̃ Z̃B ′(σ̃). Then (8.2) implies that ZB ′(σ̃) and Z̃B ′(σ̃) are close, that is,

(1 − ε ′)n ⩽ ZB ′(σ̃)

Z̃B ′(σ̃)
⩽ (1 + ε ′)n. (8.17)

Moreover, (8.3) implies that

(
1 − ε ′

2

)n
⩽

∏
v∈V Z

σ̃(v)
Gv

(ZG)
n ⩽

(
1 + ε ′

2

)n
. (8.18)

Notice that here ZGv is the same for any v ∈ V as the Gv’s are identical copies of G.

Then we calculate the following quantity given σ̃

∑
τ : T→{0,1}

wE ′(τ)
∏
v∈V

Qσ̃(v)(τT(Gv))
∏
u∈U

ZHu(τ(tu))

λ1−τ(tu)
.

As the measureQσ̃(v) is i.i.d., we may count the weight of each edge in E ′ independently. Notice

that Nπ1π2 is the edge contribution when one end point is chosen with probability qπ1 and the

other qπ2 . For an edge (u, v) ∈ V , if u and v are assigned the same phase +, then an edge in E ′

connecting one + terminal of Gu and one + terminal of Gv gives a weight of N++ and an edge

connecting two − terminals gives N−−. The total weight is µ1 = N++N−−. Similarly if u and

v are assigned the same phase −, the total weight is µ1 as well. On the other hand if u and v

are assigned distinct phases + and −, the total weight is µ2 = N+−N−+. Recall that α = µ1
µ2

.

Moreover, for each u ∈ U, if σ̃(u) = +, then the contribution of Hu is ρ ′0ZHu and otherwise

ρ ′1ZHu . Notice that here ZHu is the same for any u ∈ U as the Hu’s are identical copies of H.

Recall that λ ′ =
ρ ′

0
ρ ′

1
.

Plug these calculation into (8.16), we have

Z̃B ′(σ̃) =

(∏
v∈V

Z
σ̃(v)
Gv

)
·
(
µ
m+(σ̃)
1 µ

m−m+(σ̃)
2

(
ρ ′0ZH

)n+(σ̃) (
ρ ′1ZH

)n ′−n+(σ̃)
)

= µm2
(
ρ ′1ZH

)n ′
(∏
v∈V

Z
σ̃(v)
Gv

)
·
(
αm+(σ̃)

(
λ ′
)n+(σ̃)

)
, (8.19)

where m+(σ̃) denotes the number of edges of which the two endpoints are of the same phase

given σ̃, and n+(σ̃) denotes the number of vertices in U that are assigned + given σ̃. Apply
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(8.18) to (8.19),

(1 − ε ′)n
(
αm+(σ̃)

(
λ ′
)n+(σ̃)

)
⩽ Z̃B ′(σ̃)

µm2
(
ρ ′1ZH

)n ′ (
ZG
2

)n ⩽ (1 + ε ′)n
(
αm+(σ̃)

(
λ ′
)n+(σ̃)

)
. (8.20)

Then we sum over σ̃ in (8.20),

(1 − ε ′)n

(∑
σ̃

αm+(σ̃)
(
λ ′
)n+(σ̃)

)
⩽ Z̃B ′

µm2
(
ρ ′1ZH

)n ′ (
ZG
2

)n ⩽ (1 + ε ′)n

(∑
σ̃

αm+(σ̃)
(
λ ′
)n+(σ̃)

)

(8.21)

However notice that Zα,α,λ ′(B;U) =
∑
σ̃ α

m+(σ̃) (λ ′)n+(σ̃) by just mapping + to 0 and − to 1 in

each configuration σ̃. Combine (8.17) and (8.21),

(1 − ε ′)2nZα,α,λ ′(B;U) ⩽ ZB ′

µm2
(
ρ ′1ZH

)n ′ (
ZG
2

)n ⩽ (1 + ε ′)2nZα,α,λ ′(B;U).

Recall that ε ′ = ε
8n and we get the desired bounds.

The other case is ferromagnetic, that is, βγ > 1. Notice that in this case det(N) = (βγ −

1)(q+−q−)2 > 0, So we choose α = N+−N−+

N++N−−
< 1 and λ ′ to be the same as the antiferromagnetic

case. The construction of B ′ is similar to the previous case, with the following change. For

each (u, v) ∈ E, we connect one unoccupied positive terminal of Gu to one unoccupied negative

terminal ofGv, and vice versa. The rest of the construction is the same. With this change, given

a configuration σ̃ : V → {−,+}, if two endpoints are assigned the same spin, the contribution

is N+−N−+ and otherwise N++N−−. Therefore the effective edge weight is α < 1 when the

spins are the same, after normalizing the weight to 1 when the spins are distinct. The rest of

the proof is the same.
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Chapter 9

Ferromagnetic 2-Spin Systems

In this chapter we study ferromagnetic 2-spin systems. We will consider a slightly more general

problem, where we allow non-uniform fields, specified by a mapping π : V → R+. When a vertex

is assigned “0”, we give it a weight π(v). Similar as before, we assume the edge interaction

function is
[
β 1
1 γ

]
. For a particular configuration σ, its weight w(σ) now becomes,

w(σ) = βm0(σ)γm1(σ)
∏

v|σ(v)=1

π(v), (9.1)

wherem0(σ) is the number of (0, 0) edges given by the configuration σ andm1(σ) is the number

of (1, 1) edges.

We also write λv := π(v). If π is a constant function such that λv = λ > 0 for all v ∈ V , we

also denote it by λ and this is consistent with our previous notations. We say π has a lower

bound λ > 0 (or an upper bound λ > 0), if π satisfies the guarantee that λv ⩾ λ (or λv ⩽ λ).

The partition function Zβ,γ,π(G) =
∑
σ:V→{0,1}w(σ) is defined in the same way as before.

We consider the following computation problem, where fields are taken from an interval.

Name #2Spin(β,γ, [λ1, λ2])

Instance A graph G = (V ,E) and a mapping π : V → R+, such that π(v) ∈ [λ1, λ2] for any v ∈ V .

Output Zβ,γ,π(G).

When the field is uniform, that is, λ1 = λ2 = λ, we simply write #2Spin(β,γ, λ), which is

consistent with our notations.
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9.1 The Uniqueness Condition on Regular Trees

Recall that Td denote the infinite d-regular tree, also known as the Bethe lattice or the Cayley

tree. If we pick an arbitrary vertex as the root of Td, then the root has d children and every

other vertex has d − 1 children. The difference between Td and an infinite (d − 1)-ary tree is

only the degree of the root. We consider the uniqueness of Gibbs measures on Td, where the

field is uniformly λ > 0. Due to the symmetric structure of Td, the standard recursion (7.3)

thus becomes Rv = fd−1(Rvi) for any child vi of v, where fd(x) = λ
(
βx+1
x+γ

)d
is the symmetrized

version of Fd(x).

If βγ > 1, then f ′d(x) > 0 for any x > 0. There may be 1 or 3 positive fixed points such that

x = fd(x). It is known [Kel85, Geo11] that the Gibbs measure of two-state spin systems in Td

is unique if and only if there is only one fixed point for x = fd−1(x).

We do some calculation here. Take the derivative of fd(x):

f ′d(x) =
d(βγ− 1)fd(x)

(βx+ 1)(x+ γ)
. (9.2)

Then take the second derivative:

f ′′d(x) = f
′
d(x) ·

1

fd(x)
−

β

βx+ 1
−

1

x+ γ

=
d(βγ− 1) − βγ− 1 − 2βx

(βx+ 1)(x+ γ)
.

Therefore, at x∗ :=
d(βγ−1)−(βγ+1)

2β , f ′′d(x
∗) = 0. It’s easy to see when d < βγ+1

βγ−1 , f ′′d(x) < 0 for

all x > 0. So fd(x) is concave and therefore has only one fixed point.

Since fd(x) has only one inflection point, there are at most three fixed points. Moreover, the

uniqueness condition is equivalent to say that for all fixed points x̂d of fd(x), f ′d(x̂d) < 1. For

a fixed point x̂d, we plug it in (9.2):

f ′d(x̂d) =
d(βγ− 1)x̂d

(βx̂d + 1)(x̂d + γ)
.
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Let ∆c :=
√
βγ+1√
βγ−1

. If d < ∆c, we have that for any x,

(βx+ 1)(x+ γ) − d(βγ− 1)x = βx2 + ((βγ+ 1) − d(βγ− 1))x+ γ

> βx2 + (βγ+ 1 − (
√
βγ+ 1)2)x+ γ

= (
√
βx−

√
γ)2 ⩾ 0.

Hence (βx + 1)(x + γ) > d(βγ − 1)x. In particular, f ′d(x̂d) < 1 for any fixed point x̂d and the

uniqueness condition holds.

Proposition 9.1. If d < ∆c =
√
βγ+1√
βγ−1

, then the uniqueness condition holds regardless the field.

The condition d < ∆c matches the exact threshold of fast mixing for Gibbs samplers in the

Ising model [MS13].

Next we assume d ⩾ ∆c. We may also assume that γ ⩾ β. The equation (βx + 1)(γ + x) =

d(βγ− 1)x has two solutions, which are

x0 = x∗ −

√
((βγ+ 1) − d(βγ− 1))2 − 4βγ

2β
and x1 = x∗ +

√
((βγ+ 1) − d(βγ− 1))2 − 4βγ

2β
.

Notice that both of them are positive since x0 + x1 = 2x∗ > 0 and x0x1 = β/γ.

We show that fd(x0) > x0 or fd(x1) < x1 is equivalent to the uniqueness condition. First

we assume this condition doesn’t hold, that is fd(x0) ⩽ x0 and fd(x1) ⩾ x1. If any of the

equation holds, then x0 or x1 is a fixed point and the derivative is 1. So we have non-uniqueness.

Otherwise, we have fd(x0) < x0 and fd(x1) > x1. Since x0 < x1, there is some fixed point x̃

satisfying fd(x̃) = x̃ and x0 < x̃ < x1. The second inequality implies that (βx̃ + 1)(x̃ + γ) <

d(βγ− 1)x̃. Therefore f ′d(x̃) > 1 and non-uniqueness holds.

To show the other direction, if fd(x0) > x0, then

f ′d(x0) =
d(βγ− 1)f(x0)

(βx0 + 1)(x0 + γ)
>

d(βγ− 1)x0

(βx0 + 1)(x0 + γ)
= 1.

Assume for contradiction that fd(x) has three fixed points, denoted by x̃0 < x̃1 < x̃2. Then the

middle fixed point x̃1 satisfies f ′d(x̃1) > 1. Therefore x̃1 > x0 and there are two fixed points

larger than x0. However, for x0 < x ⩽ x∗, f ′d(x) > 1 and fd(x0) > x0. Hence there is no fixed
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point in this interval. For x > x∗, the function is concave and has exactly one fixed point. So

there is only 1 fixed point larger than x0. Contradiction. The case that fd(x1) < x1 is similar.

These two conditions could be rewritten as

λ >
x0(x0 + γ)d

(βx0 + 1)d
(9.3)

and

λ <
x1(x1 + γ)d

(βx1 + 1)d
. (9.4)

Notice that the right hand side has nothing to do with λ in both (9.3) and (9.4).

We want to study conditions (9.3) and (9.4) as d changes. In particular, we are interested in

the case when β ⩽ 1. Treat d as a continuous variable. Define

gi(d) =
xi(xi + γ)

d

(βxi + 1)d
.

where i = 0, 1 and xi is defined above depending on β, γ and d. Take the derivative:

g ′
i(d)

gi(d)
=
∂xi

∂d

(
1

xi
+

d

xi + γ
−

dβ

βxi + 1

)
+ log(xi + γ) − log(βxi + 1)

=
∂xi

∂d

(
1

xi
+

d(1 − βγ)

(xi + γ)(βxi + 1)

)
+ log

xi + γ

βxi + 1

=
∂xi

∂d

(
1

xi
−

1

xi

)
+ log

xi + γ

βxi + 1
= log

xi + γ

βxi + 1
> 0.

Therefore, these two functions are increasing in d.

Recall that ∆c =
√
βγ+1√
βγ−1

. Let λintc := g1(⌈∆c⌉) = (γ/β)
⌈∆c+1⌉

2 . Thus if λ < λintc , (9.4) holds

for all integers d. On the other hand,

g0(d) =
x0(x0 + γ)d

(βx0 + 1)d
> x0β

−d =
β

γx1
β−d >

β

γ2x∗
β−d

=
β2

γ(d(βγ− 1) − (βγ+ 1))
· β−d

→∞ as d goes to ∞.



297

Hence there is no λ such that (9.3) holds for all integers d.

Proposition 9.2. Let (β,γ) be two parameters such that βγ > 1 and β ⩽ 1 < γ. The uniqueness

condition holds in Td for all degrees d ⩾ 2 if and only if λ < λintc .

In Section 9.3, we will show that, there exist an FPTAS for the partition function, given the

same assumption as in Proposition 9.1. This is Theorem 9.8. Moreover, let λc := g1(∆c) =

(γ/β)
∆c+1

2 . In Section 9.4 we show that if β ⩽ 1 < γ and λ < λc, there also exists an FPTAS. This

is Theorem 9.9. Note that this is the same condition as in Proposition 9.2, with λintc replaced

by λc ⩽ λintc .

9.2 The Potential Method for Ferromagnetic Systems

To show strong spatial mixing in arbitrary trees, we will use the same potential analysis as in

Section 7.3. Here we just outline some necessary tweaks we made for ferromagnetic systems

We use the same notations as in Section 7.3. The definition of a good potential function is

exactly the same as that of Definition 7.8. Note that now the range of our variables is [λγ−d, λβd]

instead of [λβd, λγ−d]. We say Φ(x) is a good potential function for d and a field π, if Φ(x) is a

good potential function for d and any λ in the codomain of π, The next lemma is a counterpart

of Lemma 7.11. The proof is slightly different.

Lemma 9.3. LetΦ(x) be a good potential function for the field λ at v. Then there exists a constant

C such that δv ⩽ Cεv for any dist(v,S) ⩾ 2.

Proof. By (7.6) and the Mean Value Theorem, there exists an R̃ ∈ [Rv,Rv] such that

εv = Φ(Rv) −Φ(Rv) = Φ
′(R̃) · δv = φ(R̃) · δv. (9.5)

Since dist(v,S) ⩾ 2, we have that Rv ⩾ λγ−d and Rv ⩽ λβd. Hence R̃ ∈ [λγ−d, λβd], and

by Condition 1 of Definition 7.8, there exists a constant C1 such that φ(R̃) ⩾ C1. Therefore

δv ⩽ 1/C1εv.

Lemma 7.12 holds without modification. The next one is the analogue of Lemma 7.13.
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Lemma 9.4. Let (β,γ) be two parameters such that βγ > 1 and β < γ. Let v be a vertex and vi

be its children for 1 ⩽ i ⩽ d. Suppose δvi ⩽ C for some C > 0 and all 1 ⩽ i ⩽ d. Then,

δv ⩽ dλv(βγ− 1)γ−1βdC.

Proof. It is easy to see that γ ⩾ 1. By the same argument as in Lemma 7.12 and (7.3), there

exists xi’s such that

δv =
∣∣∇Fd(x1, . . . , xd) · (δv1 , . . . , δvd)

∣∣ ⩽ C d∑
i=1

∣∣∣∣∂Fd(x)∂xi

∣∣∣∣ ,
where x is the vector composed by xi’s. Then, we have that

∣∣∣∣∂Fd(x)∂xi

∣∣∣∣ = d(βγ− 1)Fd(x)

(xi + γ)(βxi + 1)
⩽ dλv(βγ− 1)γ−1βd,

where we use the fact that Fd(x) ⩽ λvβd for any xi ∈ [0,∞) and βγ > 1. The lemma follows.

The algorithmic implication is also the same as Lemma 7.15. Note that we make the depen-

dence of λ explicit here, as we are considering non-uniform fields.

Lemma 9.5. Let (β,γ) be two parameters such thatβγ > 1. LetG = (V ,E) be a graph with a max-

imum degree ∆ and n many vertices and π be a field on G. Let λ = maxv∈V {π(v)}. If there exists

a good potential function for π and all d ∈ [1,∆−1] with contraction ratio α < 1, then Zβ,γ,π(G)

can be approximated deterministically within a relative error ε in time O

(
n
(
nλ
ε

) log(∆−1)
− logα

)
.

When the degree is unbounded, we also need to use the M-based depth from Definition

7.16. We make some tweaks in the definition of a universal potential function. We assume that

β ⩽ 1 < γ in the definition 9.6, as it will be the range where our potential function works.

Definition 9.6. Let Φ : R+ → R+ be a differentiable and monotonically increasing function. Let

φ(x) and Cφ,d(x) defined in the same way as in Definition 7.8. Let β,γ > 0 be two parameters

such that βγ > 1 and β ⩽ 1 < γ. Then Φ(x) is a universal potential function for (β,γ, λ) if it

satisfies the following conditions:

1. there exists two constants C1,C2 > 0 such that C1 ⩽ φ(x) ⩽ C2 for any x ∈ (0, λ);
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2. there exists a constant α < 1 such that for all d, Cφ,d(x) ⩽ α⌈logM(d+1)⌉ for all xi ∈ (0, λ);

Basically Conditions 1 and 2 in Definition 7.17 are replaced by the stronger Condition 1 in

Definition 9.6.

We say Φ(x) is a universal potential function for a field π, if Φ(x) is a universal potential

function for any λ in the codomain of π, We also call α the contraction ratio and call M the

base.

Lemma 9.7. Let (β,γ) be two parameters such that βγ > 1 and β ⩽ 1 < γ. Let G = (V ,E) be

a graph with n many vertices and π be a field on G. Let λ = maxv∈V {π(v)}. If there exists a

universal potential function Φ(x) for π with contraction ratio α < 1 and base M, then Zβ,γ,π(G)

can be approximated deterministically within a relative error ε in time O

(
n3
(
nλ
ε

) logM
− logα

)
.

Proof. By the same proof of Lemma 7.15, we only need to approximate the marginal probability

at the root v of a tree T . By Condition 2 of Definition 9.6, Cφ,d(x1, · · · , xd) < α⌈logM(d+1)⌉.

