COUNTING HYPERGRAPH COLORINGS IN THE LOCAL LEMMA REGIME

HENG GUO, CHAO LIAO, PINYAN LU, AND CHIHAO ZHANG

ABSTRACT. We give a fully polynomial-time approximation scheme (FPTAS) to count the number of q-colorings for k-uniform hypergraphs with maximum degree Δ if $k \geq 36$ and $q > 312\Delta^{\frac{k-1}{k}}$. We also obtain a polynomial-time almost uniform sampler if $q > 671\Delta^{\frac{k-5}{5}}$. These are the first approximate counting and sampling algorithms in the regime $q \ll \Delta$ (for large Δ and k) without any additional assumptions. Our method is based on the recent work of Moitra (STOC, 2017). One important contribution of ours is to remove the dependency of k and Δ in Moitra’s approach.

1. INTRODUCTION

Hypergraph coloring is a classic and important topic in combinatorics. Its study was initiated by Erdős’ seminal result [Erd63], a sufficient upper bound on the number of edges so that a uniform hypergraph is 2-colorable. Many important tools in the probabilistic method have been developed around this subject, such as the Lovász local lemma [EL75], and the Rödl nibble [Röd85].

In this paper, we consider the problem of approximately counting colorings in k-uniform hypergraphs. The most successful approach to approximate counting is Markov chain Monte Carlo (MCMC). See [DFK91, JS93, JSV04] for a few famous examples. Indeed, MCMC has been extensively studied for graph colorings in low-degree graphs. Jerrum [Jer95] showed that the simple and natural Markov chain, Glauber dynamics, mixes rapidly, if $q > 2\Delta$, where q is the number of colors and Δ is the maximum degree of the graph. As a consequence, there is a fully polynomial-time randomized approximation scheme (FPRAS) for the number of colorings if $q > 2\Delta$. This result initiated a series of research and the best bound in general, due to Vigoda [Vig00], requires that $q > 11/6\Delta$. It is conjectured that Glauber dynamics is rapidly mixing if $q > \Delta + 1$, the “freezing” threshold, but current evidences typically require extra conditions in addition to the maximum degree [HV03, DFHV13]. On the flip side, see [GSV15] for some (almost tight) NP-hardness results.

In k-uniform hypergraphs, the Markov chain approach still works, if $q > C\Delta$ for $C = 1$ when $k \geq 4$ and $C = 1.5$ when $k = 3$ [BDK08, BDK06]. However, the local lemma implies that a hypergraph is q-colorable if $q > C\Delta^{1/(k-1)}$ for some constant C. This threshold is much smaller than Δ when Δ is large. Moser and Tardos’ algorithmic version of the local lemma [MT10] implies that we can efficiently find a q-coloring under the same condition. Indeed, algorithmic local lemma has been a highly active area. See [KS11, HSS11, HS13a, HS13b, HV15, AI16, Kol16, CPS17, HLL17] for various recent development.

In view of the success of algorithmic local lemma, it is natural to wonder, whether we can also randomly generate hypergraph colorings, or equivalently, approximately count their number, beyond the $q \gg \Delta$ bound and approaching $q \gg \Delta^{1/(k-1)}$? Unfortunately, designing Markov chains quickly runs into trouble if $q \ll \Delta$. “Freezing” becomes possible in this regime (see [FM11] for examples¹), and the state space of proper hypergraph colorings may not be connected via changing the color of a single vertex, the building block move of Glauber dynamics.

The only successful application of MCMC in this regime is due to Frieze et al. [FM11, FA17], where they assume that $q > \max\{C_k\log n, 500k^3\Delta^{1/(k-1)}\}$ and the hypergraph is simple.² Here

¹Interestingly, to prove the existence of frozen colorings, we also need to appeal to the local lemma.
²A hypergraph is simple if the intersection of any two hyperedges contains at most one vertex.
\(q = \Omega(\log n) \) is necessary to guarantee that “frozen” colorings are not prevalent. Furthermore, it is reasonable to believe that simple hypergraphs are much easier algorithmically than general ones, since their chromatic numbers are \(O \left(\frac{\Delta}{\log \Delta} \right)^{1/(k-1)} \) [FM13], significantly smaller than the bound implied by the local lemma, and related Glauber dynamics for hypergraph independent sets works significantly better in simple hypergraphs than in general ones [HSZ16].

Our main result is a positive step beyond the freezing barrier in general \(k \)-uniform hypergraphs. Our result also answers some open problems raised in [FM11].

Theorem 1. For integers \(\Delta \geq 2, k \geq 36, \) and \(q > 312 \Delta^{\frac{18}{r+1}} \), there is an FPTAS for \(q \)-colorings in \(k \)-uniform hypergraphs with maximum degree \(\Delta \).

If \(k \) and \(\Delta \) is large, our result is better than the Markov chain results [BDK08, BDK06] and gets into the freezing regime. The exponent of our polynomial time bound depends on the constants \(k \) and \(\Delta \).

Our method is based on an intriguing result shown by Moitra [Moi17] recently, who gave fully polynomial-time deterministic approximation schemes (FPTAS) to count satisfying assignments of \(k \)-CNF formulas in the local lemma regime. It is not hard to see that his approach is rather general, and indeed it works for hypergraph colorings if some strong form of the local lemma condition holds, and \(k \geq C \log \Delta \) for some constant \(C \). Unfortunately, the requirement that \(k \geq C \log \Delta \) is necessary for a “marking” argument to work in Moitra’s approach. This is not an issue for \(k \)-CNF formulas, as in that setting the (strong) local lemma condition dictates that \(k \geq C \log \Delta \). However, for hypergraph colorings, we generally want \(k \) and \(\Delta \) to be two independent parameters. Marking is no longer possible in our situation.

We briefly describe Moitra’s approach before introducing our modifications. The first observation is that if the maximum degree is much smaller than the local lemma threshold, variables in the target distribution are very close to uniform. As a consequence, if we couple two copies of the Gibbs distribution while giving different colors at a particular vertex, sequentially and in a vertex-wise maximal fashion, the discrepancy in the resulting coupling will be logarithmic with high probability. Then, one can set up a linear program to do binary search for the marginal probability, where the variables to solve mimic the transition probabilities in this coupling. The marking procedure ensures these locally (almost-)uniform properties to hold at any point of the coupling process above, by finding a good set of vertices so that we only couple these vertices and nothing goes awry.

Since marking is no longer possible in our setting, we take an adaptive approach in the coupling procedure to ensure local (almost-)uniform properties, rather than marking what we are going to couple in advance. Although similar in spirit, our proof details are rather different from those by Moitra [Moi17]. Since this coupling (or the analysis thereof) is used repeatedly in the whole algorithm, we have to rework almost all other proofs as well. In addition, quite a few steps (or the success thereof) in Moitra’s approach seem rather mysterious. Our proofs unravel some of those mysteries, streamline the argument, and tighten the bounds at various places. Hopefully they also shed some light on where the limit of the method is.

The outline above only gives an approximation of the marginal probabilities. Due to the lack of marking, we also need to provide new algorithms for approximate counting and sampling. For approximate counting, we use the local lemma again to find a good ordering of the vertices so that the standard self-reduction goes through. For sampling, we use the marginal algorithm as an oracle, to faithfully simulate the true distribution, in an adaptive fashion similar to the coupling procedure. At the end of this process, not all vertices will be colored. However we show that with high probability, all remaining connected components have logarithmic sizes and we fill those in by brutal force enumeration. The threshold we obtain for sampling is larger than the one for approximate counting.
Theorem 2. For integers $\Delta \geq 2$, $k \geq 36$, and $q > 671\Delta^{24}/28$, there is a sampler whose distribution is ε-close in total variation distance to the uniform distribution on all proper colorings, with running time polynomial in the number of vertices and $1/\varepsilon$.

The correlation decay approach of approximate counting [Wei06, BG08] have been successfully applied to graph coloring problems [LY13, LYZZ17] or hypergraph problems [BGG+16], but it seems difficult to combine the two in our setting. More recently, there are other progresses with respect to approximate counting in the local lemma regime [HSZ16, GJL17, GJ17]. However, these results do not directly apply to our situation either. Indeed, our result can be seen as one step further to linking the local lemma with approximate counting, as we made Moitra’s approach applicable in a more general setting, where the constraint size does not have to be directly related to the probability of bad events or the dependency degree. However, there still seem to be a few difficulties, such as asymmetric constraints, to go further towards the most general abstract setting of the local lemma, and this is an interesting direction for the future.

2. Preliminary

A hypergraph is a pair $H = (V, \mathcal{E})$ where V is the collection of vertices and $\mathcal{E} \subseteq 2^V$ is the set of hyperedges. We say a hypergraph H is k-uniform if every $e \in \mathcal{E}$ satisfies $|e| = k$. Let $q \in \mathbb{N}$ be the number of available colors. A proper coloring of H is an assignment $\sigma \in [q]^V$ so that every hyperedge in \mathcal{E} is not monochromatic, namely that σ satisfies $|\{\sigma(v) : v \in e\}| > 1$ for every $e \in \mathcal{E}$.

Although our goal is to count colorings in k-uniform hypergraphs, as the algorithm progresses, vertices will be pinned to some fixed value. Therefore we will work with a slightly more general problem, namely hypergraph coloring with pinnings. Formally, an instance of hypergraph coloring with pinnings is a pair $(H(V, \mathcal{E}), \mathcal{P})$ where $\mathcal{P} = \{P_e \subseteq [q] : e \in \mathcal{E}\}$ and P_e is the set of colors that are already present (pinned) inside the edge e. In the intermediate steps of our algorithms, \mathcal{P} will be induced by pinning a subset of vertices, but it is more convenient to consider this slightly more general setup. For an instance with pinning, a coloring $\sigma \in [q]^V$ is proper if for every $e \in \mathcal{E}$, it holds that $|\{\sigma(v) : v \in e\} \cup P_e| > 1$.

Denote by \mathcal{C} the set of all proper colorings of (H, \mathcal{P}). For any $\mathcal{C}' \subseteq \mathcal{C}$, we use $\mu_{\mathcal{C}'}$ to denote the uniform distribution over \mathcal{C}'. Since there is no weight involved, $\mu_{\mathcal{C}'}$ is our targeting Gibbs distribution.

Let μ be a distribution over partial colorings $([q] \cup \{-\})^V$, where “-” denotes that the vertex is not colored (yet). We say $\mu(\cdot)$ is pre-Gibbs with respect to $\mu_{\mathcal{C}}$ if for every $\sigma \in \mathcal{C}$,

$$\frac{1}{|\mathcal{C}|} = \mu_{\mathcal{C}}(\sigma) = \sum_{\sigma' \in ([q] \cup \{-\})^V \mid \sigma \models \sigma'} \mu(\sigma') \cdot \mu_{\mathcal{C}}(\sigma \mid \sigma'),$$

where $\sigma \models \sigma'$ means that the full coloring σ is consistent with the partial one σ'. In other words, if we draw a partial coloring σ' from a pre-Gibbs distribution μ, and then complete σ' uniformly conditioned on colored vertices (with respect to $\mu_{\mathcal{C}}$), the resulting distribution is exactly $\mu_{\mathcal{C}}$. Note that in our definition we do not require the support of μ to be all partial colorings.

2.1. Lovász Local Lemma. Let $(H(V, \mathcal{E}), \mathcal{P})$ be an instance of hypergraph colorings and $q \in \mathbb{N}$ be a non-negative integer. We use Δ to denote the maximum degree of H. Although we consider k-uniform hypergraphs in Theorem 1, in both the sampling and the counting procedure we will pin vertices gradually. Throughout the section, we assume that for every $e \in \mathcal{E}$, $k' \leq |e| \leq k$. These are the instances that will emerge in Theorem 20 and Theorem 22.

