
1

Fast sampling and counting 𝑘-SAT solutions in the local
lemma regime

WEIMING FENG, Nanjing University, China
HENG GUO, University of Edinburgh, United Kingdom
YITONG YIN, Nanjing University, China
CHIHAO ZHANG, Shanghai Jiao Tong University, China

We give new algorithms based on Markov chains to sample and approximately count satisfying assignments
to𝑘-uniformCNF formulas where each variable appears at most𝑑 times. For any𝑘 and𝑑 satisfying𝑘𝑑 < 𝑛𝑜 (1)

and 𝑘 ≥ 20 log𝑘 + 20 log𝑑 + 60, the new sampling algorithm runs in close to linear time, and the counting
algorithm runs in close to quadratic time.

Our approach is inspired by Moitra (JACM, 2019) which remarkably utilizes the Lovász local lemma in
approximate counting. Our main technical contribution is to use the local lemma to bypass the connectivity
barrier in traditional Markov chain approaches, which makes the well developed MCMC method applicable
on disconnected state spaces such as SAT solutions. The benefit of our approach is to avoid the enumeration
of local structures and obtain fixed polynomial running times, even if 𝑘 = 𝜔 (1) or 𝑑 = 𝜔 (1).
CCS Concepts: • Theory of computation→ Random walks and Markov chains.

Additional Key Words and Phrases: Markov chain Monte Carlo, Lovász local lemma, 𝑘-SAT, approximate
counting
ACM Reference Format:
Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. 2021. Fast sampling and counting 𝑘-SAT solutions
in the local lemma regime. J. ACM 1, 1, Article 1 (January 2021), 42 pages. https://doi.org/10.1145/3469832

1 INTRODUCTION
Sampling from an exponential-sized solution space and estimating the number of feasible solutions
are two very related fundamental computation problems.TheMarkov chain Monte Carlo (MCMC)
method is the most successful technique due to its generic nature and the fast running time, with
many famous applications such as [6, 23]. A basic requirement for the method to apply is that
the state space has to be connected via moves of the Markov chain to let the chain converge to
the desired distribution. This requirement prevents us from applying the method to the problems
where the solution space is not connected via local moves. Unfortunately, this barrier holds for
This research was supported by the National Key R&D Program of China 2018YFB1003202 and the NSFC No. 61902241.
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 947778). Part of the research was done when Weiming Feng
was visiting the University of Edinburgh.
Authors’ addresses: Weiming Feng, State Key Lab for Novel Software Technology, Nanjing University, Nanjing, China,
fengwm@smail.nju.edu.cn; Heng Guo, School of Informatics, University of Edinburgh, Edinburgh, United Kingdom, EH8
9AB, hguo@inf.ed.ac.uk; Yitong Yin, State Key Lab for Novel Software Technology, Nanjing University, Nanjing, China,
yinyt@nju.edu.cn; Chihao Zhang, John Hopcroft Center for Computer Science, Shanghai Jiao Tong University, Shanghai,
China, chihao@sjtu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
0004-5411/2021/1-ART1 $15.00
https://doi.org/10.1145/3469832

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3469832
https://doi.org/10.1145/3469832

1:2 Feng, Guo, Yin, and Zhang

perhaps the most important solution space in Computer Science: the satisfying assignments of
conjunctive normal form (CNF) formulas [33].

Recently, a number of new methods based on the variable framework of the Lovász local lemma
were proposed to tackle the problem [12, 28]. Most notably, the breakthrough of [28] introduced
a novel approach for estimating the number of solutions of 𝑘-SAT in a local lemma regime. By far,
it is still the only tractable result for sampling and approximately counting 𝑘-SAT solutions in the
local lemma regime without additional structural assumptions on the formulas. However, since
this new algorithm relies on local enumeration, its time cost is in the form of 𝑛𝑂 (𝑑2𝑘2) , where 𝑑 is
the variable degree in the local lemma. Although a polynomial time for constant 𝑑 and 𝑘 , this time
cost is not fixed-parameter tractable with parameters 𝑑 and 𝑘 . Indeed, for 𝑑 = 𝜔 (1) or 𝑘 = 𝜔 (1),
the running time becomes super-polynomial.

In this paper, we develop a new approach to overcome the connectivity barrier for Markov chain
methods. The main idea is to sample from the marginal probability of an algorithmically chosen
subset of variables, so that the standard Glauber dynamics is now ergodic. However, this distribu-
tion is not a Gibbs distribution nor satisfies any kind of conditional independence properties. New
challenges arise as both analyzing and implementing the Glauber dynamics require new ideas. We
give a high-level overview of the techniques in Section 1.1.

To illustrate the new technique, we choose a canonical#P-complete problem, namely counting
the number of satisfying assignments of CNF formulas (#Sat) as our main application. We call a
CNF formula Φ a (𝑘, 𝑑)-formula if all of its clauses have size 𝑘 and each variable appears in at most
𝑑 clauses.

TheoRem 1.1 (simplified). The following holds for any sufficiently small 𝜁 > 0.
There is an algorithm such that given any 0 < 𝜀 < 1 and (𝑘, 𝑑)-formula Φ with 𝑛 variables where

𝑘 ≥ 20 log𝑘 + 20 log𝑑 + 3 log
(
1
𝜁

)
, it terminates in time 𝑂

(
𝑑2𝑘3𝑛

(𝑛
𝜀

)𝜁) and outputs a random
assignment 𝑋 that is 𝜀 close in total variation distance to the uniform distribution over satisfying
assignments of Φ.

Moreover, there is an algorithm that given any 0 < 𝜀 < 1 and (𝑘, 𝑑)-formula Φ, under the same
assumption, terminates in time 𝑂

(
𝑑3𝑘3

(𝑛
𝜀

)2+𝜁) and outputs an e𝜀-approximation to the number of

satisfying assignments of Φ. In the above, 𝑂 (·) hides a factor of polylog(𝑛,𝑑, 1𝜀).

The formal statements, with explicit running time bounds, are given in Theorem 6.1 (for sam-
pling) and in Theorem 7.1 (for counting).

Remark. Our algorithms in Theorem 1.1 have unusual running time bounds that are controlled
by a parameter 𝜁 . The parameter 𝜁 cannot be too large. In fact, it must be no greater than 2−20,
which implies that𝑘 is at least 60. As 𝜁 gets smaller, the condition we require becomes stronger, but
the sampling and counting algorithms run closer to linear and quadratic time, respectively. This is
somewhat similar to algorithms for the Lovász local lemma, where the running time increases as
the slack of the condition goes to 0.

In particular, if we set 𝜁 = 2−20, the condition becomes 𝑘 ≥ 20 log𝑘 + 20 log𝑑 + 60. The running
time of our algorithm is a fixed polynomial in 𝑛, 1

𝜀 , 𝑑 , and 𝑘 . Besides, for example, the exponent
of 𝑛 is 1 + 𝜁 for sampling, which is very close to 1. In contrast, Moitra’s algorithms [28] for both
counting and sampling require a stronger condition 𝑘 ≥ 60 log𝑑 + 60 log𝑘 + 300, and run in
time

(𝑛
𝜀

)𝑂 (𝑑2𝑘2) . Our algorithms are much faster and remain in polynomial-time even if 𝑘 or 𝑑
is as large as Ω(𝑛). Nonetheless, for approximate counting, Moitra’s algorithm remains the only
efficient deterministic algorithm for #Sat under conditions of this type.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:3

Theorem 6.1 and Theorem 7.1 are in fact slightly stronger than Theorem 1.1, because in The-
orem 1.1 we have simplified the condition between the exponent 𝜁 and (𝑘, 𝑑). For example, for
𝜀 = 1/poly(𝑛), and for 𝜔 (1) < 𝑘𝑑 < 𝑛𝑜 (1) in the regime above, our algorithms run in 𝑛1+𝑜 (1) time
for sampling, and (𝑛/𝜀)2+𝑜 (1) time for e𝜀-approximate counting.

1.1 Algorithm overview
The first step of our algorithm is to mark variables. We ensure that every clause has a certain
amount of marked and unmarked variables. Because every clause has sufficiently many unmarked
variables, using the local lemma, we show that each individual marked variable is close to the
uniform distribution. We call this local uniformity. This step so far is very similar to [28].

Our goal is to sample from the marginal distribution on the marked variables. To do this, we
simulate an idealized Glauber dynamics 𝑃Glauber which converges to this distribution. However,
this distribution is not a Gibbs distribution, and to calculate the transition probabilities becomes
#P-hard. Our main effort is to show the following two things:
(1) 𝑃Glauber mixes in 𝑂 (𝑛 log𝑛) time (Section 4);
(2) 𝑃Glauber can be approximately efficiently implemented (Section 5).
To show Item 1, we use the path coupling technique by Bubley and Dyer [4], which requires

that for two assignments 𝑋𝑡 and 𝑌𝑡 that differ on only one variable 𝑣0, the expected difference
of 𝑋𝑡+1 and 𝑌𝑡+1 after one step of 𝑃Glauber is less than 1. For a marked variable 𝑣 ≠ 𝑣0, let 𝜇𝑋𝑣 be
the Gibbs distribution conditioned on 𝑋𝑡 minus the assignment of 𝑣 . In other words, 𝜇𝑋𝑣 is defined
over assignments to all unmarked variables and 𝑣 . Define 𝜇𝑌𝑣 similarly. Consider a disagreement
coupling C𝑣 between 𝜇𝑋𝑣 and 𝜇𝑌𝑣 , constructed greedily starting from 𝑣0. The crucial observation is
that, the probability that 𝑣 cannot be coupled is upper bounded by the probability that 𝑣 is in the
discrepancy set of C𝑣 . Similar couplings have been defined byMoitra [28]. (To get a better condition
on our parameters, we actually follow the adaptive version in [13].) We then define a different
disagreement coupling C over all variables other than 𝑣0, marked and unmarked alike, so that the
expected difference of 𝑋𝑡+1 and 𝑌𝑡+1 is upper bounded by the expected size of the discrepancy set
of C. This upper bound is shown by yet another coupling between the two couplings C𝑣 and C.

Finally, we show that the expected size of the discrepancy set of C (not including 𝑣0) is less
than 1. Here we need a new argument based on counting induced paths to analyze these greedy
disagreement couplings.This is because the old analysis based on the so-called {2, 3}-trees [13, 28],
whichwas used to show these couplings terminate in𝑂 (log𝑛) steps with high probability, can only
get a constant bound in the form of𝑂 (𝑑𝑘) on this expectation, and thus is no longer strong enough.
To show Item 2, we first observe that due to local uniformity, at any step of 𝑃Glauber, unmarked

variables are scattered into small connected components. This has been observed before [13, 28].
However, these components can have size as large as Ω(𝑑𝑘 log𝑛). Thus, a brute force enumeration
would take time𝑛Ω (𝑑𝑘) , which is too slow to our need. Instead, we employ the local lemma again to
show that a random assignment on these components satisfy all relevant clauses with probability
roughly Ω(𝑛−𝜁). Thus, a naive rejection sampling has expected running time𝑂 (𝑛𝜁), which results
in the small overhead in Theorem 1.1. Moreover, at the end of the algorithm, we need to sample
all unmarked variables, this is done by the same rejection sampling method.

So far we have explained our sampling algorithm. For counting, we use the simulated annealing
method [2, 18, 25, 30]. First we define a suitable Gibbs distribution, which can be viewed as a
product distribution conditioned on a new formulaΦ′ being satisfied.Then our sampling algorithm
can be adapted with minimal changes. With the Gibbs distribution and its sampling algorithm,
adaptive annealing can be applied to yield fast algorithms already. Instead, we show that a simpler
non-adaptive annealing procedure provides similar time bounds. Note that in general non-adaptive

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Feng, Guo, Yin, and Zhang

annealing is provably slower than the adaptive version [30]. The local lemma once again plays an
important role to obtain necessary properties for a fast non-adaptive annealing procedure.
In [13], a notion called “pre-Gibbs distribution” was introduced. Its samples are pairs (𝑆, 𝜎𝑆)

where 𝑆 is a random subset of variables and 𝜎𝑆 is an assignment of 𝑆 . The main requirement is
that if we sample from the Gibbs distribution conditioned on 𝜎𝑆 , the resulting sample follows the
desired Gibbs distribution. Our algorithm here is a realization of sampling from the pre-Gibbs
distribution, where 𝑆 is fixed a priori. It remains interesting to explore this idea of “pre-Gibbs
sampling”, where we should allow a dynamic 𝑆 . With a dynamic 𝑆 , we may get rid of the mark-
ing process by incorporating the adaptive coupling idea of [13], which can greatly improve our
assumption in Theorem 1.1.

1.2 Related work
The most relevant work is the algorithm by Moitra [28], which we have discussed and compared
with in detail above. Moitra’s work is subsequently refined and adapted to hypergraph colorings
[13], but it still suffers from the same slow running time. The partial rejection sampling (PRS)
method [12] also works in the local lemma setting. However, for CNF formulas, PRS requires more
complicated structural conditions in addition to the ones relating 𝑘 and 𝑑 .

Prior to our work, no Markov chain algorithm is known to work in the local lemma parame-
ter regimes for #Sat, mainly because of the connectivity barrier. For monotone 𝑘-CNF formulas,
where connectivity is not an issue, Hermon et al. [17] showed that the (straightforward) Glauber
dynamics mixes in 𝑂 (𝑛 log𝑛) time if 𝑘 ≥ 2 log𝑑 +𝐶 for some constant 𝐶 , which is tight up to the
constant 𝐶 due to complementing hardness results [1]. For proper colorings over simple hyper-
graphs, Frieze and Anastos [9] showed that a slight variant of the straightforward Glauber dynam-
ics mixes rapidly under conditions that almost match the local lemma. However, their work also
requires that the vertex degrees are at least Ω(log𝑛) to ensure that the giant connected component
occupies a 1−𝑛−𝑐 fraction of the whole state space. In comparison, although our algorithm is also
based on Markov chains, we completely bypassed the connectivity issue.
It is a classic technique to modify the state space to obtain exponential acceleration to Markov

chains’ convergence. Take the ferromagnetic Ising model as an example. The straightforward
Glauber dynamics is torpidly mixing. However, we may transform the state space to the “sub-
graph” world [22] to obtain a fast-mixing Markov chain, or to introduce auxiliary variables to
accelerate the chain as well [11, 31]. On the other hand, we are not aware of any work similar to
our techniques, namely, to project the state space on a subspace to obtain a fast-mixing chain, and
to sample from a distribution that is not even a Gibbs distribution.
Deterministic approximate counting algorithms often run in time 𝑛𝑓 (Δ) where Δ is some pa-

rameter, such as the maximum degree of vertices in a graph, and 𝑓 (Δ) → ∞ as Δ → ∞. This
is not desirable and is not polynomial-time if Δ = 𝜔 (1). Recently, there has been some effort to
bring down such running times (often using randomized techniques likeMarkov chains) to achieve
polynomial running time with fixed exponents for all Δ. Examples include the work of Efthymiou
et al. [7] for counting independent sets [32], and the work of Chen et al. [5] for the algorithmic
Pirogov-Sinai theory [16, 21].

After the conference version of this paper was published, there have been a number of ad-
vances for sampling problems in the local lemma setting, under the theme of “sampling Lovász
local lemma”. Feng, He and Yin [8] generalized the Markov chain approach of this paper to a
broad class of constraint satisfaction problems where each constraint forbids a small number of
local configurations. The key insight is the idea of “state-compression”, a generalization of the
marking/unmarking scheme used in this paper, which enables the Markov chain approach be-
yond the Boolean domain. For CNF formulas, they also improved the condition in Theorem 1.1 to

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:5

𝑘 ≳ 13 log𝑑 with a slightly better analysis. Subsequently, using a more sophisticated “information
percolation” argument for the mixing time bound, Jain, Pham and Vuong [20] further improved
the results in [8]; in particular, for CNF formulas, they achieved 𝑘 ≳ 5.741 log𝑑 . Jain, Pham and
Vuong [19] also gave a deterministic counting algorithm that works for general constraint satisfac-
tion problems in the local lemma regime. For CNF formulas, their condition is𝑘 ≳ 7 log𝑑 , although
the running time is 𝑛poly(𝑑𝑘) . In a different direction, Galanis, Goldberg, Guo, and Yang [10] man-
aged to adapt Moitra’s original technique for random 𝑘-CNF formulas, where the main issue is
to handle high degree variables. They gave a deterministic counting algorithm with running time
𝑛exp(𝑘) when the clause-to-variable density ≲ 2𝑘/300. It is an interesting open problem to see if the
technique of this paper can be adapted in the random formula setting and can give fast sampling
algorithms.

2 PRELIMINARIES
2.1 Notations
Let Φ = (𝑉 ,𝐶) be a CNF formula, where𝑉 is the set of Boolean variables and𝐶 is the set of clauses.
For each clause 𝑐 ∈ 𝐶 , we use

vbl (𝑐) ≜ {𝑦 ∈ 𝑉 | 𝑦 or ¬𝑦 appears in 𝑐} (1)

to denote the set of variables that appear in 𝑐 . We say a CNF formula Φ is 𝑘-uniform if each clause
contains exactly 𝑘 literals on distinct variables, i.e. |vbl (𝑐) | = 𝑘 for all 𝑐 ∈ 𝐶 . For any 𝑐 ∈ 𝐶 and
𝑥 ∈ vbl (𝑐), we assume only one of the literal in {𝑥,¬𝑥} appears in 𝑐 . Otherwise, the clause 𝑐 can
always be satisfied. We also assume that each variable belongs to at most 𝑑 distinct clauses. Let 𝜇
denote the uniform distribution over all satisfying assignments for Φ. Our goal is to draw from a
distribution close enough to 𝜇.
We often model the CNF formula Φ = (𝑉 ,𝐶) as a (multi-)hypergraph

𝐻Φ ≜ (𝑉 , E), (2)

where the vertices in 𝐻Φ are variables in Φ and the hyperedges in 𝐻Φ are defined as the (multi-)set
E ≜ {vbl (𝑐) | 𝑐 ∈ 𝐶}.
We write log to denote log2 and ln to denote loge. We also write exp(𝑠) to denote e𝑠 , especially

when 𝑠 is a complicated expression. We use Pr without subscript to denote the probability space
generated by the algorithm in the context, and use subscript to clarify other probability spaces.

2.2 Lovász local lemma
Let R = {𝑅1, 𝑅2, . . . , 𝑅𝑛} be a collection of mutually independent random variables. For any event
𝐸, denote by vbl (𝐸) ⊆ R the set of variables determining 𝐸. In other words, changing the values
of variables outside of vbl (𝐸) does not change the truth value of 𝐸. LetB = {𝐵1, 𝐵2, . . . , 𝐵𝑛} be a col-
lection of “bad” events. For each event𝐵 ∈ B, we define Γ(𝐵) ≜ {𝐵′ ∈ B | 𝐵′ ≠ 𝐵 and vbl (𝐵′) ∩ vbl (𝐵) ≠ ∅}.
For any event 𝐴 ∉ B and its determining variables vbl (𝐴) ⊆ R, we define Γ(𝐴) ≜ {𝐵 ∈ B |
vbl (𝐴) ∩vbl (𝐵) ≠ ∅}. Let PrP [·] denote the product distribution of variables in R. The following
version of the Lovász local lemma is from [15].

TheoRem 2.1. If there is a function 𝑥 : B → (0, 1) such that for any 𝐵 ∈ B,

PrP [𝐵] ≤ 𝑥 (𝐵)
∏

𝐵′∈Γ (𝐵)
(1 − 𝑥 (𝐵′)), (3)

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Feng, Guo, Yin, and Zhang

then it holds that

PrP

[∧
𝐵∈B

𝐵

]
≥

∏
𝐵∈B
(1 − 𝑥 (𝐵)) > 0.

Thus, there exists an assignment of all variables that avoids all the bad events.
Moreover, for any event 𝐴, it holds that

PrP

[
𝐴

�� ∧
𝐵∈B

𝐵

]
≤ PrP [𝐴]

∏
𝐵∈Γ (𝐴)

(1 − 𝑥 (𝐵))−1 .

The next corollary follows from Theorem 2.1.

CoRollaRy 2.2. Let Φ = (𝑉 ,𝐶) be a CNF formula. Assume each clause contains at least 𝑘1 vari-
ables and at most 𝑘2 variables, and each variable belongs to at most 𝑑 clauses. For any 𝑠 ≥ 𝑘2, if
2𝑘1 ≥ 2e𝑑𝑠 , then there exists a satisfying assignment for Φ and for any 𝑣 ∈ 𝑉 ,

max
{
Pr𝑋∼𝜇 [𝑋 (𝑣) = 0] ,Pr𝑋∼𝜇 [𝑋 (𝑣) = 1]

}
≤ 1

2
exp

(
1

𝑠

)
,

where 𝜇 is the uniform distribution of all satisfying assignments for Φ.

PRoof. Let PrP [·] denote the product distribution that every variable in 𝑉 takes a value from
{0, 1} uniformly and independently. We define a collection of bad events 𝐵𝑐 for each 𝑐 ∈ 𝐶 , where
𝐵𝑐 represents the clause 𝑐 is not satisfied. For each 𝑐 ∈ 𝐶 , we take 𝑥 (𝐵𝑐) = 1

2𝑑𝑠 . Thus, for any clause
𝑐 ∈ 𝐶 , we have

PrP [𝐵𝑐] ≤
(
1

2

)𝑘1

≤ 1

2e𝑑𝑠
.

To verify (3), note that for any 𝑦 > 1, it holds that
(
1 − 1

𝑦

)𝑦−1
≥ 1

e . Since 𝑠 ≥ 𝑘2 and |Γ(𝐵𝑐) | ≤
(𝑑 − 1)𝑘2 ≤ 2𝑑𝑠 − 1 for all 𝑐 ∈ 𝐶 , We have

PrP [𝐵𝑐] ≤
1

2𝑑𝑠

(
1 − 1

2𝑑𝑠

)2𝑑𝑠−1
≤ 1

2𝑑𝑠

(
1 − 1

2𝑑𝑠

) |Γ (𝐵𝑐) |
= 𝑥 (𝐵𝑐)

∏
𝑏∈Γ (𝐵𝑐)

(1 − 𝑥 (𝐵𝑏)) .

Hence, there exists a satisfying assignment for CNF formula Φ. For any variable 𝑣 ∈ 𝑉 , let 𝐵𝑣

denote the event that 𝑣 takes the value 0. Note that |Γ(𝐵𝑣) | = 𝑑 . By Theorem 2.1, we have

Pr𝑋∼𝜇 [𝑋 (𝑣) = 1] ≤ 1

2

(
1 − 1

2𝑑𝑠

)−𝑑
≤ 1

2
exp

(
1

𝑠

)
.

Similarly, we have Pr𝑋∼𝜇 [𝑋 (𝑣) = 0] ≤ 1
2 exp

(
1
𝑠

)
. □

The Moser-Tardos algorithm [29] constructs an assignment of all random variables in P that
avoids all the bad events in B. The Moser-Tardos algorithm is given in Algorithm 1.

PRoposition 2.3 (MoseR and TaRdos [29]). Suppose the asymmetric local lemma condition (3)
inTheorem 2.1 holds with the function 𝑥 : B → (0, 1). Upon termination, the Moser-Tardos algorithm
returns an assignment that avoids all the bad events. The expected total resampling steps for Moser-
Tardos algorithm is at most

∑
𝐵∈B

𝑥 (𝐵)
1−𝑥 (𝐵) .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:7

Algorithm 1: The Moser-Tardos algorithm
1 for each 𝑅 ∈ R, sample 𝑣𝑅 independently according to the distribution of 𝑅;
2 while there exists a bad event 𝐵 ∈ B s.t. 𝐵 occurs do
3 pick an arbitrary 𝐵 ∈ B s.t. 𝐵 occurs;
4 resample the value of 𝑣𝑅 for all variables 𝑅 ∈ vbl (𝐵);
5 return (𝑣𝑅)𝑅∈R

2.3 Coupling and mixing times for Markov chains
Let 𝜇 and 𝜈 be two probability distributions over the same space Ω. The total variation distance is
defined by

𝑑TV (𝜇, 𝜈) ≜
1

2

∑
𝑥 ∈Ω
|𝜇 (𝑥) − 𝜈 (𝑥) | .