Denote by B(ℓ) the set of all vertices whose M-based depths of v is at most ℓ in T . Hence

|B(ℓ)| ⩽ Mℓ. Let S = {u | dist(u,B(ℓ)) > 1}, which is essentially the same S as in Lemma 9.5,

but under a different metric. We can recursively compute upper and lower bounds Rv and Rv

of RσΛT such that Rv ⩽ R
σΛ
T ⩽ Rv, with the base case that for any vertex u ∈ S trivial bounds

Ru = 0 and Ru = ∞ are used.

We proceed as in the proof of Lemma 9.5. Without loss of generality, we construct a path

u0u1 · · ·uk in T from the root u0 = v to a uk with ℓM(uk−1) ⩽ ℓ and ℓM(uk) > ℓ. As in the proof

of Lemma 7.12, εuj ⩽ Cφdj(xj,1, . . . , xj,dj) · εuj+1for all 0 ⩽ j ⩽ k − 1, where dj is the number of

children of uj and xj,i ∈ [0,∞), 1 ⩽ i ⩽ dj. Hence we have that

εv ⩽ εuk ·
k−1∏
j=0

α⌈logM(dj+1)⌉ ⩽ εuk · α
∑k−1
j=0 ⌈logM(dj+1)⌉

= εuk · α
ℓM(uk) ⩽ εuk · αℓ.

Note that dist(uk,B(ℓ)) = 1 and hence uk ̸∈ S. So δuk < λuk ⩽ λ. By (9.5), we have that εuk ⩽

φ(R̃)δuk , for some R̃ ∈ [λukγ
−dk , λukβ

dk ]. Hence εuk < C2λ by Condition 1 of Definition 9.6,

and εv < λαℓC2. By (9.5) and Condition 1 of Definition 9.6 again, we have that δv ⩽ λαℓC2/C1.
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The rest of the proof goes the same as that of Lemma 7.15. The running time has an extra

n2 factor since we need to go down two more levels (in the worst case) outside of B(ℓ).

9.3 Bounded Degree Graphs

Our first result is an FPTAS for any graphs with degree bound ∆ < ∆c + 1 = 2
√
βγ√

βγ−1
.

Theorem 9.8. Let (β,γ) be two parameters such that βγ > 1. Let G = (V ,E) be a graph

with a maximum degree ∆ < ∆c + 1 and n many vertices, and let π be a field on G. Let

λ = maxv∈V {π(v)}. Then Zβ,γ,π(G) can be approximated deterministically within a relative

error ε in time O

(
n
(
nλ
ε

) log(∆−1)
− logα

)
, where α = ∆−1

∆c
.

Proof. We choose our potential function to be Φ1(x) = log x such that φ1(x) := Φ
′
1(x) =

1
x

. We

verify the conditions of Definition 7.8. Condition 1 is trivial. Then we verify Condition 2, for

any integer 1 ⩽ d ⩽ ∆− 1,

Cφ1,d(x) = φ1(Fd(x))
d∑
i=1

∂Fd

∂xi
· 1

φ1(x)

=
1

Fd(x)

d∑
i=1

Fd(x) ·
βγ− 1

(xi + β)(γxi + 1)
· xi

=

d∑
i=1

(βγ− 1)xi
(γxi + 1)(xi + β)

⩽
d∑
i=1

1

∆c
=
d

∆c
⩽ ∆− 1

∆c
= α,

where we used the fact that for any x > 0,

(βγ− 1)x

(γx+ 1)(x+ β)
⩽ 1

∆c
.

Hence Φ1(x) is a good potential function for all degrees d ∈ [1,∆− 1] with contraction ratio α.

The theorem follows by Lemma 9.5.

Note that Theorem 9.8 matches the fast mixing bound of Gibbs samplers for the Ising model

in [MS13].
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9.4 General Graphs

Now we assume that β ⩽ 1 < γ and βγ > 1. Recall that λc =
(
γ
β

)∆c+1
2

=
(
γ
β

) √
βγ√
βγ−1

.

Theorem 9.9. Let (β,γ) be two parameters such that βγ > 1 and β ⩽ 1 < γ. Let G =

(V ,E) be a graph with n many vertices, and let π be a field on G. Let λ = maxv∈V {π(v)}. If

λ < λc, then Zβ,γ,π(G) can be approximated deterministically within a relative error ε in time

O

(
n
(
nλ
ε

) logM
− logα

)
, where M > 1 and α < 1 are two constants depending on (β,γ, λ).

We will apply Lemma 9.7. We first prove a technical lemma:

Lemma 9.10. Let β,γ be two parameters such that βγ > 1 and β ⩽ 1 < γ. For any 0 < x < λc,

it holds that

(βγ− 1)x log
λc

x
⩽ (βx+ 1)(x+ γ) log

x+ γ

βx+ 1
. (9.6)

Proof. Let g(x) := (βγ − 1)x log λc
x

− (βx + 1)(x + γ) log x+γ
βx+1 . Hence it is equivalent to show

that g(x) ⩽ 0 for all 0 < x < λc. Take the derivative of g(x) and we have that

g ′(x) = (βγ− 1)(log
λc

x
− 1) − (2βx+ βγ+ 1) log

x+ γ

βx+ 1
− (βx+ 1)(x+ γ)

(
1

x+ γ
−

β

βx+ 1

)
= (βγ− 1) log

λc

x
− (2βx+ βγ+ 1) log

x+ γ

βx+ 1
.

By direct calculation, g
(√

γ
β

)
= 0 and g ′

(√
γ
β

)
= 0. Then we prove (9.6) for the case of

0 < x <
√
γ
β

and
√
γ
β
< x < λc separately.

If 0 < x <
√
γ
β

, it is sufficient to verify that g ′(x) > 0. We only need to show that g ′(x) is

decreasing since g ′
(√

γ
β

)
= 0. It is easily verified by taking the derivative again:

g ′′(x) = −
βγ− 1

x
− 2β log

x+ γ

βx+ 1
− (2βx+ βγ+ 1)

(
1

x+ γ
−

β

βx+ 1

)
= −2β log

x+ γ

βx+ 1
− (βγ− 1)

(
1

x
−

2βx+ βγ+ 1

(x+ γ)(βx+ 1)

)
= −2β log

x+ γ

βx+ 1
− (βγ− 1)

r− βx2

x(x+ γ)(βx+ 1)
< 0,

where the last inequality uses the fact that x+γ
βx+1 > 1 (since β ⩽ 1 < γ) and x <

√
γ
β

.
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If
√
γ
β
< x < λc, then we show (9.6) directly. First notice that as x ≠

√
γ
β

,

x

(βx+ 1)(x+ γ)
=

1

βx+ γ
x
+ βγ+ 1

< (
√
βγ+ 1)−2,

Given this, in order to get (9.6), it is sufficient to show that h(x) < 0 where

h(x) :=

√
βγ− 1√
βγ+ 1

log
λc

x
− log

x+ γ

βx+ 1
.

In fact, h(x) is a decreasing function as

h ′(x) = −

√
βγ− 1

x(
√
βγ+ 1)

−
1

x+ γ
+

β

βx+ 1

= −
(
√
βγ− 1)

(√
βx−

√
γ
)2

x(
√
βγ+ 1)(x+ γ)(βx+ 1)

⩽ 0.

Notice that h
(√

γ
β

)
= 0. It implies that h(x) < 0 for all x >

√
γ
β

. This completes the proof.

We then want to show that if λ < λc, gλ(x) ⩽ α for some α < 1, where

gλ(x) :=
(βγ− 1)x log λ

x

(βx+ 1)(x+ γ) log x+γ
βx+1

.

By Lemma 9.10, gλc(x) ⩽ 1. Note that limx→0 gλ(x) = 0. Hence there exists 0 < ε < λ and

0 < δ < 1 such that if 0 < x < ε, gλ(x) < δ. Moreover, if ε ⩽ x < λ, then gλ(x)
gλc(x)

= logλ−logx
logλc−logx ⩽

logλ−logε
logλc−logε . Let

αλ := max

{
δ,

log λ− log ε

log λc − log ε

}
< 1.

Then we have the following lemma.

Lemma 9.11. Let β,γ be two parameters such that βγ > 1 and β ⩽ 1 < γ. If λ < λc, then

gλ(x) ⩽ αλ for any 0 < x < λ, where αλ < 1 is defined above.
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Let t := αλγ
βγ−1 log λ+γ

βλ+1 so that for any 0 < x < λ,

t ⩽ αλ(βx+ 1)(x+ γ)

βγ− 1
log

x+ γ

βx+ 1
.

Note that x log λ
x
⩽ λ
e

for any 0 < x < λ. If t ⩾ λ
e

, then 1
t
· x log λ

x
⩽ 1 for any 0 < x < λ. In this

case, we let

φ2(x) :=
1

t
. (9.7)

Otherwise t < λ
e

, and there are two roots to x log λ
x
= t in (0, λ). Denote them by x0 and x1.

We define

φ2(x) :=



1
t

0 ⩽ x < x0;

1
x log λx

x0 ⩽ x < x1;

1
t

x1 ⩽ x < λ.

(9.8)

By our choice of φ2(x), it always holds that for any 0 < x < λ,

φ2(x)x log
λ

x
⩽ 1, (9.9)

and by Lemma 9.11,

(βγ− 1)

(βx+ 1)(x+ γ)
· 1

φ2(x)
⩽ αλ log

x+ γ

βx+ 1
. (9.10)

Now, we are ready to prove Theorem 9.9.

Proof of Theorem 9.9. We claim thatΦ2 is a universal potential function for any field π with an

upper bound λ, with contraction ratio αλ and base M, which will be determined shortly. We

verify the two conditions in Definition 9.6

For Condition 1, it is easy to see that in case (9.7), φ2(x) =
1
t

for any x ∈ (0, λ), and in case

(9.8), e
λ
⩽ φ2(x) ⩽ 1

t
for any x ∈ (0, λ).
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For Condition 2, we have that

Cφ2,d(x) = φ2(Fd(x))
d∑
i=1

∂Fd

∂xi
· 1

φ2(xi)

= φ2(Fd(x))Fd(x)
d∑
i=1

βγ− 1

(βxi + 1)(xi + γ)
· 1

φ2(xi)

⩽ φ2(Fd(x))Fd(x)
d∑
i=1

αλ log
xi + γ

βxi + 1
(by (9.10))

= αλφ2(Fd(x))Fd(x) log
λ

Fd(x)

⩽ αλ. (by (9.9))

Moreover, Fd(x) < λ
(
βλ+1
λ+γ

)d
for any xi ∈ (0, λ), and βλ+1

λ+γ < 1. Then there exists d0 ⩾ 1 such

that
(
βλ+1
λ+γ

)d0
< e−1. Hence, for any d > d0,

Cφ2,d(x) ⩽
αλ

t
Fd(x) log

λ

Fd(x)

⩽ αλλ

t

(
βλ+ 1

λ+ γ

)d
d log

βλ+ 1

λ+ γ
.

Therefore, there exists an integer M ⩾ d0 such that for any 1 ⩽ d < M, Cφ2,d(x) ⩽ αλ ⩽

α
⌈logM(d+1)⌉
λ and for any d ⩾M, Cφ2,d(x) ⩽ αλλ

t

(
βλ+1
λ+γ

)d
d log

(
βλ+1
λ+γ

)
⩽ α⌈logM(d+1)⌉

λ . Condi-

tion 2 holds.

9.5 Correlation Decay Beyond λc

Let β,γ be two parameters such that β ⩽ 1 < γ and βγ > 1. In this section we give an example

to show that if ∆c is not an integer, then correlation decay still holds for a small interval beyond

λc. To simplify the presentation, we assume that π is a uniform field such that π(v) = λ.

Let β = 0.6 and γ = 2. Then ∆c =
√
βγ+1√
βγ−1

≈ 21.95 and λc = (γ/β)
∆c+1

2 < 1002761. Let

λ = 1002762 > λc. We will show that #2Spin(β,γ, λ) is still approximable.
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Define a constant t as

t :=

√
βγ+ 1√
βγ− 1

·
log
√
γ/β√

γ/β+ 1
− log

(
1 +

√
β/γ

)
≈ 4.24032. (9.11)

We consider the potential function Φ3(x) so that φ3(x) :=
1

x(log(1+1/x)+t) . With this choice,

Cφ3,d(x) = φ3(Fd(x))
d∑
i=1

∂Fd

∂xi
· 1

φ3(x)

=
βγ− 1

log (1 + 1/Fd(x)) + t

d∑
i=1

xi (log(1 + 1/xi) + t)

(βxi + 1)(xi + γ)
.

We do a change of variables. Let ri = βxi+1
xi+γ

. Then xi = γri−1
β−ri

, βxi + 1 =
ri(βγ−1)
β−ri

, and

xi + γ = βγ−1
β−ri

. Hence,

d∑
i=1

xi(log(1 + 1/xi) + t)

(βxi + 1)(xi + γ)
=

d∑
i=1

(γri − 1)(β− ri)

ri(βγ− 1)2
·
(

log

(
1 +

β− ri
γri − 1

)
+ t

)

=
1

(βγ− 1)2

d∑
i=1

(
1 + βγ−

β

ri
− γri

)(
log

(
1 +

β− ri
γri − 1

)
+ t

)
.

Furthermore, let si = log ri. As ri ∈
(

1
γ

,β
)

, si ∈ (− logγ, logβ). Let

ρ(x) :=
(
1 + βγ− βe−x − γex

)(
log

(
1 +

β− ex

γex − 1

)
+ t

)
.

Then ρ(x) is concave for any x ∈ (− logγ, logβ). It can be easily verified, as the second derivative

is

ρ ′′(x) =
(β+ 1)(βγ− 1)

β− 1 + ex(γ− 1)
+
γ(βγ− 1)

γ− 1
−
β(βγ− 1)

β− ex

−
(β− 1)(βγ− 1)2

(γ− 1)(β− 1 + ex(γ− 1))2
− βte−x − γtex − e−x

(
β+ e2xγ

)
Log

(
1 +

γex − 1

β− ex

)
.

⩽ γ(β+ 1) +
γ(βγ− 1)

γ− 1
− βγ−

β− 1

γ− 1
− 2t < −5.68 < 0, (9.12)

where in the last line we used (9.11) and the fact that 1/γ ⩽ ex ⩽ β. Hence, by concavity, we
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have that for any xi ∈ (0, λ),

Cφ3,d(x) =
βγ− 1

log (1 + 1/Fd(x)) + t

d∑
i=1

xi (log(1 + 1/xi) + t)

(βxi + 1)(xi + γ)
,

⩽ βγ− 1

log (1 + 1/fd(x̃)) + t
·
dx̃
(
log(1 + x̃−1) + t

)
(βx̃+ 1)(x̃+ γ)

= cφ3,d(x̃), (9.13)

where x̃ > 0 is the unique solution such that fd(x̃) = Fd(x).

Next we show that there exists an α < 1 such that for any integer d and x > 0, cφ3,d(x) < α.

In fact, by (9.11), our choice of t, it is not hard to show that the maximum of cφ3,d(x) is achieved

at x =
√
γ/β and d = ∆c, which is 1 if λ = λc and is larger than 1 if λ > λc. However, since the

degree d has to be an integer, we can verify that for any integer 1 ⩽ d ⩽ 100, the maximum of

cφ3,d(x) is cφ3,22(x22) = 0.999983 where x22 ≈ 1.83066. If d > 100, then

cφ3,d(x) =
d(βγ− 1)

log (1 + 1/fd(x)) + t
·
x
(
log(1 + x−1) + t

)
(βx+ 1)(x+ γ)

⩽ C0 · C1 < 1,

where C0 < 1.07191 is the maximum of
x(log(1+x−1)+t)
(βx+1)(x+γ) for any x > 0, and C1 < 0.481875 is

the maximum of d(βγ−1)
log(1+λ−1β−d)+t

for any d > 100. Then, due to (9.13), we have that for any

xi ∈ (0, λ), Cφ3,d(x) < α = 0.999983 < 1. This is the counterpart of Cφ2,d(x) < αλ in the

proof of Theorem 9.9. To make φ3(x) satisfy Condition 1 and Condition 2 in Definition 9.6, it

is sufficient to do a simple “chop-off” trick to φ3(x) as in (9.8).

Proposition 9.12. For β = 0.6, γ = 2, and λ = 1002762 > λc, #2Spin(β,γ, λ) has an FPTAS.

It is easy to see that the above proof works for any β ⩽ 1 < γ and βγ > 1, except (9.12), the

concavity of ρ(x). Indeed, the concavity does not hold if, say, β = 1 and γ = 2. Nevertheless,

the key point here is that λc is not the tight bound for FPTAS. Short of an conjectured optimal

bound, we did not try to optimize the potential function nor the applicable range of the proof

above.
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9.6 Complementary Hardness Results

In this final section, we discuss limitations of approximation algorithms for ferromagnetic 2-

spin models based on correlation decay analysis.

The problem of counting independent sets in bipartite graphs (#BIS) plays an important

role in classifying approximate counting complexity. #BIS is not known to have any efficient

approximation algorithm, despite many attempts. However there is no known approximation

preserving reduction (AP-reduction) to reduce #BIS to #Sat either. It is conjectured to have

intermediate approximation complexity, and in particular, to have no FPRAS [DGGJ03].

Goldberg and Jerrum [GJ07] showed that for any βγ > 1, approximating #2Spin(β,γ, (0,∞))

can be reduced to approximating #BIS. This is the (approximation) complexity upper bound of

all ferromagnetic 2-spin models. In contrast, by Theorem 9.8, #∆-2Spin(β,γ, (0,∞)) has an

FPTAS if ∆ < ∆c + 1 and the field is at most polynomial in size of n, the number of vertices.

We then consider fields with some constant bound. Recall that λintc = (γ/β)
⌈∆c+1⌉

2 . Let

λintc
′
= (γ/β)

⌊∆c+1⌋+1
2 . Then λintc

′
= λintc unless∆c is an integer. By reducing to anti-ferromagnetic

2-spin models in bipartite graphs, one can show the following, which is first observed in

[LLZ14a, Theorem 3].

Proposition 9.13. Let (β,γ, λ) be a set of parameters such that β < γ, βγ > 1, and λ > λintc
′
.

Then #2Spin(β,γ, (0, λ]) is #BIS-hard.

Proof. We apply Lemma 7.42 and Theorem 8.8. Let α =
√
βγ > 1. Let ∆ = ⌊∆c + 1⌋ + 1 =⌊

2α
α−1

⌋
+1 =

⌊
2

1−α−1

⌋
+1. Then λ > (γ/β)∆/2. By Lemma 7.42, there exists λc such that λc > 1,

λc < λ (γ/β)
−∆/2 and Ctr(α−1,α−1, λc,∆ − 1) > 1. By Theorem 8.8, #∆-Bi-2Spin(α−1,α−1, λc)

is #BIS-hard.