Let $\text{Lin}(H)$ be the line graph of H, that is, vertices in $\text{Lin}(H)$ are hyperedges in H and two hyperedges are adjacent if they share some vertex in H. The “dependency graph” of our problem is simply the line graph of H. For $e \in \mathcal{E}$, let $\Gamma(e)$ be the neighbourhood of e, namely the set
\{e' \mid e \cap e' \neq \emptyset\}. It is clear that the maximum degree of \(\text{Lin}(H) \) is at most \(k(\Delta - 1) \). Hence \(|\Gamma(e)| \leq k(\Delta - 1) \) for any \(e \in \mathcal{E} \). With a little abuse of notation, for \(v \in V \), let \(\Gamma(v) \) be the set of edges in \(\mathcal{E} \) incident to \(v \), i.e., \(\Gamma(v) := \{ e \in \mathcal{E} : v \in e \} \). Furthermore, for any event \(B \) depending on a set of vertices \(\text{ver}(B) \), let \(\Gamma(B) \) be the set of dependent sets of \(B \), i.e., \(\Gamma(B) = \{ e \mid e \cap \text{ver}(B) \neq \emptyset \} \).

The (asymmetric) Lovász Local Lemma (proved by Lovász and published by Spencer [Spe77]) states a sufficient condition for the existence of a proper coloring. Note that in the following \(\text{Pr} \cdot \) refers to the product distribution where every vertex is colored uniformly and independently.

Theorem 3. If there exists an assignment \(x : \mathcal{E} \to (0, 1) \) such that for every \(e \in \mathcal{E} \) we have

\[
(1) \quad \text{Pr} \left[e \text{ is monochromatic} \right] \leq x(e) \prod_{e' \in \Gamma(e)} (1 - x(e')),
\]

then a proper coloring exists.

When the condition of Theorem 3 is met, we actually have good control over any event in the uniform distribution \(\mu_c \) due to the next theorem, shown in [HSS11].

Theorem 4. If (1) holds for every \(e \in \mathcal{E} \), then for any event \(B \), it holds that

\[
\mu_c(B) \leq \text{Pr} \left[B \right] \prod_{e \in \Gamma(B)} (1 - x(e))^{-1}.
\]

Theorem 4 also allows us to have some quantitative control over the marginal probabilities.

Lemma 5. If \(k' \leq |e| \leq k \) for any \(e \in \mathcal{E} \), \(t \geq k \) and \(q \geq (et\Delta)^{1/t} \), then for any \(v \in V \) and any color \(c \in [q] \),

\[
\text{Pr}_{\sigma \sim \mu_c} \left[\sigma(v) = c \right] \leq \frac{1}{q} \left(1 + \frac{4}{t} \right).
\]

Proof. Let \(x(e) = \frac{1}{t\Delta} \) for every \(e \in \mathcal{E} \). We first verify that (1) holds. Since \(|\Gamma(e)| \leq k(\Delta - 1) \) and \(t \geq k \),

\[
x(e) \prod_{e' \in \Gamma(e)} (1 - x(e')) \geq \frac{1}{t\Delta} \left(1 - \frac{1}{t\Delta} \right)^{k(\Delta - 1)}
\]

\[
\geq \frac{1}{et\Delta} \geq q^{1-k'} \geq \text{Pr} \left[e \text{ is monochromatic} \right].
\]

Hence, Theorem 4 applies. Then,

\[
\text{Pr}_{\sigma \sim \mu_c} \left[\sigma(v) = c \right] \leq \frac{1}{q} \left(1 - \frac{1}{t\Delta} \right)^{-\Delta} \leq \frac{1}{q} \exp \left(\frac{2}{t} \right) \leq \frac{1}{q} \left(1 + \frac{4}{t} \right).
\]

Unfortunately, Theorem 4 does not give lower bounds directly. We will instead bound the probability of blocking \(v \) to have color \(c \).

Lemma 6. If \(k' \leq |e| \leq k \) for any \(e \in \mathcal{E} \), \(t \geq k \), and \(q \geq (et\Delta)^{1/t} \), then for any \(v \in V \) and any color \(c \in [q] \),

\[
\text{Pr}_{\sigma \sim \mu_c} \left[\sigma(v) = c \right] \geq \frac{1}{q} \left(1 - \frac{1}{t} \right).
\]

Proof. Fix \(v \) and \(c \). For every \(e \in \Gamma(v) \), let \(\text{Block}_v \) be the event that vertices in \(e \) other than \(v \) all have the color \(c \). Clearly, conditioned on none of \(\text{Block}_v \) occurring, the probability of \(v \) colored \(c \) is
larger than $1/q$. Hence we have that

$$\Pr_{\sigma \sim \mu_{c}} [\sigma(v) = c] \geq \frac{1}{q} \left(1 - \sum_{e \in \Gamma(v)} \mu_{c}(Block_{e}) \right).$$

Clearly $\Pr[\text{Block}_{e}] = q^{1-|e|} \leq q^{1-k'}$. Again let $x(e) = \frac{1}{t\Delta}$ for every $e \in \mathcal{E}$ and (1) holds. Since $|\Gamma(\text{Block}_{e})| \leq k(\Delta - 1) + 1$ and $t \geq k$, by Theorem 4,

$$\mu_{c}(\text{Block}_{e}) \leq q^{1-k'} \left(1 - \frac{1}{t\Delta} \right)^{-k(\Delta-1)-1} \leq \frac{1}{t\Delta}.$$

Plugging (3) into (2) yields

$$\Pr_{\sigma \sim \mu_{c}} [\sigma(v) = c] \geq \frac{1}{q} \left(1 - \frac{1}{t} \right).$$

Combining Lemma 5 and Lemma 6, we obtain the following result.

Lemma 7. If $k' \leq |e| \leq k$ for any $e \in \mathcal{E}$, $t \geq k$ and $q \geq (et\Delta)^{\frac{1}{\epsilon - 1}}$, then for any $v \in \mathcal{V}$ and any color $c \in [q]$,

$$\frac{1}{q} \left(1 - \frac{1}{t} \right) \leq \Pr_{\sigma \sim \mu_{c}} [\sigma(v) = c] \leq \frac{1}{q} \left(1 + \frac{4}{t} \right).$$

3. The Coupling

Recall that a partial coloring of H is an assignment $\sigma \in ([q] \cup \{-\})^{\mathcal{V}}$ where “-” denotes an unassigned color. Fix a vertex $v \in \mathcal{V}$ and two distinct colors $c_1, c_2 \in [q]$, we define two initial partial colorings X_0 and Y_0 that assign v with colors c_1 and c_2 respectively and let all other vertices be unassigned. We use C_1 and C_2 to denote the set of proper colorings with v fixed to be c_1 and c_2 respectively. For a partial coloring X, we use C_X to denote the set of proper colorings consistent with X.

Moitra [Moi17] introduced the following intriguing idea (in the setting of CNF) to compute the ratio of marginal probabilities on v. Couple μ_{C_1} and μ_{C_2} in a sequential way. Start from v, where the colors differ, and proceed in a breadth-first search manner, vertex by vertex. At each vertex we draw a color from μ_{C_1} and μ_{C_2}, respectively, conditioned on all the existing colors, and couple them maximally. The process ends when the set of vertices coupled successfully form a cut separating v from uncolored vertices. If every vertex we encounter has its marginal distribution close enough to the uniform distribution, then this coupling process terminates quickly with high probability. These local almost-uniform properties are guaranteed by Lemma 7. Then Moitra sets up a clever linear program (LP), where the variables mimic transition probabilities during the coupling (but in some conditional way), and shows that the LP is sufficient to recover the marginal distribution at v by a binary search.

We apply the same idea here for hypergraph colorings. However, one needs to carefully implement the coupling to guarantee that all marginal distributions encountered are close enough to uniform. Formally, we describe our coupling process in Algorithm 1. The coupling process applies to hypergraphs with edge size between k_1 and k for some parameter $0 < k_1 \leq k$. There is another parameter $0 < k_2 < k_1$ and all these parameters will be set in Section 7. The output is a pair of partial colorings (X, Y) extending X_0 and Y_0 respectively. Notice that in order to implement the coupling process, we fix an arbitrary ordering of edges and vertices in advance.

The set V_{col} consists of all colored vertices. Intuitively, the set V_{1} contains vertices that have failed the coupling and V_{2} is its complement. Once a hyperedge is satisfied by both partial colorings X and Y, it has no effect any more and is thus removed.

5
The main difference from Moitra’s coupling [Moi17] is that we cannot choose what vertices to couple in advance (“marking”). Instead, we take an adaptive approach to ensure that no hyperedge becomes too small. Once \(k_2 \) vertices of a hyperedge are colored, all the rest vertices are considered “failed” in the coupling (namely they are added to \(V_1 \)). However these failed vertices are left uncolored.

Algorithm 1 outputs a pair of partial colorings \(X, Y \) defined on \(V_{\text{col}} \) and a partition of vertices \(V = V_1 \cup V_2 \). For any edge \(e \) in the original \(\mathcal{E} \) such that \(e \cap V_1 \neq \emptyset \) and \(e \cap V_2 \neq \emptyset \), it is removed because either it is satisfied by both \(X \) and \(Y \), or \(k_2 \) vertices in \(e \) have been colored. In the latter case, all vertices in \(e \) are either colored or in \(V_1 \), namely \(e \subseteq V_1 \cap V_{\text{col}} \). Hence all edges intersecting \(V_{\text{col}} \) and \(V_2 \) are satisfied by both \(X \) and \(Y \). This fact will be useful later.

For \(u \in V \), let \(\Gamma_{\text{ver}}(u) \) denote the neighboring vertices of \(u \) (including \(u \)), namely \(\Gamma_{\text{ver}}(u) = \{ w \mid \exists e \in \mathcal{E}, \{ u, w \} \subseteq e \} \), and \(\Gamma_{\text{ver}}(U) = \bigcup_{u \in U} \Gamma_{\text{ver}}(u) \) for a subset \(U \subseteq V \). The following lemma summarizes some properties of this random process.

Lemma 8. The following properties of Algorithm 1 hold:

1. All colored vertices are either in \(V_1 \) or incident to \(V_1 \), namely \(V_{\text{col}} \subseteq \Gamma_{\text{ver}}(V_1) \);
2. The distributions of \(X \) and \(Y \) are pre-Gibbs with respect to \(\mu_{C_1} \) and \(\mu_{C_2} \) respectively.

Proof. For (1), notice that whenever we add a vertex \(u \) into \(V_{\text{col}} \), it must hold that \(u \in e \) for some \(e \cap V_1 \neq \emptyset \) at the time. The claim follows from a simple induction.

For (2), we only prove the lemma for \(X \). The proof for \(Y \) is similar. The partial coloring \(X \) is generated in the following way: at each step either the process ends, or the next uncolored vertex \(u \) is chosen and extend \(X \) to \(u \) with the correct (conditional) marginal probability and repeat. Our
decisions (whether or not to halt, and what is the next u) depend on Y in addition to the partial coloring X so far.

An intermediate state S of Algorithm 1 consists of partial colorings X, Y, V_{col}, and V_1. Our claim is that, conditioned on any valid S, the distribution of the final output (on the X side) of Algorithm 1 is pre-Gibbs with respect to μ_{C_X}. The lemma clearly follows from the claim by setting S to the initial state of Algorithm 1.

We induct on the maximum possible future steps of S. The base case is that S will halt immediately. Thus the output is simply X and completing it yields the uniform distribution on C_X. That is, the output is pre-Gibbs.