If we have a random variable 𝑋 whose law is 𝜈 , we may write 𝑑TV (𝜇, 𝑋) instead of 𝑑TV (𝜇, 𝜈) to
simplify the notation.
A coupling C of 𝜇 and 𝜈 is a joint distribution over Ω × Ω such that projecting on the first (or

second) coordinate is 𝜇 (or 𝜈). A well known inequality regarding coupling is the following.

PRoposition 2.4. Let C be an arbitrary coupling of 𝜇 and 𝜈 . Then

𝑑TV (𝜇, 𝜈) ≤ Pr(𝑥,𝑦)∼C [𝑥 ≠ 𝑦] .
Moreover, there exists an optimal coupling that achieves equality.

AMarkov chain (𝑋𝑡)𝑡 ≥0 over a state space Ω is given by its transition matrix 𝑃 : Ω ×Ω → R≥0.
A Markov chain 𝑃 is called irreducible if for any 𝑋,𝑌 ∈ Ω, there exists an integer 𝑡 such that
𝑃𝑡 (𝑋,𝑌) > 0. AMarkov chain 𝑃 is called aperiodic if for any𝑋 ∈ Ω, it holds that gcd{𝑡 | 𝑃𝑡 (𝑋,𝑋) >
0} = 1. We say the distribution 𝜇 over Ω is the stationary distribution of a Markov chain 𝑃 if 𝜇 = 𝜇𝑃 .
A Markov chain 𝑃 is reversible with respect to 𝜇 if it satisfies the detailed balance condition

𝜇 (𝑋)𝑃 (𝑋,𝑌) = 𝜇 (𝑌)𝑃 (𝑌,𝑋),
which implies that 𝜇 is a stationary distribution of 𝑃 . If a Markov chain 𝑃 is irreducible and aperi-
odic, then it converges to the unique stationary distribution 𝜇. Themixing time of a Markov chain
𝑃 with stationary distribution 𝜇 is defined by

𝑇mix (𝑃, 𝛿) ≜ max
𝑋0∈Ω

min
{
𝑡 : 𝑑TV

(
𝑃𝑡 (𝑋0, ·), 𝜇

)
≤ 𝛿

}
. (4)

See the textbook [26] for more details and backgrounds on Markov chains and mixing times.
Consider an irreducible and aperiodic Markov chain specified by the transition matrix 𝑃 . A

coupling of the Markov chain is a joint process (𝑋𝑡 , 𝑌𝑡)𝑡 ≥0 such that both (𝑋𝑡)𝑡 ≥0 and (𝑌𝑡)𝑡 ≥0
individually follow the transition rule of 𝑃 , and if 𝑋𝑡 = 𝑌𝑡 then 𝑋𝑠 = 𝑌𝑠 for all 𝑠 ≥ 𝑡 . The to-
tal variation distance between 𝑃𝑡 (𝑋0, ·) and 𝜇 can be bounded by max𝑋0∈Ω 𝑑TV

(
𝑃𝑡 (𝑋0, ·), 𝜇

)
≤

max𝑋0,𝑌0∈Ω2 Pr [𝑋𝑡 ≠ 𝑌𝑡].
Path coupling [4] is a powerful technique to construct couplings of Markov chains. In this paper,

we use the following path coupling lemma, which is simplified for the Boolean hypercube. Let the
state space Ω = {0, 1}𝑁 for some integer 𝑁 ≥ 1. For any 𝑋,𝑌 ∈ Ω, define the Hamming distance
between 𝑋,𝑌 as

𝑑Ham (𝑋,𝑌) ≜ |{1 ≤ 𝑖 ≤ 𝑁 | 𝑋 (𝑖) ≠ 𝑌 (𝑖)}| .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Feng, Guo, Yin, and Zhang

PRoposition 2.5 ([4]). LetΩ = {0, 1}𝑁 some integer𝑁 ≥ 1. Let 𝑃 : Ω×Ω → R≥0 be the transition
matrix of an irreducible and aperiodic Markov chain. Suppose there is a coupling (𝑋,𝑌) → (𝑋 ′, 𝑌 ′)
of the Markov chain defined for all 𝑋,𝑌 ∈ Ω with 𝑑Ham (𝑋,𝑌) = 1, which satisfies

E [𝑑Ham (𝑋 ′, 𝑌 ′) | 𝑋,𝑌] ≤ 1 − 𝜆,
for some 0 < 𝜆 < 1. Then the mixing time of the Markov chain is bounded by

𝑇mix (𝑃, 𝛿) ≤
1

𝜆
log

(
𝑁

𝛿

)
.

3 THE SAMPLING ALGORITHM
Let Φ = (𝑉 ,𝐶) be a 𝑘-uniform CNF formula, in which each variable belongs to at most 𝑑 clauses.
In this section we give our Markov chain based algorithm to sample satisfying assignments almost
uniformly at random.

3.1 Marking variables
Our algorithm first marks a set of marked variablesM ⊆ 𝑉 . We say a variable 𝑣 ∈ 𝑉 is marked if
𝑣 ∈ M, or 𝑣 is unmarked if 𝑣 ∉ M. We will ensure the following condition for the set of marked
variablesM, where 𝑘𝛼 ≥ 1 and 𝑘𝛽 ≥ 1 are two integer parameters to be specified later satisfying
𝑘𝛼 + 𝑘𝛽 ≤ 𝑘 .

Condition 3.1. Each clause has at least 𝑘𝛼 marked variables and at least 𝑘𝛽 unmarked variables.

We use the Moser-Tardos algorithm, Algorithm 1, to findM. Define 0 ≤ 𝛼, 𝛽 ≤ 1 as

𝛼 ≜
𝑘𝛼
𝑘
, 𝛽 ≜

𝑘𝛽

𝑘
.

Suppose we mark each variable independently with probability 1+𝛼−𝛽
2 . For each clause 𝑐 ∈ 𝐶 , let

𝑀𝑐 be the bad event that “𝑐 has less than 𝑘𝛼 marked variables or less than 𝑘𝛽 unmarked variables”.
The lemma below follows from Proposition 2.3 and verifying (3).

Lemma 3.2. Assume 2𝑘 ≥ (2e𝑑𝑘)
6 ln2· (1+𝛼−𝛽)
(1−𝛼−𝛽)2 . There is an algorithm such that for any 𝛿 > 0, with

probability at least 1 − 𝛿 , it returns a set of marked variables satisfying Condition 3.1 with time
complexity 𝑂

(
𝑑𝑘𝑛 log 1

𝛿

)
, where 𝑛 = |𝑉 | is the number of variables.

PRoof. To apply Algorithm 1, Let PrP [·] denote the product distribution that every variable is
marked independently with probability 1+𝛼−𝛽

2 . By Chernoff bound [27, Corollary 4.6], we have

∀𝑐 ∈ 𝐶 : PrP [𝑀𝑐] ≤ 2 exp

(
− (1 − 𝛼 − 𝛽)

2

6(1 + 𝛼 − 𝛽) · 𝑘
)
= 2

(
1

2

) (1−𝛼−𝛽)2
6 ln2· (1+𝛼−𝛽) ·𝑘

.

We define a function 𝑥 as 𝑥 (𝑀𝑐) ≜ 1
𝑑𝑘 for all 𝑐 ∈ 𝐶 . We have for all 𝑐 ∈ 𝐶 ,

PrP [𝑀𝑐] ≤
1

e𝑑𝑘
≤ 𝑥 (𝑀𝑐)

∏
𝑀𝑏 ∈Γ (𝑀𝑐)

(1 − 𝑥 (𝑀𝑏)) .

Since the total number of clauses is at most 𝑑𝑛, by Proposition 2.3, the expected number of resam-
pling steps is at most ∑

𝑐∈𝐶

𝑥 (𝑀𝑐)
1 − 𝑥 (𝑀𝑐)

≤ 2𝑛

𝑘
. (5)

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:9

ByMarkov inequality, if we run Algorithm 1 for at most 4𝑛
𝑘 resampling steps, the algorithm returns

the setM with probability at least 1
2 . If we run

⌈
log 1

𝛿

⌉
Moser-Tardos algorithms independently,

then with probability at least 1 − 𝛿 , one of them finds the setM within 4𝑛
𝑘 resampling steps.

Note that in each resampling step, we need to resample 𝑘 variables and check whether 𝑑𝑘 bad
events occur, and the cost of checking one event is at most 𝑘 . Hence, the total time complexity is
𝑂

(
𝑛𝑑𝑘 log 1

𝛿

)
. □

We note that much better concentration bound is known to the Moser-Tardos algorithm [14].
However, Lemma 3.2 is sufficient to our need.

We use the algorithm in Lemma 3.2 with 𝛿 = 𝜀
4 to construct the set of marked variablesM ⊆ 𝑉 .

If the algorithm fails to constructM, then our algorithm terminates immediately and outputs an
arbitrary assignment 𝑋 ∈ {0, 1}𝑉 . This bad event occurs with probability at most 𝜀

4 . In the rest of
this section, we assume that the set of marked variablesM ⊆ 𝑉 is already found.

3.2 The main algorithm
In this sectionwe present our algorithm for sampling satisfying assignments of CNFs.Wewill need
some notations first. For an arbitrary set of variables 𝑆 ⊆ 𝑉 , let 𝜇𝑆 be the marginal distribution on
𝑆 induced from 𝜇. Formally,

∀𝜎 ∈ {0, 1}𝑆 : 𝜇𝑆 (𝜎) =
∑

𝜏 ∈{0,1}𝑉 , 𝜏 (𝑆)=𝜎
𝜇 (𝜏).

When 𝑆 = {𝑣} for some 𝑣 ∈ 𝑉 , we also write 𝜇𝑣 instead of 𝜇 {𝑣 } . Moreover, for a partial assignment
𝑋 ∈ {0, 1}Λ where Λ ⊂ 𝑉 and 𝑆 ∩ Λ = ∅, let 𝜇𝑋𝑆 (·) := 𝜇𝑆 (· | 𝑋) be the marginal distribution on 𝑆
conditioned on the partial assignment on Λ is 𝑋 .
The main idea of our sampling algorithm is to simulate a Markov chain whose stationary distri-

bution is the marginal distribution 𝜇M onM. Let 𝑃Glauber be the idealized Glauber dynamics for
the marked variables. Namely, we start with an initial assignment 𝑋0 ∈ {0, 1}M where 𝑋0 (𝑣) is
uniformly at random for all 𝑣 ∈ M. In the 𝑡-th step, the chain evolves as follows:
• pick 𝑣 ∈ M uniformly at random and set 𝑋𝑡 (𝑢) ← 𝑋𝑡−1 (𝑢) for all 𝑢 ∈ M \ {𝑣};
• sample 𝑋𝑡 (𝑣) ∈ {0, 1} from the distribution 𝜇𝑣 (· | 𝑋𝑡−1 (M \ {𝑣})).

This chain is reversible with respect to 𝜇M , as for any 𝑋,𝑌 ∈ {0, 1}M that differ on only 𝑣 ,

𝜇M (𝑋)𝑃Glauber (𝑋,𝑌) =
1

|𝑀 | · 𝜇M (𝑋)𝜇𝑣 (𝑌 (𝑣) | 𝑋 (M \ {𝑣})) =
1

|𝑀 | ·
𝜇M (𝑋)𝜇M (𝑌)

𝜇M\{𝑣 } (𝑋 (M \ {𝑣}))

=
1

|𝑀 | · 𝜇M (𝑌)𝜇𝑣 (𝑋 (𝑣) | 𝑌 (M \ {𝑣})) = 𝜇M (𝑌)𝑃Glauber (𝑌,𝑋).
(6)

We will show that 𝑃Glauber is both irreducible and aperiodic in our parameter regimes. We simulate
this chain to obtain a random assignment 𝑋M ∈ {0, 1}M whose distribution is close enough to
𝜇M . Then the algorithm samples a random assignment 𝑋𝑉 \M ∈ {0, 1}𝑉 \M for unmarked variables
from the distribution 𝜇𝑉 \M (· | 𝑋M). The final sample is 𝑋alg ≜ 𝑋M ∪ 𝑋𝑉 \M .

This chain 𝑃Glauber is an idealized process because the transitions of the chain rely on evaluating
some nontrivial marginal probabilities, which in general can be as hard as the problem of count-
ing the number of satisfying assignments itself. To efficiently simulate one step of the Markov
chain and to complete the random assignments for unmarked variables, we need to sample from
the marginal distributions 𝜇𝑣 (· | 𝑋𝑡−1 (M \ {𝑣})) and 𝜇𝑉 \M (· | 𝑋𝑇), where 𝑡 ≤ 𝑇 and 𝑇 is an
upper bound of the mixing time of 𝑃Glauber. We will use a subroutine Sample(·) for this. Given an
assignment 𝑋 ∈ {0, 1}Λ on the subset Λ ⊆ M and a subset 𝑆 ⊆ 𝑉 \ Λ of variables, the subroutine
Sample(Φ, 𝛿, 𝑋, 𝑆) returns a random assignment 𝑌 ∈ {0, 1}𝑆 from the distribution 𝜇𝑆 (· | 𝑋) upon

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Feng, Guo, Yin, and Zhang

success. We will ensure that Sample(Φ, 𝛿, 𝑋, 𝑆) is efficient and when we call it in Algorithm 2, it
returns a sample within total variation distance 𝛿 to the desired distribution with probability at
least 1 − 𝛿 for a small 𝛿 > 0. This is because due to Corollary 2.2 and its variants, the marked
variables are almost uniform, and conditioned on any almost uniform assignment of (almost all)
marked variables, the remaining formula splits into many disjoint small connected components.

The whole sampling algorithm is formally described in Algorithm 2.

Algorithm 2: The sampling algorithm
input :a CNF formula Φ = (𝑉 ,𝐶), a parameter 𝜀 > 0, and a set of marked variablesM.
output :a random assignment 𝑋alg ∈ {0, 1}𝑉 .

1 sample 𝑋0 (𝑣) ∈ {0, 1} uniformly and independently for each 𝑣 ∈ M;
2 for each 𝑡 from 1 to 𝑇 :=

⌈
2𝑛 log 4𝑛

𝜀

⌉
do

3 choose variable 𝑣 ∈ M uniformly at random;
/* resample 𝑋M (𝑣) from the distribution 𝜇𝑣 (· | 𝑋𝑡−1 (M \ {𝑣})) */

4 𝑋𝑡 (𝑣) ← Sample(Φ, 𝜀
4(𝑇+1) , 𝑋𝑡−1 (M \ {𝑣}), {𝑣});

5 ∀𝑢 ∈ M and 𝑢 ≠ 𝑣 , 𝑋𝑡 (𝑢) ← 𝑋𝑡−1 (𝑢);
/* sample 𝑋𝑉 \M from the distribution 𝜇𝑉 \M (· | 𝑋𝑇) */

6 𝑋𝑉 \M ← Sample(Φ, 𝜀
4(𝑇+1) , 𝑋𝑇 ,𝑉 \M);

7 return 𝑋alg = 𝑋𝑇 ∪ 𝑋𝑉 \M ;

In Algorithm 2, Sample(·) appears in Line 4 and Line 6 and returns random assignments on {𝑣}
and 𝑉 \M respectively. In our implementation, we allow their distributions to be slightly biased
(controlled by the parameter 𝛿 = 𝜀

4(𝑇+1)).
The correctness and the efficiency of Algorithm 2 rely on three facts:
(1) the Glauber dynamics for marked vertices is rapidly mixing;
(2) the Sample(·) subroutine for unmarked vertices is efficient;
(3) the small bias in the distribution caused by Sample(·) does not affect the final distribution

much.
The rapidmixing property of the Glauber dynamics is analyzed in Section 4. Details of Sample(·)

will be given in Section 3.3 and its analysis in Section 5.
We will ensure that, with high probability, Sample(·) returns samples whose distributions are

close to the desired ones in both Line 4 and Line 6. Using this, we will show that Algorithm 2
couples with high probability with the idealized chain 𝑃Glauber. As a result, the distribution of the
random assignment 𝑋alg returned by Algorithm 2 is close to 𝜇 (·).
Lemma 3.3. Suppose 2𝑘𝛼 ≥ 4e2𝑑2𝑘2, 2𝑘𝛽 ≥ 216𝑑9𝑘9, andM satisfying Condition 3.1 has been

found. The random assignment 𝑋alg ∈ {0, 1}𝑉 returned by Algorithm 2 satisfies

𝑑TV

(
𝑋alg, 𝜇

)
≤ 3𝜀

4
. (7)

Lemma 3.3 is proved in Section 6.

3.3 The Sample subroutine
Here we give the subroutine Sample(Φ, 𝛿, 𝑋, 𝑆), where 𝑋 ∈ {0, 1}Λ is an assignment on subset
Λ ⊆ M and 𝑆 ⊆ 𝑉 \Λ is a subset of variables. The output of the subroutine is a random assignment
𝑌 ∈ {0, 1}𝑆 , which ideally should follow the conditional marginal distribution 𝜇𝑆 (· | 𝑋). However,
in order for the efficiency of the subroutine, some small error is tolerated.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:11

Our basic idea is to find all connected components of a new formula Φ𝑋 . We will show that in
the execution of Algorithm 2, these components are sufficiently small. Then we will use rejection
sampling on them independently for each component.
Let us first define Φ𝑋 and its connected components. Given a CNF formula Φ = (𝑉 ,𝐶) and a

partial assignment 𝑋 ∈ {0, 1}Λ for some Λ ⊆ 𝑉 , we simplify Φ under 𝑋 to obtain Φ𝑋 = (𝑉𝑋 ,𝐶𝑋).
Formally, we have
• 𝑉𝑋 = 𝑉 \ Λ, and
• 𝐶𝑋 is obtained from𝐶 by removing all clauses that have been satisfied under 𝑋 1 and remov-
ing the appearance of 𝑥 or ¬𝑥 from the remaining unsatisfied clauses for every 𝑥 ∈ Λ.

Recall that

∀𝜎 ∈ {0, 1}𝑉𝑋
= {0, 1}𝑉 \Λ : 𝜇𝑋𝑉 \Λ (𝜎) = 𝜇𝑉 \Λ (𝜎 | 𝑋). (8)

It is straightforward to check that 𝜇𝑋
𝑉 \Λ is the uniform distribution over all satisfying assignments

of Φ𝑋 . Let 𝐻Φ𝑋 = (𝑉𝑋 , E𝑋) be the hypergraph defined in (2) for the CNF formula Φ𝑋 . Let 𝐻𝑋
𝑖 =

(𝑉𝑋
𝑖 , E𝑋𝑖) for 1 ≤ 𝑖 ≤ ℓ denote all the connected components in the hypergraph𝐻Φ𝑋 , where ℓ is the

number of connected components. Each𝐻𝑋
𝑖 = (𝑉𝑋

𝑖 , E𝑋𝑖) represents a CNF formulaΦ𝑋
𝑖 = (𝑉𝑋

𝑖 ,𝐶𝑋
𝑖),

where

𝐶𝑋
𝑖 ≜

{
𝑐 ∈ 𝐶𝑋 | clause 𝑐 is represented by a hyperedge in E𝑋𝑖

}
.

We have Φ𝑋 = Φ𝑋
1 ∧Φ𝑋

2 ∧ · · · ∧Φ𝑋
ℓ , and all the𝑉𝑋

𝑖 are disjoint. Let 𝜇𝑋𝑖 be the uniform distribution
on all satisfying assignments of Φ𝑋

𝑖 for every 𝑖 = 1, . . . , ℓ , then 𝜇𝑋
𝑉 \Λ (·) is the product distribution

of all 𝜇𝑋𝑖 .
Obviously, the distribution 𝜇𝑆 (· | 𝑋) is determined by only those connected components inter-

secting 𝑆 . Without loss of generality, we assume that 𝑆 ∩𝑉𝑋
𝑖 ≠ ∅ for 1 ≤ 𝑖 ≤ 𝑚 and 𝑆 ∩𝑉𝑋

𝑖 = ∅
for 𝑚 < 𝑖 ≤ ℓ . To draw a random assignment 𝑌 ∈ {0, 1}𝑆 from the distribution 𝜇𝑆 (· | 𝑋), we
independently draw a random assignment 𝑌𝑖 from 𝜇𝑋𝑖 (·) for each 1 ≤ 𝑖 ≤ 𝑚. Let

𝑌 ′ ≜
𝑚⋃
𝑖=1

𝑌𝑖 .

Note that 𝑆 ⊆ ⋃𝑚
𝑖=1𝑉𝑖 . Our sample 𝑌 is the projection of 𝑌 ′ on 𝑆 , namely 𝑌 = 𝑌 ′(𝑆). It is easy to

verify that𝑌 follows themarginal distribution on 𝑆 induced by 𝜇𝑋
𝑉 \Λ. By (8), the random assignment

𝑌 follows the distribution 𝜇𝑆 (· | 𝑋).
To draw from individual 𝜇𝑋𝑖 (·) for each 1 ≤ 𝑖 ≤ 𝑚, we can simply use the naive rejection

sampling: repeatedly draw uniform assignments on {0, 1}𝑉𝑋
𝑖 and return the first one that satisfies

Φ𝑋
𝑖 . This should terminate fast if the connected component E𝑋𝑖 is small.
Our implementation of Sample(Φ, 𝛿, 𝑋, 𝑆) is then clear: it tries for each Φ𝑋

𝑖 , 1 ≤ 𝑖 ≤ 𝑚, to
repeatedly draw uniform assignments for at most 𝑅 (to be suitably fixed) times and return the first
satisfying one. Bad events happen if for one of the components, say Φ𝑋

𝑖 , the size of Φ𝑋
𝑖 is too large

or all 𝑅 trials fail to satisfy Φ𝑋
𝑖 , in which case an arbitrary assignment on 𝑆 is returned.

Formally, let 0 < 𝜂 < 1 satisfy

2𝑘𝛽 ≥ 20

𝜂
e𝑑𝑘, (9)

1Let 𝑐 ∈ 𝐶 be a clause in Φ. We say 𝑐 is satisfied under the (partial) assignment𝑋 if any literal of 𝑐 is already assigned true.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Feng, Guo, Yin, and Zhang

and define

𝑅 ≜
⌈(𝑛
𝛿

) 𝜂
10

log
𝑛

𝛿

⌉
.

In the subroutine Sample(Φ, 𝛿, 𝑋, 𝑆), we
• check the size |E𝑋𝑖 | for all 1 ≤ 𝑖 ≤ 𝑚 , if there exists |E𝑋𝑖 | > 𝑑𝑘 log 𝑛

𝛿 , then the subroutine
terminates and returns a 𝑌 ∈ {0, 1}𝑆 uniformly at random;
• for each 1 ≤ 𝑖 ≤ 𝑚, use the naive rejection sampling for at most 𝑅 times to draw a random
assignment 𝑌𝑋

𝑖 from the distribution 𝜇𝑋𝑖 ; if there exists 1 ≤ 𝑖 ≤ 𝑚 such that the subroutine
fails to draw a 𝑌𝑋

𝑖 from 𝜇𝑋𝑖 after 𝑅 rejection sampling trials, then the subroutine terminates
and returns a 𝑌 ∈ {0, 1}𝑆 uniformly at random.

The subroutine Sample(Φ, 𝛿, 𝑋, 𝑆) is described in Algorithm 3.

Algorithm 3: Sample(Φ, 𝛿, 𝑋, 𝑆)
Input :a CNF formula Φ = (𝑉 ,𝐶), a parameter 0 < 𝛿, 𝜂 < 1, an assignment 𝑋 ∈ {0, 1}Λ

for some Λ ⊆ 𝑉 , a set of variables 𝑆 ⊆ 𝑉 \ Λ, and 𝑛 = |𝑉 |.
Output :a random assignment 𝑌 ∈ {0, 1}𝑆 .

