
Fast sampling of satisfying assignments from random k-SAT*

Andreas Galanis † Leslie Ann Goldberg * Heng Guo ‡ Andrés Herrera-Poyatos *§

2 November 2022

Abstract

We give a nearly linear-time algorithm to approximately sample satisfying assignments in the random
k-SAT model when the density of the formula scales exponentially with k. The best previously known
sampling algorithm for the random k-SAT model applies when the density α = m/n of the formula is
less than 2k/300 and runs in time nexp(Θ(k)) (Galanis, Goldberg, Guo and Yang, SIAM J. Comput., 2021).
Here n is the number of variables and m is the number of clauses. Our algorithm achieves a significantly
faster running time of n1+ok(1) and samples satisfying assignments up to density α ≤ 20.039k.

The main challenge in our setting is the presence of many variables with unbounded degree, which
causes significant correlations within the formula and impedes the application of relevant Markov chain
methods from the bounded-degree setting (Feng, Guo, Yin and Zhang, J. ACM, 2021; Jain, Pham and
Vuong, 2021). Our main technical contribution is a ok(log n) bound of the sum of influences in the
k-SAT model which turns out to be robust against the presence of high-degree variables. This allows us
to apply the spectral independence framework and obtain fast mixing results of a uniform-block Glauber
dynamics on a carefully selected subset of the variables. The final key ingredient in our method is to
take advantage of the sparsity of logarithmic-sized connected sets and the expansion properties of the
random formula, and establish relevant properties of the set of satisfying assignments that enable the fast
simulation of this Glauber dynamics.
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1 Introduction

The random k-SAT model is a foundational model in the study of randomised algorithms. For integers
k, n,m ≥ 2, the random formula Φ = Φ(k, n,m) is a k-CNF formula chosen uniformly at random from
the set of formulas with n Boolean variables and m clauses, where each clause has k literals (repetitions
allowed). Here, we consider the sparse regime where the density of the formula, α = m/n, is bounded
by an absolute constant. An important question is determining the probability that the random formula is
satisfiable as a function of its density (in the limit n → ∞). Interestingly, for all sufficiently large k, the
probability that Φ is satisfiable drops abruptly from 1 to 0 when the density α crosses a certain threshold
α⋆(k). Recently there has been tremendous progress in establishing this phase transition, concluding that
α⋆(k) = 2k log 2 − 1

2(1 + log 2) + ok(1) as k → ∞ [16, 13]. Despite the good progress on pinning down
this phase transition, finding satisfying assignments for densities up to α∗ poses severe challenges. In fact,
the best known algorithm [10] for finding a satisfying assignment of a random formula Φ succeeds up to
densities (1 + ok(1))

2k

k log k, and going beyond such densities is a major open problem with links to phase
transitions [1].

Lately there has been significant interest in the related computational problem of sampling satisfying
assignments of Φ uniformly at random. This problem is closely connected to the problem of estimating
the number of satisfying assignments of Φ, also known as the value of the partition function of the model.
From a probabilistic viewpoint, the analysis of the partition function depends on subtle properties of the
solution set Ω consisting of the satisfying assignments of Φ [2, 12, 37, 33]. In this direction, there has been
substantial work on finding the so-called free energy of the model, i.e., the asymptotic value of the quantity
1
nE[log(1 + |Ω|)]. Computing the k-SAT free energy is a difficult problem which is still open (roughly, the
difficulty comes from the asymmetry of the model and the unbounded degrees), but there have been results
for closely related models including the permissive version of the model [12, 33, 14], the regular k-SAT
model [15], and the regular NAE-SAT model [36, 37]. Very recently, a formula for the free energy of the
2-SAT model was given in [2].

Regarding the algorithmic problem of sampling satisfying assignments uniformly at random, in the
random k-SAT model progress has been slower relative to other well-studied models on random graphs (such
as k-colourings or independent sets). One of the main reasons for this is that the usual distribution properties
that are typically used to obtain fast algorithms (such as correlation decay and spatial mixing) fail to hold
for densities as low as α = ok(1) [33]. These issues are in fact present already in the bounded-degree k-
SAT setting, where the formulas are worst-case but every variable is constrained to have a bounded-number
of occurrences. For random formulas, these issues are further aggravated by the fact that the degrees of
a linear number of variables are unbounded. Very recently, [21] gave an approximate counting algorithm
(FPTAS) for the number of satisfying assignments of Φ when k is large enough and α ≲ 2k/300 (where ≲
hides a polynomial factor in 1/k). This algorithm elevates Moitra’s counting method for bounded-degree
k-SAT [32] to the random formula setting, and is the first polynomial-time approximate-counting algorithm
to achieve an exponential-in-k bound on α. However, its running time is nexp(Θ(k)) because the algorithm
repeatedly has to enumerate local structures (including solving LPs as a subroutine), which does not scale
well with k. Hence, the problem of finding a fast algorithm for sampling the satisfying assignments in the
random k-SAT model has remained open.