For the induction step, S will not halt but rather, extend the colorings to some vertex u. Let $\tau_S(\cdot)$ denote the measure of completing the output of Algorithm 1 conditioned on S. Let $X_{u\leftarrow c}$ be a partial coloring defined on $V_{\text{col}} \cup \{u\}$ by extending X to u with color c, and S' be an internal state consistent with $X_{u\leftarrow c}$, denoted by $S' \models X_{u\leftarrow c}$. Moreover, let $q(S')$ be the probability of transiting from S to S'. Since the marginal probability at u only depends on the previous partial colorings X', we have that

$$\sum_{S' \models X_{u\leftarrow c}} q(S') = \mu_{C_X}(X_{u\leftarrow c}),$$

where $\mu_{C_X}(X_{u\leftarrow c})$ is in fact the marginal probability of the color c at u conditioned on X. By our induction hypothesis, conditioned on S', the final output is pre-Gibbs with respect to $C_{X_{u\leftarrow c}}$. That is,

$$\tau_{S'}(\cdot) = \mu_{C_{X_{u\leftarrow c}}} (\cdot).$$

For $\sigma \in C_X$, suppose $X_{u\leftarrow c}$ is the partial coloring of σ restricted to $V_{\text{col}} \cup \{u\}$. Then we have that

$$\tau_S(\sigma) = \sum_{S' \models X_{u\leftarrow c}} q(S') \tau_{S'}(\sigma)$$

$$= \sum_{S' \models X_{u\leftarrow c}} q(S') \mu_{C_{X_{u\leftarrow c}}}(\sigma)$$

$$= \mu_{C_{X_{u\leftarrow c}}}(\sigma) \sum_{S' \models X_{u\leftarrow c}} q(S')$$

$$= \mu_{C_{X_{u\leftarrow c}}}(\sigma) \mu_{C_X}(X_{u\leftarrow c})$$

$$= \mu_{C_X}(\sigma),$$

where in the second line we use (5), and in the fourth line we use (4). The claim follows.

Therefore, the output of Algorithm 1 is a coupling of two pre-Gibbs measures such that they are defined on the same set of vertices V_{col}. We use $\mu_{\text{cp}}(\cdot, \cdot)$ to denote this joint distribution.

It is possible to show that the final size of $|V_1|$ is $O(\log |V|)$ with high probability. This fact will not be directly used, and is indeed not strong enough for the algorithm and its analysis in the next section. We will omit its proof. What we will show eventually is that, conditioned on a randomly chosen coloring from C_1 or C_2, the probability that the coupling process terminates decays exponentially with the depth. There are two levels of randomness here, and they will be separated, since the linear program later will only be able to certify the second kind randomness.

Later, in Section 6, when we do sampling, we will be facing a similar procedure, Algorithm 3, and we will show that the connected components produced by Algorithm 3 are $O(\log |V|)$ with high

3We note that actually V_{col} and V_1 are completely determined by X and Y, but we do not need this fact here. The reason for V_{col} is obvious, and V_1 can be deduced from X, Y by simulating the whole process from start.
probability (Lemma 21). This is in the same vein as $|V_1|$ being size $O(\log |V|)$ with high probability in Algorithm 1.

4. Computing the marginals

In the previous section, we introduced a random process to generate a joint distribution of partial colorings $\mu_{\text{cp}}(\cdot, \cdot)$, whose marginal distributions are pre-Gibbs. Recall that we fixed $X(v) = c_1$ and $Y(v) = c_2$. Let q_i denote the marginal probability in μ_c of v being colored by c_i, for $i = 1, 2$. That is, $q_i = \frac{|C|}{|C_1|}$ for $i = 1, 2$. The coupling naturally induces an (imaginary) sampler to uniformly sample from $C_1 \cup C_2$ as follows:

Step 1: Sample (X, Y) using Algorithm 1;
Step 2: Let $v \leftarrow c_1$ with probability $\frac{q_1}{q_1 + q_2}$ and $v \leftarrow c_2$ otherwise;
Step 3: If v is colored by c_1, uniformly output a coloring in C_X, otherwise uniformly output a coloring in C_Y.

We denote this sampler by S. The output of S is uniform over $C_1 \cup C_2$ is because by Lemma 8, the output distribution of Algorithm 1, projected to either side, is pre-Gibbs. Then we choose the final coloring proportional to the correct ratio.

One can represent the coupling process (Algorithm 1) as traversing a (deterministic) coupling tree T constructed as follows: each vertex in T represents a pair of partial colorings (x, y) defined on some V_{col} that have appeared in the coupling. We write $(x, y) \in T$ if (x, y) is a pair of partial colorings represented by some vertex in T. Although the intermediate state of Algorithm 1 consists of partial colorings x, y together with V_{col} and V_1, we can actually deduce V_{col} from x, y, as well as V_1 by simulating Algorithm 1 from the start given x and y. Thus the pair (x, y) determines either that the coupling should halt or the next vertex u to extend to. In the coupling tree T, (x, y) either is a leaf or have q^2 children, which correspond to the q^2 possible ways to extend (x, y) by coloring u. The root of the tree is the initial pair (x_0, y_0) defined on $\{v\}$.

In the following, we identify a collection of conditional marginal probabilities that keeps the information of the coupling process.

First, consider a pair of partial colorings $(x, y) \in T$ which is a leaf, and any two proper colorings σ_x, σ_y such that $\sigma_x \models x$ and $\sigma_y \models y$. In the probability space induced by the sampler introduced above, define

$$p_{x,y}^x := \Pr_{(X,Y) \sim \mu_{\text{cp}}} [X = x, Y = y \mid S \text{ outputs } \sigma_x];$$

$$p_{x,y}^y := \Pr_{(X,Y) \sim \mu_{\text{cp}}} [X = x, Y = y \mid S \text{ outputs } \sigma_y].$$

These quantities are well defined and independent of the particular choices of σ_x and σ_y. Essentially we only condition on the random choice at step 2 of S. Once that choice is made, the output is uniform over C_x or C_y.

Perhaps a clearer way of seeing this independence is to give more explicit expressions to $p_{x,y}^x$ and $p_{x,y}^y$. By Bayes’ rule,

\begin{equation}
\label{eq:p_x_y_x}
p_{x,y}^x = \Pr_{(X,Y) \sim \mu_{\text{cp}}} [S \text{ outputs } \sigma_x \mid X = x, Y = y] \frac{\mu_{\text{cp}}(x, y)}{\Pr [S \text{ outputs } \sigma_x]} = q_1 \cdot \frac{|C_1 \cup C_2|}{|C_x|} \cdot \mu_{\text{cp}}(x, y); \end{equation}

\begin{equation}
\label{eq:p_x_y_y}
p_{x,y}^y = \Pr_{(X,Y) \sim \mu_{\text{cp}}} [S \text{ outputs } \sigma_y \mid X = x, Y = y] \frac{\mu_{\text{cp}}(x, y)}{\Pr [S \text{ outputs } \sigma_y]} = q_2 \cdot \frac{|C_1 \cup C_2|}{|C_y|} \cdot \mu_{\text{cp}}(x, y). \end{equation}

\footnote{We use small letters x, y to denote particular partial colorings, and reserve capital X, Y to denote random ones.}
Combining two identities above we obtain

\[(8)\quad q_1 \cdot p_{x,y}^\prime \cdot |C_y| = q_2 \cdot p_{x,y}^\prime \cdot |C_x|.\]

A crucial observation is that, for every pair of partial colorings \((x, y)\) that is a leaf of \(\mathcal{T}\) with corresponding \(V_{\text{col}}, V_1, V_2\), the ratio \(\frac{|C_x|}{|C_y|}\) can be computed in \(q^{|V_1 \setminus V_{\text{col}}|}\) time. This is because when Algorithm 1 terminates, all edges intersecting \(V_{\text{col}}\) and \(V_2 \setminus V_{\text{col}}\) are satisfied by both \(x\) and \(y\). Hence the numbers of ways coloring blank vertices in \(V_2\) cancel out, and we only need to enumerate all colorings for blank vertices inside \(V_1\). Let \(r_{x,y} = \frac{|C_x|}{|C_y|}\).

Next, consider an internal \((x, y)\) in the coupling tree \(\mathcal{T}\). We interpret \(p_{x,y}^x\) and \(p_{x,y}^y\) as the probability that the coupling process has ever arrived at an internal pair of partial colorings \((x, y)\) conditioned on the output of \(\mathcal{S}\) is \(\sigma_x\) and \(\sigma_y\), respectively. Note that the definition is consistent with our previous definition when \((x, y)\) is a leaf of \(\mathcal{T}\). Recall that \((x_0, y_0)\) is the root of \(\mathcal{T}\), namely \(x_0\) or \(y_0\) only colors \(v\) with \(c_1\) or \(c_2\), respectively. For \((x_0, y_0)\), we have that

\[(9)\quad p_{x_0,y_0}^x = p_{x_0,y_0}^y = 1.\]

Moreover, for an internal \((x, y)\) whose children are defined on \(V_{\text{col}}' = V_{\text{col}} \cup \{u\}\), it holds that

\[(10)\quad \text{for every } c \in [q], p_{x,y}^x = \sum_{c' \in [q]} p_{x,u \leftarrow c, y \leftarrow c'}^x;\]

\[(11)\quad \text{for every } c \in [q], p_{x,y}^y = \sum_{c' \in [q]} p_{x,u \leftarrow c', y \leftarrow c}^y;\]

where we use \(x \leftarrow c\) to denote the partial coloring that extends \(x\) by assigning color \(c\) to the vertex \(u\).

In fact, when the coupling process is at some internal node of the coupling tree, say \((x, y)\), defined on \(V_{\text{col}}\), and the next step is to sample the color on a vertex \(u\), one can recover the distribution of the color on \(u\) in the next step from the values \(\{p_{x,u \leftarrow c, y \leftarrow c'}^x, p_{x,u \leftarrow c', y \leftarrow c}^y : c, c' \in [q]\}\) by solving linear constraints using Bayes’ rule. Therefore, the collection \(\{p_{x,y}^x, p_{x,y}^y : (x, y) \in \mathcal{T}\}\) encodes all information of the coupling process.

4.1. The linear program. The values \(p_{x,y}^x\) and \(p_{x,y}^y\) are unknown and we are going to impose a few necessary linear constraints on them. The basic constraints are derived from (8), (9), (10), and (11). To this end, for every node \((x, y)\) in \(\mathcal{T}\), we introduce two variables \(p_{x,y}^x\) and \(p_{x,y}^y\) aiming to mimic \(p_{x,y}^x\) and \(p_{x,y}^y\).

The full coupling tree \(\mathcal{T}\) is too big, and we will truncate it up to some depth \(L > 0\). The quantity \(L\) will be set later. We will perform a binary search to estimate the ratio \(\frac{q_1}{q_2}\) using the truncated coupling tree. Thus, we introduce two variables \(r\) and \(\tau\) as our guesses for upper and lower bounds of \(\frac{q_1}{q_2}\). Let \(\mathcal{T}_L\) be the coupling tree truncated at depth \(L\), and denote by \(\mathcal{L}(\mathcal{T})\) the leaves of a tree \(\mathcal{T}\). Since the coupling procedure colors one vertex at a time, for any node \((x, y)\) in \(\mathcal{T}_L\), we have that \(|V_{\text{col}}| \leq L\) where \(V_{\text{col}}\) is determined by \((x, y)\). Formally, we have three types of constraints.

Constraints 1: For every leaf \((x, y) \in \mathcal{L}(\mathcal{T}_L)\) with corresponding \(|V_{\text{col}}| < L\), we have the constraints:

\[
r \cdot p_{x,y}^y \leq p_{x,y}^x \cdot r_{x,y};
\]

\[
p_{x,y}^x \cdot r_{x,y} \leq \tau \cdot p_{x,y}^y;
\]

\[
0 \leq p_{x,y}^x, p_{x,y}^y \leq 1.
\]

Constraints 1 are relaxed versions of identity (8). These constraints are the most critical ones. However, in order to compute \(r_{x,y}\), one needs \(\exp(L)\) amount of time. This forces us to go only logarithmic depth in the coupling tree, but we will show that this is enough.
Constraints 2: For the root \((x_0, y_0) \in T\), we have
\[
\frac{p_{x_0}^{x_0}}{p_{x_0, y_0}^{y_0}} = 1.
\]
Moreover, for every non-leaf \((x, y) \in T\) with corresponding \(|V_{col}| < L\), let \(u\) be the next vertex to couple. We have the following constraints:

\[
\text{for every } c \in [q], \frac{p_{x, y}^x}{\sum_{c' \in [q]} p_{x, y}^{x_{u+c}, y_{u+c'}}} = \frac{1}{|C_{x, u+c}|} \cdot \frac{\mu_{cp}(x_{u+c}, y_{u+c})}{\mu_{cp}(x, y)} \geq \frac{1}{t^* + 4} \cdot \frac{1}{q} \left(1 - \frac{1}{t^*}\right) = 1 - \frac{5}{t^* + 4} \geq 1 - \frac{5}{t^*}.
\]

These constraints faithfully realize the properties (9), (10), and (11).