1 simplify Φ under 𝑋 and obtain a new formula Φ𝑋 ;
2 find all the connected components

{
𝐻𝑋
𝑖 = (𝑉𝑋

𝑖 , E𝑋𝑖) | 1 ≤ 𝑖 ≤ 𝑚
}
in 𝐻Φ𝑋 s.t. each

𝑉𝑋
𝑖 ∩ 𝑆 ≠ ∅;

3 if there exists 1 ≤ 𝑖 ≤ 𝑚 s.t. |E𝑋𝑖 | > 𝑑𝑘 log 𝑛
𝛿 then

4 return an assignment 𝑌 ∈ {0, 1}𝑆 uniformly at random;

5 for each 𝑖 from 1 to𝑚 do
6 let Φ𝑋

𝑖 = (𝑉𝑋
𝑖 ,𝐶𝑋

𝑖) be the CNF formula represented by 𝐻𝑋
𝑖 = (𝑉𝑋

𝑖 , E𝑋𝑖);
7 𝑌𝑋

𝑖 ← RejectionSampling
(
Φ𝑋
𝑖 , 𝑅

)
, where 𝑅 =

⌈(𝑛
𝛿

) 𝜂
10 log 𝑛

𝛿

⌉
;

8 if 𝑌𝑋
𝑖 =⊥ then

9 return an assignment 𝑌 ∈ {0, 1}𝑆 uniformly at random;

10 return 𝑌 = 𝑌 ′(𝑆), where 𝑌 ′ = ⋃𝑚
𝑖=1 𝑌

𝑋
𝑖 ;

Algorithm 4: RejectionSampling(Φ, 𝑅)
Input :a CNF formula Φ = (𝑉 ,𝐶), a parameter 𝑅 > 0.
Output :a random assignment 𝑌 ∈ {0, 1}𝑉 or a special symbol ⊥.

1 for each 𝑖 from 1 to 𝑅 do
2 sample 𝑌 ∈ {0, 1}𝑉 uniformly and independently;
3 if all the clauses in 𝐶 are satisfied by 𝑌 then
4 return Y;

5 return ⊥;

The following proposition is a basic property of rejection sampling.

PRoposition 3.4. In the subroutine Sample(Φ, 𝛿, 𝑋, 𝑆), conditioned on that the random assignment
𝑌 ∈ {0, 1}𝑆 is returned in Line 10, 𝑌 follows the law 𝜇𝑆 (· | 𝑋).

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:13

With the CNF formula represented by a standard data structure, the running time of Sample(Φ, 𝛿, 𝑋, 𝑆)
is easily bounded by 𝑂 (|𝑆 | · 𝑅 · poly(𝑑, 𝑘)). This is rigorously analyzed in Lemma 5.1 in Section 5.
In the same lemma we also prove that conditioning on that every component is small (i.e. Line 4 in
Algorithm 3 is not executed), the Sample subroutine fails (i.e. Line 9 in Algorithm 3 happens) with
probability at most 𝛿 . Such failure is due to the randomness of the rejection sampling. In another
key lemma, Lemma 5.2 in Section 5, we prove that for any call of Sample in Algorithm 2, Line 4 in
Algorithm 3 is indeed executed with probability at most 𝛿 . Such failure is due to the randomness of
the input 𝑋 to Sample. Overall, with probability at least 1 − 𝛿 , the distribution of the assignments
returned by Sample(Φ, 𝛿, 𝑋, 𝑆) is within total variation distance at most 𝛿 from 𝜇𝑆 (· | 𝑋).

4 RAPID MIXING OF THE IDEALIZED DYNAMICS
LetΦ = (𝑉 ,𝐶) be a CNF formula. LetM ⊆ 𝑉 be the set of marked variables satisfying Condition 3.1
and Ω ≜ {0, 1}M . Let 𝑃Glauber be the Glauber dynamics for marked variables, and use (𝑋𝑡)𝑡 ≥0 to
denote the state at time 𝑡 where 𝑋𝑡 ∈ {0, 1}M . In this section, we show that the idealized Glauber
dynamics 𝑃Glauber is rapidly mixing.

Lemma 4.1. Let Φ = (𝑉 ,𝐶) be a 𝑘-uniform CNF formula such that each variable belongs to at
most 𝑑 clauses. SupposeM ⊆ 𝑉 satisfies Condition 3.1 with parameters 𝑘𝛼 and 𝑘𝛽 . Let 𝑃Glauber be the
Glauber dynamics for marked variables. If 2𝑘𝛽 ≥ 216𝑑9𝑘9, then for any 𝛿 > 0, it holds that

𝑇mix (𝑃Glauber, 𝛿) ≤
⌈
2𝑛 log

𝑛

𝛿

⌉
,

where 𝑛 = |𝑉 | and the mixing time 𝑇mix is defined in (4).

4.1 The stationary distribution
We first prove that the Glauber dynamics 𝑃Glauber has the unique stationary distribution 𝜇M .

Lemma 4.2. If 2𝑘𝛽 ≥ 4e𝑑𝑘 , then the support of 𝜇M is all of Ω = {0, 1}M , and the Glauber dynamics
𝑃Glauber for marked variables has the unique stationary distribution 𝜇M .

PRoof. For any 𝑣 ∈ M and any assignment 𝑋 ′ ∈ {0, 1}M\{𝑣 } , we claim that

∀𝑐 ∈ {0, 1} : 𝜇𝑣 (𝑐 | 𝑋 ′) > 0. (10)

This implies that for any𝑋,𝑌 ∈ Ω with Hamming distance 𝑑Ham (𝑋,𝑌) = |{𝑣 ∈ M | 𝑋 (𝑣) ≠ 𝑌 (𝑣)}|,
it is possible to transform 𝑋 to 𝑌 in 𝑑Ham (𝑋,𝑌) steps. Hence, 𝑃Glauber is irreducible. It also implies
that the support of 𝜇M is Ω. Besides, for any 𝑋 ∈ Ω, we have 𝑃Glauber (𝑋,𝑋) > 0. Hence, this chain
is aperiodic.

We now prove (10). Let Φ𝑋 ′ be the CNF formula obtained from Φ by deleting all the clauses that
are satisfied by 𝑋 ′ and all the variables inM \ {𝑣}. Let 𝜇 ′ denote the uniform distribution of all
solutions of Φ′. Then we have

∀𝑐 ∈ {0, 1} : 𝜇𝑣 (𝑐 | 𝑋 ′) = 𝜇 ′𝑣 (𝑐).

In CNF formula Φ′, each clause has at least 𝑘𝛽 variables and at most 𝑘 variables and each variable
belongs to at most 𝑑 clauses. Since 2𝑘𝛽 ≥ 4e𝑑𝑘 , by Corollary 2.2, we have

∀𝑐 ∈ {0, 1} : 𝜇𝑣 (𝑐 | 𝑋 ′) = 𝜇 ′𝑣 (𝑐) ≤
1

2
exp

(
1

2𝑘

)
≤
√
e

2
< 1.

This implies 𝜇𝑣 (𝑐 | 𝑋 ′) > 0 for all 𝑐 ∈ {0, 1}.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Feng, Guo, Yin, and Zhang

By the update rule of the Glauber dynamics chain, it is easy to verify the following detailed
balance condition as in (6):

∀𝑋,𝑌 ∈ Ω : 𝜇M (𝑋)𝑃Glauber (𝑋,𝑌) = 𝜇M (𝑌)𝑃Glauber (𝑌,𝑋).

Since the Markov chain is irreducible and aperiodic, this proves that the Markov chain (𝑋𝑡)𝑡 ≥0 has
the unique stationary distribution 𝜇M . □

Hence, under the condition in Lemma 4.1, 𝑃Glauber has unique stationary distribution 𝜇M .

4.2 The mixing time
We next prove that 𝑃Glauber is rapidly mixing provided that 2𝑘𝛽 ≥ 216𝑑9𝑘9. The mixing time in
Lemma 4.1 is proved by the path coupling argument [4]. For any 𝑋,𝑌 ∈ Ω, recall their Hamming
distance as

𝑑Ham (𝑋,𝑌) ≜ |{𝑣 ∈ M | 𝑋 (𝑣) ≠ 𝑌 (𝑣)}| .

Let 𝑋,𝑌 ∈ Ω be two assignments that disagree only on a single variable, namely, 𝑑Ham (𝑋,𝑌) = 1.
We construct a coupling of Markov chains (𝑋,𝑌) → (𝑋 ′, 𝑌 ′) satisfying

E [𝑑Ham (𝑋 ′, 𝑌 ′) | 𝑋,𝑌] ≤ 1 − 1

2𝑛
. (11)

Note that 𝑑Ham (𝑋,𝑌) ≤ 𝑛 for all 𝑋,𝑌 ∈ Ω. Then Lemma 4.1 is proved by the path coupling
lemma (Proposition 2.5) together with Lemma 4.2.

The coupling (𝑋,𝑌) → (𝑋 ′, 𝑌 ′) is defined as follows.

Definition 4.3. Let 𝑋,𝑌 ∈ Ω be two assignments that disagree only on a single variable, say
𝑋 (𝑣0) = 0 and 𝑌 (𝑣0) = 1 where 𝑣0 ∈ M. Let M𝑣 ≜ M \ {𝑣} for any 𝑣 ∈ M. The coupling
(𝑋,𝑌) → (𝑋 ′, 𝑌 ′) is defined as:
• pick the same variable 𝑣 ∈ M uniformly at random, and set 𝑋 ′(𝑢) = 𝑋 (𝑢) and 𝑌 ′(𝑢) = 𝑌 (𝑢)
for all variables 𝑢 ∈ M𝑣 ;
• sample (𝑋 ′(𝑣), 𝑌 ′(𝑣)) jointly from the optimal coupling of two conditional marginal distri-
butions 𝜇𝑣 (· | 𝑋 (M𝑣)) and 𝜇𝑣 (· | 𝑌 (M𝑣)).

It is easy to verify that this is a valid coupling of two Markov chains. Two transitions 𝑋 → 𝑋 ′

and 𝑌 → 𝑌 ′ are both faithful copies of the Glauber dynamics chain. We remark that none of the
couplings in this section is efficiently computable. They only serve as tools for the analysis of the
Markov chain.

For each marked variable 𝑣 ∈ M, we define 𝐷𝑣 as

𝐷𝑣 ≜ 𝑑TV (𝜇𝑣 (· | 𝑋 (M𝑣)), 𝜇𝑣 (· | 𝑌 (M𝑣))) . (12)

which is the total variation distance between 𝜇𝑣 (· | 𝑋 (M𝑣)) and 𝜇𝑣 (· | 𝑌 (M𝑣)). Moreover, since
𝑋 (M𝑣0) = 𝑌 (M𝑣0), by (12),

𝐷𝑣0 = 0.

By Proposition 2.4, under our coupling,

Pr [𝑋 ′(𝑣) ≠ 𝑌 ′(𝑣) | 𝑣 ∈ M is picked] = 𝐷𝑣 .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:15

Hence, the expected Hamming distance between 𝑋 ′ and 𝑌 ′ is at most

E [𝑑Ham (𝑋 ′, 𝑌 ′) | 𝑋,𝑌] = 1 + 1

|M|
∑
𝑣∈M

𝐷𝑣 −
1

|M|

= 1 − 1

|M|

(
1 −

∑
𝑣∈M

𝐷𝑣

)
. (13)

To prove the inequality in (11), it is sufficient to prove the following lemma and notice that |M| ≤ 𝑛.

Lemma 4.4. Given two assignments 𝑋,𝑌 ∈ Ω such that 𝑋 and 𝑌 disagree only on a single variable
𝑣0 ∈ M, if 2𝑘𝛽 ≥ 216𝑑9𝑘9, it holds that ∑

𝑣∈M
𝐷𝑣 ≤

1

2
,

where 𝐷𝑣 is the total variation distance defined in (12).

Combining inequality (13) and Lemma 4.4 proves inequality (11).This proves Lemma 4.1. Lemma 4.4
is shown in the next subsection.

4.3 Analysis of the path coupling
Let us first sketch the proof idea of Lemma 4.4. Recall that we have two assignments 𝑋 and 𝑌
which differ on only 𝑣0. In order to bound 𝐷𝑣 for any 𝑣 ∈ M and 𝑣 ≠ 𝑣0, we construct a coupling
C𝑣 of two distributions 𝜇 (· | 𝑋 (M𝑣)) and 𝜇 (· | 𝑌 (M𝑣)), whereM𝑣 =M \ {𝑣}. Since C𝑣 projected
on 𝑣 is a coupling between 𝜇𝑣 (· | 𝑋 (M𝑣)) and 𝜇𝑣 (· | 𝑌 (M𝑣)), by Proposition 2.4, we have

𝐷𝑣 ≤ Pr(𝜎𝑋 ,𝜎𝑌)∼C𝑣 [𝜎𝑋 (𝑣) ≠ 𝜎𝑌 (𝑣)] .
A high-level description of our construction of C𝑣 is as follows: we start from two partial assign-
ments 𝑋 and 𝑌 such that initially only the value on 𝑣0 is set, say 𝑋 (𝑣0) = 0 and 𝑌 (𝑣0) = 1. In each
step, in a Breadth-First Search way, we extend the partial assignments using the optimal coupling
between two marginal distributions to a new variable. At last, we obtain a set of variables 𝑉 C𝑣1

which is a superset of all variables on which 𝑋 and 𝑌 disagree. Therefore,

Pr(𝜎𝑋 ,𝜎𝑌)∼C𝑣 [𝜎𝑋 (𝑣) ≠ 𝜎𝑌 (𝑣)] ≤ PrC𝑣

[
𝑣 ∈ 𝑉 C𝑣1

]
.

We then construct another coupling C of distributions 𝜇 (· | 𝑋 (𝑣0)) and 𝜇 (· | 𝑌 (𝑣0)) in a similar
way, where 𝑣0 ∈ M is the unique vertex on which 𝑋 and 𝑌 differ. The coupling also produces a set
𝑉1 which is a superset of all variables with different values. We carefully define the coupling C so
that for every 𝑣 ∈ M \ {𝑣0}, it holds that

PrC𝑣

[
𝑣 ∈ 𝑉 C𝑣1

]
= PrC

[
𝑣 ∈ 𝑉 C1

]
. (14)

Recall that 𝐷𝑣0 = 0. Therefore, we only need to bound 𝐷𝑣 for those 𝑣 ∈ M \ {𝑣0}. Hence,∑
𝑣∈M

𝐷𝑣 =
∑

𝑣∈M\{𝑣0 }
𝐷𝑣 ≤

∑
𝑣∈M\{𝑣0 }

PrC𝑣

[
𝑣 ∈ 𝑉 C𝑣1

]
=

∑
𝑣∈M\{𝑣0 }

PrC
[
𝑣 ∈ 𝑉 C1

]
= EC

[��𝑉 C1 ��] − 1. (by (14))

Finally, we bound EC
[��𝑉 C1 ��] by enumerating all induced paths in the square of the line graph of

𝐻Φ (Definition 4.12) rooted at 𝑣0.
We describe the coupling C𝑣 in Section 4.3.1 and the coupling C in Section 4.3.2. And finally in

Section 4.3.3, Lemma 4.4 is proved by a coupling between the two couplings C𝑣 and C.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Feng, Guo, Yin, and Zhang

4.3.1 The coupling C𝑣 . First we define the following distribution 𝜈 = 𝜈 (𝑣) over all assignments in
{0, 1}𝑉 .

Definition 4.5. Fix a variable 𝑣 ∈ M \ {𝑣0}. Let 𝜈 = 𝜈 (𝑣) be the distribution 𝜇 conditional on the
assignment of the set Λ =M \ {𝑣0, 𝑣} is specified as 𝑋 (Λ) = 𝑌 (Λ), where 𝑋,𝑌 ∈ {0, 1}M differ at
only 𝑣0. Formally,

∀𝜎 ∈ {0, 1}𝑉 : 𝜈 (𝜎) = 1 [𝜎 (Λ) = 𝑋 (Λ)] · 𝜇 (𝜎)∑
𝜏 ∈{0,1}𝑉 1 [𝜏 (Λ) = 𝑋 (Λ)] · 𝜇 (𝜏) . (15)

Note that if 2𝑘𝛽 ≥ 2e𝑑𝑘 , then by Lemma 4.2, the distribution 𝜈 is well-defined.
For every 𝑣 ∈ M \ {𝑣0}, the coupling C𝑣 generates a pair of random assignments 𝑋 C𝑣 , 𝑌 C𝑣 ∈
{0, 1}𝑉 . The projection 𝑋 C𝑣 (or 𝑌 C𝑣) has the law 𝜈 conditioned on 𝑋 C𝑣 (𝑣0) = 𝑋 (𝑣0) = 0 (or on
𝑌 C𝑣 (𝑣0) = 𝑌 (𝑣0) = 1). Let 𝑘𝛾 ≥ 1 be an integer parameter to be specified later satisfying 𝑘𝛾 < 𝑘𝛽
and

2𝑘𝛽−𝑘𝛾 ≥ 2e𝑑𝑠, where 𝑠 ≜ 36𝑑4𝑘5 . (16)

We then define two parameters 𝑝low and 𝑝up as follows:

𝑝low ≜
1

2
− 1

𝑠
,

𝑝up ≜
1

2
+ 1

𝑠
.

(17)

We will see later that [𝑝low, 𝑝up] is the interval in which the marginal probability on a single
variable can locate during the process of the coupling.

Recall that 𝐻Φ = (𝑉 , E) is the hypergraph for Φ defined in (2). The coupling procedure C𝑣 is
similar to the one used in [13], which is an adaptive version of the coupling appeared in [28].
The coupling procedure C𝑣 is described in Algorithm 5, where we fix an arbitrary ordering of

all clauses and all variables. The meanings of some variables appear in the algorithm are
• 𝑉1 - a superset of all discrepancy variables. It contains all variables on which 𝑋 C𝑣 and 𝑌 C𝑣

disagree. It may contain some additional variables to ease our analysis later.
• 𝑉set - the variables whose values have been determined in the BFS process. 𝑋 C𝑣 and 𝑌 C𝑣 can
either agree or disagree on them.
• S - a subset of 𝑉set on which 𝑋 C𝑣 and 𝑌 C𝑣 agree. The coupling guarantees that S ∩M = ∅.
Intuitively S together withM separates discrepancy variables from the rest.

The algorithm keeps growing the set 𝑉1 in a BFS manner until there is no unassigned variable on
the boundary of 𝑉1. We remark that some of the choices in Algorithm 5 may seem confusing at
first. We made these choices in order to be able to compare Algorithm 5 with C (to show (14)). For
example, we may choose𝑢 ∈ M𝑣0 in Line 4. Since we are coupling 𝜈 conditioned on 𝑣0 being 0 and
1 respectively, any 𝑢 ∈ M𝑣0 is guaranteed to be coupled successfully according to 𝑋 (𝑢) = 𝑌 (𝑢).
However, we may still put 𝑢 into 𝑉1. This is a vacuous step that merely serves the purpose of
comparing with C later, because we want to guarantee that under a suitable coupling, the set 𝑉1

generated by C𝑣 is the same as C.

Lemma 4.6. The following properties hold for the coupling procedure C𝑣 in Algorithm 5.
• The coupling procedure C𝑣 terminates eventually and returns a pair 𝑋 C𝑣 , 𝑌 C𝑣 ∈ {0, 1}𝑉 such
that 𝑋 C𝑣 and 𝑌 C𝑣 have the law 𝜈 conditioned on 𝑋 C𝑣 (𝑣0) = 0 and on 𝑌 C𝑣 (𝑣0) = 1, respectively.
• If 2𝑘𝛽−𝑘𝛾 ≥ 2e𝑑𝑠 where 𝑠 = 36𝑑4𝑘5, then 𝑋 C𝑣 (𝑉2) = 𝑌 C𝑣 (𝑉2).

We need the following lemma to prove Lemma 4.6.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:17

Algorithm 5: The coupling procedure C𝑣
Input :a CNF formula Φ, a hypergraph 𝐻Φ = (𝑉 , E), a set of marked variablesM, a

variable 𝑣0 ∈ M, the distribution 𝜈 in (15), the parameters 𝑝low, 𝑝up in (17), a
parameter 𝑘𝛾 > 0 such that 𝑘𝛾 < 𝑘𝛽 ;

Output :a pair of assignments 𝑋 C𝑣 , 𝑌 C𝑣 ∈ {0, 1}𝑉 .
1 𝑋 C𝑣 (𝑣0) = 0 and 𝑌 C𝑣 (𝑣0) = 1;
2 𝑉1 ← {𝑣0}, 𝑉2 ← 𝑉 \𝑉1, 𝑉set ← {𝑣0} and S ← ∅;
3 while ∃𝑒 ∈ E s.t. 𝑒 ∩𝑉1 ≠ ∅, (𝑒 ∩𝑉2) \𝑉set ≠ ∅ do
4 let 𝑒 be the first such hyperedge and 𝑢 be the first variable in (𝑒 ∩𝑉2) \𝑉set;
5 sample a real number 𝑟𝑢 ∈ [0, 1] uniformly at random;
6 let 𝑝𝑋𝑢 = 𝜈𝑢 (0 | 𝑋 C𝑣) and 𝑝𝑌𝑢 = 𝜈𝑢 (0 | 𝑌 C𝑣);
7 extend 𝑋 C𝑣 to variable 𝑢 s.t. 𝑋 C𝑣 (𝑢) = 0 if 𝑟𝑢 ≤ 𝑝𝑋𝑢 , o.w. 𝑋 C𝑣 (𝑢) = 1;
8 extend 𝑌 C𝑣 to variable 𝑢 s.t. 𝑌 C𝑣 (𝑢) = 0 if 𝑟𝑢 ≤ 𝑝𝑌𝑢 , o.w. 𝑌 C𝑣 (𝑢) = 1;
9 𝑉set ← 𝑉set ∪ {𝑢};

10 if 𝑝low < 𝑟𝑢 ≤ 𝑝up then
11 𝑉1 ← 𝑉1 ∪ {𝑢}, 𝑉2 ← 𝑉 \𝑉1;
12 if (𝑢 ∉M) ∧ (𝑟𝑢 ≤ 𝑝low ∨ 𝑟𝑢 > 𝑝up) then
13 S ← S ∪ {𝑢};
14 for 𝑒 ∈ E s.t. 𝑒 is satisfied by both 𝑋 C𝑣 (S) and 𝑌 C𝑣 (S) do
15 E ← E \ {𝑒};
16 for 𝑒 ∈ E s.t. |𝑒 ∩ (𝑉set \M)| = 𝑘𝛾 do
17 𝑉1 ← 𝑉1 ∪ (𝑒 \𝑉set), 𝑉2 ← 𝑉 \𝑉1;

18 extend 𝑋 C𝑣 and 𝑌 C𝑣 further on the set 𝑉2 \𝑉set using the optimal coupling between
𝜈𝑉2\𝑉set

(· | 𝑋 C𝑣 (𝑉set)) and 𝜈𝑉2\𝑉set
(· | 𝑌 C𝑣 (𝑉set));

19 extend 𝑋 C𝑣 and 𝑌 C𝑣 further on the set 𝑉1 \𝑉set using the optimal coupling between
𝜈𝑉1\𝑉set

(· | 𝑋 C𝑣 (𝑉set ∪𝑉2)) and 𝜈𝑉1\𝑉set
(· | 𝑌 C𝑣 (𝑉set ∪𝑉2));

20 return (𝑋 C𝑣 , 𝑌 C𝑣);

Lemma 4.7. In the coupling procedure C𝑣 , if 2𝑘𝛽−𝑘𝛾 ≥ 2e𝑑𝑠 where 𝑠 = 36𝑑4𝑘5, then for each 𝑝𝑋𝑢
and 𝑝𝑌𝑢 computed Line 6, if 𝑢 ∈ M \ {𝑣0, 𝑣}, then 𝑝𝑋𝑢 = 𝑝𝑌𝑢 ; if 𝑢 ∉M \ {𝑣}, then it holds that

𝑝low ≤ 𝑝𝑋𝑢 , 𝑝
𝑌
𝑢 ≤ 𝑝up .

