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AbstRact. We give a local-to-global principle for relative entropy contraction in simplicial complexes.
This is similar to the local-to-global principle for variances obtained by Alev and Lau (2020).

1. IntRoduction

High-dimensional expanders are a powerful new tool for analyzing mixing times of Markov chains
which has resulted in many recent successes (Anari et al., 2019; Cryan et al., 2021; Anari et al., 2020;
Chen et al., 2020c; Feng et al., 2020; Chen et al., 2020a,b). The main insight is to recast Markov chains
as random walks over faces of simplicial complexes of the same cardinality. The mixing time of these
“global” random walks can be bounded via analyzing certain “local” walks, thanks to the inductive
structure of simplicial complexes. These local walks are defined over the skeleton of the faces of the
simplicial complex, and are typically much easier to analyze. (Detailed definitions are given in Sec-
tion 2.)

This “local-to-global” principle is the key to all of the recent development along this line of re-
search. Roughly speaking, the local walks contain enough information about the high-dimensional
global walks, yet in the mean time they are much more tractable to analyze. This methodology turns
out to be very powerful (Dinur and Kaufman, 2017; Oppenheim, 2018; Kaufman and Oppenheim, 2020;
Kaufman and Mass, 2020; Liu et al., 2020). In particular, the result of Kaufman and Oppenheim (2020)
plays a crucial role in resolving the long-standing open problem for the expansion of the basis-exchange
graphs for matroids by Anari et al. (2019). However, these early results do not give non-trivial bounds
unless the eigenvalues of the local walks are sufficiently small. In contrast, Alev and Lau (2020) obtain
a great improvement where the bound is always meaningful as long as the local walks are not com-
pletely trivial, which is currently the best result regarding the local-to-global principle for eigenvalues
(or equivalently for variance contractions).

Despite these progresses, in many cases, there are inherent losses if one bounds the mixing times via
eigenvalues or variance contractions (Levin and Peres, 2017). A tighter relationship can be obtained
via relative entropy contractions (Diaconis and Saloff-Coste, 1996). Although relative entropy decay is
typically much harder to analyze than eigenvalues, this method has been successfully applied to many
problems, e.g. (Jerrum et al., 2004; Morris, 2013). In the high-dimensional expander context, Cryan
et al. (2021) obtained optimal relative entropy contraction for the aforementioned matroid setting to
get sharp mixing time bounds.

In this note we give a local-to-global principle for relative entropy contraction (Theorem 9). Our
result is similar to that of Alev and Lau (2020) for variance contraction, in the sense that our bounds
are always non-trivial as long as the local walks are not completely trivial. In fact, our proof also works
for variance contraction. However, in that case our bounds are quantitatively no better than that of
Alev and Lau (2020), because the local spectral gaps should satisfy the “trickling-down” theorem of
Oppenheim (2018) (see Section 3.1 for some detailed comparison). In some interesting special cases,
our bound actually coincides with the counterpart of Alev and Lau (2020) (see Corollary 5). In any case,
our main interest lies in the local-to-global principle for relative entropy contraction, which would lead
to improved mixing time bounds in certain applications.

Our main result, Theorem 9, is independently obtained by Chen et al. (2020b, Theorem 5.4). In
fact, this theorem is one of the key ingredients of Chen et al. (2020b) to obtain optimal mixing times
for Glauber dynamics over spin systems up to certain uniqueness conditions. We refer the interested
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readers to their work for applications. In this note we focus on the local-to-global principle for relative
entropy contraction.

2. PReliminaRies

The main things that need to be defined in this section are simplicial complexes, as well as the
distributions and random walks over them.

2.1. Simplicial Complexes. An (abstract) simplicial complex C = (E, S) is a tuple of a ground set of
elements E, and a nonempty downwards closed collection of sets S (faces):

• ∅ ∈ S;
• if S ∈ S, T ⊆ S, then T ∈ S.

A pure simplicial complex has maximal sets of the same cardinality d. We denote by C(k) the collection
of sets of size k, where 0 ⩽ k ⩽ d.