Constraints 3: For every \(c, c' \in [q]\) that \(c \neq c'\), we add constraints:

\[
\text{for every } c \in [q], \frac{p_{x, y}^x}{\sum_{c' \in [q]} p_{x, y}^{x_{u+c'}, y_{u+c'}}} \leq \frac{5}{t^*} \cdot \frac{p_{x, y}^x}{p_{x, y}^y};
\]

\[
\text{for every } c \in [q], \frac{p_{x, y}^y}{\sum_{c' \in [q]} p_{x, y}^{x_{u+c'}, y_{u+c'}}} \leq \frac{5}{t^*} \cdot \frac{p_{x, y}^y}{p_{x, y}^y}.
\]

We will eventually set \(t^* = 5 \left(\frac{e^2 k^4 A^4}{2}\right)^{\frac{1}{1+\beta}}\) in Lemma 17, where the parameter \(0 < \beta < 1\) will become clear in Definition 14.

These constraints reflects the fact that the coupling at individual vertices are very likely to succeed, due to by Lemma 7. Assume the conditions of Lemma 7 are met with \(t = t^*\). We claim that the true values \(\{p_{x, y}^x, p_{x, y}^y\}\) satisfy

\[
\frac{p_{x, y}^{x_{u+c}, y_{u+c'}}}{p_{x, y}^x} \geq 1 - \frac{5}{t^*}.
\]

Then Constraints 3 follows from Constraints 2. We use (6) to show the claim. By Lemma 7,

\[
\frac{|C_{x, u+c}|}{|C_{x, u+c'}|} = \frac{1}{\Pr_{\sigma \sim \mu_{C_x}}[\sigma(u) = c]} \geq \frac{q t^*}{t^* + 4}.
\]

Again by Lemma 7, the coupling at \(u\) with any color \(c\) succeeds with probability at least \(\frac{1}{q} \left(1 - \frac{1}{t^*}\right)\). Hence the ratio \(\frac{\mu_{cp}(x_{u+c}, y_{u+c'})}{\mu_{cp}(x, y)}\), which can be explained as the probability of conditioned on reaching \((x, y)\), coupling \(u\) successfully with color \(c\), is at least \(\frac{1}{q} \left(1 - \frac{1}{t^*}\right)\). Combine these facts with (6),

\[
\frac{p_{x, y}^{x_{u+c}, y_{u+c'}}}{p_{x, y}^x} = \frac{|C_{x, u+c}|}{|C_{x, u+c'}|} \cdot \frac{\mu_{cp}(x_{u+c}, y_{u+c'})}{\mu_{cp}(x, y)} \geq \frac{q t^*}{t^* + 4} \cdot \frac{1}{q} \left(1 - \frac{1}{t^*}\right) = 1 - \frac{5}{t^* + 4} \geq 1 - \frac{5}{t^*}.
\]

Similar inequalities hold for \(\{p_{x, y}^y\}\) due to (7).

4.2. Analysis of the LP. In this subsection, we show that the LP can be used to obtain an efficient and accurate estimator of marginals.
Theorem 9. Let $\Delta \geq 2$ and $k > 0$ be two integers. Let $0 < \beta < 1$ be a constant. Let $0 < k_2 < k_1 \leq k$ be integers. Let $H = (V, E)$ be a hypergraph with pinnings \mathcal{P}, maximum degree Δ such that $k_1 \leq |e| \leq k$ for every $e \in E$. If $q > \max \left\{ (ek\Delta)^{\frac{1}{k_1-2}}, \beta^{\frac{1}{k_2-1}}, C\Delta^{\frac{4}{(k_2-1)^2}}, C\Delta^{\frac{5-\beta}{(1-\beta)(k_2-1)}} \right\}$ where

$$C > \max \left\{ \left(\frac{e^3+3k^4}{2\beta^4} \right)^{\frac{1}{k_2-1}}, \left(5e^2k^4 \right)^{\frac{1}{1-\beta}} \right\},$$

then there is a deterministic algorithm that, for every $v \in V$, $c \in [q]$ and $\varepsilon > 0$, it computes a number \hat{p} satisfying

$$e^{-\varepsilon} \cdot \hat{p} \leq \mathbf{Pr}_{\sigma \sim \mu_C} [\sigma(v) = c] \leq e^\varepsilon \cdot \hat{p}.$$

in time $\text{poly}(\frac{1}{\varepsilon})$.

Before diving into the proof details, let us first imagine that we set up the LP for the whole coupling tree. To do this would require exponential amount of time, but we show that this indeed can be used to recover accurate information. Due to Constraints 2, a simple induction shows that for every $L \leq |V|$ and $\sigma \in C_1$,

$$\sum_{(x,y) \in \mathcal{L}(T_L) : \sigma|\sigma} p_{x,y}^x = 1.$$

In particular, when $L = |V|$, this means that

$$\sum_{(x,y) \in \mathcal{L}(T) : \sigma|\sigma} p_{x,y}^x = 1.$$

Similar equalities hold on the Y side. Using this, we rewrite the ratio $\frac{|C_1|}{|C_2|}$ as follows:

$$\frac{|C_1|}{|C_2|} = \frac{\sum_{\sigma \in C_1} \frac{1}{2}}{\sum_{\sigma \in C_2} \frac{1}{2}} = \frac{\sum_{\sigma \in C_1} \sum_{(x,y) \in \mathcal{L}(T) : \sigma|x} p_{x,y}}{\sum_{\sigma \in C_2} \sum_{(x,y) \in \mathcal{L}(T) : \sigma|y} p_{x,y}}$$

$$= \frac{\sum_{(x,y) \in \mathcal{L}(T)} \sum_{\sigma|x} p_{x,y}}{\sum_{(x,y) \in \mathcal{L}(T)} \sum_{\sigma|y} p_{x,y}}$$

$$= \frac{\sum_{(x,y) \in \mathcal{L}(T)} \sum_{\sigma \in C_1} p_{x,y} |C_x|}{\sum_{(x,y) \in \mathcal{L}(T)} \sum_{\sigma \in C_2} p_{x,y} |C_y|}.$$

Recall $r_{x,y} = \frac{|C_1|}{|C_2|}$. By Constraints 1, we know that for any $(x, y) \in \mathcal{L}(T)$,

$$r \leq \frac{p_{x,y} |C_x|}{p_{x,y} |C_y|} \leq \overline{r}.$$

It implies that

$$r \leq \frac{|C_1|}{|C_2|} \leq \overline{r}.$$

Unfortunately, as the size and the computational cost of setting up the LP is exponential in L, we have to truncate it early. The rest of our task is to show that the error caused by the truncation is small. One may notice that in the analysis above we do not use Constraints 3. Indeed, these constraints are used to bound the truncation error.

Intuitively, the truncation error comes from the proper colorings so that the coupling does not halt at depth L (since we cannot impose Constraints 1 for these nodes). A naive approach would then try to show that conditioned on any proper coloring as the final output, the coupling will terminate quickly. This is unfortunately not true and there exist “bad” colorings so that the coupling
does not terminate at level \(L \) with high probability. For example, given the ordering of vertices and edges, a proper coloring \(\sigma \in \mathcal{C}_1 \) may render all vertices encountered in Algorithm 1 with the same color. Hence conditioned on this \(\sigma \) on the \(X \) side, Algorithm 1 will not stop until all edges are enumerated.

We will show, nonetheless, that the fraction of “bad” colorings is small. Let us formally define bad colorings first. We need to use the notion of 2-trees. This notion dates back to Alon’s parallel local lemma algorithm [Alo91].

Definition 10 (2-tree). Let \(G = (V, E) \) be a graph. A set of vertices \(T \subseteq V \) is a 2-tree if (1) for any \(u, v \in T \), \(\text{dist}_G(u, v) \geq 2 \); (2) if one adds an edge between every \(u, v \in T \) such that \(\text{dist}_G(u, v) = 2 \), then \(T \) is connected.

Any connected subgraph contains a large 2-tree.

Lemma 11. Let \(G = (V, E) \) be a graph with maximum degree \(d \). Let \(V' \subseteq V \) be a subset of vertices inducing a connected subgraph of \(G \), and let \(v \in V' \) be an arbitrary vertex. There must be a 2-tree \(T \subseteq V' \) such that \(v \in T \) and \(|T| \geq \frac{|V'|}{d+1} \).

Proof. We can greedily take \(T \) to be a maximal independent set containing \(v \) in the subgraph induced by \(V' \). It is easy to verify that \(T \) is a 2-tree. Since all vertices are dominated, \(|T| \geq \frac{|V'|}{d+1} \). \(\square \)

We also need to count the number of 2-trees later for union bounds. The following lemma, due to Borgs et al. [BCKL13], counts the number of connected induced subgraphs in a graph.

Lemma 12. Let \(G = (V, E) \) be a graph with maximum degree \(d \) and \(v \in V \) be a vertex. The number of connected induced subgraphs of size \(\ell \) containing \(v \) is at most \(\left(\frac{ed}{2} \right)^{\ell-1} \).

Corollary 13. Let \(G = (V, E) \) be a graph with maximum degree \(d \) and \(v \in V \) be a vertex. Then the number of 2-trees in \(G \) of size \(\ell \) containing \(v \) is at most \(\left(\frac{ed^2}{2} \right)^{\ell-1} \).

Proof. Let \(G' = (V, E') \) be the graph with vertex set \(V \) and \((u, v) \in E' \) if \(\text{dist}_G(u, v) = 2 \). The degree of \(G' \) is at most \(d^2 \) and any 2-tree in \(G \) is a connected set of vertices in \(G' \). Therefore, the number of 2-trees in \(G \) containing \(v \) of size \(\ell \) can be bounded by the number of induced subgraphs in \(G' \) containing \(v \) of size \(\ell \). Lemma 12 then concludes the proof. \(\square \)

Recall that \(\text{Lin}(H) \) is the line graph of \(H \), that is, vertices in \(\text{Lin}(H) \) are hyperedges in \(H \) and two hyperedges are adjacent if they share some vertex in \(H \). Let \(L^2(H) \) be a graph whose vertices are hyperedges in \(H \) and two hyperedges are adjacent in \(L^2(H) \) if their distance is at most 2 in \(\text{Lin}(H) \).

We now define bad colorings. Let \(e_0 \) be the first edge in \(\Gamma(v) \). Recall that in the coupling process we would attempt to color at most \(k_2 \) vertices in an edge, where \(0 < k_2 < k_1 \). We will have another parameter \(0 < \beta < 1 \), which denotes the fraction of (partially) monochromatic hyperedges in a bad coloring. All parameters will be set in Section 7.

Definition 14 (bad colorings). Let \(L > 0 \) be an integer and \(\beta > 0 \) be a constant. A coloring \(\sigma \in \mathcal{C}_1 \) is \(\ell \)-bad if there exists a 2-tree \(T \) in \(L^2(H) \) and \(V_{\text{col}} \) such that

1. \(|T| = \ell \) and \(e_0 \in T \);
2. for every \(e \in T \), \(|e \cap V_{\text{col}}| = k_2 \);
3. the partial coloring of \(\sigma \) restricted to \(V_{\text{col}} \) makes at least \(\beta \ell \) hyperedges in \(T \) (partially) monochromatic.

We say \(\sigma \in \mathcal{C}_1 \) \(\ell \)-good if it is not \(\ell \)-bad.

Note that since \(T \) is a 2-tree in \(L^2(H) \) in Definition 14, all of \(e \in T \) are actually disjoint.