PRoof. We prove the lemma by considering the two cases.
Case 1:𝑢 ∈ M\{𝑣0, 𝑣}. Due to the definition of 𝜈 (Definition 4.5), it must hold that 𝑝𝑋𝑢 = 𝑝𝑌𝑢 = 0

or 𝑝𝑋𝑢 = 𝑝𝑌𝑢 = 1, which implies 𝑝𝑋𝑢 = 𝑝𝑌𝑢 .
Case 2: 𝑢 ∉ M \ {𝑣}. We prove the lemma for 𝑝𝑋𝑢 . For 𝑝𝑌𝑢 it holds similarly. In each step, we

have 𝑋 C𝑣 ∈ {0, 1}𝑉set . Due to Definition 4.5, the distributions 𝜈𝑢 (· | 𝑋 C𝑣) is the distribution 𝜇
conditional on the values of variables inM𝑣 ∪ 𝑉set are fixed. We use E𝐻 to denote the set of all
hyperedges in hypergraph 𝐻Φ. We claim that for each execution of Line 6, the following property
holds

∀𝑒 ∈ E𝐻 : |𝑒 ∩ (𝑉set \M)| ≤ 𝑘𝛾 ∨ the clause represented by 𝑒 is satisfied by 𝑋 C𝑣 . (18)
By Condition 3.1, each hyperedge contains at least 𝑘𝛽 unmarked variables. By (18), for each hyper-
edge that is not satisfied by the current 𝑋 C𝑣 , it contains at least 𝑘𝛽 −𝑘𝛾 unmarked variables whose

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Feng, Guo, Yin, and Zhang

value are not fixed by the current 𝑋 C𝑣 . By the definition of the distribution 𝜈 and Corollary 2.2, if
2𝑘𝛽−𝑘𝛾 ≥ 2𝑒𝑑𝑠 where 𝑠 = 36𝑑4𝑘5, then

𝑝𝑋𝑢 = 𝜈𝑢 (0 | 𝑋 C𝑣) ≤
1

2
exp

(
1

𝑠

)
≤ 1

2

(
1 + 2

𝑠

)
≤ 1

2
+ 1

𝑠
,

1 − 𝑝𝑋𝑢 = 𝜈𝑢 (1 | 𝑋 C𝑣) ≤
1

2
exp

(
1

𝑠

)
≤ 1

2

(
1 + 2

𝑠

)
≤ 1

2
+ 1

𝑠
.

We now prove (18). Note that at the beginning of the coupling procedure C𝑣 , the set 𝑉set =
{𝑣0} ⊆ M, and thus for all hyperedges 𝑒 ∈ E, it holds that |𝑒 ∩ (𝑉set \ M)| = 0. Hence, the
property in (18) holds at the beginning.

Suppose in some execution of Line 6, there is a hyperedge 𝑒 that violates the property in (18).
Formally, the clause represented by 𝑒 is not satisfied by 𝑋 C𝑣 and |𝑒 ∩ (𝑉set \ M)| > 𝑘𝛾 . Then we
can find the first round of the while-loop after which the clause represented by 𝑒 is not satisfied
by 𝑋 C𝑣 and |𝑒 ∩ (𝑉set \ M)| = 𝑘𝛾 . Denote this round by 𝑅. In round 𝑅 and any previous round of
𝑅, the clause represented by 𝑒 cannot be satisfied by 𝑋 C𝑣 . Hence 𝑒 cannot be deleted in Line 15
up to round 𝑅. Since |𝑒 ∩ (𝑉set \ M)| = 𝑘𝛾 , 𝑒 satisfies the condition in Line 16. After Line 17, we
have 𝑒 ⊆ 𝑉1 ∪𝑉set, which means that, after the round 𝑅, any vertex 𝑢 ∈ 𝑒 cannot be pick in Line 4.
Hence, it holds that |𝑒 ∩ (𝑉set \ M)| = 𝑘𝛾 after the round 𝑅, which contradicts to the assumption
that |𝑒 ∩ (𝑉set \M)| > 𝑘𝛾 . □

PRoof of Lemma 4.6. Firstly, we prove that the coupling procedure must terminate. This is be-
cause the size of the set 𝑉set is increased by one in each while-loop.

Secondly, we prove that the final 𝑋 C𝑣 follows the distribution 𝜈 conditional on 𝑋 C𝑣 (𝑣0) =
𝑋 (𝑣0) = 0. The same argument applies to 𝑌 C𝑣 . At the beginning, we set 𝑋 C𝑣 (𝑣0) = 0. Note that,
in each step, it holds that 𝑋 C𝑣 ∈ {0, 1}𝑉set and the algorithm always extends 𝑋 C𝑣 according to the
distribution 𝜈 conditional on the current assignment on 𝑉set. By the chain rule, it is easy to verify
the final 𝑋 C𝑣 follows the distribution 𝜈 conditional on 𝑋 C𝑣 (𝑣0) = 𝑋 (𝑣0) = 1.
Finally, consider the final sets 𝑉1,𝑉2,S,𝑉set and the final assignments 𝑋 C𝑣 and 𝑌 C𝑣 . We prove

the following two properties.
(i) The two distributions 𝜈𝑉2\𝑉set

(· | 𝑋 C𝑣 (𝑉set)) and 𝜈𝑉2\𝑉set
(· | 𝑋 C𝑣 (𝑉set ∩ 𝑉2)) are identical;

and the two distributions 𝜈𝑉2\𝑉set
(· | 𝑌 C𝑣 (𝑉set)) and 𝜈𝑉2\𝑉set

(· | 𝑌 C𝑣 (𝑉set ∩𝑉2)) are identical.
(ii) 𝑋 C𝑣 (𝑉set ∩𝑉2) = 𝑌 C𝑣 (𝑉set ∩𝑉2).

If the above two properties (i) and (ii) hold, then 𝜈𝑉2\𝑉set
(· | 𝑋 C𝑣 (𝑉set)) and 𝜈𝑉2\𝑉set

(· | 𝑌 C𝑣 (𝑉set))
can be perfectly coupled, which implies 𝑋 C𝑣 (𝑉2 \ 𝑉set) = 𝑌 C𝑣 (𝑉2 \ 𝑉set). Combining with Prop-
erty (ii), it proves that 𝑋 C𝑣 (𝑉2) = 𝑌 C𝑣 (𝑉2).

We now prove Property (i).We show that two distributions 𝜈𝑉2\𝑉set
(· | 𝑋 C𝑣 (𝑉set)) and 𝜈𝑉2\𝑉set

(· |
𝑋 C𝑣 (𝑉set ∩𝑉2)) are identical. For 𝑌 C𝑣 it holds similarly. First observe that S ⊆ 𝑉2. This is because
a variable 𝑢 is added to 𝑉1 either because the condition in Line 10 holds or because of Line 17. In
the first case, the condition in Line 12 does not hold and 𝑢 will never be added to S. In the second
case, 𝑢 ∉ 𝑉set and thus 𝑢 ∉ S as well. Once a variable 𝑢 is added into 𝑉1, 𝑢 cannot be picked in
Line 4, and thus 𝑢 cannot be added in S for the rest of the coupling.

For any clause 𝑐 in the original CNF formula Φ such that vbl (𝑐) ∩𝑉1 ≠ ∅ and vbl (𝑐) ∩𝑉2 ≠ ∅,
we claim that one of the following properties must hold:
• The clause 𝑐 is satisfied by the assignment 𝑋 C𝑣 (S);
• The clause 𝑐 satisfies vbl (𝑐) ∩𝑉2 ⊆ 𝑉set.

All clauses spanning both𝑉1 and𝑉2\𝑉set are in the first case, and they are satisfied by𝑋 C𝑣 (𝑉set∩𝑉2)
as S ⊆ 𝑉set ∩𝑉2. This implies Property (i).

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:19

We show the claim next. Suppose there exists a clause 𝑐 with vbl (𝑐)∩𝑉1 ≠ ∅ and vbl (𝑐)∩𝑉2 ≠ ∅
such that 𝑐 is not satisfied by 𝑋 C𝑣 (S) and vbl (𝑐) ∩ 𝑉2 ⊈ 𝑉set. Let 𝑒 denote the hyperedge that
represents 𝑐 in 𝐻Φ. Since the coupling procedure terminates, the hyperedge 𝑒 must be deleted in
Line 15 during the coupling procedure C𝑣 . Otherwise, 𝑒 satisfies the condition in Line 3, and the
coupling procedure cannot terminate. However, since 𝑐 is not satisfied by 𝑋 C𝑣 (S) after the whole
coupling procedure, 𝑐 cannot be satisfied by 𝑋 C𝑣 (S) during the coupling procedure. This implies
that 𝑒 cannot be deleted in Lines 15.

We then prove Property (ii). Suppose 𝑋 C𝑣 (𝑉set ∩ 𝑉2) ≠ 𝑌 C𝑣 (𝑉set ∩ 𝑉2). Let 𝑢 ∈ 𝑉set ∩ 𝑉2 be
a variable such that 𝑋 C𝑣 (𝑢) ≠ 𝑌 C𝑣 (𝑢). Since 𝑢 ∈ 𝑉set and 𝑢 ≠ 𝑣0, the coupling have computed
𝑝𝑋𝑢 , 𝑝

𝑌
𝑢 in Line 6. Since 𝑋 C𝑣 (𝑢) ≠ 𝑌 C𝑣 (𝑢), it must be that 𝑝𝑋𝑢 ≠ 𝑝𝑌𝑢 . By Lemma 4.7, we know that

𝑝low ≤ 𝑝𝑋𝑢 , 𝑝
𝑌
𝑢 ≤ 𝑝up. By Lines 7 and 8, since 𝑋 C𝑣 (𝑢) ≠ 𝑌 C𝑣 (𝑢),

𝑝low < 𝑟𝑢 ≤ 𝑝up,

where 𝑟𝑢 ∈ [0, 1] is drawn in Line 5. In this case, the variable𝑢 must be added into𝑉1 in Line 11 and
𝑢 stays in𝑉1 for the rest of the coupling. However, by assumption, 𝑢 ∈ 𝑉2 = 𝑉 \𝑉1. Contradiction.

□

By Lemma 4.6, we know that the marginal distribution of𝑋 C𝑣 (𝑣) is identical to 𝜈𝑣 (· | 𝑋 C𝑣 (𝑣0) =
0). By Definition 4.5, we know that𝑋 C𝑣 (𝑣) follows the law 𝜇𝑣 (· | 𝑋 (M𝑣)). Similarly, we know that
𝑌 C𝑣 (𝑣) follows the law 𝜇𝑣 (· | 𝑌 (M𝑣)). By Proposition 2.4, we have that ∀𝑣 ∈ M \ {𝑣0},

𝐷𝑣 = 𝑑TV (𝜇𝑣 (· | 𝑋 (M𝑣)), 𝜇𝑣 (· | 𝑌 (M𝑣)))
≤ PrC𝑣

[
𝑋 C𝑣 (𝑣) ≠ 𝑌 C𝑣 (𝑣)

]
≤ PrC𝑣 [𝑣 ∈ 𝑉1] .

The last inequality holds because by Lemma 4.6, if 𝑋 C𝑣 (𝑣) ≠ 𝑌 C𝑣 (𝑣), then 𝑣 ∉ 𝑉2 and thus 𝑣 ∈ 𝑉1.
Note that 𝐷𝑣0 = 0. The sum of all 𝐷𝑣 can be bounded as follows∑

𝑣∈M
𝐷𝑣 =

∑
𝑣∈M\{𝑣0 }

𝐷𝑣 ≤
∑

𝑣∈M\{𝑣0 }
PrC𝑣

[
𝑣 ∈ 𝑉 C𝑣1

]
, (19)

where we use 𝑉 C𝑣1 to denote the set 𝑉1 generated by the coupling procedure C𝑣 .

4.3.2 The coupling C. To bound the sum of all PrC𝑣
[
𝑣 ∈ 𝑉 C𝑣1

]
, we introduce the coupling proce-

dure C in Algorithm 6. The coupling C is basically the same as C𝑣 except that it treats all variables
inM𝑣0 as free variables. This difference is reflected in Line 6 of Algorithm 6, where we use con-
ditional distribution of 𝜇 instead of 𝜈 in Line 6 of Algorithm 5. However, as 𝑝low and 𝑝up stay the
same, we can construct a coupling of two couplings C and C𝑣 such that the final set 𝑉1 does not
change. In this way, we obtain a uniform treatment for PrC𝑣

[
𝑣 ∈ 𝑉 C𝑣1

]
for all 𝑣 , which leads to a

better bound comparing to analysing PrC𝑣

[
𝑣 ∈ 𝑉 C𝑣1

]
individually.

To be more precise, we have the following lemma.

Lemma 4.8. The following properties hold for the coupling procedure C in Algorithm 6.
• The coupling procedure C terminates eventually and returns a pair 𝑋 C, 𝑌 C ∈ {0, 1}𝑉set for a
random set 𝑉set ⊆ 𝑉 such that 𝑣0 ∈ 𝑉set.
• If 2𝑘𝛽−𝑘𝛾 ≥ 2e𝑑𝑠 where 𝑠 = 36𝑑4𝑘5, then for any variable 𝑣 ∈ M \ {𝑣0},

PrC𝑣

[
𝑣 ∈ 𝑉 C𝑣1

]
= PrC

[
𝑣 ∈ 𝑉 C1

]
,

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Feng, Guo, Yin, and Zhang

Algorithm 6: The coupling procedure C
Input :a CNF formula Φ, a hypergraph 𝐻Φ = (𝑉 , E), a set of marked variablesM, a

variable 𝑣0 ∈ M, the parameters 𝑝low, 𝑝up in (17), a parameter 𝑘𝛾 > 0 such that
𝑘𝛾 < 𝑘𝛽 ;

Output :a pair of assignments 𝑋 C, 𝑌 C ∈ {0, 1}𝑉set for some random set 𝑉set ⊆ 𝑉 .
1 𝑋 C (𝑣0) ← 0 and 𝑌 C (𝑣0) ← 1;
2 𝑉1 ← {𝑣0}, 𝑉2 ← 𝑉 \𝑉1, 𝑉set ← {𝑣0} and S ← ∅;
3 while ∃𝑒 ∈ E s.t. 𝑒 ∩𝑉1 ≠ ∅, (𝑒 ∩𝑉2) \𝑉set ≠ ∅ do
4 let 𝑒 be the first such hyperedge and 𝑢 be the first variable in (𝑒 ∩𝑉2) \𝑉set;
5 sample a random real number 𝑟𝑢 ∈ [0, 1] uniformly at random;
6 let 𝑝𝑋𝑢 = 𝜇𝑢 (0 | 𝑋 C) and 𝑝𝑌𝑢 = 𝜇𝑢 (0 | 𝑌 C);
7 extend 𝑋 C further on variable 𝑢 s.t. 𝑋 C (𝑢) = 0 if 𝑟𝑢 ≤ 𝑝𝑋𝑢 , o.w. 𝑋 C (𝑢) = 1;
8 extend 𝑌 C further on variable 𝑢 s.t. 𝑌 C (𝑢) = 0 if 𝑟𝑢 ≤ 𝑝𝑌𝑢 , o.w. 𝑌 C (𝑢) = 1;
9 𝑉set ← 𝑉set ∪ {𝑢};

10 if 𝑝low < 𝑟𝑢 ≤ 𝑝up then
11 𝑉1 ← 𝑉1 ∪ {𝑢}, 𝑉2 ← 𝑉 \𝑉1;
12 if (𝑢 ∉M) ∧ (𝑟𝑢 ≤ 𝑝low ∨ 𝑟𝑢 > 𝑝up) then
13 S ← S ∪ {𝑢} ;
14 for 𝑒 ∈ E s.t. 𝑒 is satisfied by both 𝑋 C (S) and 𝑌 C (S) do
15 E ← E \ {𝑒};
16 for 𝑒 ∈ E s.t. |𝑒 ∩ (𝑉set \M)| = 𝑘𝛾 do
17 𝑉1 ← 𝑉1 ∪ (𝑒 \𝑉set); 𝑉2 ← 𝑉 \𝑉1;

18 return (𝑋 C, 𝑌 C);

where 𝑉 C𝑣1 is the set 𝑉1 generated by the coupling procedure C𝑣 and 𝑉 C1 is the set 𝑉1 generated
by the coupling procedure C.

We need the following lemma, which is the analogue of Lemma 4.7. It follows from the same
proof of the second case of Lemma 4.7.

Lemma 4.9. In the coupling procedure C, if 2𝑘𝛽−𝑘𝛾 ≥ 2e𝑑𝑠 where 𝑠 = 36𝑑4𝑘5, then for each 𝑝𝑋𝑢 and
𝑝𝑌𝑢 computed Line 6, it holds that

𝑝low ≤ 𝑝𝑋𝑢 , 𝑝
𝑌
𝑢 ≤ 𝑝up .

PRoof of Lemma 4.8. We first show that the coupling proceduremust terminate.This is because
the size of the set 𝑉set is increased by one in each while-loop.

Fix a variable 𝑣 ∈ M \ {𝑣0}. Consider the coupling procedure C𝑣 (Algorithm 5) and the coupling
procedure C (Algorithm 6). We couple the two procedures by sampling the same random real
number 𝑟𝑢 ∈ [0, 1] for each variable 𝑢. We claim that the following invariant holds for the two
coupling procedures:

𝑉 C𝑣1 = 𝑉 C1 , 𝑉 C𝑣2 = 𝑉 C2 , 𝑉 C𝑣set = 𝑉 Cset, EC𝑣 = EC,
SC𝑣 = SC, 𝑋 C𝑣 (SC𝑣) = 𝑋 C (SC), 𝑌 C𝑣 (SC𝑣) = 𝑌 C (SC)

(20)

This implies that 𝑉 C𝑣1 = 𝑉 C1 in the end, which is the second item of the lemma. We show (20) by
induction.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:21

Initially, it holds that 𝑉 C𝑣1 = 𝑉 C1 = {𝑣0}, 𝑉 C𝑣2 = 𝑉 C2 = 𝑉 \ {𝑣0}, 𝑉 C𝑣set = 𝑉 Cset = {𝑣0} and
SC𝑣 = SC = ∅.

For each step of the while-loop, suppose (20) holds, then two coupling procedure pick the same
hyperedge 𝑒 and the same vertex 𝑢 ∈ 𝑒 . The two coupling procedures sample the same random
number 𝑟𝑢 and use the same parameters 𝑝low and 𝑝up in (17). Hence, after the Line 13 of either
coupling,𝑉 C𝑣1 = 𝑉 C1 ,𝑉 C𝑣2 = 𝑉 C2 ,𝑉 C𝑣set = 𝑉 Cset, EC𝑣 = EC , and SC𝑣 = SC . Note that if the variable𝑢 is
added into S in Line 13, then it must be that (𝑢 ∉M) ∧ (𝑟𝑢 ≤ 𝑝low ∨ 𝑟𝑢 > 𝑝up). If 𝑟𝑢 ≤ 𝑝low, then
by Lemma 4.7 and Lemma 4.9, in both coupling procedures 𝑟𝑢 ≤ 𝑝𝑋𝑢 and 𝑟𝑢 ≤ 𝑝𝑌𝑢 , which implies

𝑋 C𝑣 (𝑢) = 𝑋 C (𝑢) = 𝑌 C𝑣 (𝑢) = 𝑌 C (𝑢) = 0.

Similarly, if 𝑟𝑢 > 𝑝up, then
𝑋 C𝑣 (𝑢) = 𝑋 C (𝑢) = 𝑌 C𝑣 (𝑢) = 𝑌 C (𝑢) = 1.

Hence, the invariant in (20) holds after the Line 13. It is easy to verify that after the rest of the
while-loop, the invariants in (20) still hold. □

By Lemma 4.8 and inequality (19), we have∑
𝑣∈M

𝐷𝑣 ≤
∑

𝑣∈M\{𝑣0 }
PrC𝑣

[
𝑣 ∈ 𝑉 C𝑣1

]
≤

∑
𝑣∈𝑉 \{𝑣0 }

PrC
[
𝑣 ∈ 𝑉 C1

]
= EC

[
|𝑉 C1 |

]
− PrC

[
𝑣0 ∈ 𝑉 C1

]
= EC

[
|𝑉 C1 |

]
− 1,

where the last equation holds because 𝑣0 must be in the set𝑉 C1 . Our next step is to boundEC
[
|𝑉 C1 |

]
.

4.3.3 The proof of Lemma 4.4. Finally, we finish the proof of Lemma 4.4 by proving the following
lemma.

Lemma 4.10. In the coupling procedure C (Algorithm 6), if 2𝑘𝛾 ≥ 36𝑑4𝑘4 and 2𝑘𝛽−𝑘𝛾 ≥ 2𝑒𝑑𝑠 where
𝑠 = 36𝑑4𝑘5, it holds that

EC [|𝑉1 |] ≤
3

2
.

In Lemma 4.10, we can take

𝑘𝛾 =

⌈
4

9
𝑘𝛽

⌉
.

Then, the following condition is sufficient to imply the condition of Lemma 4.10:

2𝑘𝛽 ≥ (36) 94𝑑9𝑘9, 2𝑘𝛽 ≥ (144e) 95𝑑9𝑘9 . (21)

Note that 2𝑘𝛽 ≥ 216𝑑9𝑘9 is a sufficient condition for (21).
Consider the coupling procedure C defined in Algorithm 6. Upon termination, the coupling

procedure generates assignments 𝑋 C and 𝑌 C , and the sets of variables 𝑉1,𝑉2,𝑉set,S ⊆ 𝑉 . We
define the failed hyperedge as follows.

Definition 4.11 (failed hyperedge). We say a hyperedge 𝑒 ∈ E is failed if one of the following
events occurs after the coupling procedure C:

(i) there exists 𝑣 ∈ (𝑒 ∩𝑉set) \ {𝑣0} such that 𝑝low < 𝑟𝑣 ≤ 𝑝up;
(ii) |𝑒 ∩ (𝑉set \M)| = 𝑘𝛾 and 𝑒 is not satisfied by both 𝑋 (S) and 𝑌 (S).

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Feng, Guo, Yin, and Zhang

In the following, we will use Reason (i) and Reason (ii) to denote the above two reasons of failure.

Definition 4.12 (line graph). Let 𝐻 = (𝑉 , E) be a (multi-)hypergraph. The line graph Lin(𝐻) =
(𝑉𝐿, 𝐸𝐿) has hyperedges in E as its vertices and two hyperedges are adjacent if they intersect, i.e.
𝑉𝐿 = E and {𝑒1, 𝑒2} ∈ 𝐸𝐿 iff 𝑒1 ∩ 𝑒2 ≠ ∅.

Let Lin2 (𝐻) denote the power graph of Lin(𝐻). Two vertices in Lin2 (𝐻) are adjacent if and
only if their distance in Lin(𝐻) is at most 2. For any vertex 𝑣 ∈ 𝑉 , we define the sets 𝑁𝑣, 𝑁

2
𝑣 of

hyperedges as
𝑁𝑣 ≜ {𝑒 ∈ E | 𝑣 ∈ 𝑒};
𝑁 2
𝑣 ≜ {𝑒 ∈ E | (𝑣 ∈ 𝑒) ∨ (∃𝑒 ′ ∈ E s.t. 𝑒 ∩ 𝑒 ′ ≠ ∅ ∧ 𝑣 ∈ 𝑒 ′)}.

The set 𝑁𝑣 is the set of all hyperedges that contains 𝑣 . The set 𝑁 2
𝑣 is the set of all hyperedges that

either contains 𝑣 or intersects with some hyperedges containing 𝑣 . The following lemma asserts
that for any 𝑣 ∈ 𝑉1, there are a path in Lin2 (𝐻) that leads to 𝑣 .

Lemma 4.13. For any variable 𝑣 ∈ 𝑉 \{𝑣0}, if 𝑣 ∈ 𝑉1, then there must exist a sequence of hyperedges
𝑒1, 𝑒2, . . . , 𝑒ℓ for some ℓ ≥ 1 such that the following properties hold:
• 𝑒1 ∈ 𝑁 2

𝑣0 and 𝑣 ∈ 𝑒ℓ ;
• for all 1 ≤ 𝑖 ≤ ℓ , the hyperedge 𝑒𝑖 is failed;
• for all 1 ≤ 𝑖 < ℓ , 𝑒𝑖 and 𝑒𝑖+1 are adjacent in Lin2 (𝐻).