Recall that the instance of #∆-Bi-2Spin(α−1,α−1, λc) is a bipartite graph. We first do a flip

of the truth table on one side, say the left, of the instance, that is, to renaming “0” to “1” and

“1” to “0”. Effectively, after the flip, the edge interaction becomes
[
α 1
1 α

]
(after normalization).

Moreover, the vertices on the left have external fields λ−1
c < λc and those on the right still have

λc. This is a ferromagnetic Ising model with inconsistent fields on two sides.

The next step is a standard diagonal transformation from the Ising model to a general 2-
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spin model. More precisely, we do T =
[

1 0
0
√
γ/β

]
. The edge interaction becomes T

[
α 1
1 α

]
T =[ √

βγ
√
γ/β√

γ/β
√
βγ·γ/β

]
=
√
γ/β

[
β 1
1 γ

]
, whereas the external field becomes λ ′v = λv (γ/β)

dv/2 for a

vertex v of degree dv ⩽ ∆. Since λv ⩽ λc, we have that λ ′v ∈ (0, λc (γ/β)
∆/2] ⊆ (0, λ]. Hence

we obtain a reduction from #∆-Bi-2Spin(α−1,α−1, λc) to #2Spin(β,γ, (0, λ]). The proposition

follows.

The hardness bound in Proposition 9.13 matches the failure of uniqueness due to Proposi-

tion 9.2, unless ∆c is an integer. In contrast to Proposition 9.13, Theorem 9.9 implies that if

β ⩽ 1 < γ and λ < λc = (γ/β)
∆c+1

2 , then #2Spin(β,γ, (0, λ]) has an FPTAS. Hence Theorem 9.9

is almost optimal, up to an integrality gap.

We note that λc is not the tight bound for FPTAS, as observed in Proposition 9.12. Since

the degree d has to be an integer, with an appropriate choice of the potential function, there

is a small interval beyond λc such that strong spatial mixing still holds. Interestingly, it seems

that λintc is not the right bound either. Let us make a concrete example. Let β = 1 and γ = 2.

Then ∆c =
√
βγ+1√
βγ−1

=
√

2+1√
2−1
≈ 5.8. Hence λc ≈ 10.6606 and λintc = (2)

6+1
2 ≈ 11.3137. However,

even if λ < λintc , the system may not exhibit strong spatial mixing. To see that, we take any

λ ∈ [10.9759, 10.9965] so that λc < λ < λintc . Consider an infinite tree where at even layers,

each vertex has 5 children, and at odd layers, each vertex has 7 children. The uniqueness

condition fails in this tree. This can be easily verified from the fact that the two layer recursion

function f5(f7(x)) has three fixed points such that x = f5(f7(x)). This example shows that one

cannot expect correlation decay algorithms to work all the way up to λintc .

At last, if we consider the uniform field case #2Spin(β,γ, λ), then our tractability results

still holds. However, to extend the hardness results as in Proposition 9.13 from an interval

of fields to a uniform one, there seems to be some technical difficulty. Suppose we want to

construct a combinatorial gadget to effectively realize another field. There is a gap between

λ and the next largest possible field to realize. This is why in [LLZ14a], there are some extra

conditions transiting from an interval of fields to the uniform case. The observation above

about the failure of SSM in irregular trees may suggest a random bipartite construction of

uneven degrees. However, to analyze such a gadget is beyond the scope of the current work.
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Chapter 10

Complex Weighted Ising Models

In this last chapter, we extend our classification of 2-spin systems to complex weights. As we

shall see, it has connections to the classical simulation of quantum computation.

10.1 Approximating Complex Numbers

With complex weights, the first issue is what do we mean by approximating a complex number.

We are usually interested in the norm or the argument of a complex number. It makes sense

that we approximate the norm of a complex number relatively, whereas we approximate the ar-

gument additively. This is natural because multiplying complex numbers multiplies norms and

adds arguments, so it preserves the usual property that if you can approximate two numbers,

you can approximate the product.

Other notions of approximation have been proposed. Most notably, Ziv [Ziv82] has proposed

that the distance between two complex numbers y and y ′ should be measured as

d(y ′,y) :=
|y ′ − y|

max(|y ′|, |y|)
,

where d(0, 0) := 0.

We will use the following technical lemma concerning Ziv’s distance measure.

Lemma 10.1. If z and z ′ are two non-zero complex numbers and if d(z ′, z) ⩽ ε, then |z ′|/|z| ⩽

1/(1 − ε) and | arg z− arg z ′| ⩽
√

36ε/11.
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Proof. Suppose d(z ′, z) ⩽ ε and |z ′| ⩾ |z|.

First, by the triangle inequality, |z|+ |z ′ − z| ⩾ |z ′| so

|z ′|

|z|
= 1 +

|z ′|− |z|

|z|
⩽ 1 +

|z ′ − z|

|z|
= 1 +

|z ′ − z|

|z ′|

|z ′|

|z|
⩽ 1 + ε

|z ′|

|z|
,

as required.

Second, letting z = r exp(iθ) and z ′ = r ′ exp(iθ ′) we have

((r ′ cos(θ ′) − r cos(θ))
2
+ ((r ′ sin(θ ′) − r sin(θ))

2 ⩽ ε2r ′
2
.

The left-hand-side is equal to r2 + r ′2 − 2rr ′ cos(θ− θ ′). But we already proved

1 ⩽ r ′

r
⩽ 1

1 − ε
,

so

r ′
2
(1 − ε)2 + r ′

2
− 2r ′

2
cos(θ− θ ′) ⩽ ε2r ′

2
,

and

cos(θ− θ ′) ⩾ 1 −
3ε

2
+
ε2

2
.

But cos(x) = 1 − x2/2! + x4/4! − x6/6! + · · · , so

(θ− θ ′)2

2!
−

(θ− θ ′)4

4!
+

(θ− θ ′)6

6!
− · · · ⩽ 3ε

2
−
ε2

2
.

Provided that ε is sufficiently small (so θ− θ ′ ⩽ 1) the left-hand-side is at least 11(θ− θ ′)2/24,

so |θ− θ ′| ⩽
√

36ε/11.

10.2 Problem Definitions and Results

The main subject that we study in this chapter is the partition function of the Ising model, that

is, Zβ,β,λ(G). However, in this chapter we will require use of the Tutte polynomial as well. To

uniform the notation, and to differentiate Ising partition functions from Tutte ones, we will use

the following definition. Given an edge interaction y and an external field λ, the Ising partition
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function is defined for a (multi)graph G = (V ,E) as

ZIsing(G;y, λ) =
∑

σ:V→{0,1}

ym(σ)λn1(σ), (10.1)

wherem(σ) is the number of monochromatic edges under σ (that is, the number of edges (u, v)

with σ(u) = σ(v)) and n1(σ) is the number of vertices v with σ(v) = 1. We write ZIsing(G;y) to

denote ZIsing(G;y, 1). It is easy to see that the definition (10.1) is consistent with (7.2).

To avoid unnecessary technical issues with complex numbers, we will restrict complex pa-

rameters y and λ to the set Q of algebraic numbers. Thus, the real and imaginary parts of y

and λ will be algebraic. For fixed y and λ, we study several computational problems. We will

define them in terms of constant approximation. It is well known that for partition functions,

a constant approximation is as good as an inverse polynomial approximation, by a standard

amplification trick. The first of them is approximating the norm of ZIsing(G;y, λ) within a factor

K > 1.

Name Factor-K-NormIsing(y, λ).

Instance A (multi)graph G.

Output A rational number N̂ such that N̂/K ⩽
∣∣ZIsing(G;y, λ)

∣∣ ⩽ KN̂.

We also consider the problem of approximating the argument of the partition function

within an additive distance of ρ ∈ (0, 2π). Here we have to treat the zero case exceptionally

since the argument is undefined.

Name Distance-ρ-ArgIsing(y, λ).

Instance A (multi)graph G.

Output If ZIsing(G;y, λ) = 0, then the algorithm should output 0. Otherwise, it should output

a rational number Â such that

∣∣∣Â− arg(ZIsing(G;y, λ))
∣∣∣ ⩽ ρ.
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We drop the argument λ when it is equal to 1, so Factor-K-NormIsing(y) denotes the prob-

lem Factor-K-NormIsing(y, 1) and Distance-ρ-ArgIsing(y) is Distance-ρ-ArgIsing(y, 1).

As discussed in Section 10.1, it makes sense to approximate complex numbers under Ziv’s

measure. We also study the following approximation problem.

Name ComplexApx-Ising(y, λ)

Instance A (multi)graph G and a positive integer R, in unary.

Output If |ZIsing(G;y, λ)| = 0 then the algorithm should output 0. Otherwise, it should output

a complex number y such that d(y,ZIsing(G;y, λ)) ⩽ 1
R

.

As with the other problems, we use the notation ComplexApx-Ising(y) for ComplexApx-

Ising(y, 1). We have specified the error R as an input of the problem, rather than as a parameter,

in order to emphasise the suitability of ComplexApx-Ising(y, λ) as an appropriate notion of

approximation for the Ising partition function when y is complex. The number R is expressed

in unary, so a polynomial time algorithm for ComplexApx-Ising(y, λ) would give an FPTAS or

FPRAS for the norm of the partition function. Again, for partition functions, it is well-known

that approximating the norm within a factor that is an inverse polynomial in a unary input R

is equivalent in difficultly to approximating the norm with any specific factor K > 1. We will

return to this point later in Lemma 10.8.

Main results for the Ising model

The following theorem gives our main complexity results about the Ising model. These results

are illustrated in Figure 10.1.

Theorem 10.2. Let y = reiθ be an algebraic complex number with θ ∈ [0, 2π). Suppose K > 1.

1. If y = 0 or if r = 1 and θ ∈ {0, π2 ,π, 3π
2 }, then Factor-K-NormIsing(y), Distance-(π/3)-

ArgIsing(y) and ComplexApx-Ising(y) are in FP.

2. If y > 1 is a real number then Factor-K-NormIsing(y) is in RP and Distance-(π/3)-

ArgIsing(y) is in FP.
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Re{z}

Im{z}

i

−i

1−1
0

Figure 10.1: An illustration of Theorem 10.2. The five white points correspond to
the easy evaluations described in Item 1. The green line segment corresponds to
a region where approximation is in RP— See Item 2. The blue line segment corre-
sponds to a region where approximation is equivalent to approximately counting
perfect matchings. See Item 4. The red points on the axes and on the unit cir-
cle correspond to regions where approximation is #P-hard. See Items 5, 6, and 7.
Elsewhere the points are coloured grey, and approximation is known to be NP-hard
(Items 3, 9 and 10) and sometimes to be #P-hard (Item 8, not pictured).

3. If y is a real number in (0, 1) then Factor-K-NormIsing(y) is NP-hard and Distance-

(π/3)-ArgIsing(y) is in FP.

4. If y < −1 is a real number then Factor-K-NormIsing(y) is equivalent in complexity to the

problem of approximately counting perfect matchings in a graph and Distance-(π/3)-

ArgIsing(y) is in FP.

5. If y is a real number in (−1, 0) then Factor-K-NormIsing(y) is #P-hard, and so is Dis-

tance-(π/3)-ArgIsing(y).

6. If r = 1 and θ ̸∈ {0, π2 ,π, 3π
2 }, then Factor-K-NormIsing(y), Distance-(π/3)-ArgIsing(y)

and ComplexApx-Ising(y) are #P-hard.

7. If r ̸∈ {−1, 0, 1}, and θ = π
2 or θ = 3π

2 , then Factor-K-NormIsing(y), Distance-(π/3)-

ArgIsing(y) and ComplexApx-Ising(y) are #P-hard.

8. If r > 0 and θ = aπ
2b , where a and b are two co-prime positive integers and a is odd,

then Factor-K-NormIsing(y), Distance-(π/3)-ArgIsing(y) and ComplexApx-Ising(y)

are #P-hard.

9. If r < 1 and y ≠ 0, then Factor-K-NormIsing(y) and ComplexApx-Ising(y) are NP-hard.
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10. If r > 1 and θ ̸∈ {0,π} then Factor-K-NormIsing(y) and ComplexApx-Ising(y) are NP-

hard.

Relaxed versions of the problems

A polynomial-time algorithm for any of the problems that we have defined is required to output

0 if it is given an input G such that ZIsing(G;y, λ) = 0. Theorem 10.2 gives hardness results

for these problems. The hardness is not due to special difficulties which arise when the value

of the partition function is zero. In order to demonstrate this point, (and in order to make

certain reductions easier later on), we also consider the following, more relaxed versions of the

problems, where the output is unconstrained if the value of the partition function is zero. As

before, there parameter K is greater than 1 and the parameter ρ is in (0, 2π).

Name Factor-K-Nonzero-NormIsing(y, λ)

Instance A (multi)graph G.

Output If
∣∣ZIsing(G;y, λ)

∣∣ = 0 then the algorithm may output any rational number. Otherwise,

it should output a rational number N̂ such that N̂/K ⩽
∣∣ZIsing(G;y, λ)

∣∣ ⩽ KN̂.

Name Distance-ρ-Nonzero-ArgIsing(y, λ)

Instance A (multi)graph G.

Output If ZIsing(G;y, λ) = 0, then the algorithm may output any rational number. Otherwise,

it should output a rational number Â such that
∣∣∣Â− arg(ZIsing(G;y, λ))

∣∣∣ ⩽ ρ.

Name ComplexApx-Nonzero-Ising(y, λ)

Instance A (multi)graph G and a positive integer R, in unary.

Output If
∣∣ZIsing(G;y, λ)

∣∣ = 0 then the algorithm may output any complex number. Otherwise,

it should output a complex number z such that d(z,ZIsing(G;y, λ)) ⩽ 1
R

.

As in the un-relaxed versions of the problems, we drop the parameter “λ” from the problem

name when it is 1. We give the following generalisation of Theorem 10.2.
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Theorem 10.3. All of the results in Theorem 10.2 extend to the relaxed case. That is, the re-

sults still hold even if Factor-K-NormIsing(y), Distance-(π/3)-ArgIsing(y) and ComplexApx-

Ising(y) are replaced by Factor-K-Nonzero-NormIsing(y), Distance-(π/3)-Nonzero-Arg-

Ising(y), and ComplexApx-Nonzero-Ising(y), respectively.

We note that due to Lemma 10.1, the problem of ComplexApx-Ising(y, λ) is always harder

than Factor-K-NormIsing(y, λ) or Distance-ρ-ArgIsing(y, λ), even if they are both relaxed.

Lemma 10.4. Suppose K > 1 and 0 < ρ < 2π. Then the following polynomial-time Turing

reductions exist.

Factor-K-NormIsing(y, λ) ⩽T ComplexApx-Ising(y, λ),

Factor-K-Nonzero-NormIsing(y, λ) ⩽T ComplexApx-Nonzero-Ising(y, λ),

Distance-ρ-ArgIsing(y, λ) ⩽T ComplexApx-Ising(y, λ),

Distance-ρ-Nonzero-ArgIsing(y, λ) ⩽T ComplexApx-Nonzero-Ising(y, λ).

Proof. Let R be any (sufficiently large) integer so that 1 − 1/R > 1/K and
√

36/11R ⩽ ρ.

Consider a multigraph G where |ZIsing(G;y, λ)| ≠ 0. Given input G and R, an oracle for

ComplexApx-Ising(y, λ)or ComplexApx-Nonzero-Ising(y, λ) returns a complex number z such

that d(z,ZIsing(G;y, λ)) ⩽ 1
R

. On the other hand, if |ZIsing(G;y, λ)| = 0, then the oracle for

ComplexApx-Ising(y, λ) returns the complex number z = 0 and the oracle for ComplexApx-

Nonzero-Ising(y, λ) returns any complex number z.

For the first two reductions, suppose first that |ZIsing(G;y, λ)| ≠ 0. Then d(z,ZIsing(G;y, λ)) ⩽
1
R

and Lemma 10.1 imply that

|z|

K
⩽
(

1 −
1

R

)
|z| ⩽ |ZIsing(G;y, λ)| ⩽ |z|

1 − 1
R

⩽ K|z|,

so |z| is a suitable output to Factor-K-NormIsing(y, λ) or Factor-K-Nonzero-NormIsing(y, λ)

with input G. On the other hand, if |ZIsing(G;y, λ)| = 0, then |z| is still suitable in both cases.

For the last two reductions, suppose first that |ZIsing(G;y, λ)| ≠ 0. Then d(z,ZIsing(G;y, λ)) ⩽
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1
R

and Lemma 10.1 imply that

∣∣arg z− argZIsing(G;y, λ)
∣∣ ⩽√36ε/11 ⩽ ρ,

so arg z is a suitable output to either Distance-ρ-ArgIsing(y, λ) or Distance-ρ-Nonzero-

ArgIsing(y, λ) with input G. On the other hand, if |ZIsing(G;y, λ)| = 0 and z = 0, then 0 is

a suitable output in both cases. If |ZIsing(G;y, λ)| = 0 and z ≠ 0, then arg z is suitable (as an

output for Distance-ρ-Nonzero-ArgIsing(y, λ)).

Ising models with fields

Our Theorems 10.2 and 10.3 are about the complexity of evaluating the Ising partition function

in the absence of an external field (that is, λ = 1). This is appropriate for the application to

IQP, a complexity subclass of BQP. However, Ising models with external fields are important

for their own sake. Moreover, De las Cuevas et al. [DDVM11, Result 2] showed that with edge

interaction i and external field eiπ/4 an additive approximation of the partition function is

BQP-hard. Motivated by the Ising model itself and such quantum connections, we focus on the

problem of (multiplicatively) approximating the norm of the partition function when both the

interaction parameter and the external field are roots of unity. We extend our hardness results

to show that, for most such parameters, including the one studied by De las Cuevas et al., the

approximation problem is #P-hard. For the remaining parameters, the partition function can

be evaluated exactly in polynomial time, and thus we get a complete dichotomy. This extension

relies on some lower bounds from transcendental number theory, which allow us to convert

additive distances into multiplicative ones. Details are in Section 10.7.

Theorem 10.5. Let K > 1. Let y and z be two roots of unity. Then the following holds:

1. If y = ±i and z ∈ {1,−1, i,−i}, or y = ±1, ZIsing(−;y, z) can be computed exactly in

polynomial time.