We show that the fraction of bad proper colorings among all proper colorings in \(\mathcal{C}_1 \) is small. This allows us to throw away bad colorings in the estimates later.
Lemma 15. Let $\Delta \geq 2$ and $0 < k_2 < k_1 \leq k$ all be integers. Let $0 < \beta < 1$ be a constant. Let $H(V, E)$ be a hypergraph with pinning P, where the maximum degree is Δ and $k_1 \leq |e| \leq k$ for every $e \in E$. If $q^{1-k_2} < \beta$, $q > (ek\Delta)^{k_1-1}$, and $q > C\Delta^{\frac{4}{(k_2-1)}}$ where $C^{(k_2-\ell)} \geq \frac{\epsilon \beta^{\ell+3k_2-4}}{2^\beta}$, then we have

$$\frac{|\{\sigma \in C_1 : \sigma \text{ is } \ell\text{-bad}\}|}{|C_1|} \leq e^{-\ell}.$$

Proof. Fix a 2-tree $T = \{e_1, e_2, \ldots, e_\ell\}$ of size ℓ and V_{col} such that for every $e \in T$, $|e \cap V_{\text{col}}| = k_2$. We say σ is ℓ-bad with respect to T and V_{col} if σ, T, and V_{col} satisfy the requirements in Definition 14. Denote by $Z_{V_{\text{col}}}$ or simply Z the number of (partially) monochromatic hyperedges by first drawing from μ_{C_1} and then revealing the colors of vertices in V_{col}. We use Theorem 4 to bound the probability that $Z \geq \beta \ell$.

Indeed, μ_{C_1} can be viewed as the uniform distribution over proper colorings of an instance where v is pinned to color c_1. In this instance, we have that $k_1 - 1 \leq |e| \leq k$ for every $e \in E$. Hence, for every $e \in E$, in the product distribution, $\Pr[e \text{ is monochromatic}] \leq q^{2-k_2} \leq \frac{1}{e^{k\Delta}}$ by assumption. We set $x(e) = \frac{1}{k\Delta}$ in Theorem 4 and verify (1):

$$x(e) \prod_{e' \in \Gamma(e)} (1 - x(e')) \geq \frac{1}{k\Delta} \left(1 - \frac{1}{k\Delta}\right)^{k\Delta-1} \geq \frac{1}{e^{k\Delta}} \Pr[e \text{ is monochromatic}].$$

In the product distribution (where all vertices are independent), for $e \in T$, all vertices in $e \cap V_{\text{col}}$ are monochromatic with probability $p^e := q^{1-k_2} < \beta$. Since T is a 2-tree in $L^2(H)$, all edges are disjoint and these events are independent in the product distribution. Hence, by a multiplicative Chernoff bound with mean $p^e \ell$ and $\gamma = \frac{\beta}{p^e} - 1 > 0$,

$$\Pr[Z \geq \beta \ell] = \Pr[Z \geq (1 + \gamma)p^e \ell] \leq \left(\frac{e^\gamma}{(1 + \gamma)^{1+\gamma}}\right)^{p^e \ell} \leq \frac{e^{\beta \ell}}{\beta}.$$

For each edge $e \in T$, there are at most $k(\Delta - 1) + 1 \leq \ell$ edges that intersect with e (including itself). The random variable Z thus depends on at most $k(\Delta - 1) \ell$ hyperedges in μ_{C_1}. By Theorem 4 with $x(e) = \frac{1}{k\Delta}$,

$$\mu_{C_1}(Z \geq \beta \ell) \leq \Pr[Z \geq \beta \ell] \cdot (\frac{1}{k\Delta})^{-(k\Delta - 1)\ell} \leq \left(\frac{e^{1+1/\beta}}{\beta}\right)^{\beta \ell} \cdot e^{\ell} = \left(\frac{e^{1+1/\beta}}{\beta}\right)^{\beta \ell}.$$

To finish the argument, we still need to account for all 2-trees and V_{col} by an union bound. Since the maximum degree in $L^2(H)$ is $(k\Delta)^2$, the total number of 2-trees containing e_0 of size ℓ, by Corollary 13, is at most $\left(\frac{e(k\Delta)^2}{2}\right)^{\ell}$. For a fixed T, the number of possible V_{col} is at most $\left(\frac{k}{k_2}\right)^{\ell}$. This is because all edges in T are disjoint.
Putting everything together, we have that

$$\Pr_{\sigma \sim \mu_{C_1}} [\sigma \text{ is } \ell\text{-bad}] \leq \left(\frac{e^{1+1/\beta}p^*}{\beta} \right)^{\beta\ell} \left(\frac{e(k \Delta)}{2} \right)^{\ell} \binom{k}{k_2}^\ell$$

$$= \left(\frac{e^{\beta+1}}{\beta^\beta} \cdot \frac{ek^4}{2} \cdot \binom{k}{k_2} \cdot q^{\beta - \beta k_2 \Delta^4} \right)^\ell.$$

By assumption,

$$q^{\beta k_2 - \beta} \geq C^{\beta(k_2-1)} \Delta^4 \geq \frac{e^{\beta+2}}{\beta^\beta} \cdot \frac{ek^4}{2} \cdot \binom{k}{k_2} \cdot \Delta^4.$$

Combining these two inequalities finishes the proof. \hfill \square

Let \((x, y) \in T\) be a pair of partial colorings defined on \(V_{\col}\). We are now going to prove some structural properties of \((x, y)\). Say an edge \(e \in \mathcal{E}\) such that \(e \cap V_{\col} \neq \emptyset\) is blocked by \((x, y)\) if one of the following holds

1. \(x(u) \neq y(u)\) for some \(u \in e\).
2. \(|e \cap V_{\col}| = k_2\) and \(e\) is not satisfied by both \(x\) and \(y\).

Notice that all edges \(e \in \Gamma(v)\) are always blocked, and in particular, \(e_0\) is always blocked.

Let us denote the set of edges blocked by \((x, y)\) as \(B_{x,y}\). We establish some simple properties of blocked edges.

Lemma 16. Let \((x, y) \in T\) be a pair of partial colorings in the coupling tree defined on \(V_{\col}\) with corresponding \(V_1\). Assume \(|V_{\col}| = L\). It holds that

1. \(B_{x,y}\) is connected in \(L^2(H)\);
2. \(|B_{x,y}| \geq \frac{L}{\sqrt{k^2 \Delta}}\).

Proof. For (1), we do an induction on \(L\). First observe that once an edge is blocked during Algorithm 1, it will remain blocked till the end. If \(u\) is the next vertex to be colored in Algorithm 1, then \(u\) must be adjacent to some vertex \(u' \in V_1\), and \(u'\) is in some edge \(e\) blocked by the current \((x, y)\). Therefore any newly blocked edge caused by coloring \(u\) has distance at most 2 to \(e\).

For (2), observe that every vertex in \(V_1\) belongs to some blocked edge. Hence \(|V_1| \leq k |B_{x,y}|\). By item 8, \(V_{\col} \subseteq \Gamma_{\text{ver}}(V_1)\). It implies that \(L = |V_{\col}| \leq |\Gamma_{\text{ver}}(V_1)| \leq k \Delta |V_1|\). Combining the two facts yields the claim. \hfill \square

Recall that \(T_L\) is the tree obtained from \(T\) by truncating at depth \(L\), and \(L(T_L)\) is its leaves. Because of **Constraints 2**, for every proper coloring \(\sigma \in C_1\), it holds that

$$\sum_{(x,y) \in L(T_L): \sigma \models x} p_{x,y}^x = 1.$$ \hfill (12)

However, in **Constraints 1**, our linear program only contains constraints for those \(p_{x,y}^x\) and \(p_{x,y}^y\) whose \(V_{\col}\) is of size strictly smaller than \(L\). The next lemma shows that, for a \(\ell\)-good coloring \(\sigma\), solving \(p_{x,y}^x, p_{x,y}^y\) provides a good approximation for the identity (12).

Lemma 17. Let \(0 < \beta < 1\) be a constant. Let \(H = (V, \mathcal{E})\) be a hypergraph with pinnings \(\mathcal{P}\) and maximum degree \(\Delta\) such that \(|e| \leq k\) for all \(e \in \mathcal{E}\). Let \(\sigma \in C_1\) be \(\ell\)-good where \(\ell\) is an integer. If \(\{\tilde{p}_{x,y}^x\}\) is a collection of values satisfying all our linear constraints, with \(t^* = 5 \left(\frac{e^{2k^4 \Delta^4}}{2} \right)^{\frac{1}{\beta}}\) in **Constraints**
up to level \(L = k^4 \Delta^3 \ell \), then it holds that

\[
\sum_{(x,y) \in \mathcal{L}(T_\ell): |V_{col}| = L \text{ and } \sigma = x} \tilde{p}^x_{x,y} \geq 1 - t^* e^{-\ell}.
\]

Proof. We construct a new coupling process similar to Algorithm 1, and show the left-hand side of (13) is the probability of an event defined by the new process. We modify \(S \) in the following two ways: (1) condition on the final output being \(\sigma \); (2) use probabilities induced by \(\{ \tilde{p}^x_{x,y} \} \) instead of \(\{ p^x_{x,y} \} \). To be more specific, consider each step where one needs to extend \((x,y)\) defined on \(V_{col} \) to a new vertex \(u \). Call the new colorings \((x',y')\). Since the output \(\sigma \) is fixed, we simply reveal \(x'(u) = \sigma(u) \). In the original \(S \), the color of \(y'(u) \) is drawn according to an optimal coupling of \((x',y')\) on \(u \). Here, we set \(y'(u) \) to color \(c \) with probability \(\frac{\tilde{p}^x_{u-c,\sigma(u)}}{\tilde{p}^x_{u-c,\sigma(u)}} \). This is well-defined since \(\{ \tilde{p}^x_{x,y} \} \) satisfies Constraints 2. If this process reaches depth \(L \), then it stops.

The output of the new coupling defines a distribution over pairs of partial colorings \((x,y)\) such that \(\sigma \models x \) and we denote it by \(\tilde{\mu} \). We claim that

\[
\sum_{(x,y) \in \mathcal{L}(T_\ell): |V_{col}| = L \text{ and } \sigma = x} \tilde{p}^x_{x,y} \leq \sum_{2\text{-tree } T: |T| = \ell, e_0 \in T} \Pr_{(X,Y) \sim \tilde{\mu}} [T \subseteq B_{X,Y}].
\]

The left-hand side of (14) is the probability that our new coupling reaches some \((x,y)\) with \(|V_{col}| = L\). Lemma 16 implies that the blocked set of edges \(B_{x,y} \) is of size at least \(\frac{L}{k^2 \Delta^2} \). In particular, \(e_0 \in B_{x,y} \), as it is blocked by any partial colorings. Since the maximum degree of \(L^2(H) \) is at most \(k^2(\Delta - 1)^2 \leq k^2 \Delta^2 - 1 \), Lemma 11 implies that there exists a 2-tree \(T \subseteq B_{x,y} \) in \(L^2(H) \) such that \(|T| \geq \frac{L}{k^2 \Delta^2} \cdot \frac{1}{(k \Delta)^2} = \ell \) and \(e_0 \in T \). Thus the probability of reaching vertices of depth \(L \) is upper bounded by the right-hand side of (14).