We define the following distributions over S. First, a distribution πd is given on the top level, C(d),
and then lower level distributions defined as follows:

πk(S) ∝
∑

T∈C(d):T⊃S

πd(T), 0 ⩽ k < d.

Let Dk := diag(πk). For a face S ∈ S, the link CS = (E \ S, SS) is also a simplicial complex, where
SS = {T | T ⊆ E \ S, T ∪ S ∈ S}. We may similarly define distributions πS,k over CS(k) simply as

πS,k(T) ∝ π|S|+k(T ∪ S), 0 ⩽ k ⩽ d− |S| .

It is also convenient to equip C with a weight function w, recursively defined as follows:

w(S) :=

{
π(S) if |S| = d,∑

T⊃S, |T |=|S|+1 w(T) if |S| < d.

We will refer to the weight function of C(k) as wk, and, as before, the weight function of CS(k) will
be denoted by wS,k.

2.2. Upand down randomwalks. There are two natural exchangewalks onC(k), P∧
k and P∨

k , which
start by adding or removing an element and coming back to C(k). We call these walks “global” as they
are defined over the whole of C(k). They are comprised by the same two parts:

• “Going-up”, P↑
k; starting from a set S ∈ C(k), we add an element i ∈ E \ S with probability

∝ πk+1(S ∪ i).
• “Going-down”, P↓

k; starting from a set S ∈ C(k), we remove an element i ∈ S uniformly at
random.

We can now write

P∧
k = P

↑
kP

↓
k+1, P∨

k = P
↓
kP

↑
k−1.(1)

We shall also use the notation P∧
S,k and P∨

S,k, where S ∈ S, to denote the walks on CS(k). It is easy to
check the detailed balance condition to see that P∧

S,k and P∨
S,k are reversible with respect to πS,k.

The “local” walks that will be particularly interesting are the walks P∧
S,1 and P∨

S,2 for every face
S ∈ S with |S| ⩽ d − 2. These walks are not completely local as they have weights that count higher
level supersets. One can observe that the transition matrices of these walks are cospectral, because
they are of the form AB and BA.

The walks GS := 2P∧
S,1 − I are the non-lazy version of the local walks P∧

S,1. A simplicial complex C
is called a (a0, ...,ad−2)-local-spectral expander if for any S ∈ C(k), where 0 ⩽ k ⩽ d− 2,

λ2(GS) ⩽ ak,

where λ2(·) is the second largest eigenvalue. We call the vector (a0, . . . ,ad−2) satisfying the above a
spectral profile of C.
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Theorem1 (MainTheorem of Alev and Lau, 2020). Let C be a simplicial complex that is a (a0, ...,ad−2)-
local-spectral expander. Then, for any 2 ⩽ k ⩽ d,

λ2(P
∨
k ) ⩽ 1 −

1
k

k−2∏
i=0

(1 − ai) .

This is an example of a “local-to-global” theorem which is the type of theorem we are aiming for.
We define the Dirichlet form of a reversible Markov chain P, over state space Ω, as

EP (f,g) :=
∑

x,y∈Ω

π(x)f(x)
[
I − P

]
(x,y)g(y) = fTdiag(π)(I− P)g,

where f,g are two functions over Ω, and π is the stationary distribution of P. Let the variance of f be

Varπ (f) := Eπ f2 − (Eπ f)2 .

The Poincaré inequality for P is a variational way of characterizing the spectral gap:

1 − λ2(P) = inf
{
EP (f, f)
Varπ (f)

| f : Ω → R , Varπ (f) ̸= 0
}

.(2)

For k ⩾ 2 and a function f(k) : C(k) → R, define f(i) : C(i) → R for 1 ⩽ i ⩽ k− 1 such that

f(i) :=

k−1∏
j=i

P
↑
j f

(k).(3)

For variances, we have

EP∨
k

(
f(k), f(k)

)
= Varπk

(
f(k)

)
− Varπk−1

(
f(k−1)

)
;(4)

EP∧
k−1

(
f(k−1), f(k−1)

)
= Varπk−1

(
f(k−1)

)
− Varπk

(
P
↓
kf

(k−1)
)

.(5)

These equalities imply that the Poincaré inequalities for the walks P∨
k and P∧

k−1 are equivalent to
variance contraction for the “half” walks P↓

k and P
↑
k−1, respectively.