2. Otherwise Factor-K-Nonzero-NormIsing(y, z) is #P-hard.
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10.3 The Tutte polynomial

The partition functionZIsing(G;y) is equivalent to a specialisation of the Tutte polynomial, which

is a graph polynomial with two parameters, x and y, defined as follows,

T(G; x,y) =
∑

A⊆E(G)

(x− 1)κ(A)−κ(E(G))(y− 1)|A|−n+κ(A), (10.2)

wheren = |V(G)| and κ(A) is the number of connected components in the subgraph (V(G),A). If

the quantity q = (x−1)(y−1) is a positive integer, then the Tutte polynomial with parameters x

and y is closely-related to the partition function of the Potts model, which includes the Ising

model as the special case q = 2. In particular, when q = 2,

T(G; x,y) = (y− 1)−n(x− 1)−κ(E(G))
ZIsing(G;y). (10.3)

We will encounter the following two problems, where x,y are two real numbers.

Name Sign-RealTutte(x,y)

Instance A (multi)graph G.

Output Determine whether the sign of the real part of T(G; x,y) is positive, negative, or 0.

Name Sign-Real-NonzeroTutte(x,y)

Instance A (multi)graph G.

Output A correct statement of the form “T(G; x,y) ⩾ 0” or “T(G; x,y) ⩽ 0”.

We will require the random cluster formulation of the multivariate Tutte polynomial. Given

a (multi) graph G with edge weights γ : E(G)→ Q and q ∈ Q, this is defined as

ZTutte(q,γ) :=
∑
A⊆E

qκ(A)
∏
e∈A

γe. (10.4)

Suppose x and y satisfy q = (x − 1)(y − 1). For a graph G = (V ,E), let γ : E → Q be the

constant function which maps every edge to the value y − 1. Then (see, for example [Sok05,
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(2.26)])

T(G; x,y) = (y− 1)−n(x− 1)−κ(E(G))
ZTutte(q,γ). (10.5)

Obviously from (10.3), this implies that if q = 2, then ZIsing(G;y) = ZTutte(q,γ).

To apply a technique from [GJ14] we will require a multivariate version of the problem

Factor-K-Nonzero-NormIsing(y, λ). We could do this for general q, but we will only use the

following version, which is restricted to q = 2 and has two complex parameters, γ1 and γ2.

Name Factor-K-Nonzero-Norm2Tutte(γ1,γ2)

Instance A (multi)graph G = (V ,E) and edge weights γ : E→ {γ1,γ2}.

Output If |ZTutte(2,γ)| = 0 then the algorithm may output any rational number. Otherwise, it

should output a rational number N̂ such that N̂/K ⩽ |ZTutte(2,γ)| ⩽ KN̂.

Suppose that s and t are two distinguished vertices ofG. Let Zst(G;q,γ) be the contribution

to ZTutte(q,γ) from subgraphs where s and t are in the same component, that is,

Zst(G;q,γ) :=
∑
A⊆E:

s and t are
in the same component

qκ(A)
∏
e∈A

γe.

Similarly, let Zs|t denote the contribution to ZTutte(q,γ) from configurations A in which s and

t are in different components.

10.4 Series and Parallel Compositions

In later reductions, we will want to implement new edge weights. The construction that will be

used repeatedly is series and parallel compositions. Our treatment is completely standard and

is taken from [GJM15, Section 2.1]. We include it here for completeness.

Fix W ⊆ Q and q ∈ Q. Let w∗ ∈ Q be a weight (which may not be in W) which we want to

“implement”. Suppose that there is a graph Υ, with distinguished vertices s and t and a weight
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function γ̂ : E(Υ)→W such that

w∗ = qZst(Υ;q, γ̂)/Zs|t(Υ;q, γ̂). (10.6)

In this case, we say that Υ and γ̂ implement w∗ (or even that W implements w∗).

The purpose of “implementing” edge weights is this. Let G be a graph with weight function

γ. Let f be some edge of G with weight γf = w∗. Suppose that W implements w∗. Let Υ be a

graph with distinguished vertices s and t with a weight function γ̂ : E(Υ)→W satisfying (10.6).

Construct the weighted graph G ′ by replacing edge f with a copy of Υ (identify s with either

endpoint of f (it doesn’t matter which one) and identify t with the other endpoint of f and

remove edge f). Let the weight function γ ′ of G ′ inherit weights from γ and γ̂ (so γ ′
e = γ̂e

if e ∈ E(Υ) and γ ′
e = γe otherwise). Then the definition of the multivariate Tutte polynomial

gives

ZTutte(q,γ ′) =
Zs|t(Υ;q, γ̂)

q2 ZTutte(q,γ). (10.7)

So, as long as q ≠ 0 and Zs|t(Υ;q, γ̂) is easy to evaluate, evaluating the multivariate Tutte

polynomial of G ′ with weight function γ ′ is essentially the same as evaluating the multivariate

Tutte polynomial of G with weight function γ.

Since the norm of the product of two complex numbers is the product of the norms, this re-

duces computing (or relatively approximating) the norm with weight function γ to the problem

of computing (or relatively approximating) the norm with weight function γ ′. Also, since the

argument of the product of two complex numbers is the sum of the arguments of the numbers,

this reduces computing (or additively approximating) the argument with weight function γ to

the problem of computing (or additively approximating) the argument with weight function γ ′.

Two especially useful implementations are series and parallel compositions. Parallel com-

position is the case in which Υ consists of two parallel edges e1 and e2 with endpoints s and t

and γ̂e1 = w1 and γ̂e2 = w2. It is easily checked from (10.6) that w∗ = (1 + w1)(1 + w2) − 1.

Also, the extra factor in (10.7) cancels, so in this case ZTutte(q,γ ′) = ZTutte(q,γ).

Series composition is the case in which Υ is a length-2 path from s to t consisting of edges
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e1 and e2 with γ̂e1 = w1 and γ̂e2 = w2. It is easily checked from (10.6) that w∗ = w1w2/(q +

w1 +w2). Also, the extra factor in (10.7) is q+w1 +w2, so in this case ZTutte(q,γ ′) = (q+w1 +

w2)ZTutte(q,γ). It is helpful to note that w∗ satisfies

(
1 +

q

w∗

)
=

(
1 +

q

w1

)(
1 +

q

w2

)
.

We say that there is a “shift” from (q,α) to (q,α ′) if there is an implementation of α ′

consisting of some Υ and ŵ : E(Υ)→W whereW is the singleton setW = {α}. Taking y = α+1

and y ′ = α ′ + 1 and defining x and x ′ by q = (x− 1)(y− 1) = (x ′ − 1)(y ′ − 1), we equivalently

refer to this as a shift from (x,y) to (x ′,y ′). It is an easy, but important observation that shifts

may be composed to obtain new shifts. So, if we have shifts from (x,y) to (x ′,y ′) and from

(x ′,y ′) to (x ′′,y ′′), then we also have a shift from (x,y) to (x ′′,y ′′).

The k-thickening of [JVW90] is the parallel composition of k edges of weightα. It implements

α ′ = (1 + α)k − 1 and is a shift from (x,y) to (x ′,y ′) where y ′ = yk (and x ′ is given by

(x ′ − 1)(y ′ − 1) = q). Similarly, the k-stretch is the series composition of k edges of weight α.

It implements an α ′ satisfying

1 +
q

α ′ =
(

1 +
q

α

)k
.

It is a shift from (x,y) to (x ′,y ′) where x ′ = xk. (In the classical bivariate (x,y) parameterisation,

there is effectively one edge weight, so the stretching or thickening is applied uniformly to every

edge of the graph.)

Thus, we have the following observation.

Proposition 10.6. The k-thickening operation gives the following polynomial-time reductions.

• Factor-K-NormIsing(yk) ⩽ Factor-K-NormIsing(y),

• Distance-ρ-ArgIsing(yk) ⩽ Distance-ρ-ArgIsing(y),

• Sign-RealTutte(1 + (x− 1)(y− 1)/(yk − 1),yk) ⩽ Sign-RealTutte(x,y), where yk ≠ 1,

and

• ComplexApx-Ising(yk) ⩽ ComplexApx-Ising(y).
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Similarly, k-stretching gives the following polynomial-time reductions for y ≠ 1.

• Factor-K-NormIsing(1 + 2/((1 + 2/(y− 1))k − 1)) ⩽ Factor-K-NormIsing(y),

• Distance-ρ-ArgIsing(1 + 2/((1 + 2/(y− 1))k − 1)) ⩽ Distance-ρ-ArgIsing(y),

• Sign-RealTutte(xk, 1 + (x − 1)(y − 1)/(xk − 1)) ⩽ Sign-RealTutte(x,y), where xk ≠ 1,

and

• ComplexApx-Ising(1 + 2/((1 + 2/(y− 1))k − 1)) ⩽ ComplexApx-Ising(y).

Similar statements hold for the relaxed versions of the problems.

10.5 Hardness Results for the Ising Model

In this section we prove Theorems 10.2 and 10.3. We will start with real weights and then

extend the results to the whole complex plane.

Real Weights

First we gather some known results regarding approximating the partition function ZIsing(G;y)

of the Ising model when y is an algebraic real number.

If y ∈ {−1, 0, 1}, then computing ZIsing(G;y) is trivial from the definition (10.1). A classical

result by Jerrum and Sinclair [JS93] settles the complexity of approximating ZIsing(G;y) when

y > 0. They show that there is an FPRAS when y > 1 and that it is NP-hard to approximate

the partition function when 0 < y < 1. The negative case appears to be more complicated.

Goldberg and Jerrum [GJ08] showed that if −1 < y < 0, it is also NP-hard to approximate

ZIsing(G;y), but if y < −1, the problem is equivalent to approximating the number of perfect

matchings in a graph and it is not known whether there is an FPRAS. Technically, neither Jer-

rum and Sinclair nor Goldberg and Jerrum worked over the algebraic numbers. In order to

avoid issues of real arithmetic, Jerrum and Sinclair used a computational model in which real

arithmetic is performed with perfect accuracy, and Goldberg and Jerrum restricted attention to

rationals. However, the operations in those papers are easily implemented over the algebraic

real numbers. Using our notation, these results are summarised as follows.
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Lemma 10.7 ([JS93, GJ08]). Suppose y ∈ Q and K > 1. Then Factor-K-NormIsing(y)

• is in FP if y ∈ {−1, 0, 1};

• is in RP if y > 1;

• is NP-hard if 0 < y < 1 or −1 < y < 0; and

• is equivalent in difficulty to approximately counting perfect matchings if y < −1.

Technically, the results in [JS93, GJ08] were not about the problem Factor-K-NormIsing(y)

with fixed K. Instead, the accuracy parameter was viewed as part of the input as in the following

problem.

Name FPRAS-NormIsing(y, λ)

Instance A (multi)graph G and a positive integer R, in unary.

Output A rational number N̂ such that

(
1 − 1

R

)
N̂ ⩽ |ZIsing(G;y, λ)| ⩽

(
1 + 1

R

)
N̂.

Nevertheless, the hardness results in Lemma 10.7 follow easily from those papers using the

following standard powering lemma.

Lemma 10.8. For any K > 1, there are polynomial-time Turing reductions between Factor-K-

NormIsing(y, λ) and FPRAS-NormIsing(y, λ).

Proof. The reduction from Factor-K-NormIsing(y, λ) to FPRAS-NormIsing(y, λ) is straightfor-

ward. Given an input G to Factor-K-NormIsing(y, λ), choose R so that K ⩾ R/(R− 1) and run

an algorithm for FPRAS-NormIsing(y, λ) with inputs G and R, returning the result.

The other direction is almost as easy. Given an input (G,R) to FPRAS-NormIsing(y, λ),

choose an integer k sufficiently large so that (1 − 1/R)k ⩽ 1/K and (1 + 1/R)k ⩾ K. Then

form Gk by taking k disjoint copies of G. Run an algorithm for Factor-K-NormIsing(y, λ)

with input Gk, obtaining a number N̂ such that N̂/K ⩽ |ZIsing(Gk;y, λ)| ⩽ KN̂. Then note that
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ZIsing(Gk;y, λ) = ZIsing(G;y, λ)k, so

(
1 − 1

R

)
N̂1/k ⩽ N̂1/k/K1/k ⩽ |ZIsing(G;y, λ)| ⩽ K1/kN̂1/k ⩽ N̂1/k

(
1 + 1

R

)
,

so N̂1/k is a suitable output.

Note that the NP-hardness result for 0 < y < 1 in Lemma 10.7 is essentially best possible

in the sense that the problem is not much harder than NP. As [GJ08] observed, the problem

can be solved in randomised polynomial time using an oracle for an NP predicate by using

the bisection technique of Valiant and Vazirani [VV86]. The situation is different for y < 0.

Goldberg and Jerrum [GJ14, Theorem 1, Region G] showed that it is #P-hard to determine the

sign of ZIsing(G;y) if −1 < y < 0. Again, they stated their theorem for the case in which y is

rational, but the proof applies equally well when y is an algebraic real number. In terms of our

notation, they proved the following lemma.

Lemma 10.9 ([GJ14]). For any algebraic real number y ∈ (−1, 0), Sign-RealTutte(x,y) is #P-

hard, where x = 1 + 2/(y− 1).

If y is real then ZIsing(G;y) is real so, either ZIsing(G;y) = 0, or arg(ZIsing(G;y)) ∈ {0,π}.

Hence, approximating the argument within ±π/3 enables one to determine the sign of the real

part. Using the connection (10.3) between the Tutte polynomial and the partition function of

the Ising model and Lemma 10.4, Lemma 10.9 implies the following corollary.

Corollary 10.10. Suppose y is an algebraic real number in the range y ∈ (−1, 0). Then the

problem Distance-(π/3)-ArgIsing(y) is #P-hard and so is ComplexApx-Ising(y).

In fact, we can extend Goldberg and Jerrum’s #P-hardness interval-shrinking technique from

[GJ14] to also obtain #P-hardness for the relaxed version of the problems. We start with a

general discussion of interval shrinking. Suppose that we have a linear function f(ε) = −εA+B

for positive A and B and that we wish to find a value ε̂ that is very close to the root ε∗ = B/A.

Suppose that we also have an interval [ε ′, ε ′′] such that f(ε ′) > 0 and f(ε ′′) < 0. Suppose that

ε ′′ − ε ′ = ℓ (so the interval has length ℓ). Roughly, Goldberg and Jerrum had to hand an oracle



324

for computing the sign of f(ε) (using an oracle for Sign-RealTutte(x,y)) and, using this, it is

easy to bisect the interval, getting very close to ε∗ by binary search.

Using an oracle for the relaxed problem Sign-Real-NonzeroTutte(x,y) we can compute

the sign whenever it is positive or negative, but we receive an unreliable answer for the sign

of f(ε) if f(ε) = 0. Nevertheless, we observe that having a reliable answer in this case is not

important for the progress of the binary search. If the binary search queries the value of f(ε)

and f(ε) ≠ 0, then the reply from the oracle is correct. Otherwise, it is still possible to recurse

into a sub-interval that contains a zero of the function, as required. Thus, we have the following

lemma.

Lemma 10.11. For any algebraic real number y ∈ (−1, 0), Sign-Real-NonzeroTutte(x,y) is

#P-hard, where x = 1 + 2/(y − 1). Also, the problems Distance-(π/3)-Nonzero-ArgIsing(y)

and ComplexApx-Nonzero-Ising(y) are #P-hard.

We next show how to further extend the #P-hardness interval-shrinking technique to obtain

#P-hardness for the problem Factor-K-Nonzero-NormIsing(y). This requires new ideas, so

we will provide more details. Let us return to the discussion of interval shrinking. Let η = 1/21

and ρ = 22/21. Instead of having an oracle for the sign of f(ε) = −εA+ B, we only will be able

to assume that we have an oracle that, on input ε, returns a value f̂(ε) satisfying

(1 − η)|f(ε)| ⩽ |f(ε)|/ρ ⩽ f̂(ε) ⩽ ρ|f(ε)| ⩽ (1 + η)|f(ε)|,

except that again the value f̂(ε) is completely unreliable if f(ε) = 0. Our strategy will be to

divide the interval into 10 equal-length sub-intervals [εi, εi+1] for i ∈ {0, . . . , 9} with ε0 = ε ′

and ε10 = ε ′′. (The number 10 is not chosen to be optimal — however, it is easy to see that

it suffices.) We then let si be the sign (positive, negative, or zero) of f̂(εi) − f̂(εi+1), for each

i ∈ {0, . . . , 9}. The si values can be computed by the oracle. Now consider what happens if

εi < εi+1 < ε
∗ (so f(εi) > f(εi+1) > 0). In this case,

f̂(εi) − f̂(εi+1) ⩾ (1 − η)f(εi) − (1 + η)f(εi+1)

= A(εi+1 − εi − η(2ε
∗ − εi − εi+1)).
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Now εi+1 − εi ⩾ ℓ/10. Also ε∗ − εi and ε∗ − εi+1 are both at most ℓ. So since η < 1/20, si is

positive. Similarly, if ε∗ < εi < εi+1 (so f(εi+1) < f(εi) < 0), then

f̂(εi) − f̂(εi+1) ⩾ (1 − η)(−f(εi)) − (1 + η)(−f(εi+1))

= −A(εi+1 − εi − η(2ε
∗ − εi − εi+1)),

so si is negative. If εi ⩽ ε∗ and εi+1 ⩾ ε∗, then we don’t know what the value of si will be.

However, this is true for at most two values of i. So either s0, s1, s2 and s3 are all positive

(in which case ε2 < ε∗ and we can recurse on the interval [ε2, ε10]) or s6, s7, s8 and s9 are all

negative (in which case ε8 > ε∗ and we can recurse on the interval [ε0, ε8]). Either way, the

interval shrinks to 4/5 of its original length.

Applying this idea in the proof of [GJ14, Lemma 1] yields the following.

Lemma 10.12. Suppose that γ1 and γ2 are algebraic reals with γ1 ∈ (−2,−1) and γ2 ̸∈ [−2, 0].

Then Factor-(22
21)-Nonzero-Norm2Tutte(γ1,γ2) is #P-hard.

Proof. Apart from the interval shrinking idea discussed above, the proof is similar in structure

to the proof of [GJ14, Lemma 1]. We defer some calculations (which are unchanged) to [GJ14]

but we provide the rest of the proof to show how to get the stronger result. We use the fact

that the following problem is #P-complete. This was shown by Provan and Ball [PB83].

Name #Minimum Cardinality (s, t)-Cut.

Instance A graph G = (V ,E) and distinguished vertices s, t ∈ V .

Output |{S ⊆ E : S is a minimum cardinality (s, t)-cut in G}|.