PRoof. We first show that each variable 𝑢 ∈ 𝑉1 \ {𝑣0} must be incident to a failed hyperedge.
For 𝑢 ∈ 𝑉1 \ {𝑣0}, 𝑢 is either added into 𝑉1 in Line 11 or in Line 17. Suppose 𝑢 is added into 𝑉1 in
Line 11. In this case, the variable 𝑢 is picked in Line 4 due to some hyperedge 𝑒 . Then, it must be
that 𝑝low ≤ 𝑟𝑢 ≤ 𝑝up. This implies that 𝑢 is incident to the failed hyperedge 𝑒 (for Reason (i)). Next
suppose 𝑢 is added into 𝑉1 in Line 17. In this case, 𝑢 ∈ 𝑒 for some 𝑒 ∈ E satisfying the condition
in Line 16. Hence, the hyperedge 𝑒 is failed for Reason (ii) and 𝑢 is incident to 𝑒 . If 𝑒 satisfies the
condition in Line 16, then 𝑒 ⊆ 𝑉1 ∪𝑉set after Line 17. Hence, the condition in Reason (ii) holds for
𝑒 for the rest of the coupling.

Thuswe only need to show the following claim: for each failed 𝑒 ∈ E, theremust exist a sequence
of hyperedges 𝑒1, 𝑒2, . . . , 𝑒ℓ for some ℓ ≥ 1 such that the following properties hold:
• 𝑒1 ∈ 𝑁 2

𝑣0 and 𝑒 = 𝑒ℓ ;
• for all 1 ≤ 𝑖 ≤ ℓ , 𝑒𝑖 is failed;
• for all 1 ≤ 𝑖 < ℓ , 𝑒𝑖 and 𝑒𝑖+1 are adjacent in Lin2 (𝐻).

Consider the execution of the coupling procedure C. We say a hyperedge 𝑒 ∈ E becomes failed
once 𝑒 satisfies one of the reasons in Definition 4.11. Note that once a hyperedge becomes failed,
it will stay failed for the rest of the coupling. Moreover, the failed hyperedge must intersect the
hyperedge satisfying the condition of the round of the while-loop in which it becomes failed. We
list all failed hyperedges 𝑒𝑖1 , 𝑒𝑖2 , . . . , 𝑒𝑖𝑟 such that 𝑒𝑖 𝑗 is the 𝑗-th hyperedge that becomes failed. Ties
are broken arbitrarily. We prove the claim above by induction on the index 𝑗 from 1 to 𝑟 .
For the base case, we only need to show that 𝑒𝑖1 ∈ 𝑁 2

𝑣0 . Notice that 𝑣 ≠ 𝑣0 and 𝑣 ∈ 𝑉1. If some
hyperedge containing 𝑣0 is failed, then 𝑒𝑖1 ∈ 𝑁𝑣0 . Otherwise, the only possibility that𝑉1 ≠ {𝑣0} is
that after setting a number of successfully coupled variables, there is a failed hyperedge satisfying
Reason (ii). In the round when this happens, the current hyperedge chosen in Line 4 must contain
𝑣0 (otherwise C terminates with 𝑉1 = {𝑣0}). The first such hyperedge is 𝑒𝑖1 and thus 𝑒𝑖1 ∈ 𝑁 2

𝑣0 .
Suppose the claim holds for 𝑒𝑖1 , 𝑒𝑖2 , . . . , 𝑒𝑖𝑘−1 . We show the claim for 𝑒𝑖𝑘 . Consider the round of

the while-loop when 𝑒𝑖𝑘 becomes failed. In Line 4 of this round, the coupling procedure picks a
hyperedge 𝑒 and a variable 𝑢 ∈ 𝑒 such that 𝑒 ∩ 𝑉1 ≠ ∅. As 𝑒𝑖𝑘 went failed in this round, either

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:23

𝑒𝑘 = 𝑒 (due to Reason (i)), or 𝑒𝑖𝑘 ∈ 𝑁𝑢 (due to Reason (ii)). In both cases, 𝑒 ∩ 𝑒𝑖𝑘 ≠ ∅. If 𝑣0 ∈ 𝑒 ,
then 𝑒𝑖𝑘 ∈ 𝑁 2

𝑣0 and the claim holds by letting 𝑒1 = 𝑒𝑖𝑘 . Otherwise, since 𝑒 is picked in this round,
there must exist a variable 𝑢 ′ ∈ 𝑉1 ∩ 𝑒 and 𝑢 ′ ≠ 𝑣0. Thus 𝑢 ′ is incident to a failed hyperedge 𝑒𝑖 𝑗
for some 1 ≤ 𝑗 ≤ 𝑘 − 1. Since 𝑢 ′ ∈ 𝑒 ∩ 𝑒𝑖 𝑗 and 𝑒 ∩ 𝑒𝑖𝑘 ≠ ∅, 𝑒𝑖 𝑗 and 𝑒𝑖𝑘 are adjacent in Lin2 (𝐻). By
the induction hypothesis, there exists a failed hyperedge path in Lin2 (𝐻) that ends with 𝑒𝑖 𝑗 . This
proves the claim for 𝑒𝑖𝑘 . □

An induced path is a path that is also an induced subgraph. In particular, if we have an induced
path 𝑒1, 𝑒2, . . . , 𝑒ℓ , then for any 𝑖 < 𝑗 such that |𝑖 − 𝑗 | ≥ 2, 𝑒𝑖 and 𝑒 𝑗 are not adjacent. The following
lemma follows from taking the shortest path among all paths guaranteed in Lemma 4.13.

CoRollaRy 4.14. For any variable 𝑣 ∈ 𝑉 \ {𝑣0}, if 𝑣 ∈ 𝑉1, then there must exist a sequence of
hyperedges 𝑒1, 𝑒2, . . . , 𝑒ℓ for some ℓ ≥ 1 such that the following properties hold
• 𝑒1 ∈ 𝑁 2

𝑣0 and 𝑣 ∈ 𝑒ℓ ;
• for all 1 ≤ 𝑖 ≤ ℓ , 𝑒𝑖 is failed;
• 𝑒1, 𝑒2, . . . , 𝑒ℓ is an induced path in Lin2 (𝐻).

We are now ready to prove Lemma 4.10, namely

EC [|𝑉1 |] ≤
3

2
.

Fix any induced path (IP) 𝑒1, 𝑒2, . . . , 𝑒ℓ in Lin2 (𝐻). We bound the probability that all hyperedges
in this path are failed hyperedges. Obliviously,

PrC [∀1 ≤ 𝑖 ≤ ℓ, 𝑒𝑖 is failed] ≤ PrC
[
∀1 ≤ 𝑗 ≤ ⌈ℓ/2⌉, 𝑒2𝑗−1 is failed

]
. (22)

To bound the RHS of (22), we define the set of disjoint hyperedges
D ≜ {𝑒2𝑗−1 | 1 ≤ 𝑗 ≤ ⌈ℓ/2⌉}. (23)

Because this is an induced path in Lin2 (𝐻), for any 𝑒, 𝑒 ′ ∈ D, it holds that 𝑒 ∩ 𝑒 ′ = ∅. However,
because of the subtlety of the adaptive coupling procedure C, we cannot claim that the events of 𝑒
being failed are independent from each other for 𝑒 ∈ D based on this disjointness alone. Instead,
we will implement the coupling procedure C in a slightly different way.

For each hyperedge 𝑒 ∈ D, we define two sequences of random numbers: R𝑒,1 of length 𝑘 − 𝑘𝛽
and R𝑒,2 of length 𝑘𝛾 , where
• for each 1 ≤ 𝑖 ≤ 𝑘 − 𝑘𝛽 , R𝑒,1 (𝑖) ∈ [0, 1] is a uniform and independent real number;
• for each 1 ≤ 𝑖 ≤ 𝑘𝛾 , R𝑒,2 (𝑖) ∈ [0, 1] is a uniform and independent real number;

Suppose each hyperedge 𝑒 ∈ D maintains two indices 𝑖𝑒,1 and 𝑖𝑒,2. Initially, 𝑖𝑒,1 = 𝑖𝑒,2 = 1. We
run the coupling procedure C with the following modification. For each round of the while-loop
in C, if the vertex 𝑢 picked in Line 4 satisfies 𝑢 ∈ 𝑒 for some 𝑒 ∈ D (such 𝑒 is unique because all
hyperedges in D are disjoint), then we modify Line 5 as follows:
• if 𝑢 ∈ M, let 𝑟𝑢 = R𝑒,1 (𝑖𝑒,1), and let 𝑖𝑒,1 ← 𝑖𝑒,1 + 1;
• if 𝑢 ∉ M, let 𝑟𝑢 = R𝑒,2 (𝑖𝑒,2) if the literal 𝑢 appears in the clause represented by 𝑒; let
𝑟𝑢 = 1−R𝑒,2 (𝑖𝑒,2) if the literal¬𝑢 appears in the clause represented by 𝑒 , and let 𝑖𝑒,2 ← 𝑖𝑒,2+1.

Note that all numbers in R𝑒,1 and R𝑒,2 are uniformly distributed over [0, 1]. In the modification
above, each 𝑟𝑢 is either 𝑟 or 1− 𝑟 for some 𝑟 ∈ R𝑒,1 ∪R𝑒,2. Hence, each 𝑟𝑢 is uniformly distributed
over [0, 1]. For any 𝑒 ∈ D, it contains at most 𝑘 − 𝑘𝛽 marked variables, and there are at most 𝑘𝛾
unmarked variables𝑢 ∈ 𝑒 that need to sample 𝑟𝑢 in C. Hence, the two sequences R𝑒,1 and R𝑒,2 will
not exhaust during the coupling procedure C. As a result, the modification above will not affect
the execution and the outcome of C.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Feng, Guo, Yin, and Zhang

For each 𝑒 ∈ D, we say the event A𝑒 occurs if one of the following two events occurs:
• there exists a random number 𝑟 in R𝑒,1 ∪ R𝑒,2 such that 𝑝low < 𝑟 ≤ 𝑝up;
• for all 1 ≤ 𝑖 ≤ 𝑘𝛾 , 0 ≤ R𝑒,2 (𝑖) ≤ 𝑝up.

Then, we have the following claim.

Claim 4.15. For each hyperedge 𝑒 ∈ D, if 𝑒 is a failed hyperedge after the coupling procedure C,
then the event A𝑒 must occur.

PRoof. Fix a hyperedge 𝑒 ∈ D. After the coupling procedure C, for all 𝑢 ∈ 𝑒 ∩𝑉set \ {𝑣0}, the
random number 𝑟𝑢 comes from R𝑒,1 ∪ R𝑒,2. Suppose 𝑒 is a failed hyperedge after the coupling
procedure C, by Definition 4.11, here are two cases.

Reason (i): there exists 𝑣 ∈ (𝑒 ∩𝑉set) \ {𝑣0} such that 𝑝low < 𝑟𝑣 ≤ 𝑝up, then there must exist a
random number 𝑟 in R𝑒,1 ∪ R𝑒,2 such that 𝑝low < 𝑟 ≤ 𝑝up;
Reason (ii): |𝑒 ∩ (𝑉set \ M)| = 𝑘𝛾 and 𝑒 is not satisfied by both 𝑋 (S) and 𝑌 (S). Let 𝑐𝑒 denote

the clause represented by 𝑒 . We list all variables in 𝑢1, 𝑢2, . . . , 𝑢𝑘𝛾 in |𝑒 ∩ (𝑉set \ M)| such that 𝑢𝑖
is the 𝑖-th variable processed by the while-loop in C. Fix 1 ≤ 𝑖 ≤ 𝑘𝛾 .
• Suppose the literal 𝑢𝑖 appears in 𝑐𝑒 . If 𝑟𝑢𝑖 > 𝑝up, then by Lemma 4.9 and Line 13, we have
𝑋 C (𝑢𝑖) = 𝑌 C (𝑢𝑖) = 1 and 𝑢𝑖 ∈ S. In this case 𝑐𝑒 is satisfied by 𝑋 (S) and 𝑌 (S), and the
event in Reason (ii) cannot occur. So we must have 𝑟𝑢𝑖 ≤ 𝑝up. Since 𝑟𝑢𝑖 = R𝑒,2 (𝑖), we have
R𝑒,2 (𝑖) ≤ 𝑝up.
• Suppose the literal ¬𝑢𝑖 appears in 𝑐𝑒 . If 𝑟𝑢𝑖 ≤ 𝑝low, then by Lemma 4.9 and Line 13, we have
𝑋 C (𝑢𝑖) = 𝑌 C (𝑢𝑖) = 0 and 𝑢𝑖 ∈ S. In this case 𝑐𝑒 is satisfied by 𝑋 (S) and 𝑌 (S), and the
event in Reason (ii) cannot occur. So we must have 𝑟𝑢𝑖 > 𝑝low. Since 𝑟𝑢𝑖 = 1 − R𝑒,2 (𝑖), we
have R𝑒,2 (𝑖) < 1 − 𝑝low = 𝑝up.

This implies for all 1 ≤ 𝑖 ≤ 𝑘𝛾 , 0 ≤ R𝑒,2 (𝑖) ≤ 𝑝up. □

For each 𝑒 ∈ D, all reals numbers in R𝑒,1 and R𝑒,2 are sampled uniformly and independently.
We use R𝑒 to denote this product distribution. And we use R to denote the product distribution of
all R𝑒 for 𝑒 ∈ D. By the definition of D in (23), we can bound the RHS of (22) as

PrC [∀1 ≤ 𝑖 ≤ ℓ, 𝑒𝑖 is failed] ≤ PrC [∀𝑒 ∈ D, 𝑒 is failed]

≤ PrR

[∧
𝑒∈D
A𝑒

]
(by Claim 4.15)

=
∏
𝑒∈D

PrR𝑒 [A𝑒]

≤
∏
𝑒∈D

(
2𝑘

𝑠
+

(
1

2
+ 1

𝑠

)𝑘𝛾)
. (by the definition of A𝑒)

We define 𝑝failed as

𝑝failed ≜
2𝑘

𝑠
+

(
1

2
+ 1

𝑠

)𝑘𝛾
. (24)

Note that |D| ≥ ℓ/2. Thus, for any induced path (IP) 𝑒1, 𝑒2, . . . , 𝑒ℓ , we have

PrC [∀1 ≤ 𝑖 ≤ ℓ, 𝑒𝑖 is failed] ≤ 𝑝ℓ/2failed.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:25

By Corollary 4.14, we have for any vertex 𝑣 ≠ 𝑣0,

PrC [𝑣 ∈ 𝑉1] ≤
∑

IP 𝑒1,𝑒2,...,𝑒ℓ in 𝐿2

satisfying 𝑒1∈𝑁 2
𝑣0
,𝑣∈𝑒ℓ

PrC [∀1 ≤ 𝑖 ≤ ℓ, 𝑒𝑖 is failed]

≤
∑

IP 𝑒1,𝑒2,...,𝑒ℓ in 𝐿2

satisfying 𝑒1∈𝑁 2
𝑣0
,𝑣∈𝑒ℓ

𝑝ℓ/2failed. (25)

Note that 𝑣0 ∈ 𝑉1, then we have

EC [|𝑉1 |] − 1 =
∑

𝑣∈𝑉 \{𝑣0 }
PrC [𝑣 ∈ 𝑉1]

≤
∑

𝑣∈𝑉 \{𝑣0 }

∑
IP 𝑒1,𝑒2,...,𝑒ℓ in 𝐿2

satisfying 𝑒1∈𝑁 2
𝑣0
,𝑣∈𝑒ℓ

𝑝ℓ/2failed (by (25))

≤
∑

IP 𝑒1,𝑒2,...,𝑒ℓ in 𝐿2

satisfying 𝑒1∈𝑁 2
𝑣0

𝑘 · 𝑝ℓ/2failed,

where in the last inequality, we enumerate all the IPs starting from 𝑁 2
𝑣0 and use the fact that each

hyperedge contains 𝑘 vertices. Note that the maximum degree of Lin2 (𝐻) is at most 𝑑2𝑘2 and
there are at most 𝑑2𝑘 hyperedges in set 𝑁 2

𝑣0 . Thus, we have

EC [|𝑉1 |] − 1 ≤
∞∑
ℓ=1

𝑑2𝑘 · (𝑑2𝑘2)ℓ−1 · 𝑘 · 𝑝ℓ/2failed =
∞∑
ℓ=1

(𝑑2𝑘2)ℓ · 𝑝ℓ/2failed =
∞∑
ℓ=1

𝑐ℓ =
𝑐

1 − 𝑐 ,

where 𝑐 ≜ 𝑑2𝑘2
√
𝑝failed. Hence, to prove E [|𝑉1 |] ≤ 3

2 , it is sufficient to prove that

𝑐 = 𝑑2𝑘2
√
𝑝failed ≤

1

3
,

which, in turn, is implied by

𝑝failed ≤
1

9𝑑4𝑘4
.

Recall that 𝑝failed is defined in (24) and 𝑠 = 36𝑑4𝑘5. We have

𝑝failed =
2𝑘

𝑠
+

(
1

2
+ 1

𝑠

)𝑘𝛾
≤ 1

18𝑑4𝑘4
+

(
1

2

)𝑘𝛾
exp

(
2𝑘𝛾

𝑠

)
≤ 1

18𝑑4𝑘4
+

(
1

2

)𝑘𝛾−1
. (by 𝑘𝛾 ≤ 𝑘)

Since 2𝑘𝛾 ≥ 36𝑑4𝑘4, we have that 𝑝failed ≤ 1
9𝑑4𝑘4 .

5 ANALYZE THE REJECTION SAMPLING SUBROUTINE
In this section, we will analyze the Sample subroutine (Algorithm 3).

Let Λ ⊆ M be a subset of marked variables, 𝜀 > 0, 𝑋 ∈ {0, 1}Λ and 𝑆 ⊆ 𝑉 \ Λ. We continue
to use the same notations as in Section 3.3. Let Φ𝑋 = (𝑉𝑋 ,𝐶𝑋) be the formula obtained from Φ
simplified under 𝑋 , and Φ𝑋 = Φ𝑋

1 ∧Φ𝑋
2 ∧ · · · ∧Φ𝑋

ℓ where all Φ𝑋
𝑖 = (𝑉𝑋

𝑖 ,𝐶𝑋
𝑖) are disjoint. For every

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:26 Feng, Guo, Yin, and Zhang

𝑖 ∈ [𝑚],𝐻𝑋
𝑖 = (𝑉𝑋

𝑖 , E𝑋𝑖), the hypergraph representation of Φ𝑋
𝑖 , is connected. Assume without loss

of generality that 𝑉𝑖 ∩ 𝑆 ≠ ∅ for 1 ≤ 𝑖 ≤ 𝑚 and 𝑉𝑖 ∩ 𝑆 = ∅ for𝑚 < 𝑖 ≤ ℓ .

Lemma 5.1. For any 0 < 𝜂 < 1, the time complexity of Sample(Φ, 𝛿, 𝑋, 𝑆) is𝑂
(
|𝑆 |

(𝑛
𝛿

) 𝜂
10 𝑑2𝑘3 log2 𝑛

𝛿

)
.

Furthermore, if 2𝑘𝛽 ≥ 20
𝜂 e𝑑𝑘 and

��E𝑋𝑖 �� ≤ 𝑑𝑘 log 𝑛
𝛿 for every 1 ≤ 𝑖 ≤ 𝑚, then Sample(Φ, 𝛿, 𝑋, 𝑆) re-

turns a random assignment 𝑌 ∈ {0, 1}𝑆 satisfying 𝑑TV (𝑌, 𝜇𝑆 (· | 𝑋)) ≤ 𝛿 .

PRoof. Wefirst analyze the running time of Sample(Φ, 𝛿, 𝑋, 𝑆).We need to find all the connected
components

{
𝐻𝑋
𝑖 = (𝑉𝑋

𝑖 , E𝑋𝑖) | 1 ≤ 𝑖 ≤ 𝑚
}
in 𝐻Φ𝑋 such that each𝑉𝑋

𝑖 ∩ 𝑆 ≠ ∅ and check whether
there exists 1 ≤ 𝑖 ≤ 𝑚 such that |E𝑋𝑖 | > 𝑑𝑘 log 𝑛

𝛿 . Suppose we store the hypergraph 𝐻Φ as an
adjacent list. For each vertex 𝑣 ∈ 𝑆 , we apply the deep first search starting from 𝑣 in 𝐻Φ. When
visiting each hyperedge 𝑒 , we can check whether 𝑒 is in 𝐻Φ𝑋 . Once we find that one connected
component in𝐻Φ𝑋 contains more than 𝑑𝑘 log 𝑛

𝛿 hyperedges, we stop this process immediately.The
time complexity of the deep first search step is at most

𝑇DFS = 𝑂
(
|𝑆 |𝑑2𝑘3 log

𝑛

𝛿

)
.

If |E𝑋𝑖 | ≤ 𝑑𝑘 log 𝑛
𝛿 for all 1 ≤ 𝑖 ≤ 𝑚, then we apply the rejection sampling for each Φ𝑋

𝑖 . Note that
𝑚 ≤ |𝑆 |. The time complexity of the rejection sampling step is at most

𝑇RS = 𝑂
(
|𝑆 |𝑅𝑑𝑘2 log 𝑛

𝛿

)
= 𝑂

(
|𝑆 |

(𝑛
𝛿

) 𝜂
10

𝑑𝑘2 log2
𝑛

𝛿

)
.

The overall time complexity for the subroutine Sample(Φ, 𝛿, 𝑋, 𝑆) is at most

𝑇S = 𝑇DFS +𝑇RS = 𝑂

(
|𝑆 |

(𝑛
𝛿

) 𝜂
10

𝑑2𝑘3 log2
𝑛

𝛿

)
.

We next analyze the total variation distance between 𝑌 and 𝜇𝑆 (· | 𝑋). Since
��E𝑋𝑖 �� ≤ 𝑑𝑘 log 𝑛

𝛿 for
every 1 ≤ 𝑖 ≤ 𝑚, the random assignment 𝑌 is returned in either Line 9 or Line 10. It follows from
Proposition 3.4 that we only need to show the probability that 𝑌 is returned in Line 9 is at most 𝛿 ,
which is equivalent to that one of the RejectionSampling(Φ𝑋

𝑖 , 𝑅) returns ⊥ among all 1 ≤ 𝑖 ≤ 𝑚.
Fix 1 ≤ 𝑖 ≤ 𝑚. Consider the rejection sampling for the instance Φ𝑋

𝑖 . Let PrP [·] be the product
distribution such that each variable in 𝐶𝑋

𝑖 takes a value from {0, 1} uniformly and independently.
For each clause 𝑐 ∈ 𝐶𝑋

𝑖 , let 𝐵𝑐 denote the event that 𝑐 is not satisfied. Define

Γ(𝐵𝑐) = {𝐵𝑏 | 𝑏 ∈ 𝐶𝑋
𝑖 ∧ 𝑏 ≠ 𝑐 ∧ vbl (𝑐) ∩ vbl (𝑏) ≠ ∅}.

Suppose 2𝑘𝛽 ≥ 20
𝜂 e𝑑𝑘 for some 0 < 𝜂 < 1. For each 𝑐 ∈ 𝐶 ′𝑖 , let 𝑥 (𝐵𝑐) ≜

𝜂
20𝑑𝑘 . Since every clause

has at least 𝑘𝛽 unmarked vertices, we have that

PrP [𝐵𝑐] ≤
(
1

2

)𝑘𝛽
≤ 𝑥 (𝐵𝑐)

∏
𝐵∈Γ (𝐵𝑐)

(1 − 𝑥 (𝐵)) .