Moreover, let the (normalised) relative entropy of f : Ω → R⩾0 be

Entπ (f) := Eπ(f log f) − Eπ f logEπ f,

where we follow the convention that 0 log 0 = 0. A related notion is the Kullback–Leibler (KL) diver-
gence D(τ ∥ π) :=

∑
x∈Ω τ(x) log

(
τ(x)
π(x)

)
, where τ and π are two distributions over the same Ω.

Indeed, D(τ ∥ π) = Entπ (f) where f = τ
π
. The modified log-Sobolev constant (Bobkov and Tetali,

2006) is defined as

ρ(P) := inf
{
EP (f, log f)
Entπ (f)

| f : Ω → R⩾0 , Entπ (f) ̸= 0
}

.(6)

A related quantity is the relative entropy contraction ratio.
For entropies and f(k) : C(k) → R⩾0, we get inequalities instead of equalities as is the case for

variances, (4) and (5),

EP∨
k

(
f(k), log f(k)

)
⩾ Entπk

(
f(k)

)
− Entπk−1

(
f(k−1)

)
;(7)

EP∧
k−1

(
f(k−1), log f(k−1)

)
⩾ Entπk−1

(
f(k−1)

)
− Entπk

(
P
↓
kf

(k−1)
)

.(8)

Thus, entropy contractions of P↓
k and P

↑
k−1 imply modified log-Sobolev inequalities of P∨

k and P∧
k−1,

respectively, but not the other way around, unlike the variance case.
One important result regarding the spectral profile of a simplicial complex is the trickling down

theorem due to Oppenheim (2018). Here we give an alternative variational proof.
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Theorem 2 (Trickling down theorem, Oppenheim, 2018). Let C be a simplicial complex that is a γ-
local-spectral expander at level k, meaning that λ2(GT ) ⩽ γ < 1 for all T ∈ C(k). Then, if λ2(GS) < 1
(connectedness) for some S ∈ C(k− 1),

λ2(GS) ⩽
γ

1 − γ
.

Proof. It suffices to prove the theorem for k = 1. For any face S, let DS,1 := diag(πS,1), and note the
decomposition

D1 =
∑

v∈C(1)

π1(v)Dv,1,(9)

where the overline denotes the extension by zeros to the appropriate dimension. Also, for any face S,
GS = diag(wS,1)

−1WS, whereWS(u, v) := wS,2({u, v}). We also have the following decomposition,

G∅ = diag(w1)
−1W∅ =

1
w(∅)

D−1
1

∑
v∈C(1)

Wv = D−1
1

∑
v∈C(1)

diag(wv,1)Gv

w(∅)
,

or equivalently,

G∅ = D−1
1

∑
v∈C(1)

π1(v)Dv,1Gv.(10)

Moreover, notice that G∅(v,u) = πv,1(u) and for any function f : C(1) → R,

G∅f(v) =
∑

u∈C(1)

G∅(v,u)f(u) = πv,1f.(11)

Given these, for any function f : C(1) → R, we can write

EG∅ (f, f) = fTD1 (I−G∅) f

=
∑

v∈C(1)

π1(v)
[
fTDv,1

(
I−Gv

)
f
]

(by (9) and (10))

=
∑

v∈C(1)

π1(v)EGv
(fv, fv)(where fv is f restricted to Cv(1))

⩾ (1 − γ)
∑

v∈C(1)

π1(v)Varπv,1 (fv)(because λ2(Gv) ⩽ γ)

= (1 − γ)
∑

v∈C(1)

π1(v)
[
fTDv,1f− (πv,1f)

2]

= (1 − γ)

Varπ1 (f) + (π1f)
2 −

∑
v∈C(1)

π1(v) ([G∅f](v))
2

(by (9) and (11))

= (1 − γ) [Varπ1 (f) − Varπ1 (G∅f)] .