We will give a Turing reduction from #Minimum Cardinality (s, t)-Cut to the problem

Factor-(22
21)-Nonzero-Norm2Tutte(γ1,γ2).

Let G, s, t be an instance of #Minimum Cardinality (s, t)-Cut. Assume without loss of

generality that G has no edge from s to t. Let n = |V(G)| and m = |E(G)|. Assume without loss

of generality that G is connected and that m ⩾ n is sufficiently large. Let k be the size of a

minimum cardinality (s, t)-cut in G and let C be the number of size-k (s, t)-cuts.
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Let q = 2 and M∗ = 24m. Let h be the smallest integer such that (γ2 + 1)h − 1 > M∗ and

let M = (γ2 + 1)h − 1. Note that we can implement M from γ2 via an h-thickening, and h is at

most a polynomial in m.

Let δ = 4m/M. Let M be the constant weight function which gives every edge weight M.

We will use the following facts:

qMm(1 − δ) ⩽ Zst(G;q,M) ⩽ qMm(1 + δ) (10.8)

and

CMm−kq2(1 − δ) ⩽ Zs|t(G;q,M) ⩽ CMm−kq2(1 + δ). (10.9)

Fact (10.8) follows from the fact that each of the (at most 2m) terms in Zst(G;q,M), other than

the term with all edges in A, has size at most Mm−1qn and 2mMm−1qn ⩽ δMmq. Fact (10.9)

follows from the fact that all terms in Zs|t(G;q,M) are complements of (s, t)-cuts. If more than

k edges are cut, then the term is at most Mm−k−1qn and

2mMm−k−1qn ⩽ δCMm−kq2.

For a parameter ε in the open interval (0, 1) which we will tune later, let γ ′ = −1 − ε ∈

(−2,−1). We will discuss the implementation of γ ′ later. Let G ′ be the graph formed from G

by adding an edge from s to t. Let γ be the edge-weight function for G ′ that assigns weight M

to every edge of G and assigns weight γ ′ to the new edge. Using the definition of the (random

cluster) Tutte polynomial, Goldberg and Jerrum noted that

ZTutte(2,γ) = Zst(G; 2,M)(1 + γ ′) + Zs|t(G; 2,M)

(
1 +

γ ′

2

)
= −εZst(G; 2,M) + Zs|t(G; 2,M)

(
1 −

1 + ε

2

)
. (10.10)

It is easily checked that ZTutte(2,γ) is positive if ε is sufficiently small (ε =M−2m will do) and

it is negative at ε = 1. Thus, viewing ZTutte(2,γ) as a function of ε, we can perform interval

shrinking (as discussed before the statement of the lemma) to find a value of ε for which
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ZTutte(2,γ) is very close to 0. The interval shrinking uses an oracle for Factor-(22
21)-Nonzero-

Norm2Tutte(γ1,γ2).

If we find an ε where ZTutte(q,γ) = 0, then for this value of ε, we have εZst(G;q,M) =

Zs|t(G;q,M)
(
1 − 1+ε

2

)
. Thus, using ε, we can calculate the fraction Zs|t(G;q,M)/Zst(G;q,M).

Plugging this (known) value into (10.8) and (10.9), we obtain

Cq(1 − δ)

Mk(1 + δ)
⩽
Zs|t(G;q,M)

Zst(G;q,M)
⩽ Cq(1 + δ)

Mk(1 − δ)
.

Now, we don’t know k, but C is an integer between 1 and 2m, whereasM > 24m, so there is only

one value of k that gives a solution C in the right range. Using the value of k, we can calculate C

exactly.

Technical issues arise both because we are somewhat constrained in what values ε we can

implement and because we won’t be able to discover the exact value of ε that we need (but we

will be able to approximate it closely). These technical issues provide no more difficulty than

they did in [GJ14]. Suppose first that we are able, for any given ε ∈ (M−2m, 1) to implement

γ ′ = −1−ε. Then our basic strategy is to do the interval shrinking, repeatedly sub-dividing the

current interval Θ(log(Mm2
)) times, so eventually we’ll get an interval of width at most M−m2

which contains an ε where ZTutte(2,γ) = 0. Goldberg and Jerrum [GJ14] have already shown

that knowing such an interval enables the exact calculation of C (so having a small interval is

OK — it is not necessary to know ε exactly).

The only issue, then, is implementing the weights γ ′ = −1−ε during the interval shrinking.

As in [GJ14] we cannot expect to implement any particular desired γ ′ precisely. However,

using stretching and thickening, we can implement a value that is within an additive error

of M−m2
/20 of any desired ε, and this suffices. The fact that we have algebraic, rather than

rational, numbers is irrelevant since stretchings and thickenings can be computed on algebraic

numbers.

Using stretching and thickening, we get the following corollary.

Corollary 10.13. Suppose K > 1 and that y ∈ (−1, 0) is an algebraic real number. Then Factor-

K-Nonzero-NormIsing(y) is #P-hard.
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Proof. We first show that Factor-(22/21)-Nonzero-NormIsing(y) is #P-hard. Consider the

edge interaction y ∈ (−1, 0). Using the correspondence from (10.3) and (10.5), this corresponds

directly to the quantity γ1 ∈ (−2,−1) in Lemma 10.12. We now consider how to use y to

implement the quantity γ2. A 2-thickening from (x,y) gives an effective weight (x ′,y ′) with

y ′ = y2 ∈ (0, 1) and x ′ = 2/(y ′ − 1) + 1 < −1. Then a 2-stretch from (x ′,y ′) gives an effective

weight (x ′′,y ′′) with x ′′ = (x ′)2 > 1 and y ′′ = 2/(x ′′ − 1) + 1 > 1, corresponding γ2 > 0, as

required.

We apply Lemma 10.8 to reduce from Factor-(22/21)-Nonzero-NormIsing(y) to Factor-

K-Nonzero-NormIsing(y).

Using Lemma 10.4 and the trivial reduction from Factor-K-Nonzero-NormIsing(y) to Fac-

tor-K-NormIsing(y) and from ComplexApx-Nonzero-Ising(y) to ComplexApx-Ising(y) we

get the following.

Corollary 10.14. Let y ∈ (−1, 0) be an algebraic real number. Then for any K > 1, Factor-K-

NormIsing(y) and ComplexApx-Nonzero-Ising(y) and ComplexApx-Ising(y) are #P-hard.

Complex Weights

Next we study complex weights.

Lemma 10.15. Let θ ∈ [0, 2π) and θ ̸∈ {0, π2 ,π, 3π
2 }. There exists a positive integer k such that

kθ ∈ (π2 ,π) ∪ (π, 3π
2 ) modulo 2π.

Proof. Clearly if θ ∈ (π2 ,π) ∪ (π, 3π
2 ) then we are done by letting k = 1. Otherwise θ ∈ (0, π2 ) ∪

(3π
2 , 2π). If θ is a irrational fraction of 2π then we can go through the whole unit circle by

taking multiple of θ. So assume θ = 2πa
b

where a and b are co-prime and b = 3 or b ⩾ 5 as

θ ̸∈ {0, π2 ,π, 3π
2 }. Moreover b = 3 contradicts to θ ∈ (0, π2 )∪(

3π
2 , 2π). Hence b ⩾ 5 and there exists

an integer t ≠ b/2 such that b < 4t < 3b. As a and b are relatively prime, there exist integers

l1, l2 such that l1a+ l2b = 1 and l1 > 0. It is easy to see that tl1θ = 2πtl1a
b

= −2πtl2 + 2πt
b

. As

t/b ∈ (1/4, 1/2) ∪ (1/2, 3/4) we have that 2πt
b
∈ (π2 ,π) ∪ (π, 3π

2 ).

The following lemma enables us to determine the complexity of evaluating the Ising partition

function when the complex edge interaction y ∈ Q is on the unit circle.
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Lemma 10.16. Let y = eiθ ∈ C be an algebraic complex number such that θ ∈ [0, 2π) and

θ ̸∈ {0, π2 ,π, 3π
2 }. There exists an algebraic real number y ′ ∈ (−1, 0) that can be implemented by

a sequence of stretchings and thickenings from y.

Proof. By Lemma 10.15, there exists a positive integer k that kθ ∈ (π2 ,π) ∪ (π, 3π
2 ). As a k-

thickening realizes yk = eikθ, we may assume θ ∈ (π2 ,π) ∪ (π, 3π
2 ).

Since θ ̸∈ {0, π2 ,π, 3π
2 }, we have cos θ ≠ 1 and sin θ cos θ ≠ 0. The latter implies that sinθ +

cos θ ≠ 1. Let x = y+1
y−1 . Note that x = sinθ

cosθ−1 i. Moreover θ ∈ (π2 ,π) ∪ (π, 3π
2 ), implies that

cos θ < 0 and hence |x| < 1. We do a 2-stretch and the effective weight is y ′ = 1 − 2
|x|2+1

∈

(−1, 0).

Combining Lemma 10.16 with Proposition 10.6, Corollary 10.13, Lemma 10.11, and Corol-

lary 10.14 we get the following corollary.

Corollary 10.17. Let y = eiθ ∈ C be an algebraic complex number such that θ ∈ [0, 2π) and

θ ̸∈ {0, π2 ,π, 3π
2 }. Then for any K > 1, Factor-K-Nonzero-NormIsing(y), Distance-(π/3)-

Nonzero-ArgIsing(y) and ComplexApx-Nonzero-Ising(y) are #P-hard. Hence, so are the

un-relaxed versions of all three problems.

The hardness on the unit circle extends directly to the whole imaginary axis.

Lemma 10.18. For any y = ri and r ≠ 0,±1 where r is algebraic. There exists an algebraic

real number y ′ ∈ (−1, 0) that can be implemented by a sequence of stretchings and thickenings

from y.

Proof. If 0 < |y| < 1, then a 2-thickening yields effective weight y2 = −r2 ∈ (−1, 0). Let y ′ = −r2

and the claim holds.

Otherwise suppose |y| > 1. We know that a k-stretch yields the weight zk = 1 + 2/(xk − 1)

where x = 1 + 2/(y − 1) = (y + 1)/(y − 1). Re-arranging, we find that zk =
(y+1)k+(y−1)k

(y+1)k−(y−1)k . We

will now argue that zk is purely imaginary. To see this, note that monomials in the numerator

all have degrees of the same parity as k, whereas those in the denominator have degrees of

the same parity as k − 1. Therefore, it must be the case that the numerator is real and the

denominator is purely imaginary, or vice versa. In either case, zk is purely imaginary. Therefore,
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if we can find a positive integer k such that 0 < |zk| < 1 then we have reduced our problem to

the previous case.

Since y is purely imaginary, we have that |y + 1| = |y − 1|. Since x = (y + 1)/(y − 1), this

implies that |x| = 1. It is easy to see that 0 < |zk| < 1 if and only if |xk + 1| < |xk − 1| and

xk ≠ −1. This in turn is equivalent to arg
(
xk
)
∈
(
π
2 ,π

)
∪
(
π, 3π

2

)
. By Lemma 10.15, such a k

always exists unless arg(x) = tπ
2 where t = 0, 1, 2, 3, in which case y = ±1,±i and contradicts

our assumption.

Combining Lemma 10.18 with Proposition 10.6, Corollary 10.13, Lemma 10.11, and Corol-

lary 10.14, we get the following corollary.

Corollary 10.19. Let y = ri where r ≠ 0,±1 and r is algebraic. Let K > 1. Then Factor-K-

Nonzero-NormIsing(y), Distance-(π/3)-Nonzero-ArgIsing(y) and ComplexApx-Nonzero-

Ising(y) are #P-hard. Hence, so are the un-relaxed versions of all three problems.

Finally, this hardness can be extended to some algebraic complex numbers off of the unit

circle.

Lemma 10.20. Let y = reiθ be an algebraic complex number such that r > 0 and θ = aπ
2b , where

a and b are two co-prime positive integers and a is odd. There exists an algebraic real number

y ′ ∈ (−1, 0) that can be implemented by a sequence of stretchings and thickenings from y.

Proof. If r = 1 then we are done by Lemma 10.16. Otherwise r ≠ 1 and by a b-thickening it

reduces to the case of Lemma 10.18.

Corollary 10.21. Let y = reiθ be an algebraic complex number such that r > 0 and θ = aπ
2b ,

where a and b are two co-prime positive integers and a is odd. Then for any K > 1, Factor-K-

Nonzero-NormIsing(y), Distance-(π/3)-Nonzero-ArgIsing(y) and ComplexApx-Nonzero-

Ising(y) are #P-hard. Hence, so are the un-relaxed versions of all three problems.

To obtain obtain NP-hardness results for other values of y, we start with the well-known

NP-hard problem Max-Cut.
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Name Max-Cut

Instance A (multi)graph G and a positive integer b.

Output Is there a cut of size at least b.

Lemma 10.22. SupposeK > 1. Let y be an algebraic complex number such that |y| < 1 and y ≠ 0.

Then Factor-K-Nonzero-NormIsing(y) is NP-hard and so is ComplexApx-Nonzero-Ising(y).

Proof. We will reduce Max-Cut to Factor-K-Nonzero-NormIsing(y). Given a graph G and a

constant b, we want to decide whether G has a cut of size at least b. We do a k-thickening on

G, where k is the least positive integer such that 2m|y|k < 1/4. Then the effective edge weight

is yk = yk. Clearly |yk| = |y|k < 1.

Suppose the maximum cut of G has size c. Now rewrite (10.1) as

ZIsing(G;yk) =
c∑
i=0

Ciy
m−i
k ,

wherem is the number of edges in G and Ci is the number of configurations under which there

are exactly i bichromatic edges. Since the maximum cut of G has size c and G has m edges,∑m−c
i=0 Ci = 2m. Also, since 2m|yk| < 1, the i = c term dominates the sum, so ZIsing(G;yk) is

not equal to 0.

If c ⩾ b, then our choice of k together with the triangle inequality implies that

|ZIsing(G;yk)| = |Ccy
m−c
k +

c−1∑
i=0

Ciy
m−i
k | > Cc|yk|

m−c − 2m|yk|
m−c+1

> |yk|
m−c|1 − 2m|y|k| > 3

4 |yk|
m−b.

Otherwise we have c ⩽ b− 1 and

|ZIsing(G;yk)| = |

c∑
i=0

Ciy
m−i
k | <

c∑
i=0

Ci|yk|
m−i

⩽ 2m|yk|
m−b+1 < 1

4 |yk|
m−b

again by the triangle inequality and 2m|yk| < 1/4. Therefore we could solve Max-Cut in poly-

nomial time using an oracle for Factor-1.1-Nonzero-NormIsing(yk). By Proposition 10.6
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it suffices to use an oracle for Factor-1.1-Nonzero-NormIsing(y). By Lemma 10.8, an or-

acle for Factor-K-Nonzero-NormIsing(y) will do. Finally, Lemma 10.4 gives the result for

ComplexApx-Nonzero-Ising(y).

The other case, when the norm of y is larger than 1, can be shown to be NP-hard by reduction

from the previous case, unless the edge weight is real.

Lemma 10.23. SupposeK > 1. Let y be an algebraic complex number such that |y| > 1 and y ̸∈ R.

Then Factor-K-Nonzero-NormIsing(y) is NP-hard and so is ComplexApx-Nonzero-Ising(y).

Proof. We will prove that there exists a positive integer k such that the effective weight yk of a

k-stretch satisfies |yk| < 1. Then we are done by Lemma 10.22.

Recall that yk = xk+1
xk−1 where x = y+1

y−1 . Clearly |yk| < 1 if and only if |xk + 1| < |xk − 1|.

The latter is equivalent to arg(xk) = k arg(x) ∈ (π/2, 3π/2) (plus some multiple of 2π). Let

θ = arg(x) ∈ [0, 2π). The fact that |y| > 1 implies that θ ∈ [0,π/2) ∪ (3π/2, 2π). If θ = 0, then

y ∈ R, which is a contradiction. Therefore θ ∈ (0,π/2) ∪ (3π/2, 2π). By Lemma 10.15, there

exists a positive integer k such that kθ ∈ (π/2, 3π/2) modulo 2π. This is exactly what we need.

Moreover, k does not depend on the input G. This finishes our proof.

Proof of Theorems 10.2 and 10.3

Theorems 10.2 and 10.3 follow from the following combined theorem. The hardness result

in Item 3 of Theorem 10.2 (and its counterpart in Theorem 10.3) follows from Item 9 of the

combined theorem.

Theorem 10.24. Let y = reiθ be an algebraic complex number with θ ∈ [0, 2π). Suppose K > 1.

1. If y = 0 or if r = 1 and θ ∈ {0, π2 ,π, 3π
2 }, then Factor-K-NormIsing(y), Distance-(π/3)-

ArgIsing(y) and ComplexApx-Ising(y) are in FP.

2. If y > 1 is a real number then Factor-K-NormIsing(y) is in RP and Distance-(π/3)-

ArgIsing(y) is in FP.

3. If y is a real number in (0, 1), then Distance-(π/3)-ArgIsing(y) is in FP.
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4. If y < −1 is a real number, then Factor-K-Nonzero-NormIsing(y) is equivalent in com-

plexity to the problem of approximately counting perfect matchings in graphs and Dis-

tance-(π/3)-ArgIsing(y) is in FP.

5. If y is a real number in (−1, 0), then Factor-K-Nonzero-NormIsing(y) and Distance-

(π/3)-Nonzero-ArgIsing(y) are #P-hard.

6. If r = 1 and θ ̸∈ {0, π2 ,π, 3π
2 }, then Factor-K-Nonzero-NormIsing(y), Distance-(π/3)-

Nonzero-ArgIsing(y), and ComplexApx-Nonzero-Ising(y) are #P-hard.

7. If θ ∈ {π2 , 3π
2 } and r ̸∈ {−1, 0, 1}, then Factor-K-Nonzero-NormIsing(y), Distance-(π/3)-

Nonzero-ArgIsing(y), and ComplexApx-Nonzero-Ising(y) are #P-hard.

8. If r > 0 and θ = aπ
2b , where a and b are two positive integers that are co-prime and a

is odd, then Factor-K-Nonzero-NormIsing(y), Distance-(π/3)-Nonzero-ArgIsing(y),

and ComplexApx-Nonzero-Ising(y) are #P-hard.

9. If r < 1 and y ≠ 0, then Factor-K-Nonzero-NormIsing(y) and ComplexApx-Nonzero-

Ising(y) are NP-hard.