Fix a 2-tree \(T \) of size \(\ell \). Since \(\sigma \) is \(\ell \)-good, whatever the choice of \(V_{col} \) is, at least a \((1 - \beta) \) fraction of hyperedges in \(T \) must not be monochromatic on the \(X \) side. However, if \(T \subseteq B_{X,Y} \), then at least \([(1 - \beta)|T|] \) hyperedges satisfy (1) \(\sigma(v) \neq Y(v) \) for some \(v \in e \cap V_{col} \), or (2) \(e \cap V_{col} = k \Delta \) and \(\sigma|_{V_{col}} = X|_{V_{col}} \) satisfies \(e \) but \(Y \) does not satisfy \(e \). It is clear that case (2) implies case (1), since if one partial coloring satisfies \(e \) and another one does not, then they must differ at some \(v \in e \cap V_{col} \). We use \(T' = \{ e_1, e_2, \ldots, e_{|T'\ell|} \} \) to denote these hyperedges in \(T \). For each \(T' \), there must be at least one vertex on which the (modified) coupling fails, which happens with probability at most \(5/\ell^* \) due to Constraints 3. Since \(T \) is a 2-tree in \(L^2(H) \), all of these failed couplings are for disjoint vertices and thus happen independently. Hence, in this new coupling, the probability that every edge in \(T' \) is blocked to at least one failed vertex is at most \(\left(\frac{5}{\ell^*} \right)^{|T'|} \leq \left(\frac{5}{\ell^*} \right)^{(1-\beta)\ell} \).

We still need to apply a union bound. The number of 2-trees of size \(\ell \) in \(L^2(H) \) and containing \(e_0 \) is, by Corollary 13, at most \(\left(\frac{ek^4 \Delta^4}{2} \right)^\ell \). Therefore the right-hand side of (14) is at most

\[
\sum_{2\text{-tree } T: |T| = \ell, e_0 \in T} \Pr_{(X,Y) \sim \tilde{\mu}} [T \subseteq B_{X,Y}] \leq \left(\frac{5}{\ell^*} \right)^{(1-\beta)\ell} \cdot \left(\frac{ek^4 \Delta^4}{2} \right)^\ell \leq \ell^* e^{-\ell},
\]

since we have chosen \(t^* = 5 \left(\frac{ek^4 \Delta^4}{2} \right)^{1/\beta} \) in Constraints 3. The lemma follows by combining (12), (14), and (15).

Note that in Lemma 17 we do not explicitly require a lower bound of \(q \) nor a lower bound on the size of the edges. However, these requirements are implicit since we have set \(t^* \) to be large in Constraints 3.
Lemma 15 and Lemma 17 also hold for any $\sigma \in C_2$. Now we can prove that any solution to the LP provides accurate estimates.

Lemma 18. Assume the settings of Lemma 15 and Lemma 17. If the linear program up to level L has a solution $\{\hat{P}_{x,y}^x, \hat{P}_{x,y}^y\}$ with guessed bounds $\{\hat{\tau}, \tilde{\tau}\}$, then it holds

$$e^{-\gamma \tilde{\tau}} \leq \frac{|C_1|}{|C_2|} \leq e^{\gamma \hat{\tau}},$$

where $\gamma = 2(1 + t^*)e^{-\frac{L}{k^*\Delta^*}}$.

Proof. Let $\ell = \frac{L}{k^*\Delta^*}$. Let

$$Z_1 := \sum_{\sigma \in C_1} \sum_{(x,y) \in \mathcal{L}(T): |V_{col}| < L \text{ and } \sigma = x} \hat{P}_{x,y}^x,$$

Exchange the order of summation:

$$Z_1 = \sum_{(x,y) \in \mathcal{L}(T): |V_{col}| < L} \sum_{\sigma \in C_1: \sigma = x} \hat{P}_{x,y}^x,$$

A similar quantity Z_2 can be defined and bounded by replacing $\hat{P}_{x,y}^x$ with $\hat{P}_{x,y}^y$. **Constraints 1** impose that for any $(x, y) \in \mathcal{L}(T)$ such that $|V_{col}| < L$,

$$\hat{\tau} \leq \frac{\hat{P}_{x,y}^x \cdot |C_x|}{\hat{P}_{x,y}^y \cdot |C_y|} \leq \tilde{\tau}.$$

Hence,

$$\hat{\tau} \leq \frac{Z_1}{Z_2} \leq \tilde{\tau}. \quad (16)$$

We will relate $|C_1|$ with Z_1. It is easy to see, by (12), that

$$|C_1| = \sum_{\sigma \in C_1} 1 = \sum_{\sigma \in C_1} \sum_{(x,y) \in \mathcal{L}(T): \sigma = x} \hat{P}_{x,y}^x \geq Z_1. \quad (17)$$

The lower bound is more complicated:

$$|C_1| = \sum_{\sigma \in C_1} 1 \leq \left(1 - e^{-\ell}\right)^{-1} \sum_{\sigma \in C_1: \sigma \text{ is } \ell\text{-good}} 1 \leq \left(1 - e^{-\ell}\right)^{-1} \left(1 - t^* e^{-\ell}\right)^{-1} \sum_{\sigma \in C_1: (x,y) \in \mathcal{L}(T): |V_{col}| < L \text{ and } \sigma = x} \hat{P}_{x,y}^x$$

$$\leq e^{\gamma} \sum_{\sigma \in C_1} \sum_{(x,y) \in \mathcal{L}(T): |V_{col}| < L \text{ and } \sigma = x} \hat{P}_{x,y}^x = e^{\gamma} Z_1, \quad (18)$$

where in the first line we use Lemma 15 and in the second line we use Lemma 17. Similar bounds hold with $|C_2|$ and Z_2. Combining (16), (17), (18), and their counterparts for $|C_2|$ and Z_2, we have that

$$e^{-\gamma \hat{\tau}} \leq \frac{|C_1|}{|C_2|} \leq e^{\gamma \tilde{\tau}}.$$
We set up a binary search, Algorithm 2, to find r and τ that are close enough to the true ratio.

Algorithm 2 Estimate $\Pr_{\sigma \sim \mu_c} [\sigma(v) = e_1] / \Pr_{\sigma \sim \mu_c} [\sigma(v) = e_2]$ in (H, \mathcal{P})

Input: A hypergraph $H(V, \mathcal{E})$ with pinnings \mathcal{P} and $|e| \leq k$ for every $e \in \mathcal{E}$, a vertex $v \in V$, two distinct colors $e_1, e_2 \in [q]$ and an integer $L \in \mathbb{N}$

Output: An estimate of $\Pr_{\sigma \sim \mu_c} [\sigma(v) = e_1] / \Pr_{\sigma \sim \mu_c} [\sigma(v) = e_2]$

1. Set $k = \log$ number of loops of the binary search is at most L of an LP of size $O(L)$.
2. We then use Lemma 2 to find r and τ close enough to the true ratio.
3. For every leaf (x, y), we need to enumerate all the possible colorings in V_1 to compute $r_{x, y}$ for every leaf (x, y). This costs at most $\exp(O(L))$ time. Hence it takes $\exp(O(L))$ time to construct an LP of size $\exp(O(L))$, which requires again $\exp(O(L))$ time to solve. Note that with our choice of L, $\exp(O(L)) = \poly(\frac{1}{\varepsilon})$. For the WHILE loop, we use binary search to find r and τ. Thus the number of loops of the binary search is at most $\log_2 \frac{2}{\varepsilon} = \poly(\frac{1}{\varepsilon})$. Therefore, the total running time of our estimator is $\poly(\frac{1}{\varepsilon})$.}

Proof of Theorem 9. Take $L = k^4 \Delta^3 \left[\log \left(\frac{2(1+t^*)}{\varepsilon} \right) \right]$ so that $\gamma = 2(1+t^*)e^{-\frac{L}{k^5\Delta^5}} \leq \varepsilon$. We claim that the true values of $\{p^x_{x, y}, p^y_{x, y}\}$ always satisfy our LP. This is trivial for Constraints 1 and 2. For Constraints 3, recall that $t^* = 5 \left(\frac{e^2 k^4 \Delta^4}{2} \right)^{1/2} > k$ and we only need to verify the conditions of Lemma 7 with $t = t^*$. At any point of Algorithm 1, the size of an edge is at least $k_1 - k_2$. Hence we set $k' = k_1 - k_2$ in Lemma 7. By our assumption,

$$q > C \Delta^{\frac{5-\beta}{1-\beta}(k_1-k_2)} \geq \left(5e \left(\frac{e^2 k^4}{2} \right)^{1/2} \right)^{k^{1/2}} \cdot \Delta^{\frac{5-\beta}{1-\beta}(k_1-k_2)} = (et^* \Delta)^{\frac{1}{k_1-k_2}}.$$

Fix the color c. It follows from Lemma 18 that for every $c' \in [q]$, we can apply Algorithm 2 to obtain a value $p_{c'}$, which is an estimate of $\Pr_{\sigma \sim \mu_c} [\sigma(v) = c'] / \Pr_{\sigma \sim \mu_c} [\sigma(v) = c]$ satisfying

$$e^{-\varepsilon} \cdot q_{c'} \leq \frac{\Pr_{\sigma \sim \mu_c} [\sigma(v) = c']}{\Pr_{\sigma \sim \mu_c} [\sigma(v) = c]} \leq e^\varepsilon \cdot q_{c'}.$$

We then use $\hat{p} := \left(\sum_{c' \in [q]} p_{c'} \right)^{-1}$ as our estimate of $\Pr_{\sigma \sim \mu_c} [\sigma(v) = c]$.

For the running time, we treat Δ, k, and q as constants. The size of the linear program in the WHILE loop is $\exp(O(L))$. This is because the coupling tree T is q^2-ary, and therefore it has at most $\exp(O(L))$ vertices up to depth L, and we have a pair of variables $p^x_{x, y}$ and $p^y_{x, y}$ for each vertex. The number of variables and the number of constraints is at most $\exp(O(L))$. Note that for each set of constraints in Constraints 1, we need to enumerate all the possible colorings in V_1 to compute $r_{x, y}$ for every leaf (x, y). This costs at most $\exp(O(L))$ time. Hence it takes $\exp(O(L))$ time to construct an LP of size $\exp(O(L))$, which requires again $\exp(O(L))$ time to solve. Note that with our choice of L, $\exp(O(L)) = \poly(\frac{1}{\varepsilon})$. For the WHILE loop, we use binary search to find r and τ. Thus the number of loops of the binary search is at most $\log_2 \frac{2}{\varepsilon} = \poly(\frac{1}{\varepsilon})$. Therefore, the total running time of our estimator is $\poly(\frac{1}{\varepsilon})$. \(\square\)
5. Approximate counting

Now we give our FPTAS for the number of proper q-colorings of a k-uniform hypergraph H with maximum degree Δ. The next lemma guarantees us a “good” proper coloring σ so that we can use the algorithm in Theorem 9 to compute the marginal probability of σ.

Lemma 19. Let k_1^C be an integer such that $0 < k_1^C < k - 1$. Let $q \geq \left(4(k - k_1^C)\Delta\right)^{1/\left(k - k_1^C\right) - 1}$. Let v_1, \ldots, v_n be an arbitrary ordering of the vertices of a k-uniform hypergraph $H = (V, E)$. There exists a proper coloring σ such that for every hyperedge $e \in E$, the partial coloring σ restricted to the first $k - k_1^C$ vertices is not monochromatic. Moreover, σ can be found in deterministic polynomial time.

Proof. Let $k' = k - k_1^C$. Consider a new hypergraph $H' = (V, E')$ on the same vertex set V, but for every $e \in E$, we replace it with its first k' vertices. We set $x(e) = \frac{1}{k'\Delta}$ in Theorem 3 and verify (1) for every $e \in E'$,

\[
x(e) \prod_{e' \in \Gamma(e)} \left(1 - x(e')\right) \geq \frac{1}{k'\Delta} \left(1 - \frac{1}{k'\Delta}\right)^{k'(\Delta - 1)} \geq \frac{1}{ek'\Delta} \geq q^{1-k'} \geq \Pr [e \text{ is monochromatic}].
\]

Hence, Theorem 3 implies that there exists a proper coloring σ in H', which satisfies the requirement of the lemma.

In order to find σ, we have left a bit slack in our bound on q. Thus the deterministic algorithm from [MT10] applies. □

Theorem 20. Assume the conditions of Theorem 9 (on q, Δ, k, k_1, k_2, and β) with $k_1 = k_1^C$ hold, together with the conditions of Lemma 19. There is an FPTAS for the number of proper q-colorings of a k-uniform hypergraph $H = (V, E)$ with maximum degree Δ.