Since the inequality above holds for any f, we can choose f = vi, where vi is an eigenvector of G∅
corresponding to eigenvalue λi. Then,

EG∅ (vi, vi) ⩾ (1 − γ) [Varπ1 (vi) − Varπ1 (G∅vi)] ,

which simplifies into

(1 − λi)v
T
iD1vi ⩾ (1 − γ)(1 − λ2

i)v
T
iD1vi.

Thus, (1 − λi) ⩾ (1 − γ)(1 − λ2
i). In particular, if λ2(G∅) < 1, then

λ2(G∅) ⩽
γ

1 − γ
. □
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An interesting question is to find a similar theorem for entropies or modified log-Sobolev con-
stants. However, a straightforward generalisation of the proof above would involve the ratio between
Entπ1 (G∅f) and Entπ1 (f). For variances, the ratio between Varπ1 (G∅f) and Varπ1 (f) can be related
to λ2, as shown in the proof. For relative entropy, that ratio does not seem to be directly related to
ρ(G∅). In fact, ρ is the change rate of the relative entropy for the continuous-time Markov chain
(Bobkov and Tetali, 2006), and can be related to the change rate for the discrete-time chain if there is
no negative eigenvalue, as shown by Miclo (1997). However, this is not the case for G∅. It remains
open to find relative entropy contraction descent similar to Theorem 2.

3. Decay of vaRiance

We first study the local-to-global principle for variances. We show a theorem similar to the main
result of Alev and Lau (2020). The bound we obtain will be given by a recursion, and seems to be
incomparable to that of Alev and Lau (2020) at first sight. However, it turns out that our bound is
weaker for spectral profiles satisfying the trickling down theorem, and it coincides with the bound of
Alev and Lau (2020) when the trickling down theorem is tight. Nonetheless, our proof approach is
different from that of Alev and Lau (2020), and our approach has the advantage that it generalises to
the entropy case as shown in Section 4.

We use the following decomposition, which was shown by Cryan et al. (2021). For completeness we
give a proof here.

Lemma 3. Let k ⩾ 2 and f(k) : C(k) → R be a function on C(k). Then,

Varπk

(
f(k)

)
=

∑
S∈C(k−2)

πk−2(S)VarπS,2

(
f
(2)
S

)
+ Varπk−2

(
f(k−2)

)
,

where f(2)
S (T) := f(k)(S ∪ T) for T ∈ CS(2). Moreover, the same decomposition holds for f(k) : C(k) →

R⩾0 with Var () replaced by Ent ().

Proof. We may assume that Eπk
f(k) = 0. By direct calculation, for any I ∈ C(k),

πk(I) =
∑

S∈C(k−2),S⊂I

πk−2(S)πS,2(I \ S).

Notice that for any S ∈ C(k− 2), Eπk−2 f
(k−2) = Eπk

f(k) = 0, and

f(k−2)(S) =
∑

T∈CS(2)

2w(S ∪ T)

w(S)
f(k)(S ∪ T) = EπS,2 f

(2)
S .

Thus we have

Varπk

(
f(k)

)
=

∑
S∈C(k−2)

πk−2(S)VarπS,2

(
f
(2)
S

)
+

∑
S∈C(k−2)

πk−2(S)
(
EπS,2 f

(2)
S

)2

=
∑

S∈C(k−2)

πk−2(S)VarπS,2

(
f
(2)
S

)
+ Varπk−2

(
f(k−2)

)
.

The proof for Ent () is completely analogous. □
Now we are ready to show the local-to-global principle for variances.

Theorem 4. Let C be a simplicial complex that is a (a0, ...,ad−2)-local-spectral expander, and let sk :=
2

1+ak
. Then, for any 2 ⩽ k ⩽ d,

λ2(P
∨
k ) = λ2(P

∧
k−1) ⩽

1
vk−2

,

where vk is recursively defined as

vk = sk −
sk − 1
vk−1

, v0 = s0.(12)
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Proof. From the assumption on local expansion we get that for any S ∈ C(k− 2), where 2 ⩽ k ⩽ d,

λ2(GS) ⩽ ak−2 =⇒ λ2(P
∨
S,2) ⩽

1 + ak−2
2

.