By the Lovász local lemma in Theorem 2.1, we have

PrP

∧
𝑐∈𝐶𝑋

𝑖

𝐵𝑐

 ≥
∏
𝑐∈𝐶𝑋

𝑖

(1 − 𝑥 (𝐵𝑐)) =
∏
𝑐∈𝐶𝑋

𝑖

(
1 − 𝜂

20𝑑𝑘

)
.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:27

Since
��E𝑋𝑖 �� ≤ 𝑑𝑘 log 𝑛

𝛿 , we have

PrP

∧
𝑐∈𝐶𝑋

𝑖

𝐵𝑐

 ≥
(
1 − 𝜂

20𝑑𝑘

)𝑑𝑘 log 𝑛
𝛿 ≥

(
1 − 1

15
𝜂 𝑑𝑘 + 1

)𝑑𝑘 log 𝑛
𝛿

≥ exp
(
− 𝜂

15
log

𝑛

𝛿

)
>

(
𝛿

𝑛

) 𝜂
10

.

For each Φ𝑋
𝑖 , our algorithm repeats the rejection sampling for

⌈(𝑛
𝛿

) 𝜂
10 log 𝑛

𝛿

⌉
times. Hence, the

probability that the rejection for Φ𝑋
𝑖 fails is at most(
1 −

(
𝛿

𝑛

) 𝜂
10

)⌈
(𝑛𝛿)

𝜂
10 log 𝑛

𝛿

⌉
≤ 𝛿

𝑛
.

Note that 𝑚 is at most 𝑛. Taking a union bound over all Φ𝑋
𝑖 for 1 ≤ 𝑖 ≤ 𝑚, we have that if the

conditions of the lemma holds, then

Pr
[
∃𝑖 ∈ [𝑚],RejectionSampling

(
Φ𝑋
𝑖 , 𝑅

)
=⊥

]
≤ 𝛿. □

We now proceed to show that, in all calls to Sample(Φ, 𝛿, 𝑋, 𝑆) during the execution of Algo-
rithm 2,

��E𝑋𝑖 �� ≤ 𝑑𝑘 log 𝑛
𝛿 for every 𝑖 ∈ [ℓ] with high probability.

Algorithm 2 calls the subroutine Sample for 𝑇 + 1 times (𝑇 times in Line 4 and once in Line 6).
For each 1 ≤ 𝑡 ≤ 𝑇 + 1, we use the B𝑡 to denote the event that

��E𝑋𝑖 �� > 𝑑𝑘 log 𝑛
𝛿 for some 1 ≤ 𝑖 ≤ ℓ

at the 𝑡-th call to Sample(·). Note that, in all calls to Sample(Φ, 𝛿, 𝑋, 𝑆) during the execution of
Algorithm 2, the parameter 𝛿 is always set to 𝜀

4(𝑇+1) . The following lemma bounds the probability
of each B𝑡 .

Lemma 5.2. Assume 2𝑘𝛼 ≥ 4e2𝑑2𝑘2 and 2𝑘𝛽 ≥ 2e𝑑𝑘 . For each 1 ≤ 𝑡 ≤ 𝑇 + 1, it holds that in the
execution of Algorithm 2, Pr [B𝑡] ≤ 𝛿 , where 𝛿 = 𝜀

4(𝑇+1) and 𝑇 =
⌈
2𝑛 log 4𝑛

𝜀

⌉
.

The rest of this section is devoted to the proof of Lemma 5.2.
Recall that (𝑋𝑡)𝑇𝑡=0 is the random process defined by Algorithm 2. Fix 1 ≤ 𝑡 ≤ 𝑇 + 1. Consider

the 𝑡-th call of the subroutine Sample(Φ, 𝛿, 𝑋, 𝑆) (Algorithm 3). If 1 ≤ 𝑡 ≤ 𝑇 , let 𝑣𝑡 ∈ M denote the
random vertex picked in the 𝑡-th step.The random assignment𝑋 and the subset 𝑆 in the subroutine
Sample(Φ, 𝛿, 𝑋, 𝑆) are defined as

𝑋 =

{
𝑋𝑡−1 (M \ {𝑣𝑡 }) (namely Λ =M \ {𝑣𝑡 }) if 1 ≤ 𝑡 ≤ 𝑇,
𝑋𝑇 (namely Λ =M) if 𝑡 = 𝑇 + 1,

(26)

𝑆 =

{
{𝑣𝑡 } if 1 ≤ 𝑡 ≤ 𝑇,
𝑉 \M if 𝑡 = 𝑇 + 1.

(27)

Consider the hypergraph 𝐻Φ = (𝑉 , E) as defined in (2). Given an assignment 𝑋 ∈ {0, 1}M , we
say a hyperedge 𝑒 ∈ E in 𝐻Φ is bad if the clause represented by 𝑒 is not satisfied by 𝑋 . Recall that
we use Φ𝑋 to denote the CNF formula obtained from Φ simplified under 𝑋 and use 𝐻Φ𝑋 = (𝑉 , E𝑋)
to denote its hypergraph representation. Hence E𝑋 ⊆ E is the set of all bad hyperedges. If the bad
event B𝑡 occurs, there must exist a connected component in 𝐻Φ𝑋 containing more than 𝑑𝑘 log 𝑛

𝛿
bad hyperedges.
Fix a hyperedge 𝑒 ∈ E, let B𝑒 be the event that
• the hyperedge 𝑒 is in E𝑋 ;
• |E𝑒 | ≥ 𝑑𝑘 log 𝑛

𝛿 , where 𝐻𝑒 = (𝑉𝑒 , E𝑒) is the connected component in 𝐻Φ𝑋 such that 𝑒 ∈ E𝑒 .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:28 Feng, Guo, Yin, and Zhang

By the definition of B𝑒 , if the event B𝑡 occurs, then there must exist 𝑒 ∈ E such that the event B𝑒
occurs. We have

Pr [B𝑡] ≤ Pr [∃ 𝑒 ∈ E s.t. B𝑒] ≤
∑
𝑒∈E

Pr [B𝑒] . (28)

Next we bound the probability of B𝑒 . We first establish local uniformity of any intermediate
assignment 𝑋𝑡 .

Lemma 5.3. Suppose the CNF formula Φ satisfies 2𝑘𝛽 ≥ 2e𝑑𝑠 for some 𝑠 ≥ 𝑘 . Let 𝑋 ⊆ {0, 1}Λ be
the random assignment defined in (26), where Λ =M orM \ {𝑣} for some 𝑣 . For any subset 𝑆 ⊆ Λ
and any assignment 𝜎 ∈ {0, 1}𝑆 , it holds that

Pr [𝑋 (𝑆) = 𝜎] ≤
(
1

2

) |𝑆 |
exp

(
|𝑆 |
𝑠

)
.

PRoof. By the definition of the 𝑋 in (26), we know that 𝑋 = 𝑋𝑡 (Λ) for some 0 ≤ 𝑡 ≤ 𝑇 . For
each vertex 𝑣 ∈ 𝑆 , we define 𝑡𝑣 ≤ 𝑡 as follows. If 𝑣 is chosen by the Algorithm 2 at least once, then
let 𝑡𝑣 be the largest 𝑡 ′ ≤ 𝑡 such that 𝑣 is chosen at the 𝑡 ′-th step. Otherwise, let 𝑡𝑣 = 0.
We sort all the vertices in 𝑆 according to 𝑡𝑣 . If two vertices 𝑢, 𝑣 ∈ 𝑆 satisfy 𝑡𝑢 = 𝑡𝑣 = 0, we break

the tie arbitrarily. Let 𝑣1, 𝑣2, . . . , 𝑣ℓ be the set of all vertices in 𝑆 such that

0 ≤ 𝑡𝑣1 ≤ 𝑡𝑣1 ≤ . . . ≤ 𝑡𝑣ℓ ≤ 𝑇 .
Thus, we have

∀1 ≤ 𝑖 ≤ ℓ : 𝑋 (𝑣𝑖) = 𝑋𝑡𝑣𝑖
(𝑣𝑖).

Consider the 𝑡𝑣𝑖 -th step. The value 𝑋𝑡 ′ (𝑣𝑖) is generated by Sample(Φ, 𝜀
4(𝑇+1) , 𝑋𝑡 ′−1 (M \ {𝑣𝑖 }), {𝑣𝑖 }),

where 𝑡 ′ = 𝑡𝑣𝑖 . Suppose 2𝑘𝛽 ≥ 2e𝑑𝑠 for some 𝑠 ≥ 𝑘 . We claim that for any 𝑣 ∈ M, any 𝑋 ′ ∈
{0, 1}M\{𝑣 } and any 0 < 𝛿 < 1, it holds that

∀𝑐 ∈ {0, 1}, Pr [Sample (Φ, 𝛿, 𝑋 ′, {𝑣}) returns 𝑐] ≤ 1

2
exp

(
1

𝑠

)
. (29)

Assume inequality (29) holds. Note that |𝑆 | = ℓ . By the chain rule, we have

Pr [𝑋 (𝑆) = 𝜎] =
ℓ∏

𝑖=1

Pr
[
𝑋 (𝑣𝑖) = 𝜎 (𝑣𝑖) | ∀1 ≤ 𝑗 < 𝑖, 𝑋 (𝑣 𝑗) = 𝜎 (𝑣 𝑗)

]
=

ℓ∏
𝑖=1

Pr
[
𝑋𝑡𝑣𝑖
(𝑣𝑖) = 𝜎 (𝑣𝑖) | ∀1 ≤ 𝑗 < 𝑖, 𝑋𝑡𝑣𝑗

(𝑣 𝑗) = 𝜎 (𝑣 𝑗)
]

≤
(
1

2

) |𝑆 |
exp

(
|𝑆 |
𝑠

)
,

where the last inequality holds due to (29) and the fact that the initial random assignment 𝑋0 is
sampled from {0, 1}M uniformly at random.

We now prove the inequality (29). By Algorithm 3 and Proposition 3.4, we know that the random
value 𝑐 returned by the subroutine Sample(Φ, 𝛿, 𝑋 ′, {𝑣}) is either sampled from {0, 1} uniformly
at random or sampled independently from the distribution 𝜇𝑣 (· | 𝑋 ′). If 𝑐 is sampled from {0, 1}
uniformly at random, then (29) holds trivially. We now prove that

∀𝑐 ∈ {0, 1}, 𝜇𝑣 (𝑐 | 𝑋 ′) ≤
1

2
exp

(
1

𝑠

)
. (30)

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:29

Recall 𝑋 ′ ∈ {0, 1}M\{𝑣 } . Let Φ′ ≜ Φ𝑋 ′ be the CNF formula obtained from Φ by deleting all the
clauses satisfied by𝑋 ′ and all the variables inM\{𝑣}, and 𝜇 ′ ≜ 𝜇𝑋

′ be the uniform distribution of
all solutions in Φ′. Then the two distributions 𝜇 ′𝑣 (·) and 𝜇𝑣 (· | 𝑋 ′) are identical. By Condition 3.1,
we have each clause in Φ′ contains at least 𝑘𝛽 variables and at most 𝑘 variables. Each variable
belongs to at most 𝑑 clauses. Since 2𝑘𝛽 ≥ 2e𝑑𝑠 for some 𝑠 ≥ 𝑘 , inequality (30) follows from
Corollary 2.2. □

To bound the size of connected components including a particular hyperedge 𝑒 , recall that
Lin(𝐻) is the line graph of 𝐻 defined in Definition 4.12. We also need the notion of 2-trees.

Definition 5.4 (2-tree). Let 𝐺 = (𝑉 , 𝐸) be a graph. A set of vertices 𝑇 ⊆ 𝑉 is called a 2-tree if
(1) for any 𝑢, 𝑣 ∈ 𝑇 , dist𝐺 (𝑢, 𝑣) ≥ 2; (2) if one adds an edge between every 𝑢, 𝑣 ∈ 𝑇 such that
dist𝐺 (𝑢, 𝑣) = 2, then 𝑇 is connected.

The following simple observation follows directly from the definition of 2-trees.

ObseRvation 5.5. If a graph 𝐺 = (𝑉 , 𝐸) has a 2-tree of size ℓ > 1 containing the vertex 𝑣 ∈ 𝑉 ,
then 𝐺 must have a 2-tree of size ℓ − 1 containing the vertex 𝑣 .

PRoof. Let 𝑇 ⊆ 𝑉 be a 2-tree in 𝐺 . Let 𝐺 ′ = (𝑇, 𝐸𝑇), where each {𝑢, 𝑣} ∈ 𝐸𝑇 if and only if
𝑢, 𝑣 ∈ 𝑇 and dist𝐺 (𝑢, 𝑣) = 2. Then𝐺 ′ is a connected graph. We can find an arbitrary spanning tree
𝑇𝐺′ of graph 𝐺 ′. Since the number of vertices in 𝑇𝐺′ is ℓ > 1, then 𝑇𝐺′ contains at least two leaf
vertices. Let𝑤 be the leaf vertex in 𝑇𝐺′ such that𝑤 ≠ 𝑣 . It is easy to see 𝑇 \ {𝑤} is a 2-tree of size
ℓ − 1 containing the vertex 𝑣 . □

To bound the number of 2-trees, we need the following lemma in [3] to bound the number of
connected subgraphs.

Lemma 5.6. Let 𝐺 = (𝑉 , 𝐸) be a graph with maximum degree Δ and 𝑣 ∈ 𝑉 be a vertex. Then the
number of connected induced subgraphs of size ℓ containing 𝑣 is at most (eΔ)

ℓ−1

2 .

CoRollaRy 5.7. Let 𝐺 = (𝑉 , 𝐸) be a graph with maximum degree Δ and 𝑣 ∈ 𝑉 be a vertex. Then
the number of 2-trees in 𝐺 of size ℓ containing 𝑣 is at most (eΔ

2)ℓ−1
2 .

PRoof. Consider the power graph 𝐺2. The maximum degree of 𝐺2 is at most Δ2. The number
of connected induced subgraphs in 𝐺2 of size ℓ containing vertex 𝑣 is at most (𝑒Δ

2)ℓ−1
2 . This is an

upper bound of the number of 2-trees in 𝐺 of size ℓ containing 𝑣 . □

Lemma 5.8. Let 𝐻 = (𝑉 , E) be a 𝑘-uniform hypergraph such that each vertex belongs to at most
𝑑 hyperedges. Let 𝐵 ⊆ E be a subset of hyperedges which induces a connected subgraph in Lin(𝐻),
and 𝑒 ∈ 𝐵 be an arbitrary hyperedge. Then, there must exist a 2-tree𝑇 ⊆ 𝐵 in the graph Lin(𝐻) such
that 𝑒 ∈ 𝑇 and |𝑇 | =

⌊
|𝐵 |
𝑘𝑑

⌋
.

PRoof. Consider the graph Lin(𝐻) = (𝑉𝐿, 𝐸𝐿). For any subset of vertices 𝑆 in Lin(𝐻), let the
extended neighbourhood of 𝑆 be

Γ+ (𝑆) ≜ {𝑣 ∈ 𝑉𝐿 | 𝑣 ∈ 𝑆 or there exists 𝑢 ∈ 𝑆 s.t. {𝑢, 𝑣} ∈ 𝐸𝐿}.
We construct a 2-tree greedily. Let𝑇0 = {𝑒}. For the 𝑖-th step, we set 𝑆 ← 𝐵 \ Γ+ (𝑇𝑖−1), let 𝑒𝑖 be the
first hyperedge in 𝑆 such that distLin(𝐻) (𝑇𝑖−1, 𝑒𝑖) = 2, and set 𝑇𝑖 = 𝑇𝑖−1 ∪ {𝑒𝑖 }. The process ends
when 𝐵 = Γ+ (𝑇𝑗) for some 𝑗 .

We claim that the set 𝑆 will become empty eventually. Suppose the current 2-tree is 𝑇 , and
some non-empty 𝑆 = 𝐵 \ Γ+ (𝑇) remains. Thus, ∀𝑒 ′ ∈ 𝑆 , distLin(𝐻) (𝑇, 𝑒 ′) ≠ 2. Note that if

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:30 Feng, Guo, Yin, and Zhang

distLin(𝐻) (𝑇, 𝑒 ′) ≤ 1, 𝑒 ′ ∈ Γ+ (𝑇). Thus, ∀𝑒 ′ ∈ 𝑆 , distLin(𝐻) (𝑇, 𝑒 ′) ≥ 3. Note that 𝐵 ⊆ Γ+ (𝑇) ∪ 𝑆 ,
𝐵 ∩ Γ+ (𝑇) ≠ ∅ and 𝐵 ∩ 𝑆 ≠ ∅. Hence 𝐵 is disconnected in Lin(𝐻). Contradiction.

In every step, at most 𝑘𝑑 hyperedges are removed, so we have |𝑇 | ≥
⌊
|𝐵 |
𝑘𝑑

⌋
. Then by Observa-

tion 5.5, there must exist a 2-tree 𝑇 ⊆ 𝐵 in graph Lin(𝐻) such that 𝑒 ∈ 𝑇 and |𝑇 | =
⌊
|𝐵 |
𝑘𝑑

⌋
. □

We are now ready to prove Lemma 5.2.

PRoof of Lemma 5.2. We bound the probability B𝑒 in (28). If the event B𝑒 occurs, there must
exist a subset set 𝐵 ⊆ E such that 𝑒 ∈ 𝐵, |𝐵 | = 𝐿 ≜

⌈
𝑑𝑘 log 𝑛

𝛿

⌉
, 𝐵 is connected in Lin(𝐻), and all

hyperedges in 𝐵 are bad hyperedges, i.e. all hyperedges in 𝐵 are not satisfied by 𝑋 . Let ℓ ≜ ⌊ 𝐿𝑘𝑑 ⌋.
By 5.8, there must exists a 2-tree in 𝑇 ⊆ 𝐵 such that 𝑒 ∈ 𝑇 and |𝑇 | = ℓ .
By the definition of 𝑋 ∈ {0, 1}Λ in (26) and Condition 3.1, we have |𝑒 ∩Λ| ≥ 𝑘𝛼 − 1 for all 𝑒 ∈ E.

Note that all hyperedges in 𝑇 are disjoint. By assumption 2𝑘𝛽 ≥ 2e𝑑𝑘 . We then use Lemma 5.3
with 𝑠 = 𝑘 . This gives us the following

Pr [all hyperedges in 𝑇 are bad] ≤
(
1

2

) (𝑘𝛼−1)ℓ
exp

(
(𝑘𝛼 − 1)ℓ

𝑘

)
.

Note that the maximum degree of the graph Lin(𝐻) is at most 𝑑𝑘 . By Corollary 5.7 and a union
bound over all 2-trees of size ℓ containing the hyperedge 𝑒 , we have

Pr [B𝑒] ≤
(e𝑑2𝑘2)ℓ−1

2
·
(
1

2

) (𝑘𝛼−1)ℓ
· exp

(
(𝑘𝛼 − 1)ℓ

𝑘

)
≤ 1

2e𝑑2𝑘2

(
2e2𝑑2𝑘2

2𝑘𝛼

) ℓ
,

where the last inequality holds because 𝑘𝛼 − 1 ≤ 𝑘 . By assumption 2𝑘𝛼 ≥ 4e2𝑑2𝑘2, and thus for
any 𝑒 ∈ E

Pr [B𝑒] ≤ 𝑑−12−ℓ−1 .

By (28), we have

Pr [B𝑡] ≤
∑
𝑒∈E

Pr [B𝑒] ≤ 𝑛𝑑 · 𝑑−12−ℓ−1 = 𝑛2−ℓ−1 ≤ 𝛿,

since ℓ = ⌊𝐿/(𝑘𝑑)⌋ ≥ log 𝑛
𝛿 − 1. □

6 ANALYZE THE MAIN SAMPLING ALGORITHM
Now we can finish the analysis of the main sampling algorithm, Algorithm 2.

TheoRem 6.1. The following holds for all 𝜉 ≥ 0.There is an algorithm such that given any 0 < 𝜀 < 1
and (𝑘, 𝑑)-formulaΦwith𝑛 variables where𝑘 ≥ 20 log𝑘+20 log𝑑+60+𝜉 , it outputs a random assign-
ment 𝑋 of Φ satisfying 𝑑TV (𝑋, 𝜇) ≤ 𝜀, where 𝜇 is the uniform distribution of satisfying assignments
of Φ. The algorithm terminates in time 𝑂

(
𝑛

(𝑛
𝜀

)𝜂
𝑑2𝑘3 log3 𝑛

𝜀

)
, where 𝜂 =

(
1
2

)20+𝜉/3 (
1
𝑑𝑘

)9.
The sampling result in Theorem 1.1 is a corollary of Theorem 6.1. We can set the parameter 𝜁 in

Theorem 1.1 as 𝜁 =
(
1
2

)20+𝜉/3. The running time of the sampling algorithm in Theorem 6.1 is

𝑂

(
𝑛

(𝑛
𝜀

)𝜁 (𝑑𝑘)−9
𝑑2𝑘3 log3

𝑛

𝜀

)
= 𝑂

(
𝑑2𝑘3𝑛

(𝑛
𝜀

)𝜁)
.

We first prove Lemma 3.3. Then we use Lemma 3.3 to prove Theorem 6.1.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:31

PRoof of Lemma 3.3. We first couple 𝑋𝑇 of Algorithm 2 with the idealized Glauber dynamics
𝑃Glauber. At each step of the Markov chain, we couple the outcome of Sample with the idealized
chain optimally. Coupling errors comes from the event B𝑡 and the failure of rejection sampling.
By Lemma 5.2, with probability at most 𝛿 = 𝜀

4(𝑇+1) , event B𝑡 happens. When B𝑡 does not happen,
by Lemma 5.1, the output of Sample is within total variation distance 𝛿 from the desired output.
By Proposition 2.4, we can successfully couple it with the ideal output with probability at least
1 − 𝛿 . Thus, 𝑋𝑇 of Algorithm 2 can be coupled with the 𝑇 -th step of 𝑃Glauber with probability at
least 1 − 2𝑇𝛿 .

Consider a sample 𝑋Glauber by first running 𝑃Glauber for 𝑇 steps to get 𝑋 ′𝑇 ∈ {0, 1}M , and then
draw from 𝜇𝑉 \M (· | 𝑋 ′𝑇). In Line 6 of Algorithm 2, by Lemma 5.1 and Lemma 5.2, Sample re-
turns a sample within TV distance 𝛿 from 𝜇𝑉 \M (· | 𝑋𝑇) with probability at least 1 − 𝛿 . Thus by
Proposition 2.4 once again,

𝑑TV

(
𝑋alg, 𝑋Glauber

)
≤ 2(𝑇 + 1)𝛿 =

𝜀

2
.

Moreover, consider an optimal algorithm which first obtains a perfect sample 𝑋M from 𝜇M , and
then complete it to all𝑉 by sampling from 𝜇𝑉 \M (· | 𝑋M). Call this sample 𝑋ideal, and then the law
of 𝑋ideal is 𝜇. By Proposition 2.4 and Lemma 4.1,

𝑑TV (𝑋Glauber, 𝑋ideal) ≤
𝜀

4

Combining everything we have that

𝑑TV

(
𝑋alg, 𝜇

)
= 𝑑TV

(
𝑋alg, 𝑋ideal

)
≤ 𝑑TV

(
𝑋alg, 𝑋Glauber

)
+ 𝑑TV (𝑋Glauber, 𝑋ideal) ≤

3𝜀

4
. □

We now have all ingredients to showTheorem 6.1.

PRoof of TheoRem 6.1. We first assume 2𝑘 ≥ (2e𝑑𝑘)
6 ln2· (1+𝛼−𝛽)
(1−𝛼−𝛽)2 . Since we use the algorithm in

Lemma 3.2 with 𝛿 = 𝜀
4 to construct the setM, we have

Pr [the setM satisfying Condition 3.1 is constructed successfully] ≥ 1 − 𝜀

4
.

Let 𝑋out ∈ {0, 1}𝑉 be the final assignment returned by our algorithm. If our algorithm fails to
construct the setM, then𝑋out is an arbitrary assignment in {0, 1}𝑉 ; otherwise𝑋out = 𝑋alg. Adding
all errors together, Proposition 2.4 implies that

𝑑TV (𝑋out, 𝜇) ≤ 𝜀.