Proof. Let $n = |V|$. Choose an arbitrary ordering of the vertices v_1, \ldots, v_n of V. Lemma 19 implies that we can find a proper coloring σ so that any hyperedge is properly colored by the first $k - k_1^C$ of its vertices. Let $Z = |\mathcal{C}|$ be the number of proper colorings of H. For every $\varepsilon > 0$, we will deterministically compute a number \hat{Z} in time polynomial in n and $1/\varepsilon$ such that

\[
e^{-\varepsilon}\hat{Z} \leq Z \leq e^{\varepsilon}\hat{Z}.
\]

As before, let μ_C be uniform over \mathcal{C}, the set of all proper colorings of H. We will actually estimate $\mu_C(\sigma) = \frac{1}{Z}$. To this end, we create a sequence of hypergraphs $\{H_i\}$ with pinnings $\{\mathcal{P}_i\}$ inductively. Let $H_1 = H$ and \mathcal{P}_1 be empty. Given $H_i = (V_i, \mathcal{E}_i)$ and \mathcal{P}_i, we find the next vertex u_i under the ordering that are contained in at least one hyperedge of H_i. We pin the color of u_i to be $\sigma(u_i)$. This induces a pinning \mathcal{P}_{i+1} on all hyperedges in \mathcal{E}_i. Then, H_{i+1} is obtained by removing u_i from V_i and removing all hyperedges that are properly colored under \mathcal{P}_{i+1} from \mathcal{E}_i. We also truncate the pinning \mathcal{P}_{i+1} accordingly. If for some $n' \leq n$, $\mathcal{E}_{n'}$ is empty, then this process terminates. Notice that the construction above yields a subset of vertices $u_1, \ldots, u_{n'}$ where $n' \leq n$. Their ordering is consistent with the given ordering.

We claim that for any $i \in [n']$, for any $e \in \mathcal{E}_i$, it satisfies that $k_1^C \leq |e| \leq k$. This is because an edge e shrinks in size in the process when vertices are pinned according to σ. However, Lemma 19 guarantees that the edge e will be removed in the process above before $k - k_1^C$ vertices are colored. Therefore, together with our assumptions, Theorem 9 applies with $k_1 = k_1^C$.
Let \(p_i \) be the marginal probability of color \(\sigma(u_i) \) at \(u_i \) in \(H_i \) with pinning \(\mathcal{P}_i \). Let \(p_i = \frac{1}{q} \) for all \(i \geq n' \). It is easy to see that

\[
Z^{-1} = \mu_C(\sigma) = \prod_{i=1}^{n} p_i.
\]

Thus we can obtain our desired estimate \(\hat{Z} \) by approximating each \(p_i \) within \(\varepsilon \). To this end, we appeal to Theorem 9 with \(\varepsilon' = \frac{\varepsilon}{n} \).

6. Sampling

Finally we give the algorithm to sample proper colorings almost uniformly. As usual, let \(H(V,E) \) be a \(k \)-uniform hypergraph with maximum degree \(\Delta \), \(q \) be the number of colors, and \(C \) be the set of proper colorings. Let \(n = |V| \). Algorithm 3 samples a coloring in \(C \) within total variation distance \(\varepsilon \) from \(\mu_C \). Similar to the coupling process in Section 3, we assume that there is an arbitrary fixed ordering of all vertices and hyperedges. There is a parameter \(0 < k^S_1 < k - 1 \) in Algorithm 3, which will be set in Section 7.

Algorithm 3 An almost uniform sampler for proper colorings

1: Input: A \(k \)-uniform hypergraph \(H(V,E) \) with maximum degree \(\Delta \) and \(0 < \varepsilon < 1 \)
2: Output: A coloring in \(C \)
3: Let \(X \) be the partial coloring that \(X(v) = - \) for every \(v \in V \) initially;
4: while \(E \) is nonempty do
5: Choose the first uncolored \(v \in V \) such that every \(e \in \Gamma(v) \) contains \(> k^S_1 \) uncolored vertex;
6: if no such vertex \(v \) exists then
7: Break
8: end if
9: Apply the algorithm in Theorem 9 to compute the marginal distribution on \(v \) with precision \(\frac{\varepsilon}{2n} \), and extend \(X \) with the color on \(v \) according to the distribution;
10: Remove from \(E \) all hyperedges that are now satisfied.
11: end while
12: \(S \leftarrow \) uncolored vertices in \(V \);
13: Let \(H_S = (S, E_S) \) be the hypergraph where \(E_S := \{ e \cap S : e \in E \} \);
14: if \(H_S \) contains a connected component with size at least \(k^3\Delta^2 \log \left(\frac{2n\Delta}{\varepsilon} \right) \) then
15: return an arbitrary \(x \in C \)
16: else
17: return a uniformly random proper coloring consistent with \(X \) by enumerating all proper colorings of \(H_S \).
18: end if

We first assume that at Line 9, the oracle call to Theorem 9 is always within the correct range. This simplification allows us to identify a threshold involving the parameter \(k^S_1 \) to guarantee small connected components, which will be put together with the conditions of Theorem 9 later.

Lemma 21. Assume the oracle call to Theorem 9 at Line 9 is within the desired range. If \(q > (ek\Delta)^{\frac{1}{k^S_1}-1} \) and \(q > C\Delta^4(k-k^S_1)^{-1} \) where \(C(k-k^S_1)^{-1} > \frac{\varepsilon^4}{2} \), the condition in line 14 of Algorithm 3 holds with probability at most \(\varepsilon/2 \).

Proof. The proof idea is to show the existence of a large components in \(H_S \) implies the existence of a large 2-tree in \(\text{Lin}(H) \) whose vertices are edges that are not satisfied but \(k - k^S_1 \) of their vertices are already colored. Then we show the probability of the latter event is small.
Now assume that the sampler ends the WHILE loop with a partial coloring \(X \) and \(H_S \), and \(H_S \) contains a connected component of size at least \(L \). We denote the set of vertices of this large component by \(U \) and its induced hypergraph \(H_U \). We say an edge \(e \in E \) is bad if \(X \) does not satisfy \(e \) and \(|e \cap S| = k_1^S \), namely \(e \) is partially monochromatic under \(X \) but \(k - k_1^S \) vertices have been colored. Also, say a vertex \(v \in S \) is blocked by an edge \(e \in E \) if \(v \in e \) and \(e \) is bad. It is clear that every vertex in \(S \) is blocked by some bad edge. Let \(F \) be the set of all bad edges incident to \(U \). We claim that \(|F| \geq \frac{|k|}{2} \). This is because that every vertex in \(U \) is blocked by some edge in \(F \), and every edge in \(F \) contains at most \(k \) vertices.

We connect two edges in \(F \) if their distance in \(\text{Lin}(H) \) is at most two and denote the resulting graph by \(G_F \). Then \(G_F \) is connected. The reason is the following. For any two edges, say \(e_1, e_2 \in F \), since \(U \) is connected, there exists a path in \(H_U \) connecting \(e_1 \) and \(e_2 \). Every vertex along this path must be blocked by some edge in \(F \). Each adjacent pair of vertices along this path corresponds to two edges in \(F \) that have distance at most 2 in \(\text{Lin}(H) \).

Recall that \(L^2(H) \) is the graph obtained from \(\text{Lin}(H) \) by connecting vertices of distance at most 2. Then \(G_F \) is an induced subgraph of \(L^2(H) \). It implies that a 2-tree in \(G_F \) is also a 2-tree in \(L^2(H) \). The maximum degree of \(L^2(H) \) is at most \(k^2(\Delta - 1)^2 \leq k^2\Delta^2 - 1 \). The graph \(G_F \) is connected and contains at least \(\frac{L}{k} \) vertices. Lemma 11 implies that \(G_F \) contains a 2-tree of size at least \(\ell = \frac{L}{k\Delta^2} \).

Fix a 2-tree \(T = \{ e_1, \ldots, e_{|T|} \} \) in \(L^2(H) \). Let \(\tilde{\mu} \) be the distribution of our sampler at the end of the WHILE loop. It holds that

\[
\Pr_{X \sim \tilde{\mu}} \left[\text{every } e_i \in T \text{ is bad} \right] = \prod_{i=1}^{|T|} \Pr_{X \sim \tilde{\mu}} \left[e_i \text{ is bad} \right] \prod_{j < i} \left[\bigwedge_{j < i} e_j \text{ is bad} \right].
\]

Since \(e_i \cap e_j = \emptyset \) for every \(i \neq j \) and Theorem 9 guarantees our estimated marginals are within \(e^{\varepsilon/2n} \), for every \(1 \leq i \leq |T| \), we can apply Lemma 7 with \(k' = k_1^S \) and \(t = k \),

\[
\Pr_{X \sim \tilde{\mu}} \left[e_i \text{ is bad} \right] \prod_{j < i} \left[\bigwedge_{j < i} e_j \text{ is bad} \right] \leq q \cdot q^{-(k-k_1^S)} \cdot (1 + 8/\ell)^{k/2} \cdot e^{ck} \leq e \cdot q^{1-(k-k_1^S)} \cdot e^{ck}.
\]

Applying Lemma 7 requires that \(q > (ek\Delta)^{1/(k_1^S - 1)} \). By Corollary 13, the number of 2-trees of size \(\ell \) in \(L^2(H) \) is at most

\[
n \Delta \left(\frac{ek^4\Delta^4}{2} \right)^\ell,
\]

where the term \(|n \Delta| \geq |E| \) accounts for the arbitrary starting hyperedge. Then by the union bound, the probability that \(H_S \) contains a component with size at least \(L \) is at most

\[
(19) \quad n \Delta \left(\frac{ek^4\Delta^4}{2} \right)^\ell \left(e \cdot q^{1-(k-k_1^S)} \cdot e^{ck} \right)^\ell.
\]

By assumption,

\[
q^{(k-k_1^S)-1} > C^{(k-k_1^S)-1} \Delta^4 > \frac{e^{4k^4\Delta^4}}{2}.
\]

As \(L = k^3\Delta^2 \log \left(\frac{2n\Delta}{\varepsilon} \right) \) and \(\ell = \frac{L}{k^3\Delta^2} \), \(e^{-\ell} \leq \frac{e}{2n\Delta} \). Hence, by (19) the probability in Line 14 is at most

\[
n \Delta \left(\frac{ek^4\Delta^4}{2} \right)^\ell \left(e \cdot q^{1-(k-k_1^S)} \cdot e^{ck} \right)^\ell \leq n \Delta \cdot e^{-\ell} \leq \frac{\varepsilon}{2}.
\]

\footnote{Note that this is not necessarily true for, say, 3-trees.}
Now we are ready to give the sampling algorithm.

Theorem 22. Assume the conditions of Theorem 9 (on q, Δ, k, k₁, k₂, and β) with k₁ = k₁^S hold, together with the conditions of Lemma 21. For any k-uniform hypergraph \(H = (V, \mathcal{E}) \) with maximum degree \(Δ \) and \(\varepsilon > 0 \), Algorithm 3 outputs a proper coloring whose distribution is within \(\varepsilon \) total variation distance to the uniform distribution, and the running time is \(\text{poly}(n, \frac{1}{\varepsilon}) \) where \(n = |V| \).

Proof. First we check that the condition of Theorem 9 is met with \(k₁ = k₁^S \), when it is called in Algorithm 3 at Line 9. This is because whenever we color a vertex, we make sure that all hyperedges have at least \(k₁^S \) uncolored vertices afterwards. Hence we apply Theorem 9 with the pinnings \(\mathcal{P} \) induced by the partial coloring \(X \) so far.