Then, the spectral gap λ(P∨
S,2) = 1− λ2(P

∨
S,2) ⩾

1−ak−2
2 . By (2), this implies that for any g : CS(2) →

R,

EP∨
S,2

(g,g) ⩾
(

1 − ak−2
2

)
VarπS,2 (g) .

Remembering that sk−2 = 2
1+ak−2

, and (4), we obtain

VarπS,2 (g) ⩾ sk−2VarπS,1

(
P
↑
S,1g

)
.(13)

We finish the proof by an induction on k. The base case of k = 2 is straightforward by noticing that
v0 = s0. For the induction step on k ⩾ 3, by Lemma 3, we have

Varπk

(
f(k)

)
=

∑
S∈C(k−2)

πk−2(S)VarπS,2

(
f
(2)
S

)
+ Varπk−2

(
f(k−2)

)
⩾ sk−2

∑
S∈C(k−2)

πk−2(S)VarπS,1

(
P
↑
S,1f

(2)
S

)
+ Varπk−2

(
f(k−2)

)
(by (13))

= (1 − ϵ)sk−2
∑

S∈C(k−2)

πk−2(S)VarπS,1

(
P
↑
S,1f

(2)
S

)
+ ϵsk−2

∑
S∈C(k−2)

πk−2(S)VarπS,1

(
P
↑
S,1f

(2)
S

)
+ Varπk−2

(
f(k−2)

)
,(14)

where ϵ ⩾ 0 will be chosen later. A similar decomposition holds for level k− 1,

Varπk−1

(
f(k−1)

)
=

∑
S∈C(k−2)

πk−2(S)VarπS,1

(
f
(1)
S

)
+ Varπk−2

(
f(k−2)

)
,

where f(1)
S (e) := f(k−1)(S ∪ {e}) for e ∈ CS(1). Together with the induction hypothesis this implies

that ∑
S∈C(k−2)

πk−2(S)VarπS,1

(
f
(1)
S

)
⩾ (vk−3 − 1)Varπk−2

(
f(k−2)

)
.(15)

Finally, notice that P↑
S,1f

(2)
S = f

(1)
S . Plugging (15) into (14) and choosing ϵ = sk−2−1

vk−3sk−2
,

Varπk

(
f(k)

)
⩾ (1 − ϵ)sk−2Varπk−1

(
f(k−1)

)
=

(
sk−2 −

sk−2 − 1
vk−3

)
Varπ2

(
f(k−1)

)
= vk−2Varπk−1

(
f(k−1)

)
.

By (2) and (4), this translates to the spectral gap bound 1 − λ2(P
∨
k ) ⩾ 1 − 1

vk−2
, namely, λ2(P

∨
k ) ⩽

1
vk−2

. □

A particular interesting case is when ak−2 = γ
1−(d−k)γ , for any γ ⩽ 1/(d− 1). This profile of a’s

is exactly the result of repeatedly applying the trickling down theorem, starting from level d− 2 with
ad−2 = γ, down to level 0.

Corollary 5. Let C be a pure simplicial complex of dimension d and suppose that ad−2 ⩽ γ ⩽ 1/(d−1).
Then, for any 2 ⩽ k ⩽ d,

λ2(P
∨
k ) = λ2(P

∧
k−1) ⩽ 1 −

1
k

(
1 − (d− 1)γ
1 − (d− k)γ

)
.
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Proof. By the trickling down theorem (Theorem 2), we immediately get that ak−2 ⩽ γ
1−(d−k)γ . Due

to Theorem 4, it suffices to prove that 1
vk−2

⩽ 1 − 1
k

(
1−(d−1)γ
1−(d−k)γ

)
. For k = 2, the inequality holds

trivially by the definition of v0. Suppose that the inequality holds up to dimension k− 1 ⩾ 2. Then,
1

vk−3
⩽ 1 −

1
k− 1

(
1 − (d− 1)γ

1 − (d− k+ 1)γ

)
,

and as ak−2 ⩽ γ
1−(d−k)γ ,

sk−2 =
2

ak−2 + 1
⩾ 2(1 − (d− k)γ)

1 − (d− k− 1)γ
.