Finally, we set the parameters 𝑘𝛼 , 𝑘𝛽 in Condition 3.1 and 𝜂 in (9). We list all the constraints
together

2𝑘 ≥ (2e𝑑𝑘)
6 ln2· (1+𝛼−𝛽)
(1−𝛼−𝛽)2 , where 𝛼 =

𝑘𝛼
𝑘
, 𝛽 =

𝑘𝛽

𝑘
;

2𝑘𝛼 ≥ 4e2𝑑2𝑘2;

2𝑘𝛽 ≥ 20

𝜂
e𝑑𝑘, where 0 < 𝜂 < 1;

2𝑘𝛽 ≥ 216𝑑9𝑘9;

𝑘𝛼 ≥ 1;

𝑘𝛽 ≥ 1;

𝑘𝛼 + 𝑘𝛽 ≤ 𝑘.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:32 Feng, Guo, Yin, and Zhang

We can take
𝑘𝛼 = ⌊0.1133𝑘⌋,
𝑘𝛽 = ⌊0.5097𝑘⌋ . (31)

For any 𝜉 ≥ 0, if

𝑘 ≥ 20 log𝑘 + 20 log𝑑 + 60 + 𝜉, (32)

then it must hold that 𝑘 ≥ 60 and all the constraints are satisfied with 𝑘𝛼 and 𝑘𝛽 set as in (31). We
can set 𝜂 as

𝜂 ≜
(
1

2

)20+𝜉/3 (
1

𝑑𝑘

)9
. (33)

Note that (32) implies 2𝑘 ≥ 2𝜉+60𝑑20𝑘20. We can verify that
20

𝜂
𝑒𝑑𝑘 = 20e · 220+𝜉/3𝑑10𝑘10 ≤ 230+𝜉/2−1𝑑10𝑘10 ≤ 2

𝑘
2
−1 ≤ 2𝑘𝛽 .

We then analyze the time complexity of our algorithm. Since we run the algorithm in Lemma 3.2
with 𝛿 = 𝜀

4 , then its time complexity is at most

𝑇mark = 𝑂

(
𝑛𝑑𝑘 log

4

𝜀

)
.

In Algorithm 2, the first 𝑇 ≜
⌈
2𝑛 log 4𝑛

𝜀

⌉
calls of the subroutine Sample(Φ, 𝛿, 𝑋, 𝑆) satisfy |𝑆 | = 1

and the last call the of the subroutine Sample(Φ, 𝛿, 𝑋, 𝑆) satisfies |𝑆 | ≤ 𝑛. By Lemma 5.1, we have

𝑇alg = 𝑂

(
𝑇

(𝑛
𝛿

) 𝜂
10

𝑑2𝑘3 log2
𝑛

𝛿

)
+𝑂

(
𝑛

(𝑛
𝛿

) 𝜂
10

𝑑2𝑘3 log2
𝑛

𝛿

)
,

where 𝑇 =
⌈
2𝑛 log 4𝑛

𝜀

⌉
, 𝛿 = 𝜀

4(𝑇+1) and 𝜂 is defined in (33). Note that(𝑛
𝛿

) 𝜂
10

= 𝑂
((𝑛
𝜀

)𝜂)
.

This implies

𝑇alg = 𝑂
(
𝑛

(𝑛
𝜀

)𝜂
𝑑2𝑘3 log3

𝑛

𝜀

)
.

The total time complexity of our algorithm is

𝑇 = 𝑇mark +𝑇alg = 𝑂
(
𝑛

(𝑛
𝜀

)𝜂
𝑑2𝑘3 log3

𝑛

𝜀

)
. □

7 APPROXIMATE COUNTING
Let Φ = (𝑉 ,𝐶) be a 𝑘-CNF formula. One way to reduce counting to sampling is to start from
a CNF formula with 𝑛 variables and no clause. Then add clauses one by one and use the self-
reducibility [24] to count the number of solutions for Φ. This standard method gives an approxi-
mate counting algorithm which requires𝑂 (𝑛2𝑑2) calls to the sampling algorithm for a constant 𝜀
(𝑂 hides logarithmic factors).

Instead, we give a faster counting algorithm based on the simulated annealing method [2, 18,
25, 30]. We will show that a non-adaptive annealing schedule with 𝑂 (𝑛𝑑) calls to the sampling
algorithm suffices (for a constant 𝜀). The detailed time complexity bound is given in Theorem 7.1.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:33

TheoRem 7.1. The followings hold for all 𝜉 ≥ 0. There is an algorithm such that given any 𝜀 > 0
and (𝑘, 𝑑)-formula Φ with 𝑛 variables where 𝑘 ≥ 20 log𝑘 + 20 log𝑑 + 60 + 𝜉 , it outputs a number
𝑍 that satisfies exp(−𝜀)𝑍 ≤ 𝑍 ≤ exp(𝜀)𝑍 with probability at least 3

4 , where 𝑍 is the number of

satisfying assignments of Φ. The algorithm terminates in time 𝑂
((𝑛

𝜀

)2+𝜂
𝑑3𝑘3 log4+𝜂 𝑛𝑑

𝜀

)
, where 𝜂 =(

1
2

)19+𝜉/3 (
1
𝑑𝑘

)9
.

The counting result in Theorem 1.1 is a corollary of Theorem 7.1. We can set the parameter 𝜁 in
Theorem 1.1 as 𝜁 =

(
1
2

)20+𝜉/3. The running time of the counting algorithm in Theorem 7.1 is

𝑂

((𝑛
𝜀

)2+2𝜁 (𝑑𝑘)−9
𝑑3𝑘3 log4+2𝜁 (𝑑𝑘)

−9 𝑛𝑑

𝜀

)
= 𝑂

(
𝑑3𝑘3

(𝑛
𝜀

)2+𝜁)
,

where the equation holds due to 2(𝑑𝑘)−9 ≤ 1.

7.1 The counting algorithm
Recall Φ = (𝑉 ,𝐶) is a 𝑘-CNF formula. Given any parameter 𝜃 > 0, for any 𝑋 ∈ {0, 1}𝑉 , define the
weight function:

𝑤𝜃 (𝑋) ≜ exp(−𝜃 |𝐹 (𝑋) |),

where 𝐹 (𝑋) ⊆ 𝐶 is the set of clauses that are not satisfied by 𝑋 . Let the partition function 𝑍 (𝜃) be

𝑍 (𝜃) ≜
∑

𝑋 ∈{0,1}𝑉
𝑤𝜃 (𝑋).

Then the Gibbs distribution 𝜇𝜃 over {0, 1}𝑉 is given by

∀𝑋 ∈ {0, 1}𝑉 : 𝜇𝜃 (𝑋) ≜
𝑤𝜃 (𝑋)
𝑍 (𝜃) , (34)

Let 𝑍 denote the number of satisfying assignments for Φ, then we have

𝑍 = lim
𝜃→∞

𝑍 (𝜃).

Let ℓ = 𝑛𝑑
⌈
ln 4𝑛𝑑

𝜀

⌉
. Define a sequence of parameters (𝜃𝑖)𝑖≥0 as

∀𝑖 ∈ Z≥0 : 𝜃𝑖 =
𝑖

𝑑𝑛
. (35)

The following lemma shows that the partition function 𝑍 (𝜃ℓ) is close to 𝑍 .

Lemma 7.2. If 2𝑘 ≥ 2e𝑑𝑘 , then given any 𝜀 > 0, it holds that

𝑍 ≤ 𝑍 (𝜃ℓ) ≤ exp
(𝜀
2

)
𝑍 .

The proof of Lemma 7.2 is deferred to Section 7.2. Note that the condition for Φ in Lemma 7.2 is
weaker than that in Theorem 7.1. By Lemma 7.2, we can use 𝑍 (𝜃ℓ) to approximate the value of 𝑍 .
We estimate the value of 𝑍 (𝜃ℓ) by the following telescoping product

𝑍 (𝜃ℓ) =
𝑍 (𝜃ℓ)
𝑍 (𝜃ℓ−1)

× 𝑍 (𝜃ℓ−1)
𝑍 (𝜃ℓ−2)

× . . . × 𝑍 (𝜃1)
𝑍 (𝜃0)

× 2𝑛, (36)

where the equation holds because 𝜃0 = 0 and 𝑍 (𝜃0) = 2𝑛 .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:34 Feng, Guo, Yin, and Zhang

We now estimate the value of each ratio 𝑍 (𝜃𝑖+1)
𝑍 (𝜃𝑖) in (36). Let 𝜇𝑖 = 𝜇𝜃𝑖 denote the Gibbs distribution

specified by the parameter 𝜃𝑖 . Let𝑤𝑖 (·) = 𝑤𝜃𝑖 (·) denote the weight function for Gibbs distribution
𝜇𝑖 . For each 1 ≤ 𝑖 ≤ ℓ , we define the random variable𝑊𝑖 as

𝑊𝑖 ≜
𝑤𝑖 (𝑋)
𝑤𝑖−1 (𝑋)

, where 𝑋 ∼ 𝜇𝑖−1 .

We then define𝑊 as 2𝑛 times the product of all random variables𝑊𝑖 :

𝑊 = 2𝑛
ℓ∏

𝑖=1

𝑊𝑖 .

We have the following lemma for𝑊 and each𝑊𝑖 .

Lemma 7.3. For each 1 ≤ 𝑖 ≤ ℓ , the random variable𝑊𝑖 satisfies

E [𝑊𝑖] =
𝑍 (𝜃𝑖)
𝑍 (𝜃𝑖−1)

, E
[
𝑊 2

𝑖

]
=
𝑍 (𝜃𝑖+1)
𝑍 (𝜃𝑖−1)

.

Hence, the random variable𝑊 satisfies

E [𝑊] = 𝑍 (𝜃ℓ), E
[
𝑊 2

]
=
4𝑛𝑍 (𝜃ℓ)𝑍 (𝜃ℓ+1)
𝑍 (𝜃0)𝑍 (𝜃1)

.

PRoof. By the definition of𝑊𝑖 , we have

E [𝑊𝑖] =
∑

𝑋 ∈{0,1}𝑉

𝑤𝑖−1 (𝑋)
𝑍 (𝜃𝑖−1)

× 𝑤𝑖 (𝑋)
𝑤𝑖−1 (𝑋)

=
𝑍 (𝜃𝑖)
𝑍 (𝜃𝑖−1)

.

For each 𝑋 ∈ {0, 1}𝑉 , it holds that𝑤𝑖 (𝑋) = exp
(
− 𝑖
𝑑𝑛 |𝐹 (𝑋) |

)
. We have

E
[
𝑊 2

𝑖

]
=

∑
𝑋 ∈{0,1}𝑉

𝑤𝑖−1 (𝑋)
𝑍 (𝜃𝑖−1)

×
(
𝑤𝑖 (𝑋)
𝑤𝑖−1 (𝑋)

)2
=

∑
𝑋 ∈{0,1}𝑉

𝑤𝑖+1 (𝑋)
𝑍 (𝜃𝑖−1)

=
𝑍 (𝜃𝑖+1)
𝑍 (𝜃𝑖−1)

.

Note that all𝑊𝑖 are independent. By the definition of𝑊 , we have

E [𝑊] = 2𝑛
ℓ∏

𝑖=1

E [𝑊𝑖] = 2𝑛 × 𝑍 (𝜃ℓ)
𝑍 (𝜃0)

= 𝑍 (𝜃 (ℓ));

E
[
𝑊 2

]
= 4𝑛 ×

ℓ∏
𝑖=1

E
[
𝑊 2

𝑖

]
= 4𝑛 × 𝑍 (𝜃ℓ)𝑍 (𝜃ℓ+1)

𝑍 (𝜃0)𝑍 (𝜃1)
. □

By Lemma 7.3, the expectation of𝑊 is precisely the partition function 𝑍 (𝜃ℓ). If we can draw
random samples from each distribution 𝜇𝑖 , then we can compute all𝑊𝑖 and𝑊 using these random
samples. In Section 3, we have given an algorithm that samples CNF solutions uniformly at random.
With a simple modification, we have the following algorithm that samples assignments from the
Gibbs distribution in (34).

Lemma 7.4. Let 𝜉 ≥ 0 and Φ be a (𝑘, 𝑑)-formula with 𝑛 variables where 𝑘 ≥ 20 log𝑘 + 20 log𝑑 +
60+ 𝜉 . There is an algorithmA such that given any 0 < 𝛿 < 1 and any 𝜃 ≥ 0, the algorithmA(𝜃, 𝛿)
outputs a random assignment 𝑋 of Φ satisfying 𝑑TV (𝑋, 𝜇𝜃) ≤ 𝛿 , where 𝜇𝜃 is the Gibbs distribution
defined in (34). The algorithm terminates in time 𝑂

(
𝑛

(𝑛
𝛿

)𝜂
𝑑2𝑘3 log3 𝑛

𝛿

)
, where 𝜂 =

(
1
2

)20+𝜉/3 (
1
𝑑𝑘

)9.
Our counting algorithm is described in Algorithm 7. It relies on the AlgorithmA in Lemma 7.4

as a subroutine.
To prove that correctness of Algorithm 7, we need the following lemma.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:35

Algorithm 7: The counting algorithm
Input :a CNF formula Φ = (𝑉 ,𝐶), a parameter 𝜀 > 0.
Output :a number 𝑍 .

1 for each 𝑗 from 1 to𝑚 = ⌈144𝜀−2⌉ do
2 for each 𝑖 = 1 to ℓ = 𝑛𝑑

⌈
ln 4𝑛𝑑

𝜀

⌉
do

3 use A(𝜃𝑖−1, 1/(8ℓ𝑚)) to draw sample 𝑋 𝑗
𝑖 ∈ {0, 1}𝑉 independently;

4 𝑊 𝑗
𝑖 ← 𝑤𝑖 (𝑋 𝑗

𝑖)/𝑤𝑖−1 (𝑋 𝑗
𝑖);

5 𝑊 𝑗 ← 2𝑛 ·∏ℓ
𝑖=1𝑊

𝑗
𝑖 ;

6 return 𝑍 = 1
𝑚

∑𝑚
𝑗=1𝑊

𝑗 ;

Lemma 7.5. Let B be a sampling oracle such that given any parameter 𝜃 , B(𝜃) returns a perfect
sample from the distribution 𝜇𝜃 . Suppose we replaceA(𝜃𝑖−1, 1/(8ℓ𝑚)) in Line 3 of Algorithm 7 with
B(𝜃𝑖−1). Denote the output of the modified algorithm by 𝑍B . Then, it holds that

Pr
[
exp(−𝜀/2)𝑍 (𝜃ℓ) ≤ 𝑍B ≤ exp(𝜀/2)𝑍 (𝜃ℓ)

]
≥ 7/8.

PRoof. By the assumption in Lemma 7.5, we know that each𝑊 𝑗 is a perfect sample from the
distribution of the random variable𝑊 . Note that 𝑍B = 1

𝑚

∑𝑚
𝑖=1𝑊

𝑖 . Hence E
[
𝑍B

]
= E [𝑊] =

𝑍 (𝜃ℓ). By Chebyshev’s inequality, we have

Pr
[���𝑍B − E [

𝑍B
] ��� ≥ (𝜀/3)E [

𝑍B
]]
≤

9Var
[
𝑍B

]
𝜀2E

[
𝑍B

]2 =
9Var [𝑊]
𝑚𝜀2E [𝑊]2

(37)

By Lemma 7.3, we have

Var [𝑊]
E [𝑊]2

=
E

[
𝑊 2

]
E [𝑊]2

− 1 =
𝑍 (𝜃ℓ+1)𝑍 (𝜃0)
𝑍 (𝜃ℓ)𝑍 (𝜃1)

− 1,

where the last equation holds because E [𝑊] = 𝑍 (𝜃ℓ), E
[
𝑊 2

]
= 4𝑛𝑍 (𝜃ℓ)𝑍 (𝜃ℓ+1)

𝑍 (𝜃0)𝑍 (𝜃1) and 𝑍 (𝜃0) = 2𝑛 .
Note that 𝑍 (𝜃ℓ+1) ≤ 𝑍 (𝜃ℓ), we have

𝑍 (𝜃ℓ+1)
𝑍 (𝜃ℓ)

≤ 1.

By the definition of the partition function 𝑍 (·), we have

𝑍 (𝜃0)
𝑍 (𝜃1)

=

∑
𝑋 ∈{0,1}𝑉 𝑤0 (𝑋)∑
𝑋 ∈{0,1}𝑉 𝑤1 (𝑋)

=

∑
𝑋 ∈{0,1}𝑉 1∑

𝑋 ∈{0,1}𝑉 exp(−𝜃1 |𝐹 (𝑋) |)
≤ max

𝑋 ∈{0,1}𝑉
exp(𝜃1 |𝐹 (𝑋) |) ≤ e.

The last inequality is due to the fact that 𝜃1 = 1
𝑛𝑑 and |𝐹 (𝑋) | ≤ 𝑛𝑑 .

Hence, we can bound (37) as follows

Pr
[���𝑍B − E [

𝑍B
] ��� ≤ (𝜀/3)E [

𝑍B
]]
≤ 9(e − 1)

𝑚𝜀2
≤ 1

8
,

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:36 Feng, Guo, Yin, and Zhang

where the last inequality holds because 𝑚 = ⌈144𝜀−2⌉. Note that E
[
𝑍B

]
= 𝑍 (𝜃ℓ) due to the

assumption in Lemma 7.5. This proves that

Pr
[
exp(−𝜀/2)𝑍 (𝜃ℓ) ≤ 𝑍B ≤ exp(𝜀/2)𝑍 (𝜃ℓ)

]
≥ Pr

[
(1 − 𝜀/3)𝑍 (𝜃ℓ) ≤ 𝑍B ≤ (1 + 𝜀/3)𝑍 (𝜃ℓ)

]
≥ 7

8
. □

We then construct a coupling C between Algorithm 7 and the algorithm in Lemma 7.5. For
each execution of Line 3, we use the optimal coupling to couple the random sample returned by
algorithmA(𝜃𝑖−1, 1/(8ℓ𝑚)) and the random sample returned by B(𝜃𝑖−1). By 2.4, with probability
at least 1−1/(8ℓ𝑚), two samples are perfectly coupled. Since Line 3 is executed for ℓ𝑚 times, then
by a union bound, with probability at least 7

8 , two algorithms obtain the same output, i.e. 𝑍 = 𝑍B .
Combining with Lemma 7.5, we have

Pr
[
𝑍 < exp(−𝜀/2)𝑍 (𝜃ℓ) ∨ 𝑍 > exp(𝜀/2)𝑍 (𝜃ℓ)

]
≤ Pr

[
𝑍B < exp(−𝜀/2)𝑍 (𝜃ℓ) ∨ 𝑍B > exp(𝜀/2)𝑍 (𝜃ℓ)

]
+ PrC

[
𝑍 ≠ 𝑍B

]
≤ 1

4
.

This proves that

Pr
[
exp(−𝜀/2)𝑍 (𝜃ℓ) ≤ 𝑍 ≤ exp(𝜀/2)𝑍 (𝜃ℓ)

]
≥ 3/4.

By Lemma 7.2, we know that𝑍 (𝜃ℓ) approximates the value of𝑍 , where𝑍 is the number of solutions
for Φ. We have

Pr
[
exp(−𝜀)𝑍 ≤ 𝑍 ≤ exp(𝜀)𝑍

]
≥ 3/4.

This proves the correctness of Algorithm 7.
The time complexity of Algorithm 7 is dominated by the time complexity of generating random

samples. In Algorithm 7, the sampling algorithmA in Lemma 7.4 is called for𝑚ℓ times. Note that
we only call algorithm A with 𝛿 = 1/(8𝑚ℓ). The time complexity of each call of A is

𝑇A = 𝑂

(
𝑛

(𝑛
𝜀

)2𝜂
𝑑2+𝜂𝑘3 log3+𝜂

𝑛𝑑

𝜀

)
,

where 𝜂 =
(
1
2

)20+𝜉/3 (
1
𝑑𝑘

)9. Note that 𝑚ℓ = 𝑂
(
𝑛𝑑
𝜀2 log 𝑛𝑑

𝜀

)
. Then, the total time complexity of

Algorithm 7 is at most

𝑇count = 𝑂

((𝑛
𝜀

)2 (𝑛
𝜀

)2𝜂
𝑑3+𝜂𝑘3 log4+𝜂

𝑛𝑑

𝜀

)
.

Let 𝜂 ′ = 2𝜂 =
(
1
2

)19+𝜉/3 (
1
𝑑𝑘

)9, we have
𝑇count = 𝑂

((𝑛
𝜀

)2 (
𝑛𝑑

𝜀

)𝜂′
𝑑3𝑘3 log4+𝜂

′ 𝑛𝑑

𝜀

)
= 𝑂

((𝑛
𝜀

)2+𝜂′
𝑑3𝑘3 log4+𝜂

′ 𝑛𝑑

𝜀

)
,

where the last equation holds due to 𝑑𝑑−9 = 𝑂 (1). This proves the time complexity of Algorithm 7.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:37

7.2 Comparing 𝑍 and 𝑍 (𝜃ℓ) (proof of Lemma 7.2)
We first prove a lemma stating that adding a new clause to a CNF formula decrease the number of
solutions by at most half if the parameters are in the local lemma regime.

Lemma 7.6. LetΦ = (𝑉 ,𝐶) be a 𝑘-CNF formula. LetΦ′ = (𝑉 ,𝐶 ′) be a new 𝑘-CNF formula obtained
from Φ by adding a new clause 𝑓 , i.e.𝐶 ′ = 𝐶∪{𝑓 }. Suppose each variable belongs to at most 𝑑 clauses
in both Φ and Φ′. If 2𝑘 ≥ 2e𝑑𝑘 , then it holds that

𝑍Φ′

𝑍Φ
≥ 1

2
,

where 𝑍Φ is the number of solution for Φ and 𝑍Φ′ is the number of solutions for Φ′.

PRoof. Let 𝜇 and 𝜇 ′ denote the uniform distributions of all solutions for Φ and Φ′ respectively.
Note that if 𝑋 ∈ {0, 1}𝑉 is a solution for Φ′, then it is a solution for Φ as well. Therefore, we have

𝑍Φ′

𝑍Φ
= Pr𝑋∼𝜇 [𝑋 is a solution for Φ′] = Pr𝑋∼𝜇 [𝑓 is satisfied by 𝑋] . (38)

Recall that we use PrP [·] to denote the product distribution such that each variable 𝑣 ∈ 𝑉 takes a
value from {0, 1} uniformly and independently. Let B𝑐 denote the bad event that the clause 𝑐 ∈ 𝐶
is not satisfied. Note that, in Φ, each clause contains 𝑘 variables and each variable belongs to at
most 𝑑 clauses. By Theorem 2.1, if we take 𝑥 (B𝑐) = 1

2𝑑𝑘 for each B𝑐 , it holds that for any 𝑐 ∈ 𝐶 ,

PrP [B𝑐] =
(
1

2

)𝑘
≤ 1

2e𝑑𝑘
≤ 𝑥 (B𝑐)

∏
B𝑐′ ∈Γ (B𝑐)

(1 − 𝑥 (B𝑐′)) ,

where Γ(B𝑐) contains all B𝑐′ satisfying 𝑐 ′ ∈ 𝐶 , 𝑐 ′ ≠ 𝑐 and vbl (𝑐) ∩ vbl (𝑐 ′) ≠ ∅. We use F to
denote the event that 𝑓 is not satisfied. Since each variable belongs to at most 𝑑 clauses in Φ′, we
have

PrP

[
F |

∧
𝑐∈𝐶
B𝑐

]
≤ PrP [F]

(
1 − 1

2𝑑𝑘

)−𝑑𝑘
≤ 2

(
1

2

)𝑘
≤ 1

2
, (39)

where the last inequality holds because 𝑘 ≥ 2 if 2𝑘 ≥ 2e𝑑𝑘 . Note that the product distribution P
conditioned on

∧
𝑐∈𝐶 B𝑐 is precisely the distribution 𝜇. Combining (38) and (39), we have

𝑍Φ′

𝑍Φ
= 1 − Pr𝑋∼𝜇 [𝑓 is not satisfied by 𝑋] = 1 − PrP

[
F |

∧
𝑐∈𝐶
B𝑐

]
≥ 1

2
. □

For a 𝑘-CNF formula Φ = (𝑉 ,𝐶) and any subset 𝑆 ⊆ 𝐶 , we define the value 𝑍𝑆 as

𝑍𝑆 ≜ #
{
𝑋 ∈ {0, 1}𝑉

�� all clauses in 𝑆 are not satisfied by 𝑋 ,
and all clauses in𝐶 \ 𝑆 are satisfied by 𝑋

}
. (40)

The value 𝑍𝑆 counts the number of those assignments 𝑋 ∈ {0, 1}𝑉 satisfying exactly the clauses
in 𝐶 \ 𝑆 . The next lemma bounds the size of 𝑍𝑆 .