We use \(\tilde{\mu}(\cdot) \) to denote the distribution of the final output of Algorithm 3. Recall that \(\mu_\mathcal{C} \) is the uniform distribution over \(\mathcal{C} \). We shall bound the total variation distance \(\text{dist}_{TV}(\mu_\mathcal{C}, \tilde{\mu}) \). To this end, we introduce two intermediate distributions: Let \(\mu₁(\cdot) \) be the distribution obtained from the output of Algorithm 3 but ignoring the condition on line 14 in Algorithm 3. Namely, it never checks the size of connected components in \(H_S \) and proceeds to enumerate all the proper colorings on \(S \) in any case. This is unrealistic since doing so would require exponential time. We also define another distribution \(\mu₂(\cdot) \), which is the same as \(\mu₁(\cdot) \) except at line 9, it uses the true marginal instead of the estimate by calling Theorem 9.

Denote by \(B \) the event that the condition on line 14 holds. Let \(p_{\text{fail}} \) be the probability of event \(B \). By Lemma 21, \(p_{\text{fail}} \leq \varepsilon/2 \).

First note that \(\mu₂ = \mu_\mathcal{C} \). Consider the distribution of the partial coloring obtained immediately after the WHILE loop, i.e., the partial coloring \(X \). One can apply induction similar to the proof of Lemma 8 to show that it follows a pre-Gibbs distribution. Therefore, conditioned on \(X \), sampling a uniform proper coloring of the remaining vertices results in a uniform proper coloring.

We then bound \(\text{dist}_{TV}(\mu₁, \mu₂) \). For a particular partial coloring \(x \), we use \(E_x \) to denote the event that the sampler produces \(x \) at the end of the WHILE loop, namely \(X = x \). It holds that

\[
\text{dist}_{TV}(\mu₁, \mu₂) = \frac{1}{2} \sum_{\sigma \in \mathcal{C}} \left| \Pr_{Z \sim \mu₁} [Z = \sigma] - \Pr_{Z \sim \mu₂} [Z = \sigma] \right|
\]

\[
= \frac{1}{2} \sum_{\sigma \in \mathcal{C}} \left| \sum_{x: \sigma \models x} \left(\Pr_{Z \sim \mu₁} [Z = \sigma | E_x] \cdot \Pr_{Z \sim \mu₁} [E_x] - \Pr_{Z \sim \mu₂} [Z = \sigma | E_x] \cdot \Pr_{Z \sim \mu₂} [E_x] \right) \right|
\]

where \(x \) runs over partial colorings.

The partial coloring \(x \) may never appear at the end of the WHILE loop in Algorithm 3. In this case,

\[
\Pr_{Z \sim \mu₁} [E_x] = \Pr_{Z \sim \mu₂} [E_x] = 0.
\]

Otherwise \(x \) can be the partial coloring at the end of the WHILE loop. Since the enumeration steps are identical and correct in both \(\mu₁ \) and \(\mu₂ \) conditioned on \(E_x \), we have that

\[
\Pr_{Z \sim \mu₁} [Z = \sigma | E_x] = \Pr_{Z \sim \mu₂} [Z = \sigma | E_x] = \frac{1}{|C_x|},
\]

where \(C_x \) is again the set of proper colorings consistent with the partial coloring \(x \).

It implies that

\[(20) \quad \text{dist}_{TV}(\mu₁, \mu₂) = \frac{1}{2} \sum_{\sigma \in \mathcal{C}} \left| \sum_{x: \sigma \models x} \frac{1}{|C_x|} \left(\Pr_{Z \sim \mu₁} [E_x] - \Pr_{Z \sim \mu₂} [E_x] \right) \right|.
\]
Fix a partial coloring x defined on $V_{\text{col}} \subseteq V$ that is a possible output of the WHILE loop. We note that the order of visiting V_{col} is determined by the random choices of x. Say this order is v_1, \ldots, v_s. Let

$$p_i := \Pr_{Z \in \mu_C} \left[Z(v_i) = x(v_i) \wedge \bigwedge_{1 \leq j < i} Z(v_j) = x(v_j) \right].$$

Hence

$$\Pr_{Z \sim \mu_1} [E_x] - \Pr_{Z \sim \mu_2} [E_x] = \prod_{i=1}^{s} \hat{p}_i - \prod_{i=1}^{s} p_i,$$

where \hat{p}_i is our estimate of p_i using Theorem 9 with error $\frac{\varepsilon}{2n}$. Theorem 9 implies that

$$e^{-\frac{\varepsilon}{2n}} \hat{p}_i \leq p_i \leq e^{\frac{\varepsilon}{2n}} \hat{p}_i.$$

Therefore, we have

$$\left| \Pr_{Z \sim \mu_1} [E_x] - \Pr_{Z \sim \mu_2} [E_x] \right| \leq \varepsilon \Pr_{Z \sim \mu_2} [E_x]. \tag{21}$$

Plugging (21) into (20), we obtain

$$\operatorname{dist}_{TV}(\mu_1, \mu_2) \leq \frac{1}{2} \sum_{\sigma \in \mathcal{C}} \left| \sum_{x: \sigma | x} \varepsilon |C_x| \Pr_{Z \sim \mu_2} [E_x] \right| = \frac{\varepsilon}{2} \sum_{\sigma \in \mathcal{C}} \mu_2(\sigma) = \frac{\varepsilon}{2}.$$

Finally we bound $\operatorname{dist}_{TV}(\hat{\mu}, \mu_1)$. Since the behaviours of $\hat{\mu}$ and μ_1 are identical if B does not happen, we have that $\Pr_{Z \sim \hat{\mu}} [Z = \sigma \mid \overline{B}] = \Pr_{Z \sim \mu_1} [Z = \sigma \mid \overline{B}]$. It implies that

$$\operatorname{dist}_{TV}(\hat{\mu}, \mu_1) = \frac{1}{2} \sum_{\sigma \in \mathcal{C}} \left| \Pr_{Z \sim \hat{\mu}} [Z = \sigma] - \Pr_{Z \sim \mu_1} [Z = \sigma] \right| \leq \frac{1}{2} \sum_{\sigma \in \mathcal{C}} \left(\Pr_{Z \sim \hat{\mu}} [Z = \sigma \wedge B] + \Pr_{Z \sim \hat{\mu}} [Z = \sigma \mid \overline{B}] \cdot (1 - p_{\text{fail}}) \right) - \Pr_{Z \sim \mu_1} [Z = \sigma \wedge B] - \Pr_{Z \sim \mu_1} [Z = \sigma \mid \overline{B}] \cdot (1 - p_{\text{fail}})$$

$$= \frac{1}{2} \sum_{\sigma \in \mathcal{C}} \left(\Pr_{Z \sim \hat{\mu}} [Z = \sigma \wedge B] + \Pr_{Z \sim \mu_1} [Z = \sigma \wedge B] \right) \leq \frac{1}{2} \sum_{\sigma \in \mathcal{C}} \left(\Pr_{Z \sim \hat{\mu}} [Z = \sigma \wedge B] + \Pr_{Z \sim \mu_1} [Z = \sigma \wedge B] \right) \leq p_{\text{fail}}.$$

Combining the above and Lemma 21, we obtain

$$\operatorname{dist}_{TV}(\hat{\mu}, \mu_C) \leq \operatorname{dist}_{TV}(\hat{\mu}, \mu_1) + \operatorname{dist}_{TV}(\mu_1, \mu_2) + \operatorname{dist}_{TV}(\mu_2, \mu_C) \leq p_{\text{fail}} + \frac{\varepsilon}{2} \leq \varepsilon.$$

It remains to bound the running time of the sampler. The sampler calls subroutines to estimate marginal at most n times and each time the subroutine costs $\text{poly}(n, \frac{1}{\varepsilon})$. Finally, upon the condition on line 14 does not hold, the sampler enumerates proper colorings on connected components of size $O(\log \left(\frac{2}{\varepsilon}\right))$. Therefore, the total running time is $\text{poly}(n, \frac{1}{\varepsilon})$. \hfill \square

The distribution μ_1 has a small multiplicative error comparing to the uniform distribution μ_C. We remark that there are standard algorithms to turn such a distribution into an exact sampler, dating
back to [Bac88, JVV86]. However, since we cannot completely avoid event B, we can only bound the error in the final distribution $\tilde{\mu}$ in terms of total variation distance.

7. SETTLING ALL PARAMETERS

We have defined the following parameters throughout the paper:

- k_1^C: the number of vertices in a hyperedge that are not fixed in approximate counting, Theorem 20;
- k_1^S: the number of vertices in a hyperedge that are not fixed in sampling, Theorem 22;
- k_2: the number of vertices in a hyperedge Algorithm 1 would attempt to couple;
- β: the fraction of hyperedges that are monochromatic in Definition 14.

We want our bound for approximate counting to have the form $C \Delta \frac{A_1}{k - B_1}$. By Theorem 20, we want to make sure that, for any $k > 0$, subject to $0 < k_2 < k_1^C < k - 1$, and $0 < \beta < 1$,

\[
\frac{A_1}{k - B_1} \geq \frac{4}{\beta(k_2 - 1)}; \\
\frac{A_1}{k - B_1} \geq \frac{5 - \beta}{(1 - \beta)(k_1^C - k_2 - 1)}; \\
\frac{A_1}{k - B_1} \geq \frac{1}{k - k_1^C - 1}.
\]

We assume k_1^C and k_2 are proportional to k. Minimizing A_1 yields the following solutions:

\[
A_1 = 18, \quad B_1 = 18, \quad k_1^C = \left\lfloor \frac{17k}{18} \right\rfloor, \quad k_2 = \left\lfloor \frac{4k}{9} \right\rfloor, \quad \beta = \frac{1}{2}.
\]

Plugging these values into Theorem 20, we want to satisfy the following constraints:

\[
k - k_1^C - 2 \geq 0, \quad C \geq \left(6e\left(\frac{e^2k^4}{2}\right)^{\frac{1}{1 - \beta}}\right)^{\frac{1}{k_1^C - k_2 - 1}}, \\
q^{k_2 - 1} > \frac{1}{\beta}, \quad C \geq \left(\frac{e\beta^3k^4}{2\beta^2}\right)^{\frac{1}{k_2 - 1}}, \\
q > (e\Delta)^{\frac{1}{k_1^C - 2}}, \quad C \geq 4(k - k_1^C)^{\frac{1}{k - k_1^C - 1}}.
\]

One can verify that $k \geq 36$ and $C \geq 312$ suffice. This yields Theorem 1.

Similarly, we want our bound for sampling to have the form $C \Delta \frac{A_2}{k - B_2}$. By Theorem 22, we want to make sure that, for any $k > 0$, subject to $0 < k_2 < k_1^S < k - 1$ and $0 < \beta < 1$,

\[
\frac{A_2}{k - B_2} \geq \frac{4}{\beta(k_2 - 1)}; \\
\frac{A_2}{k - B_2} \geq \frac{5 - \beta}{(1 - \beta)(k_1^S - k_2 - 1)}; \\
\frac{A_2}{k - B_2} \geq \frac{4}{k - k_1^S - 1}.
\]

Similarly to the approximate counting case, minimizing A_2 yields the following solutions:

\[
A_2 = 21, \quad B_2 = \frac{21}{4}, \quad k_1^S = \left\lfloor \frac{17k}{21} \right\rfloor, \quad k_2 = \left\lfloor \frac{8k}{21} \right\rfloor, \quad \beta = \frac{1}{2}.
\]
Plugging these values into Theorem 22, we want to satisfy the following constraints:

\[k - k_1^S - 2 \geq 0, \quad C \geq \left(6e^2 \frac{k^4}{2} \right)^{\frac{1}{1-k_2^S-1}}, \]

\[q^{k_2^S-1} > \frac{1}{\beta}, \quad C \geq \left(\frac{e^{\beta+3} k^4}{2 \beta^3} \frac{k}{k_2} \right)^{\frac{1}{(k_2^S-1)}} \]

\[q > (ek\Delta)^{\frac{1}{k_1^S-2}}, \quad C > \left(\frac{e^4 k^4}{2} \right)^{\frac{1}{(k_2^S-1)-1}}. \]

One can verify that \(k \geq 36 \) and \(C \geq 671 \) suffice. This yields Theorem 2. We note that these constraints also hold for \(k \geq 7 \) and \(C \geq 2 \times 10^{12} \).

References