10. If r > 1 and θ ̸∈ {0,π}, then Factor-K-Nonzero-NormIsing(y) is NP-hard, and so is

ComplexApx-Nonzero-Ising(y).

Proof. Item 1 is from [JVW90]. The randomised algorithm referred to in Item 2 is from [JS93].

See also Lemma 10.7 and the surrounding text for a discussion of algebraic numbers and ac-

curacy parameters. The deterministic algorithm referred to in Items 2 and 3 is trivial because

the argument of a positive real number is 0. The approximation equivalence in Item 4 is from

[GJ08], since one can decide in polynomial time the existence of perfect matchings to lift the

non-zero restriction. The deterministic sign algorithm in Item 4 is from [GJ14]. Item 5 is

from Lemma 10.11 and Corollary 10.13. Item 6 is from Corollary 10.17. Item 7 is from Corol-

lary 10.19. Item 8 is from Corollary 10.21. Item 9 is from Lemma 10.22. Finally,item 10 is from

Lemma 10.23.
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10.6 Quantum Circuits and Counting Complexity

In this section we explain the connection between quantum computation and complex weighted

Ising models. We begin with some basic notions about quantum circuits. We view qubits |0⟩

and |1⟩ as column vectors
[

1
0

]
and

[
0
1

]
. Similarly ⟨0| and ⟨1| are row vectors (1, 0) and (0, 1).

For x ∈ {0, 1}n, let |x⟩ denote the tensor product ⊗nj=1

∣∣xj⟩ and similarly ⟨x|.

Suppose C is a quantum circuit on n qubits and consists of m quantum gate U1, . . . ,Um

sequentially. A quantum gate is a function taking k input and k output variables and returning

a value in C. Such a gate is called k-local and has a natural 2k by 2k square unitary matrix

representation. In a circuit we also need to specify on which qubits the gate acts upon. To

make the notation uniform we view unaffected qubits as simply copied and associate each

quantum gate with the following 2n by 2n square unitary matrix. Let U be a quantum gate and

x, y ∈ {0, 1}n two vectors specifying the input and output on all n qubits. Define the 2n by 2n

matrix MU corresponding to gate U as MU;x,y = U(x, y).

For example, let H be the Hadamard gate 1
√

2

[
1 1
1 −1

]
acting on the first qubit and suppose

there are two qubits in total, illustrated as in Figure 10.2. Then the matrix MH is 1
√

2

[
1 1
1 −1

]
⊗

[
1 0
0 1

]
= 1

√
2

[ 1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

]
.

Using this notation, given an input x ∈ {0, 1}n, the output of the quantum circuit C is a

random variable Y subject to the distribution

PrC(Y = y) =

∣∣∣∣∣∣⟨y|
m∏
j=1

MUm+1−j
|x⟩

∣∣∣∣∣∣
2

, (10.11)

where y ∈ {0, 1}n. It is not necessary that we measure all qubits in the output. We may measure

a subset I of all n qubits. Let y ′ ∈ {0, 1}s where |I| = s. Then the output is a random variable Y ′

subject to the distribution

PrC;I(Y
′ = y ′) =

∑
z∈{0,1}n such that z|I=y ′

PrC(Y = z). (10.12)

Alternatively, we may treat such marginal probability in the counting perspective, as a par-
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H

Figure 10.2: Gate H

applying only on the
first qubit.

x1

z1

U2

y1

x2

U1

z2
y2

x3

z3
y3

x4

z4
y4

Figure 10.3: Two quantum gates U1 and U2

composed together.

tition function in the “sum of product” fashion. First let us consider composing two quantum

gates, say U1 and U2. Let input variables of U1 be {xj}, intermediate variables between U1 and

U2 be {zj}, and outputs of U2 be {yj}. Then the composition U of U1 followed by U2 is given by

U(x, y) =
∑

σ:{zj}→{0,1}

U1(x,σ(z))U2(σ(z), y), (10.13)

where the summation is over all possible assignment of z to {0, 1}. Figure 10.3 illustrates the

composition of gate U1 acting upon qubits 2, 3, 4 followed by U2 acting upon 1, 2. In the matrix

notation, it is easy to see that MU =MU1MU2 .

We associate an intermediate variable zj,k to each edge on qubit k between gate Uj and

Uj+1 for all 2 ⩽ j ⩽ m − 1 and 1 ⩽ k ⩽ n. Denote by zj the vector {zj,k | 1 ⩽ k ⩽ n} and

z = ∪m−1
j=2 zj. As the initial input and output of a quantum circuit are column vectors and

row vectors respectively, they may be treated as function/gates with no output variables or

no input variables. In particular, on the product input state |x⟩ input variables are set to {xk}

where x ∈ {0, 1}n. Using (10.13) recursively we can rewrite (10.11) as follows:

PrC(Y = y) =

∣∣∣∣∣∣
∑

σ:z→{0,1}

U1(x,σ(z1))Um(σ(zm−1), y)
m−1∏
j=2

Uj(σ(zj−1),σ(zj))

∣∣∣∣∣∣
2

. (10.14)

To simulate classically a quantum circuit, one can either (approximately) compute the prob-

ability PrC(Y = y) — this is called “strong simulation” — or one can sample from a distribution

that is sufficiently close to the one given by (10.11) or (10.14). This is called “weak simulation”
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IQP and the Ising partition function

IQP, which stands for “instantaneous quantum polynomial time”, is characterised by a re-

stricted class of quantum circuits introduced by Shepherd and Bremner [SB09]. Bremner et

al. [BJS11] showed that if IQP can be simulated classically in the sense of “weak simulation”

with multiplicative error, then the polynomial hierarchy collapses to the third level. Fujii and

Morimae [FM13] showed that the marginal probabilities of possible outcomes of IQP circuits

correspond to partition functions of Ising models with complex edge weights.

The key property of IQP is that all gates are diagonal in the |0⟩ ± |1⟩ basis. Therefore all

gates are commutable. In other words, there is no temporal structure and hence it is called

“instantaneous”. Let H be the Hadamard gate 1√
2

[
1 1
1 −1

]
. If a gate U is diagonal in the |0⟩ ± |1⟩

basis, there exists a diagonal matrix D such that MU = H⊗nDH⊗n. Moreover H is its own

inverse; That is, HH = I2. Any two H’s between each pair of gates cancel. This leads to an

alternative view of IQP circuit in which each qubit line starts and ends with an H gate and all

gates in between are diagonal.

Definition 10.25. An IQP circuit onn qubit lines is a quantum circuit with the following structure:

each qubit line starts and ends with an H gate, and all other gates are diagonal.

We will focus particularly on 1, 2-local IQP, which means that every intermediate gate acts

on 1 or 2 qubits. It was shown that a classical weak simulation of IQP with multiplicative

error implies the polynomial hierarchy collapse to the third level [BJS11]. Let Z =
[

1 0
0 −1

]
. The

hardness of simulation holds even if we restrict gates to the phase gate ei(π/8)Z =
[
eiπ/8 0

0 e−iπ/8

]
and controlled Z-gateCZ =

[ 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]
other thanH gates on two ends of each line. We will show

that these circuits correspond to Ising models with complex edge interactions. Therefore the

strong simulation of these circuits, which is to compute the marginal probabilities, is #P-hard,

even allowing an error of any factor K > 1.

To show the relationship between these circuits and Ising partition functions, it is conve-

nient to use another set of gates. Let Pθ = eiθZ =
[
eiθ 0
0 e−iθ

]
andRθ = eiθZ⊗Z =

[
eiθ 0 0 0
0 e−iθ 0 0
0 0 e−iθ 0
0 0 0 eiθ

]
.

Note from (10.11) that we may multiply a gate by any norm 1 constant without affecting the
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outcome of the gate. By multiplying by e−iπ/4, we may decompose CZ as:

e−iπ/4
[ 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 −1

]
=

[
eiπ/8 0 0 0

0 e−iπ/8 0 0
0 0 e−iπ/8 0
0 0 0 eiπ/8

]2

×

[
eiπ/8 0 0 0

0 e−iπ/8 0 0
0 0 eiπ/8 0
0 0 0 e−iπ/8

]14

×

[
eiπ/8 0 0 0

0 eiπ/8 0 0
0 0 e−iπ/8 0
0 0 0 e−iπ/8

]14

=
(
Rπ/8

)2 (
Pπ/8 ⊗ I2

)14 (
I2 ⊗ Pπ/8

)14
. (10.15)

Hence we can replace every CZ gate on qubits j, k by 2 copies of Rπ/8 on j, k, 14 copies of Pπ/8

on qubit j, and 14 Pπ/8 on qubit k. It is easy to see that Rπ/8 can be replaced by CZ and Pπ/8 as

well. We may therefore assume every gate is either Pπ/8 on 1 qubit or Rπ/8 on 2 qubits without

changing the power of the circuit. In general we give the following definition.

Definition 10.26. An IQP1,2(θ) circuit on n qubit lines is a quantum circuit with the following

structure: each qubit line starts and ends with an H gate, and every other gate is either Pθ on 1

qubit or Rθ on 2 qubits. We assume the input state is always |0n⟩.

An example IQP1,2(θ) circuit is given in Figure 10.4.

We consider the following strong simulation problem where K > 1 is an error parameter.

Name Factor-K-StrongSimIQP1,2(θ).

Instance An IQP1,2(θ) circuit C, a subset I ⊆ [n] of lines, and a string y ∈ {0, 1}|I|.

Output A rational number p such that PrC;I(Y = y)/K ⩽ p ⩽ K PrC;I(Y = y).

We will show that IQP1,2(θ) circuits correspond to Ising models with complex edge inter-

actions. Therefore their strong simulation is #P-hard, even allowing an error of any factor

K > 1.

Theorem 10.27. Suppose K > 1 and θ ∈ (0, 2π). If eiθ is an algebraic complex number and

ei8θ ≠ 1, then Factor-K-StrongSimIQP1,2(θ) is #P-hard.

The relationship between IQP1,2(θ) circuits and Ising models was first observed by Fujii

and Morimae [FM13]. These connections will be shown next. For completeness we include

our own proofs, which have a more combinatorial flavour than the original ones by Fujii and
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Input Output

|0〉 H • • H |0〉

|0〉 H • • H |1〉

|0〉 H • • • H |0〉

|0〉 H • Pθ H |1〉

Figure 10.4: An IQP1,2(θ) cir-
cuit. We use two solid dots to
denote Rθ gate as it is diagonal
and symmetric.

v1 v2

τ(v2) = −1

v3

v4

τ(v4) = −e−i2θ

ei2θ

ei2θ ei2θ

ei2θ

Figure 10.5: The equivalent
Ising instance to the circuit in
Figure 10.4.

Morimae [FM13]. We introduce the following non-uniform Ising model which has been studied

previously. See, for example [Sok05]. Let G = (V ,E) be a (multi)graph. The edge interaction is

specified by a function φ : E → C and the external field is specified by a function τ : V → C.

The partition function is defined as

ZIsing(G;φ, τ) =
∑

σ:V→{0,1}

∏
e=(vj,vk)∈E

φ(e)δ(σ(vj),σ(vk))
∏
v∈V

τ(v)σ(v), (10.16)

where δ(x,y) = 1 if x = y and δ(x,y) = 0 if x ≠ y. We write ZIsing(G;y, τ) when φ(e) = y

is a constant function and similarly ZIsing(G;φ, λ) when τ(v) = λ. Notice that this notation is

consistent with (10.1).

We will show that the following problem is related to Factor-K-StrongSimIQP1,2(θ) when

eiθ is a root of unity.

Name Factor-K-NormIQPIsing(θ)

Instance A (multi)graph G with an edge interaction function φ(−) taking value eiθ or e−iθ, and

an external field function τ so that for each vertex v there are non-negative integers av

and bv so that τ(v) = (−1)av
(
eiθ
)bv or τ(v) = (−1)av

(
e−iθ

)bv .
Output A rational number p such that |ZIsing(G;φ, τ)|/K ⩽ p ⩽ K|ZIsing(G;φ, τ)|.

We will first consider inputs to IQP1,2(θ) where I = [n] so all qubits are measured. Given an

IQP1,2(θ) circuit C on n qubits and a string y ∈ {0, 1}n, we can construct a non-uniform Ising
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instance GC with edge interaction ei2θ and external field τC;y such that

PrC(Y = y) = 2−2n
∣∣∣ZIsing(GC; ei2θ, τC;y)

∣∣∣2 . (10.17)

The construction is as follows. The vertex set {vj} contains n vertices and each vertex corre-

sponds to a qubit. For each gate Rθ on two qubits j, k, add an edge (j, k) in GC. For qubit j, let

pj be the number of gates Pθ acting on qubit j in C. Let τC;y(vj) = e
−i(2pjθ)(−1)yj . An example

of the construction is given in Figure 10.5.

Lemma 10.28. Let C be an IQP1,2(θ) circuit on n qubits and y ∈ {0, 1}n be the output. Let GC

and τC;y be constructed as above. Then (10.17) holds.

Proof. Suppose C is composed sequentially by U1 = H⊗n, U2, …, Um−1, Um = H⊗n, where Uj

is either Pθ on 1 qubit or Rθ on 2 qubits for 2 ⩽ j ⩽ m− 1. Notice that U1(x, x ′) = Um(x, x ′) =

2−n/2 ∏n
k=1(−1)xkx

′
k . As the input |x⟩ = |0n⟩, we can rewrite (10.14):

PrC(Y = y) =

∣∣∣∣∣∣
∑

σ:z→{0,1}

U1(0,σ(z1))Um(σ(zm−1), y)
m−1∏
j=2

Uj(σ(zj−1),σ(zj))

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣2−n
∑

σ:z→{0,1}

n∏
k=1

(−1)0·σ(z1,k)
n∏
k=1

(−1)ykσ(zm−1,k)
m−1∏
j=2

Uj(σ(zj−1),σ(zj))

∣∣∣∣∣∣
2

= 2−2n

∣∣∣∣∣∣
∑

σ:z→{0,1}

n∏
k=1

(−1)ykσ(zm−1,k)
m−1∏
j=2

Uj(σ(zj−1),σ(zj))

∣∣∣∣∣∣
2

(10.18)

Let Q denote the quantity inside the norm, that is,

Q :=
∑

σ:z→{0,1}

n∏
k=1

(−1)ykσ(zm−1,k)
m−1∏
j=2

Uj(σ(zj−1),σ(zj)).

Since Uj’s are diagonal for 2 ⩽ j ⩽ m − 1, any configuration σ with a non-zero contribution to

Q must satisfy that for any k, σ(z1,k) = σ(z2,k) = · · · = σ(zm−1,k). Therefore we may replace

zj,k by a single variable vk for all 1 ⩽ j ⩽ m− 1 so that

Q =
∑

σ:V→{0,1}

n∏
k=1

(−1)ykσ(vk)
m−1∏
j=2

Uj(σ(V),σ(V)).
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Moreover, if Uj is the gate Pθ on qubit k, then Uj(σ(V),σ(V)) = eiθ
(
e−i2θ

)σ(vk). If Uj is the

gate Rθ on qubits k1 and k2, then Uj(σ(V),σ(V)) = e−iθ
(
ei2θ

)δ(σ(vk1
),σ(vk2

))
, where δ(x,y) = 1

if x = y and δ(x,y) = 0 if x ≠ y. Recall that pk is the number of Pθ gates on qubit k and

τC;y(vk) = e
−i(2pkθ)(−1)yk . Collecting all the contributions, we have

Q = ei(m1−m2)θ
∑

σ:V→{0,1}

(
ei2θ

)m(σ)
n∏
k=1

(−1)ykσ(vk)
(
e−i2θ

)pkσ(vk)
= ei(m1−m2)θ

∑
σ:V→{0,1}

(
ei2θ

)m(σ)
n∏
k=1

τC;y(vk)
σ(vk) (10.19)

= ei(m1−m2)θZIsing(GC; ei2θ, τC;y),

where mj is the number of j qubit(s) gates for j = 1, 2, and, from (10.1), m(σ) is the number of

monochromatic edges under σ. We get (10.17) by substituting (10.19) in (10.18).

Similar results hold when some qubits are not measured. To show it, we need the follow-

ing fact. It can be viewed as an application of Parsevals’s identity on the length-2n vector

{Cz} indexed by z ∈ {0, 1}n over an orthonormal basis {ez} where basis element ez has value

2−n
2 (−1)z·z

′
in position z ′. We include a proof for completeness.

Claim 10.29. Let {Cz} be 2n complex numbers where z runs over {0, 1}n. Then we have

∑
z ′∈{0,1}n

∣∣∣∣∣∣
∑

z∈{0,1}n

Cz(−1)z·z
′

∣∣∣∣∣∣
2

= 2n
∑

z∈{0,1}n

|Cz|
2 .

Proof. Notice that for two complex numbers A and B,

|A+ B|2 + |A− B|2 =
(
|A|2 + |B|2 − 2|A||B| cos θ

)
+
(
|A|2 + |B|2 + 2|A||B| cos θ

)
= 2

(
|A|2 + |B|2

)
(10.20)
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where θ is the angle from A to B. Hence we have

∑
z ′∈{0,1}n

∣∣∣∣∣∣
∑

z∈{0,1}n

Cz(−1)z·z
′

∣∣∣∣∣∣
2

=
∑

z ′∈{0,1}n

s.t. z ′n=0

∣∣∣∣∣∣
∑

z∈{0,1}n

Cz(−1)z·z
′

∣∣∣∣∣∣
2

+
∑

z ′∈{0,1}n

s.t. z ′n=1

∣∣∣∣∣∣
∑

z∈{0,1}n

Cz(−1)z·z
′

∣∣∣∣∣∣
2

=
∑

y ′∈{0,1}n−1

∣∣∣∣∣∣
∑

y∈{0,1}n−1

Cy0(−1)y·y
′
+

∑
y∈{0,1}n−1

Cy1(−1)y·y
′

∣∣∣∣∣∣
2

+

∑
y ′∈{0,1}n−1

∣∣∣∣∣∣
∑

y∈{0,1}n−1

Cy0(−1)y·y
′
−

∑
y∈{0,1}n−1

Cy1(−1)y·y
′

∣∣∣∣∣∣
2

= 2
∑

y ′∈{0,1}n−1


∣∣∣∣∣∣

∑
y∈{0,1}n−1

Cy0(−1)y·y
′

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

y∈{0,1}n−1

Cy1(−1)y·y
′

∣∣∣∣∣∣
2
 ,

where in the last line we apply (10.20). The claim holds by induction.

We then have the following reduction.