Lemma 7.7. Suppose each variable belongs to at most 𝑑 clauses. If 2𝑘 ≥ 2e𝑑𝑘 , then for any 𝑆 ⊆ 𝐶 ,
it holds that 𝑍𝑆 ≤ 2 |𝑆 |𝑍∅.

PRoof. Let 𝑆 ⊆ 𝐶 be a set of clauses with |𝑆 | = 𝑘 . Suppose 𝑆 = {𝑐1, 𝑐2, . . . , 𝑐𝑘 }. We define a
sequence of CNF formulas Φ0,Φ1, . . . ,Φ𝑘 . For each Φ𝑖 = (𝑉 ,𝐶𝑖), the set of clauses 𝐶𝑖 is defined as

𝐶𝑖 ≜ (𝐶 \ 𝑆) ∪ {𝑐 𝑗 | 1 ≤ 𝑗 ≤ 𝑖}.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:38 Feng, Guo, Yin, and Zhang

This is equivalent to let𝐶0 = 𝐶 \𝑆 and𝐶𝑖 = 𝐶𝑖−1∪{𝑐𝑖 } for every 1 ≤ 𝑖 ≤ 𝑘 . For every 0 ≤ 𝑖 ≤ 𝑘 −1,
since each Φ𝑖 is a subformula of Φ, the condition 2𝑘 ≥ 2𝑒𝑑𝑘 still holds and we can apply Lemma 7.6
for each Φ𝑖 (with Φ = Φ𝑖 and Φ′ = Φ𝑖+1 in the statement of Lemma 7.6). This yields

𝑍Φ𝑘

𝑍Φ0

=
𝑘∏
𝑗=1

𝑍Φ𝑗

𝑍Φ𝑗−1
≥ 2−𝑘 , (41)

where 𝑍Φ𝑖 is the number of solutions for Φ𝑖 .
On the other hand, by the definition of 𝑍𝑆 , we have

𝑍Φ𝑘 = 𝑍Φ = 𝑍∅, and 𝑍Φ0
=

∑
𝑆′⊆𝑆

𝑍𝑆′ .

Combining with Equation (41), we obtain
𝑍∅∑

𝑆′⊆𝑆 𝑍𝑆′
≥ 2−𝑘 .

Hence, we have

𝑍𝑆 ≤
∑
𝑆′⊆𝑆

𝑍𝑆′ ≤ 2𝑘𝑍∅. □

We now prove Lemma 7.2. By the definition of 𝑍 (𝜃ℓ), the lower bound 𝑍 (𝜃ℓ) ≥ 𝑍 clearly holds.
For the upper bonud, noting that 𝜃ℓ =

⌈
ln 4𝑛𝑑

𝜀

⌉
, we have

𝑍 (𝜃ℓ) =
∑

𝑋 ∈{0,1}𝑉
exp(−𝜃ℓ𝐹 (𝑋)) ≤

∑
𝑋 ∈{0,1}𝑉

(𝜀

4𝑛𝑑

) |𝐹 (𝑋) |
,

where 𝐹 (𝑋) ⊆ 𝐶 is the set of clauses that are not satisfied by 𝑋 . By the definition of 𝑍𝑆 , we have

𝑍 (𝜃ℓ) ≤
∑

𝑋 ∈{0,1}𝑉

(𝜀

4𝑛𝑑

) |𝐹 (𝑋) |
=

∑
𝑆⊆𝐶

(𝜀

4𝑛𝑑

) |𝑆 |
𝑍𝑆

≤
∑
𝑆⊆𝐶

(𝜀

4𝑛𝑑

) |𝑆 |
2 |𝑆 |𝑍∅ = 𝑍∅

|𝐶 |∑
𝑘=0

(
|𝐶 |
𝑘

) (𝜀

4𝑛𝑑

)𝑘
2𝑘 (by Lemma 7.7)

= 𝑍∅
(
1 + 𝜀

2𝑛𝑑

) |𝐶 |
≤ 𝑍∅

(
1 + 𝜀

2𝑛𝑑

)𝑛𝑑
(as |𝐶 | ≤ 𝑛𝑑)

≤ 𝑍 exp
(𝜀
2

)
. (as 𝑍 = 𝑍∅)

This finishes the proof of Lemma 7.2.

7.3 The modified sampling algorithm (proof of Lemma 7.4)
In this section, we give a modified sampling algorithm to sample from the Gibbs distribution 𝜇𝜃
defined in (34). Given a CNF formula Φ = (𝑉 ,𝐶) and a parameter 𝜃 ≥ 0, we introduce |𝐶 | extra
variables

𝑈 ≜ {𝑢𝑐 ∈ {0, 1} | 𝑐 ∈ 𝐶}.
We now define a new CNF formula Φ′ = (𝑉 ∪𝑈 ,𝐶 ′). The set of clauses 𝐶 ′ is defined as

𝐶 ′ ≜ {𝑢𝑐 ∨ 𝑐 | 𝑐 ∈ 𝐶}.

Hence, given any assignment 𝑋 ∈ {0, 1}𝑉∪𝑈 , a clause 𝑐 ′ = 𝑢𝑐 ∨ 𝑐 is satisfied by 𝑋 if 𝑋 (𝑢𝑐) = 1 or
the clause 𝑐 is satisfied by 𝑋 .

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:39

ObseRvation 7.8. The CNF formula Φ′ = (𝑉 ∪𝑈 ,𝐶 ′) is 𝑘 + 1 uniform and each variable 𝑢 ∈ 𝑈
belongs to only one clause.

Let P denote the product distribution over {0, 1}𝑉∪𝑈 such that each variable 𝑣 ∈ 𝑉 takes value
from {0, 1} uniformly, and each variable 𝑢 ∈ 𝑈 takes value 1 with probability exp(−𝜃) and takes
value 0 with probability 1−exp(−𝜃). For each clause 𝑐 ′ ∈ 𝐶 ′, we define a bad eventB𝑐′ as the clause
𝑐 ′ is not satisfied. Recall that 𝜇𝜃 is the Gibbs distribution defined in (34). We have the following
proposition.

PRoposition 7.9. For any assignment 𝑋 ∈ {0, 1}𝑉 , it holds that

PrP

[
each variable 𝑣 ∈ 𝑉 takes the value 𝑋 (𝑣)

�� ∧
𝑐′∈𝐶′
B𝑐′

]
= 𝜇𝜃 (𝑋).

PRoof. We use 𝐹 (𝑋 (𝑉)) to denote the set of clauses 𝑐 ∈ 𝐶 (𝐶 is the set of clauses in original CNF
formula Φ) such that 𝑐 is not satisfied by𝑋 (𝑉). Consider a clause 𝑐 ′ ∈ 𝐶 ′where 𝑐 ′ = 𝑢𝑐∨𝑐 . Suppose
the bad event B𝑐′ does not occur. If 𝑐 ∈ 𝐹 (𝑋 (𝑉)), then 𝑢𝑐 must take the value 1. If 𝑐 ∉ 𝐹 (𝑋 (𝑉)),
then 𝑢𝑐 can take an arbitrary value from {0, 1}. We have

PrP

[
(each variable 𝑣 ∈ 𝑉 takes the value 𝑋 (𝑣)) ∧

(∧
𝑐′∈𝐶′
B𝑐′

)]
=

(
1

2

) |𝑉 |
exp(−𝜃 |𝐹 (𝑋 (𝑉)) |) =

(
1

2

) |𝑉 |
𝑤𝜃 (𝑋 (𝑉)),

where𝑤𝜃 (·) is the weight function for 𝜇𝜃 . Therefore,

PrP

[
each variable 𝑣 ∈ 𝑉 takes the value 𝑋 (𝑣)

�� ∧
𝑐′∈𝐶′
B𝑐′

]
=

𝑤𝜃 (𝑋 (𝑉))
2 |𝑉 |PrP

[∧
𝑐′∈𝐶′ B𝑐′

]
=

𝑤𝜃 (𝑋 (𝑉))
2 |𝑉 |

∑
𝑋 ′∈{0,1}𝑉 PrP

[
(each variable 𝑣 ∈ 𝑉 takes the value 𝑋 ′(𝑣)) ∧∧

𝑐′∈𝐶′ B𝑐′
]

=
𝑤𝜃 (𝑋 (𝑉))∑

𝑋 ′∈{0,1}𝑉 𝑤𝜃 (𝑋 ′(𝑉))
= 𝜇𝜃 (𝑋). □

Let 𝜇 ′ denote the product distribution P over {0, 1}𝑉∪𝑈 conditioned on none of the bad event
B𝑐′ for 𝑐 ′ ∈ 𝐶 ′ occurs. Our aim is to sample 𝑋 ∈ {0, 1}𝑉∪𝑈 such that

𝑑TV (𝑋, 𝜇 ′) ≤ 𝛿,

which, by Proposition 7.9, implies that
𝑑TV (𝑋 (𝑉), 𝜇𝜃) ≤ 𝛿.

Recall that Φ′ = (𝑉 ∪𝑈 ,𝐶 ′) is a (𝑘 + 1)-uniform CNF formula. We describe how to modify our
algorithm in Section 3 to sample from the Gibbs distribution 𝜇 ′.
The first step is to mark variables. We construct a set of marked variablesM ⊆ 𝑉 such that

each clause 𝑐 ′ ∈ 𝐶 ′ contains at least 𝑘𝛼 marked variables and at least 𝑘𝛽 unmarked variables. Note
that we do not mark variables in the set 𝑈 , i.e. 𝑈 ∩M = ∅. This step can be accomplished by the
Moser-Tardos algorithm in Section 3.1.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:40 Feng, Guo, Yin, and Zhang

We define the Glauber dynamics chain (𝑋𝑡)𝑡 ≥0 for marked variables, whose stationary distribu-
tion is the marginal distribution 𝜇 ′M onM projected from 𝜇 ′. We start with an initial assignment
𝑋0 ∈ {0, 1}M where𝑋0 (𝑣) is uniformly at random for all 𝑣 ∈ M. In the 𝑡-th step, the chain evolves
as follows:
• pick 𝑣 ∈ M uniformly at random and set 𝑋𝑡 (𝑢) ← 𝑋𝑡−1 (𝑢) for all 𝑢 ∈ M \ {𝑣};
• sample 𝑋𝑡 (𝑣) ∈ {0, 1} from the distribution 𝜇 ′𝑣 (· | 𝑋𝑡−1 (M \ {𝑣})).

We use Algorithm 2 to simulate the Glauber dynamics chain defined above. There are two mod-
ifications. First, in Line 4, we use the subroutine Sample(Φ′, 𝜀

4(𝑇+1) , 𝑋𝑡−1 (M \ {𝑣}), {𝑣}) to draw
random sample𝑋𝑡 (𝑣) ∈ {0, 1}. Second, in Line 6, we use the subroutine Sample(Φ′, 𝜀

4(𝑇+1) , 𝑋𝑇 ,𝑉 ∪
𝑈 \M) to draw the random sample 𝑋𝑉∪𝑈 \M .

We also need to adjust the Sample subroutine in the rejection sampling step

𝑌𝑋
𝑖 ← RejectionSampling

(
Φ𝑋
𝑖 , 𝑅

)
,

namely Line 7 of Sample(Φ, 𝛿, 𝑋, 𝑆). Recall that Φ𝑋
𝑖 = (𝑉𝑋

𝑖 ,𝐶𝑋
𝑖). In the rejection sampling, for each

variable 𝑣 ∈ 𝑉𝑋
𝑖 ∩𝑉 , we sample its value from {0, 1} uniformly and independently; for each variable

𝑢 ∈ 𝑉𝑋
𝑖 ∩𝑈 , we sample its value from {0, 1} independently such that Pr [𝑢 = 1] = exp(−𝜃).

We need to verify Lemma 4.1 and Lemma 3.3 for the algorithm above. Due to the definition of
Φ′ = (𝑉 ∪𝑈 ,𝐶 ′) and Observation 7.8, the following two facts hold for Φ′:
• each variable in Φ′ belongs to at most 𝑑 clauses;
• for any 𝑐 ′ ∈ 𝐶 ′, it holds that PrP [B𝑐′] = exp(−𝜃)

(
1
2

)𝑘 ≤ (
1
2

)𝑘 .
With these two facts, we can verify that all results based on the local lemma still hold for Φ′ with
the product distribution P. An analogue to Lemma 3.3 holds by the identical proof in Section 5.
To prove the rapid mixing analogue to Lemma 4.1, we need to sightly modify the two coupling

procedures C𝑣 and C in Algorithm 5 and Algorithm 6, respectively. Let 𝑋,𝑌 ∈ {0, 1}𝑉∪𝑈 be two
assignments for path coupling that disagree only on a variable 𝑣0 ∈ M. Recall that 𝜇 ′ is the Gibbs
distribution specified by Φ′. Fix a variable 𝑣 ∈ M \ {𝑣0}. We use 𝜈 ′ to denote the distribution 𝜇 ′

conditional on the assignment of the set Λ = M \ {𝑣0, 𝑣} is specified by 𝑋 (Λ) = 𝑌 (Λ), where
𝑋,𝑌 ∈ {0, 1}M differ at only 𝑣0. Formally,

∀𝜎 ∈ {0, 1}𝑉∪𝑈 : 𝜈 ′(𝜎) = 1 [𝜎 (Λ) = 𝑋 (Λ)] · 𝜇 ′(𝜎)∑
𝜏 ∈{0,1}𝑉∪𝑈 1 [𝜏 (Λ) = 𝑋 (Λ)] · 𝜇 ′(𝜏) . (42)

We define a hypergraph 𝐻 ′ ≜ (𝑉 , E ′) for Φ′ = (𝑉 ∪ 𝑈 ,𝐶 ′), which is obtained from 𝐻Φ′ (defined
in (2)) by removing all variables in 𝑈 . Namely, the variable set in 𝐻 is 𝑉 rather than 𝑉 ∪ 𝑈 , and
the hyperedge set E is defined by

E ′ ≜ {𝑉 ∩ vbl (𝑐 ′) | 𝑐 ′ ∈ 𝐶 ′} = {vbl (𝑐) | 𝑐 ∈ 𝐶}.
The two coupling procedures are modified as follows.
• Algorithm 5, C𝑣 : the input hypergraph is 𝐻 ′. In Line 6, we set 𝑝𝑋𝑢 = 𝜈 ′𝑢 (0 | 𝑋 C𝑣) and 𝑝𝑌𝑢 =
𝜈 ′𝑢 (0 | 𝑌 C𝑣), where 𝜈 ′ is defined in (42); in Line 19, we use the optimal coupling between
𝜈 ′
𝑈∪𝑉1\𝑉set

(· | 𝑋 C𝑣 (𝑉set ∪ 𝑉2)) and 𝜈 ′
𝑈∪𝑉1\𝑉set

(· | 𝑌 C𝑣 (𝑉set ∪ 𝑉2)) to extend 𝑋 C𝑣 and 𝑌 C𝑣

further on the set 𝑈 ∪𝑉1 \𝑉set.
• Algorithm 6, C: the input hypergraph is 𝐻 ′. In Line 6, we set 𝑝𝑋𝑢 = 𝜇 ′𝑢 (0 | 𝑋 C) and 𝑝𝑌𝑢 =
𝜇 ′𝑢 (0 | 𝑌 C), where 𝜇 ′ is the Gibbs distribution defined in (34).

In other words, in the while-loop (namely, Line 4) of C𝑣 and C, we do not choose any variable in𝑈 .
However, the effect of𝑈 needs to be taken into consideration in the calculation of the probabilities
𝑝𝑋𝑢 and 𝑝𝑌𝑢 in Line 6.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

Fast sampling and counting 𝑘-SAT solutions in the local lemma regime 1:41

Consider the modified coupling procedure C𝑣 . Let 𝑉1,𝑉2,S,𝑉set and 𝑋 C𝑣 , 𝑌 C𝑣 be the sets and
assignments after the execution of C𝑣 . Due to Observation 7.8, each variable 𝑢 ∈ 𝑈 belongs to
only one clauses. Then we can verify that two distributions 𝜈 ′

𝑉2\𝑉set
(· | 𝑋 C𝑣 (𝑉set)) and 𝜈 ′𝑉2\𝑉set

(· |
𝑋 C𝑣 (𝑉set∩𝑉2)) are identical, and two distributions 𝜈 ′𝑉2\𝑉set

(· | 𝑌 C𝑣 (𝑉set)) and 𝜈 ′𝑉2\𝑉set
(· | 𝑌 C𝑣 (𝑉set∩

𝑉2)) are identical.With these two facts, we can prove that𝑋 C𝑣 (𝑢) = 𝑌 C𝑣 (𝑢) for all𝑢 ∈ 𝑉2.Therefore
the rapid mixing result, Lemma 4.1, follows from the identical proof in Section 4.

REFERENCES
[1] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Daniel Štefankovič. 2019. Approximation via

Correlation Decay When Strong Spatial Mixing Fails. SIAM J. Comput. 48, 2 (2019), 279–349.
[2] Ivona Bezáková, Daniel Štefankovič, Vijay V Vazirani, and Eric Vigoda. 2008. Accelerating simulated annealing for

the permanent and combinatorial counting problems. SIAM J. Comput. 37, 5 (2008), 1429–1454.
[3] Christian Borgs, Jennifer Chayes, Jeff Kahn, and László Lovász. 2013. Left and right convergence of graphs with

bounded degree. Random Struct. Algorithms 42, 1 (2013), 1–28.
[4] Russ Bubley and Martin Dyer. 1997. Path coupling: A technique for proving rapid mixing in Markov chains. In FOCS.

IEEE, 223–231.
[5] Zongchen Chen, Andreas Galanis, Leslie Ann Goldberg, Will Perkins, James Stewart, and Eric Vigoda. 2019. Fast Al-

gorithms at Low Temperatures via Markov Chains. InAPPROX-RANDOM (LIPIcs, Vol. 145). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 41:1–41:14.

[6] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. 1991. A Random Polynomial Time Algorithm for Approximating
the Volume of Convex Bodies. J. ACM 38, 1 (1991), 1–17.

[7] Charilaos Efthymiou,Thomas P. Hayes, Daniel Stefankovic, Eric Vigoda, and Yitong Yin. 2019. Convergence ofMCMC
and Loopy BP in the Tree Uniqueness Region for the Hard-Core Model. SIAM J. Comput. 48, 2 (2019), 581–643.

[8] Weiming Feng, Kun He, and Yitong Yin. 2020. Sampling Constraint Satisfaction Solutions in the Local Lemma Regime.
arXiv preprint arXiv:2011.03915 (2020). To appear in STOC’21.

[9] Alan M. Frieze and Michael Anastos. 2017. Randomly coloring simple hypergraphs with fewer colors. Inf. Process.
Lett. 126 (2017), 39–42.

[10] Andreas Galanis, Leslie AnnGoldberg, HengGuo, and Kuan Yang. 2020. Counting Solutions to RandomCNF Formulas.
In ICALP (LIPIcs, Vol. 168). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 53:1–53:14.

[11] Heng Guo and Mark Jerrum. 2018. Random cluster dynamics for the Ising model is rapidly mixing. Ann. Appl. Probab.
28, 2 (2018), 1292–1313.

[12] Heng Guo, Mark Jerrum, and Jingcheng Liu. 2019. Uniform Sampling Through the Lovász Local Lemma. J. ACM 66,
3 (2019), 18:1–18:31.

[13] Heng Guo, Chao Liao, Pinyan Lu, and Chihao Zhang. 2019. Counting hypergraph colorings in the local lemma regime.
SIAM J. Comput. 48, 4 (2019), 1397–1424.

[14] Bernhard Haeupler and David G. Harris. 2017. Parallel algorithms and concentration bounds for the Lovász Local
Lemma via witness-DAGs. In SODA. SIAM, 1170–1187.

[15] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan. 2011. New constructive aspects of the Lovász local lemma.
J. ACM 58, 6 (2011), 28.

[16] Tyler Helmuth, Will Perkins, and Guus Regts. 2019. Algorithmic Pirogov-Sinai theory. In STOC. ACM, 1009–1020.
[17] Jonathan Hermon, Allan Sly, and Yumeng Zhang. 2019. Rapid mixing of hypergraph independent sets. Random Struct.

Algorithms 54, 4 (2019), 730–767.
[18] Mark Huber. 2015. Approximation algorithms for the normalizing constant of Gibbs distributions. Ann. Appl. Probab.

25, 2 (2015), 974–985.
[19] Vishesh Jain, Huy Tuan Pham, and Thuy Duong Vuong. 2020. Towards the sampling Lovász Local Lemma. arXiv

preprint arXiv:2011.12196 (2020).
[20] Vishesh Jain, Huy Tuan Pham, and Thuy-Duong Vuong. 2021. On the sampling Lovász Local Lemma for atomic

constraint satisfaction problems. arXiv preprint arXiv:2102.08342 (2021).
[21] Matthew Jenssen, Peter Keevash, and Will Perkins. 2019. Algorithms for #BIS-hard problems on expander graphs. In

SODA. SIAM, 2235–2247.
[22] Mark Jerrum and Alistair Sinclair. 1993. Polynomial-time approximation algorithms for the Ising model. SIAM J.

Comput. 22, 5 (1993), 1087–1116.
[23] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. 2004. A polynomial-time approximation algorithm for the permanent

of a matrix with nonnegative entries. J. ACM 51, 4 (2004), 671–697.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:42 Feng, Guo, Yin, and Zhang

[24] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. 1986. Random generation of combinatorial structures from a
uniform distribution. Theoret. Comput. Sci. 43 (1986), 169–188.

[25] Vladimir Kolmogorov. 2018. A Faster Approximation Algorithm for the Gibbs Partition Function. In COLT. PMLR,
228–249.

[26] David A Levin and Yuval Peres. 2017. Markov chains and mixing times. American Mathematical Soc.
[27] Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: randomization and probabilistic techniques in

algorithms and data analysis. Cambridge university press.
[28] Ankur Moitra. 2019. Approximate Counting, the Lovász Local Lemma, and Inference in Graphical Models. J. ACM

66, 2 (2019), 10:1–10:25.
[29] Robin AMoser and Gábor Tardos. 2010. A constructive proof of the general Lovász Local Lemma. J. ACM 57, 2 (2010),

11.
[30] Daniel Štefankovič, Santosh Vempala, and Eric Vigoda. 2009. Adaptive simulated annealing: A near-optimal connec-

tion between sampling and counting. J. ACM 56, 3 (2009), 18.
[31] Robert Swendsen and Jian-Sheng Wang. 1987. Nonuniversal critical dynamics in Monte Carlo simulations. Phys. Rev.

Lett. 58 (1987), 86–88. Issue 2.
[32] Dror Weitz. 2006. Counting independent sets up to the tree threshold. In STOC. ACM, 140–149.
[33] Avi Wigderson. 2019. Mathematics and Computation: A Theory Revolutionizing Technology and Science. Princeton

University Press.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2021.

	Abstract
	1 Introduction
	1.1 Algorithm overview
	1.2 Related work

	2 Preliminaries
	2.1 Notations
	2.2 Lovász local lemma
	2.3 Coupling and mixing times for Markov chains

	3 The sampling algorithm
	3.1 Marking variables
	3.2 The main algorithm
	3.3 The Sample subroutine

	4 Rapid mixing of the idealized dynamics
	4.1 The stationary distribution
	4.2 The mixing time
	4.3 Analysis of the path coupling

	5 Analyze the rejection sampling subroutine
	6 Analyze the main sampling algorithm
	7 Approximate counting
	7.1 The counting algorithm
	7.2 Comparing Z and Z(theta_l) (proof of Lemma 6.2)
	7.3 The modified sampling algorithm (proof of Lemma 7.4)

	References