As in Theorem 4,

vk−2 = sk−2 −
sk−2 − 1
vk−3

⩾ sk−2 − (sk−2 − 1)
[
1 −

1
k− 1

(
1 − (d− 1)γ

1 − (d− k+ 1)γ

)]
= 1 + (sk−2 − 1) 1

k− 1

(
1 − (d− 1)γ

1 − (d− k+ 1)γ

)
⩾ 1 +

(
1 − (d− k+ 1)γ
1 − (d− k− 1)γ

)
1

k− 1

(
1 − (d− 1)γ

1 − (d− k+ 1)γ

)
= 1 +

1
k− 1

(
1 − (d− 1)γ

1 − (d− k− 1)γ

)
,

the reciprocal of which is
1

vk−2
⩽ 1 −

1
k

(
1 − (d− 1)γ
1 − (d− k)γ

)
.

The corollary follows by induction together with Theorem 4. □

In particular, by setting γ = 1/d, this retrieves Alev and Lau (2020, Corollary 1.6).

Corollary 6 (Alev and Lau, 2020, Corollary 1.6). If C is a 1
d
-local-spectral expander at level d − 2, i.e.

ad−2 ⩽ 1/d, then for any 2 ⩽ k ⩽ d,

λ2(P
∨
k ) ⩽ 1 −

1
k2 .

Corollary 5 and Corollary 6 are alternative derivations of a useful result of Alev and Lau (2020),
which requires minimal assumptions on the expansion of the local graphs nearest to the top level. If
we are studying the uniform distribution on the top level, these graphs are unweighted, as opposed to
the lower level graphs that have weights that count some difficult to analyze and possibly intractable
quantities.

An important advantage of our method is that it can also be used when we assume entropy contrac-
tion factors on the local walks. However, we do not know a counterpart to the trickling down theorem
for entropies.

The contraction ratio vk is given by the recursion in (12). Next we will solve the recursion to give
an explicit expression. Do the following substitution xk := vk

vk−1 and notice x0 = v0
v0−1 = 1 + 1+a0

1−a0
.

The recurrence simplifies into

xk =
1 + ak

1 − ak

· xk−1 + 1,(16)

and can be solved xk =
∑k

i=0 S
k
i + 1, where Ski :=

∏k
j=i

1+aj

1−aj
=

∏k
j=i

1
sj−1 . Then,

vk =
xk

xk − 1
= 1 +

1∑k
i=0 S

k
i

.(17)
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Our second largest eigenvalue bound is

γk =
1

vk−2
= 1 −

1∑k−2
i=0 Sk−2

i + 1
.(18)

3.1. Comparison with Alev and Lau (2020). Given a spectral profile (a0, . . . ,ad−2), recall our sec-
ond largest eigenvalue bound (18). In contrast, Theorem 1 (Alev and Lau, 2020, Theorem 1.5) achieves
a different upper bound

γk,AL := 1 −
1
k

k−2∏
i=0

(1 − ai).(19)

We call a spectral profile admissible if
(1) for all 0 ⩽ i ⩽ d− 2, ai < 1;
(2) for all 1 ⩽ i ⩽ d− 2, ai−1 ⩽ ai

1−ai
.

Note that the first condition here ensures that the random walk over the links are all connected, and
the second condition ensures that the spectral profile is consistent with the trickling down theorem,
Theorem 2.

Our bound in (18) is no better than the bound of (19) by Alev and Lau (2020) when (a0, . . . ,ad−2)
is admissible.

Proposition 7. Let (a0, . . . ,ad−2) be an admissible spectral profile. For any 0 ⩽ k ⩽ d− 2,

γk ⩾ γk,AL.

To show Proposition 7, we need to first show a lemma.

Lemma 8. Let (a0, . . . ,ad−2) be an admissible spectral profile. For any 1 ⩽ k ⩽ d− 2,

ak(k+ 1) +
k∏

i=0
(1 − ai) ⩾ 1.