Lemma 10.30. Let K > 1 and θ ∈ [0, 2π). Then

Factor-K-StrongSimIQP1,2(θ) ⩽T Factor-K2-NormIQPIsing(2θ).

Proof. If all qubits in the input to Factor-K-StrongSimIQP1,2(θ) are measured, then the result

follows from Lemma 10.28. Otherwise, without loss of generality we assume the firstn−s qubits

are measured. LetC, I = [n−s] and y ′ ∈ {0, 1}n−s be the input to Factor-K-StrongSimIQP1,2(θ).

We use (10.12), (10.18), and the first line of (10.19):

PrC;I(Y
′ = y ′) =

∑
z ′∈{0,1}s

PrC(Y = y ′z ′)

= 2−2n
∑

z ′∈{0,1}s

∣∣∣∣∣ ∑
σ:V→{0,1}

(
ei2θ

)m(σ)
(

n∏
l=n−s+1

(−1)z
′
l−(n−s)σ(vl)

(
e−i2θ

)plσ(vl))
(
n−s∏
k=1

(−1)y
′
kσ(vk)

(
e−i2θ

)pkσ(vk))∣∣∣∣∣
2

= 2−2n
∑

z ′∈{0,1}s

∣∣∣∣∣∣
∑

z∈{0,1}s

Qz(−1)z·z
′

∣∣∣∣∣∣
2

, (10.21)
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v1 v2(v
′
2)

v3(v
′
3)v4

τ(v4) = −e−i2θ v′1

v′4
τ(v′

4
) = −ei2θ

ei2θ

ei2θ

ei2θ

e−i2θ

e−i2θ

e−i2θ

Figure 10.6: The equivalent Ising instance to the circuit in Figure 10.4, if qubits 2
and 3 are unmeasured.

where for z ∈ {0, 1}s, Qz is the contribution of assigning zl−n+s to vl without the possible −1

external field, that is,

Qz =

n∏
l=n−s+1

(
e−i2θ

)zl−n+spl ∑
σ:V→{0,1} such that

for n−s+1⩽l⩽n,σ(vl)=zl−n+s

(
ei2θ

)m(σ)

·
n−s∏
k=1

(−1)y
′
kσ(vk)

(
e−i2θ

)pkσ(vk)
.

Apply Claim 10.29 on (10.21):

PrC;I(Y
′ = y ′) = 2−2n+s

∑
z∈{0,1}s

|Qz|
2 . (10.22)

Moreover we have

|Qz|
2 =

∣∣∣∣∣∣∣∣
∑

σ:V→{0,1} such that
for n−s+1⩽l⩽n,σ(vl)=zl−n+s

(
ei2θ

)m(σ)
n−s∏
k=1

(−1)y
′
kσ(vk)

(
e−i2θ

)pkσ(vk)
∣∣∣∣∣∣∣∣
2

.

We construct the following instance of Factor-K2-NormIQPIsing(2θ). We first construct
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GC = (V ,E) with edge interaction ei2θ as before. The vertex set {vj} contains one vertex for

each of the n qubits. For each gate Rθ on two qubits j, k we add edge (j, k) with edge interaction

ei2θ to GC. Now make a copy G ′
C = (V ′,E ′) such that the edge interaction is ei2θ = e−i2θ. Let

φC;I be this edge interaction function. Then we identify vertices vl with v ′l for all n − s + 1 ⩽

l ⩽ n. Let U be the set of these identified vertices and let V1 = V − U and V ′
1 = V ′ − U.

The external field τ = τC;I,y ′ is defined as follows: for any v ∈ U, τ(v) = 1; for any vj ∈ V1,

τ(vj) = e−i(2pjθ)(−1)y
′
j ; and for any v ′j ∈ V ′

1, τ(v ′j) = τ(vj) = ei(2pjθ)(−1)y
′
j . Informally, this

instance was formed by putting GC and its complement together and identifying vertices that

correspond to unmeasured qubits. Note that if two vertices in U are connected by an edge,

then they are actually connected by two edges, and the product of the two edge interactions

is 1. We therefore remove all edges with both endpoints in U. Call the resulting graph HC.

One can verify that (HC,φC;I, τC;I,y ′) is a valid instance of Factor-K2-NormIQPIsing(2θ). An

example of the construction is given in Figure 10.6.

Fix an assignment z ∈ {0, 1}s on U. The contribution Zz to ZIsing(HC;φC;I, τC;I,y ′) can be

counted in two independent parts, V and V ′. Hence we have

Zz =

 ∑
σ1:V1→{0,1}

(
ei2θ

)m∗(σ1,z) n−s∏
j=1

τ(vj)
σ(vj)

 ·
 ∑
σ ′

1:V
′
1→{0,1}

(
e−i2θ

)m ′
∗(σ

′
1,z) n−s∏

j=1

τ(vj)
σ(v ′

j)


=

∣∣∣∣∣∣
∑

σ1:V1→{0,1}

(
ei2θ

)m∗(σ1,z) n−s∏
j=1

τ(vj)
σ(vj)

∣∣∣∣∣∣
2

,

where given the configurations σ1 (or σ ′
1), m∗(σ1, z) (or m ′

∗(σ
′
1, z)) is the number of monochro-

matic edges with at least one endpoint in V (or V ′). Recall that τ(vj) = e−i(2pjθ)(−1)y
′
j . Compar-

ingZz to |Qz|
2, the only difference is that in |Qz|

2, ei2θ is raised to the number of monochromatic

edges in the whole V instead of V1. However for any monochromatic edge inU, its contribution

is independent from the configuration σ, and hence can be moved outside of the sum. All such

terms are cancelled after taking the norm. This implies Zz = |Qz|
2. Therefore (10.22) can be
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rewritten as

PrC;I(Y
′ = y ′) = 2−2n+s

∑
z∈{0,1}s

Zz

= 2−2n+sZIsing(HC;φC;I, τC;I,y ′) = 2−2n+s|ZIsing(HC;φC;I, τC;I,y ′)|. (10.23)

The lemma follows from the above equation.

Remark In fact, the construction of HC can be further simplified. If v ∈ V and v ′ ∈ V ′ connect

to some u ∈ U, we can replace edges (u, v) and (u, v ′) by a new edge (v, v ′) with an Ising

interaction 2
ei4θ+e−i4θ

. (In case ei4θ + e−i4θ = 0 this interaction is equality and we identify v

with v ′.) Therefore we can reduce an instance of Factor-K-StrongSimIQP1,2(θ) to an Ising

model of size linear in |I|, the number of measured qubits. If |I| = O(logn), then the reduced

Ising instance is tractable and so is the simulation. This matches known strong simulation

results (see [BJS11, Theorem 3.4], the remark following that theorem and also [She10].)

The reduction also works in the other direction when eiθ is a root of unity.

Theorem 10.31. Let eiθ be a root of unity and let K > 1. Then

Factor-K-NormIQPIsing(2θ) ≡T Factor-K1/2-StrongSimIQP1,2(θ).

Proof. Lemma 10.30 implies a reduction from the right hand side to the left hand side. In the

rest of the proof we show the other direction. As eiθ is a root of unity, there exists a positive

integer t such that e−i2θ = ei2tθ. Given an instance (G,φ, τ) of Factor-K-NormIQPIsing(2θ),

we may replace each edge of interaction e−i2θ by t parallel edges of weight ei2θ. Moreover, we

may assume the external field is of the form τ(vj) = (−1)aj
(
e−i2θ

)bj for the same reason.

We construct an IQP1,2(θ) circuit C on n = |V | qubits. For each edge (vj, vk) ∈ E, we add

a quantum gate Rθ on qubits j and k. For each 1 ⩽ j ⩽ n, we add bj many quantum gate Pθ

on qubits j and let the output yj = 1 on qubit j if aj is odd. By Lemma 10.28 we see that

22n PrC(Y = y) =
∣∣ZIsing(G; ei2θ, τ)

∣∣2.
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Suppose the Ising instance in the proof of Theorem 10.31 has no external field and has a

constant edge interaction ei2θ. Then it is not hard to see that above construction does not rely

on eiθ being a root of unity and works for general θ. Hence we have the following lemma.

Lemma 10.32. Let eiθ ∈ C and K > 1. Then

Factor-K-NormIsing(eiθ) ⩽T Factor-K1/2-StrongSimIQP1,2(θ/2).

It is easy to see that Theorem 10.27 follows from Lemma 10.32 and Corollary 10.17.

In a related result, Bremner et al. [BJS11, Corollary 3.3] showed that weakly simulating IQP

with multiplicative error implies that the polynomial hierarchy collapses to the third level. More

precisely, their result is the following. Suppose C is an IQP1,2(π/8) circuit on n qubits. If there

exists a classical randomized polynomial time procedure to sample a binary string Z of length

n, such that for every string y ∈ {0, 1}n and any constant 1 ⩽ K <
√

2,

PrC(Y = y)/K ⩽ Pr(Z = y) ⩽ K PrC(Y = y),

then the polynomial hierarchy collapses to the third level. The usual measure for determining

the quality of a sampling procedure is total variation distance, which is weaker than “multi-

plicative error”. So the result in [BJS11] does not rule out weak simulation with small variation

distance. To see this, note that, if the multiplicative error is K, then obviously the total vari-

ation distance is at most K − 1. On the other hand, consider two distributions supported by

two n-bit Boolean strings. A sample from the first distribution is obtained uniformly choosing

each of the n bits. A sample from the second distribution is obtained by uniformly choosing

each of the first n − 1 bits. The last bit is 1 if all other bits are 0, and is chosen uniformly

otherwise. The total variation distance is 2−n, but the multiplicative error is infinity at the all 0

string. Note that the complexity implication “polynomial hierarchy collapses to the third level”

is apparently weaker than the consequence of strong simulation from Theorem 10.27, which

is FP = #P.

Strong simulation is also studied with respect to other classes of quantum circuits, see for

example [JV14]. The allowable error is usually taken to be additive and exponentially small,
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instead of the constant factors that we have studied here. For example, [JV14] requires that the

output be computed with k bits of precision in an amount of time that is polynomial in both k

and the size of the input. Additive error is quite different from multiplicative error. Also, the

amount of accuracy is important. Lemma 10.8 shows that there is no difference between a

constant factor and an FPRAS scenario, in which the error is allowed to be a factor of 1± 1/R

for a unary input R. On the other hand, achieving a multiplicative error of 1 ± 1/ exp(R) is an

entirely different matter.

10.7 Complex Ising with External Fields

At last, we turn our attention to Ising models with an external field λ ≠ 1. To obtain our hard-

ness results, we need an (exponential) lower bound on the relevant partition functions, which

will be developed in the next section. We will use some standard techniques from Diophantine

approximation. After that, we will extend our hardness results.

Lower Bounds on Partition Functions

Suppose we have two edge weights y and y ′ that are close. It is easy to bound the distance

between ZIsing(G;y) and ZIsing(G;y ′) additively, but not multiplicatively. To convert an absolute

error into a relative error, one needs some lower bound on the partition function. However,

when the edge interaction y is negative or complex, it is possible that the partition function

vanishes. Assuming that it doesn’t vanish, we would like to know how close to zero could it

get. When y is rational, an exponential lower bound is easy to obtain by a simple granularity

argument, but the argument is more difficult when y is not rational. In this section we give an

exponential lower bound which is valid when y is an algebraic number. The techniques that we

use are standard in transcendental number theory, see e.g. [Bug04].

We begin with some basic definitions from [Bug04]. For a polynomial with complex coeffi-

cients

P(x) =

n∑
i=0

aix
i = an

n∏
i=1

(x− αi),
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the (naive) height of P(x) is defined as H(P) := maxi{|ai|}. A more advanced tool, its Mahler

measure, is defined as

M(P) := |an|

n∏
i=1

max{1, |αi|}.

There is a standard inequality relating these two measures. It is proved for complex poly-

nomials in [Bug04, Lemma A.2]. For completeness, we include the proof (following [Bug04]) for

the case in which P(x) is a real polynomial, which is all that we require.

Lemma 10.33. Let P(x) be a non-zero real polynomial of degree n. Then M(P) ⩽
√
n+ 1 H(P).

Proof. First apply Jensen’s formula on P(x) and on the unit circle in the complex plane,

M(P) = exp

{∫1

0
log |P(e2iπt)|dt

}
.

The convexity of exponential functions implies

M(P) ⩽
∫1

0
|P(e2iπt)|dt ⩽

(∫1

0
|P(e2iπt)|2dt

)1/2

,

where the second inequality follows by the Cauchy-Schwarz inequality writing P(x) as f(x)g(x)

where g(x) = 1. The inner integral yields

∫1

0
|P(e2iπt)|2dt =

∫1

0


 n∑
j=0

aj cos(j · 2πt)

2

+

 n∑
j=0

aj sin(j · 2πt)

2
dt

=

n∑
i=0

a2
i + 2

∫1

0

∑
0⩽j<k⩽n

ajak(cos(j · 2πt) cos(k · 2πt) + sin(j · 2πt) sin(k · 2πt))dt

=

n∑
i=0

a2
i + 2

∑
0⩽j<k⩽n

ajak

∫1

0
cos((j− k) · 2πt)dt =

n∑
i=0

a2
i .

The claim holds as M(P) ⩽
(∑n

i=0 a
2
i

)1/2 ⩽
√
n+ 1 H(P).

Let y ∈ C be an algebraic number and its minimal polynomial over Z is Py(x). The degree

of Py(x) is called the degree of y and H(Py) is called the height of y, also denoted H(y).

We also need the following notion of resultants.
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Definition 10.34. Let P(x) = an
∏n
i=1(x−αi) and Q(x) = bm

∏m
i=1(x−yi) be two non-constant

polynomials. The resultant of P(x) and Q(x) is defined as

Res(P,Q) = amn b
n
m

∏
1⩽i⩽n

∏
1⩽i⩽m

(αi − yj).

It is a standard result that Res(P,Q) is an integer polynomial in the coefficients of P(x) and

Q(x). The resultant is also the determinant of the so-called Sylvester matrix. In particular,

when P(x) and Q(x) are integer polynomials, Res(P,Q) is always an integer, as the Sylvester

matrix is an integer matrix in this case. Moreover, we can rewrite the resultant as follows:

Res(P,Q) = amn
∏

1⩽i⩽n
Q(αi) = (−1)mnbnm

∏
1⩽j⩽m

P(yj).

Now we are ready to give a lower bound for any integer polynomial evaluated at an algebraic

number. It is a standard result in algebraic number theory. For completeness we provide a proof

here and the treatment is from [Bug04, Theorem A.1].

Lemma 10.35. Let P(x) be an integer polynomial of degree n, and y ∈ C be an algebraic number

of degree d. Then either P(y) = 0 or

|P(y)| ⩾ C−n
y ((n+ 1)H(P))−d+1 .

where Cy > 1 is an effectively computable constant that only depends on y.

Proof. Assume P(y) ≠ 0. Let Q(x) = bd
∏d
i=1(x − yi) be the minimal polynomial of y over Z

with y1 = y.

Suppose there is an j ≠ 1 such that P(yj) = 0. As Q(x) is the minimal polynomial of y, none

of yj could be a rational number. Hence there is an automorphism of the splitting field of Q(x)

that maps yj to y. Applying this automorphism on both sides of P(yj) = 0, we get P(y) = 0.

Contradiction!

Hence we have P(yi) ≠ 0 for all i and the resultant of P(x) and Q(x) is non-zero. Since
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Res(P,Q) is an integer, we have

1 ⩽ |Res(P,Q)| = |bd|
n

∏
1⩽i⩽d

|P(yi)|.

Clearly, by triangle inequality we have |P(yi)| ⩽ (n+ 1)H(P)(max{1, |yi|})n. It implies,

1 ⩽ |P(y)||bd|
n ((n+ 1)H(P))d−1

∏
2⩽i⩽d

(max{1, |yi|})
n

= |P(y)| ((n+ 1)H(P))d−1
(

M(Q)

max{1, |y|}

)n
⩽ |P(y)| ((n+ 1)H(P))d−1

(√
d+ 1 H(y)

)n
where the last inequality follows from Lemma 10.33. Therefore we have

|P(y)| ⩾ ((n+ 1)H(P))−d+1
(√
d+ 1 H(y)

)−n
.

Let Cy =
√
d+ 1 H(y) and the lemma holds.

Lemma 10.36. LetG be a graph and y ∈ C a non-zero algebraic number of degree d. There exists

a positive constant C > 1 depending only on y such that if ZIsing(G;y) ≠ 0, then |ZIsing(G;y)| >

C−m, where m is the number of edges in G.

Proof. Given a graph G, first suppose that G is not connected, Gi’s are the components of G.

Then ZIsing(G;y)=
∏
iZIsing(Gi;y). It is easy to see that if the claim holds for all components it

hold for G as well. Therefore in the following we may assume G is connected. Then m ⩾ n− 1

where n is the number of vertices.

We can rewrite ZIsing(G;y) as a polynomial in y as follows,

P(y) = ZIsing(G;y) =
m∑
i=0

Cjy
j,

where Cj is the number of configurations such that there are exactly j many monochromatic

edges. Notice that
∑m
j=0Cj = 2n, we have H(P) ⩽ 2n. Assume P(y) ≠ 0. Apply Lemma 10.35
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and we obtain

|P(y)| ⩾ C−m
y ((m+ 1)H(P))−d+1

⩾ (m+ 1)−d+1C−m
y 2−(d−1)n,

where Cy > 1 is a constant depending only on y. As m ⩾ n − 1, the right hand side decays

exponentially in m and the lemma follows.

Lemma 10.37. Let G be a graph and y, z ∈ C two roots of unity. Let n be the number of vertices

in G and m the number of edges. There exists a positive constant C > 1 depending only on y

and z such that if ZIsing(G;y, z) ≠ 0, then |ZIsing(G;y, z)| > C−m.

Proof. As in the previous lemma we may assume G is connected and m ⩾ n− 1. Suppose y is

of order d1 and z order d2. Let d be the least common multiple of d1 and d2. Then there exists

a root of unity w of order d such that y = wt1 and z = wt2 .