Proof. We do an induction on k. For k = 1, we have

2a1 + (1 − a0)(1 − a1) = 1 + (a1 + a0a1 − a0) ⩾ 1,

where the inequality is due to a0 ⩽ a1
1−a1

. For the induction step, suppose that the lemma holds for
some k ⩾ 1, namely,

∏k
i=0(1 − ai) ⩾ 1 − ak(k+ 1). Thus,

ak+1(k+ 2) +
k+1∏
i=0

(1 − ai) ⩾ ak+1(k+ 2) + (1 − ak+1)(1 − ak(k+ 1))

= 1 + (k+ 1)(ak+1 + akak+1 − ak) ⩾ 1,

where the last inequality is because ak ⩽ ak+1
1−ak+1

. □

With Lemma 8, we can now prove Proposition 7.

Proof of Proposition 7. All we need to show is that for all 0 ⩽ k ⩽ d− 2,

xk ⩾ k+ 2∏k
i=0(1 − ai)

.

We do an induction on k. For k = 0, x0 = 2
1−a0

and the claim holds.
8



By (16), we have that

xk =
1 + ak

1 − ak

xk−1 + 1

⩾ (1 + ak)(k+ 1)∏k
i=0(1 − ai)

+ 1 =
(1 + ak)(k+ 1) +

∏k
i=0(1 − ai)∏k

i=0(1 − ai)
(by induction hypothesis)

⩾ k+ 2∏k
i=0(1 − ai)

.(by Lemma 8)

This finishes the induction. □

Notice that the equality in Proposition 7 holds when the trickling down theorem is tight. In this
case our bound coincides with Alev and Lau (2020), which is shown in Corollary 5.

4. Decay of Relative entRopy

In this section we obtain a local-to-global principle for entropy contractions. We obtain bounds for
the relative entropy decay of each step of P∨

k , based solely on a property of the local walks on the faces.
This answers a question raised by Alev (2020): “… is there a property of the local graphsGα that would
allow us to bound the (modified) log-Sobolev constant of the corresponding chain as opposed to the
spectral gap?”

The idea is to follow the argument of Theorem 4 but with every occurrence of Var() replaced with
Ent(). Our initial assumptions for the local walks would now be entropy contraction, and the recursion
would be the same. Let us state the theorem for clarity.

Theorem 9. Let C be a simplicial complex that satisfies the local inequalities

EntπS,2

(
f
(2)
S

)
⩾ sk−2EntπS,1

(
f
(1)
S

)
,

for any 2 ⩽ k ⩽ d, S ∈ C(k − 2), and f
(2)
S : CS(2) → R⩾0, where {sk} are some entropy contraction

factors greater than or equal to 1. Then, for any 2 ⩽ k ⩽ d and f(k) : C(k) → R⩾0, we get the global
inequalities

Entπk

(
f(k)

)
⩾ vk−2Entπk−1

(
f(k−1)

)
,

where vk is recursively defined as in (12).

Proof. The proof is identical to that of Theorem 4 except that Var() is replaced by Ent(). □

Note that an explicit formula for vk is given in (17).
As entropy contraction implies the modified log-Sobolev inequality, we have the following corollary.

Corollary 10. Let C be a simplicial complex that satisfies the assumptions of Theorem 9. Then, the
following hold:

• for any 2 ⩽ k ⩽ r, ρ(P∨
k ) ⩾ 1 − 1

vk−2
;

• for any 1 ⩽ k ⩽ r− 1, ρ(P∧
k ) ⩾ 1 − 1

vk−1
.

Proof. For the down-up walk, combine Theorem 9 with (7). For a proof that applies to both walks, see
Cryan et al. (2021). □

We remark that our Theorem 9 is independently obtained by Chen et al. (2020b, Theorem 5.4). For
applications of Theorem 9, we refer the reader to Chen et al. (2020b). Although the conditions of
Theorem 9 seem restrictive, it is in fact satisfied by certain high-dimensional expanders with bounded
marginals, as shown in Chen et al. (2020b).
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