Given a graph G, we can rewrite ZIsing(G;y, z) as a polynomial in y and z as follows,

ZIsing(G;y, z) =
n∑
k=0

m∑
j=0

Cj,ky
jzk,

where Cj,k is the number of configurations such that there are exactly j many monochromatic

edges and k many 1 vertices. Let

P(w) = ZIsing(G;y, z) =
n∑
k=0

m∑
j=0

Cj,kw
t1j+t2k =

t1m+t2n∑
ℓ=0

C ′
ℓw
ℓ,

where C ′
ℓ =

∑
t1j+t2k=ℓ

Cj,k. Notice that
∑t1m+t2n
ℓ=0 C ′

ℓ =
∑n
k=0

∑m
j=0Cj,k = 2n, we have H(P) ⩽

2n. Assume P(w) ≠ 0. Apply Lemma 10.35 and we obtain

|P(w)| ⩾ C−t1m−t2n
w ((t1m+ t2n+ 1)H(P))−d+1

⩾ (t1m+ t2n+ 1)−d+1C−t1m−t2n
w 2−(d−1)n,

where Cw > 1 is a constant depending only on w. As m ⩾ n − 1, the right hand side decays

exponentially in m and the lemma follows.
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Hardness Results

In this section we will show hardness results when both the edge interaction and external field

are roots of unity. We first consider the external field −1.

Lemma 10.38. Let K > 1 and y ∈ C be an algebraic complex number such that y ≠ ±1. Then

we have Factor-K-Nonzero-NormIsing(y) ⩽T Factor-K-Nonzero-NormIsing(y,−1).

Proof. We first argue that a binary equality can be implemented. Consider a 2-stretch with

the edge interaction y and external field −1. It is easy to calculate that the interaction matrix

is
[
y2−1 0

0 1−y2

]
. Then do a 2-thickening. The resulting matrix is

[
(y2−1)2 0

0 (1−y2)2

]
. Up to a

constant of (y2 − 1)2 this is equality.

Suppose G = (V ,E) is an input to Factor-K-Nonzero-NormIsing(y). We introduce a new

vertex v ′ for every vertex v ∈ V . Connect v and v ′ via this equality gadget, that is, first a 2-stretch

and then a 2-thickening. Hence the external field on v is cancelled with this construction. The

reduction follows.

Next we consider the case when an real edge interaction can be implemented. If the norm

of the interaction is less than 1, then we can cancel out the external field.

Lemma 10.39. Let K > 1 and K ′ > 1. Let y and z be two roots of unity and z ≠ ±1. Suppose

some real number w ∈ (−1, 1) as an edge interaction is implementable for the Ising model with

edge interaction y and external field z. Then we have Factor-K-Nonzero-NormIsing(y) ⩽T

Factor-(KK ′)-Nonzero-NormIsing(y, z).

Proof. Let G = (V ,E) be an input to Factor-K-Nonzero-NormIsing(y). Assume ZIsing(G;y) ≠

0 as otherwise we are done. Suppose |V | = n, |E| = m, and V = {vi|1 ⩽ i ⩽ n}.

Supposew = 0, which means we can implement inequality. For each vertex vi, we introduce

a new vertex v ′i and connect vi and v ′i by the inequality. It is easy to verify that if vi is assigned

0, the weight from vi and v ′i together is z; when vi is assigned 1, the weight is also z. Hence the

external field is effectively cancelled and the reduction follows.

Otherwise assume w ≠ 0, that is w ∈ (−1, 0)∪ (0, 1). For each vertex vi, we introduce a new

vertex v ′i, and add 2tmany new edges between vi and v ′i, where t is a positive integer which we
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will choose later. By assumption we can implement the edge interaction w and we put it on all

new edges. Let V ′ = {v ′i|1 ⩽ i ⩽ n} and we get a new graph G ′ = (V ∪ V ′,E ′).

For each vertex vi, the contribution of vi and v ′i combined is w2t + z when vi is assigned 0

and z(1+w2tz) when vi is assigned 1. Let λ =
z(1+w2tz)

w2t+z
. Notice thatw2t+z ≠ 0 as |w| < 1 = |z|.

We have

ZIsing(G
′;y, z) = (w2t + z)n

∑
σ:V→{0,1}

ym(σ)λn1(σ),

where m(σ) is the number of monochromatic edges in E under σ and n1(σ) is the number of

vertices in V that are assigned 1.

Let Z :=
∣∣∣ZIsing(G

′;y,z)
(w2t+z)n

− ZIsing(G;y)
∣∣∣. We want to show that Z is exponentially small. Apply

the triangle inequality:

|Z| =

∣∣∣∣∣∣
∑

σ:V→{0,1}

ym(σ)(λn1(σ) − 1)

∣∣∣∣∣∣ ⩽
∑

σ:V→{0,1}

∣∣∣ym(σ)(λn1(σ) − 1)
∣∣∣

=
∑

σ:V→{0,1}

∣∣∣λn1(σ) − 1
∣∣∣ = n∑

j=0

(
n

j

) ∣∣λj − 1
∣∣ , (10.24)

where we used the fact that |y| = 1. Let α = λ−1 =
z(1+w2tz)

w2t+z
−1 =

w2t(z2−1)
w2t+z

. As z2−1 ≠ 0 and

w2t + z ≠ 0, |α| is decreasing exponentially in t. We may pick a positive integer t = O(logn)

such that ne|α| < 1. Applying the triangle inequality again for each 0 ⩽ j ⩽ n, we get

|λj − 1| = |

j∑
l=1

(
j

l

)
αl| ⩽

j∑
l=1

(
j

l

)
|αl|

= (|α|+ 1)j − 1 ⩽ (|α|+ 1)n − 1

=

n∑
l=1

(
n

l

)
|α|l ⩽

n∑
l=1

(
ne|α|

l

)l
⩽ n2e|α|, (10.25)
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as
(
ne|α|
l

)l
is decreasing in l. Plugging (10.25) into (10.24) we have

|Z| ⩽
n∑
j=0

(
n

j

)
n2e|α| = e2nn2|α|. (10.26)

Since ZIsing(G;y) ≠ 0, by Lemma 10.36, there exists a constant Cy > 1 such that |ZIsing(G;y)| >

C
−|E|
y . Since |α| is decreasing exponentially in t, by (10.26), we may pick an integer t that is

polynomial in n (and sufficiently large with respect to K ′) such that

|Z| <
K ′ − 1

K ′ C
−|E|
y <

K ′ − 1

K ′ |ZIsing(G;y)|. (10.27)

By the definition of |Z| and again the triangle inequality we get

1

K ′ = 1 −
K ′ − 1

K ′ ⩽ |ZIsing(G
′;y, z)|

|w2t + z|n|ZIsing(G;y)|
⩽ 1 +

K ′ − 1

K ′ ⩽ K ′.

This finishes the proof.

A similar proof works when the implementable real field has a larger than 1 norm. Basically

when this is the case we may power the external field z. If z is a root of unity then we could

power it to 1.

Lemma 10.40. Let K > 1 and K ′ > 1. Let y and z be two roots of unity and z ≠ ±1. Suppose some

real number w ∈ (−∞,−1)∪ (1,∞) as an edge interaction is implementable for the Ising model

with edge interaction y and external field z. Then we have Factor-K-Nonzero-NormIsing(y, zr)

⩽T Factor-(KK ′)-Nonzero-NormIsing(y, z) for any positive integer r.

Proof. Let G = (V ,E) be an input to Factor-K-Nonzero-NormIsing(y, zr). Assume that ZIsing

(G;y, zr) ≠ 0 as otherwise we are done. Suppose |V | = n, |E| = m, and V = {vi|1 ⩽ i ⩽ n}.

For each vertex vi, we introduce r − 1 many new vertices vi,j, and add 2t many new edges

between vi and each vi,j, where j ∈ [r− 1] and t is a positive integer which we will choose later.

By assumption we can implement the edge interaction w and we put it on all new edges. Let

V ′ = {vi,j|1 ⩽ i ⩽ n, 1 ⩽ j ⩽ r− 1} and we get a new graph G ′ = (V ∪ V ′,E ′).
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For each vertex vi, the contribution of vi and all vi,j combined is
(
w2t + z

)r−1
when vi

is assigned 0 and z
(
1 +w2tz

)r−1
when vi is assigned 1. Let λ =

z(1+w2tz)
r−1

(w2t+z)
r−1 . Notice that

w2t + z ≠ 0 as |w| > 1 = |z|. We have

ZIsing(G
′;y, z) =

(
w2t + z

)n(r−1) ∑
σ:V→{0,1}

ym(σ)λn1(σ),

where m(σ) is the number of monochromatic edges in E under σ and n1(σ) is the number of

vertices in V that are assigned 1.

Let Z :=

∣∣∣∣ ZIsing(G
′;y,z)

(w2t+z)
n(r−1) − ZIsing(G;y, zr)

∣∣∣∣. As the previous proof we show that Z is exponen-

tially small. Apply the triangle inequality:

|Z| =

∣∣∣∣∣∣
∑

σ:V→{0,1}

ym(σ)(λn1(σ) − zrn1(σ))

∣∣∣∣∣∣ ⩽
∑

σ:V→{0,1}

∣∣∣ym(σ)(λn1(σ) − zrn1(σ))
∣∣∣

=
∑

σ:V→{0,1}

∣∣∣λn1(σ) − zrn1(σ)
∣∣∣ = n∑

j=0

(
n

j

) ∣∣λj − zrj∣∣ , (10.28)

where we used the fact that |y| = 1. Let α = λ − zr =
z(1+w2tz)

r−1

(w2t+z)
r−1 − zr = z

(
(z+ µ)r−1 − zr−1

)
,

where µ = 1+w2tz
w2t+z

− z = 1−z2

w2t+z
≠ 0. As z2 − 1 ≠ 0 and |w| > 1, |µ| decreases exponen-

tially in t. Pick a large enough integer t so that |µ| < 1. Hence |α| = |z||(z + µ)r−1 − zr−1| =

|
∑r−1
j=1

(
r−1
j

)
µjzr−1−j| ⩽

∑r−1
j=1

(
r−1
j

)
|µj| < |µ|2r−1 by the triangle inequality. As |µ| decreases

exponentially in t, so does |α|.

Notice that |λ| = |zr + α| ⩽ |z|r + |α| = 1 + |α|. Pick t large so that |α| < 1. Applying the

triangle inequality again for each 0 ⩽ j ⩽ n, we get

|λj − zrj| = |λ− zr|

∣∣∣∣∣
j−1∑
l=0

λlzr(j−1−l)

∣∣∣∣∣ ⩽ |α|

(
j−1∑
l=0

∣∣∣λlzr(j−1−l)
∣∣∣)

= |α|

(
j−1∑
l=0

|λ|
l

)
⩽ |α|

(
j−1∑
l=0

(1 + |α|)l
)

< |α|

(
j−1∑
l=0

2l
)
< 2j|α| ⩽ 2n|α|, (10.29)
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as |z| = 1. Plugging (10.29) into (10.28) we have

|Z| <

n∑
j=0

(
n

j

)
2n|α| = 4n|α|. (10.30)

Since ZIsing(G;y, zr) ≠ 0, by Lemma 10.37, there exists a constant Cy,zr > 1 such that

|ZIsing(G;y, zr)| > C−|E|
y,zr .

Since |α| is decreasing exponentially in t, by (10.30), we may pick an integer t that is polynomial

in n (and sufficiently large with respect to K ′) such that

|Z| <
K ′ − 1

K ′ C
−|E|
y,zr <

K ′ − 1

K ′ |ZIsing(G;y, zr)|. (10.31)

By the definition of |Z| and again the triangle inequality we get

1

K ′ = 1 −
K ′ − 1

K ′ ⩽ |ZIsing(G
′;y, z)|

|w2t + z|n(r−1)|ZIsing(G;y, zr)|
⩽ 1 +

K ′ − 1

K ′ ⩽ K ′.

This finishes the proof.

We will show how to implement a real edge interaction in the next lemma. Unless the norm

of the new interaction is 1, the hardness holds due to the previous two lemmas. The failure

cases are indeed tractable.

Lemma 10.41. Let K > 1. Let y and z be two roots of unity such that y ̸∈ {1,−1, i,−i} and

z ̸∈ {1,−1}. Then Factor-K-Nonzero-NormIsing(y, z) is #P-hard.

Proof. Let y = eiθ and z = eiφ and θ,φ ∈ [0, 2π). Then θ ̸∈ {0,π/2,π, 3π/2} and φ ̸∈ {0,π}.

Since y is a root of unity, there exists an integer power of y that equals y−1. Hence we can

implement y−1 by thickenings. Then we implement a real interaction w(θ,φ) by the following

gadget. We replace every edge by two parallel edges: one is a 2-stretch with interaction y and

the other is also a 2-stretch but with y−1. Then we calculate the effective edge interaction. When

both endpoints are assigned 0, the contribution is (y2+z)(1/y2+z) = 1+z2+z(y2+1/y2). When

both endpoints are assigned 1, the contribution is (y2z+1)(z/y2 +1) = 1+ z2 + z(y2 +1/y2) as
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well. When one endpoint is assigned 0 and the other 1, the contribution is y(1+ z) · (1+ z)/y =

(1 + z)2. Hence effectively on this edge the interaction is of the Ising type and its weight is

w(θ,φ) = 1+z2+z(y2+1/y2)

(1+z)2 .

We claim w(θ,φ) ∈ R. This is because

w(θ,φ) =
1 + z2 + z(y2 + 1/y2)

(1 + z)2
= 1 +

z(y2 + 1/y2 − 2)

(1 + z)2

= 1 +
(y− 1/y)2

z+ 1/z+ 2
= 1 +

−4 sin2 θ

2 cosφ+ 2

= 1 −
sin2 θ

cos2 φ
2

.

Notice that cos φ2 ≠ 0 as φ ≠ 0,π. If |w| < 1, then we are done by combining Lemma 10.39 and

Corollary 10.17. Otherwise if |w| > 1, the lemma follows from Lemma 10.40 by powering z to

1, and Corollary 10.17.

The failure case is |w(θ,φ)| = 1 and hence sin2 θ = 2 cos2 φ
2 or sin θ = 0. Notice that sin θ = 0

implies y = ±1 which contradicts to our assumption. It is easy to implement y2, which has

argument 2θ. We then repeat the construction. If |w(2θ,φ)| ≠ 1, then it is reduced to previous

cases. Otherwise |w(2θ,φ)| = 1, implying that sin2 2θ = 2 cos2 φ
2 = sin2 θ or sin 2θ = 0. The

latter case is impossible as θ ̸∈ {0,π/2,π, 3π/2}. Hence sin2 2θ = sin2 θ. It is easy to solve

that θ ∈ {π/3, 2π/3, 4π/3, 5π/3} as θ ≠ 0,π. Therefore 2 cos2 φ
2 = sin2 θ = 3/4. However

cos2 φ
2 = 3/8 has no solution of φ that is a rational fraction of π, which is contradicting to z

being a root of unity. This finishes the proof.

Lemma 10.42. Let K > 1. Let y = ±i and z be a root of unity that is not one of {1,−1, i,−i}.

Then Factor-K-Nonzero-NormIsing(y, z) is #P-hard.

Proof. Let y = eiθ and z = eiφ where θ,φ ∈ [0, 2π). As y = ±i, we have θ ∈ {π/2, 3π/2}

and z ̸∈ {1,−1, i,−i} implies φ ̸∈ {0,π/2,π, 3π/2}. We use the same w(θ,φ) ∈ R construction

as in the proof of Lemma 10.41. If |w(θ,φ)| = 0 then cos2 φ
2 = 1. This implies φ/2 ∈ {0,π}

contradicting to φ ̸∈ {0,π/2,π, 3π/2}. If |w(θ,φ)| = 1 then cos2 φ
2 = 1/2. This implies φ/2 ∈

{π/4, 3π/4, 5π/4, 7π/4} also contradicting to φ ̸∈ {0,π/2,π, 3π/2}. Hence we can implement a

real edge interaction w(θ,φ) such that |w(θ,φ)| ≠ 0, 1.
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Notice that w(θ,φ) = 1− sin2 θ

cos2 φ
2

= 1−1/ cos2 φ
2 < 0. If w(θ,φ) ∈ (−1, 0), then we adopt the

construction in the proof of Lemma 10.39 to cancel the external field of z. Hence we can reduce

Factor-K-Nonzero-NormIsing(w(θ,φ)) to Factor-(KK ′)-Nonzero-NormIsing(y, z) for any

constant K ′ > 1. The #P-hardness follows from Corollary 10.14.

Otherwisew(θ,φ) ∈ (−∞,−1), then we use Lemma 10.40 to power up the external field of z.

Instead of powering z to 1, we would like to pick a positive integer r such thatw(θ, rφ) ∈ (−1, 0),

which reduces to the previous case. This is equivalent to 1
2 < cos2 rφ

2 < 1, which, in turn, is

equivalent to rφ ∈ (0,π/2) ∪ (3/2π, 2π) modulo 2π. Suppose φ = 2aπ
b

where a,b are two co-

prime positive integers and b = 3 or b ⩾ 5 since z ̸∈ {1,−1, i,−i}. Assume b ⩾ 5 first. As a,b

are co-prime, there exist two integers l1 and l2 such that l1a+l2b = 1 and l1 > 0. Let r = l1 and

we have rφ/2 = 2al1π
b

= 2π
b

− 2l2π. This choice of r meets the requirement since 2π
b
∈ (0,π/2).

The case left is when b = 3, in which case φ ∈ {2π/3, 4π/3}. We reduce Factor-K-Nonzero-

NormIsing(y,−z) to Factor-K-Nonzero-NormIsing(y, z). This suffices due to arg(−z) = φ+π,

which is one of the previous cases.

Suppose G = (V ,E) is an input to Factor-K-Nonzero-NormIsing(y,−z). Introduce a new

vertex v ′ for each vertex v ∈ V . Since y = ±i, there exists a positive integer t such that yt = −1.

Connect v and v ′ by t many new edges. We can calculate that the effective field of v in the new

graph (with respect to interaction y and field z) is z−z
2

z−1 = −z. This finishes our proof.

We can now prove Theorem 10.5.

Proof of Theorem 10.5. If y = ±1, then we can replace every edge interaction by two unary

constraints. Hence the problem is tractable for any external field. Consider next the case where

y = ±i. If z ∈ {1,−1, i,−i}, the algorithm is from [CLX14]. Otherwise, the hardness is from

Lemma 10.42. Finally, for the rest of the proof, we consider the case where y ̸∈ {1,−1, i,−i}.

For z = 1, the hardness follows from Corollary 10.17. For z = −1, the hardness is obtained by

combining Lemma 10.38 and Corollary 10.17. Otherwise z ̸∈ {1,−1}, and the hardness follows

from Lemma 10.41.
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[GŠ12] Qi Ge and Daniel Štefankovič. A graph polynomial for independent sets of bipartite

graphs. Combinatorics, Probability & Computing, 21(5):695–714, 2012.

[GŠV12] Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the
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