In this work we give a fast algorithm that in time n1+ok(1) approximately samples satisfying assignments
of a random k-SAT formula of density α ≤ 20.039k, within arbitrarily small polynomial error. Moreover, our
result significantly extends the densities under consideration compared to the previous bound α ≲ 2k/300

from [21]. Our algorithm first runs a Markov chain to sample assignments of a judiciously-chosen subset
of variables of Φ (from the relevant marginal distribution), and subsequently extending this random assign-
ment to all the variables. This has the advantage that it avoids the enumeration of local structures, and in
fact achieves a nearly-linear running time. We give a high-level overview of the techniques developed in our
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proofs in Section 2. Roughly, our Markov chain is a uniform-block Glauber dynamics which, interestingly,
mixes quickly despite the presence of high-degree variables in the random formula. The main point of de-
parture from similar approaches that have been applied to the bounded-degree setting is that we completely
circumvent sophisticated coupling arguments that have been used there and which are unfortunately severely
constricted by the unbounded degrees in our setting (and made inapplicable). Instead, our main technical
contribution is to show that the stationary distribution of our chain is (ck log n)-spectrally independent for
some constant c ∈ (0, 1), allowing us to apply recently-developed tools in the analysis of Markov chains.
Unlike most applications of spectral independence, our proof does not rely on correlation decay (which, as
we mentioned, fails to hold for densities exponential in k). We show our spectral-independence bounds by
relating the probabilistic properties of the solution space with the structure of the formula using coupling
techniques, so that we can exploit local sparsity properties of random k-SAT.

To formally state our main result, we say that an event E regarding the choice of the random formula Φ
holds with high probability (abbreviated w.h.p.) if Pr(E) = 1−o(1) as n→∞. The total variation distance
between two probability distributions µ and ν over the same space Ω is given by 1

2

∑
x∈Ω|µ(x)− ν(x)| and

is denoted by dTV (µ, ν). Our main result can now be stated as follows.

Theorem 1. For any real θ ∈ (0, 1), there is k0 ≥ 3 with k0 = O(log(1/θ)) such that, for any integers
k ≥ k0 and ξ ≥ 1, and for any positive real α ≤ 20.039k, the following holds.

There is an efficient algorithm to sample from the satisfying assignments of a random k-CNF formula
Φ = Φ(k, n, ⌊αn⌋) within n−ξ total variation distance of the uniform distribution. The algorithm runs in
time O(n1+θ), and succeeds w.h.p. over the choice of Φ.

Using standard techniques from the literature, this O(n1+θ) uniform sampling algorithm can be used to
obtain a randomised approximation scheme for counting satisfying assignments of Φ in time O(n2+θ/ε2),
where ε is the multiplicative error, see [18, Section 7] and Remark 49 for details.

We note here that, independently of this work, Chen, Mani, and Moitra [9] and He, Wu, and Wang [23]
obtained sampling algorithms. The approach of [9] is also based on spectral independence but uses a differ-
ent analysis technique that works up to roughly 2k/52, whereas the approach of [23] is based on bounding
chains and works up to densities roughly equal to 2k/3.

2 Proof outline

Our nearly linear-time sampling algorithm is based on running a Markov chain; this is a standard technique
in approximate counting, where typically one runs a Markov chain on the whole state space that converges
to the desired distribution. The twist in k-SAT is that the state space of the Markov chain needs to be
carefully selected in order to avoid certain bottleneck phenomena that impede fast convergence. This ap-
proach has been recently applied to bounded-degree k-CNF formulas [18, 27, 19, 26] building on the work
of Moitra [32] and using the Markov chain known as single-site Glauber dynamics. The main difficulties
in all of these works is that the usual distribution properties that are typically used to obtain fast algorithms
(such as correlation decay and spatial mixing) fail on the set of all SAT solutions, and in fact even ensuring
a connected state space is a major problem. Working around this is one of the main challenges for us too,
and in the random k-SAT setting it is further aggravated by the fact that a linear number of variables have
degrees much higher than average. In fact, w.h.p., a good portion of vertices have degrees depending on n.
with the maximum degree of the formula scaling as log n/ log logn.

This poses several new challenges for the Markov chain approach to work in our setting. First of all, we
have to ensure that the set of satisfying assignments that our Markov chain considers has good connectivity
properties. We address this problem in Section 2.1 of this proof outline, where we find a suitable subset
of variables where we can run the Glauber dynamics; this part is inspired by Moitra’s “marking” approach,
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though here we need to add an extra layer of marking to facilitate later the analysis of the Markov chain.
Second and more importantly, state-of-the-art arguments for bounding the mixing time of the single-site
Glauber dynamics on k-CNF formulas, such as [27, 18] break under the presence of high-degree variables.
We focus on this in Section 2.2, where we outline a novel argument that analyses the mixing time of the
uniform-block Glauber dynamics using recent advances in spectral independence [3, 29, 4, 7]. This is
the first application of the spectral-independence framework for k-CNF formulas, where the absence of
correlation decay limits the application of standard techniques (based on self-avoiding walk trees [4, 7]).
To obtain our spectral-independence bounds we need to combine the probabilistic structure of satisfying
assignments with the local sparsity properties of the random formula. The third challenge in our approach is
simulating the individual steps of the uniform-block Glauber dynamics since they involve updating a linear
number of variables, making the computation of the transition probabilities more challenging. To this end,
we need to initialise our block Glauber dynamics to random values (instead of an arbitrary assignment that is
typically used as initialisation), and show that the formula breaks into small tree-like connected components
that allows us to do the relevant computations throughout the algorithm’s execution (cf. Section 2.3). Based
on these pieces, the full algorithm is presented in Section 2.4.

2.1 Marking variables in the random k-SAT model

In order to ensure good connectivity properties which are essential for fast convergence of the relevant
Markov chain, our algorithm runs Glauber dynamics on a large subset Vm of so-called “marked” variables
of the random formula, leaving the rest of the variables unassigned. The variables in Vm are chosen in a way
that ensures that their marginals are near 1/2, which is important for ensuring rapid mixing. Moitra [32]
introduced a random “marking” procedure to identify such a subset of variables in the bounded-degree case.
The presence of high-degree variables impedes a direct application of this technique in the random-formula
setting, but in [21] the authors show that by temporarily removing a small linear number of “bad” clauses
that contain high-degree variables one can also achieve marginals near 1/2 for an appropriate set of variables
in the random k-SAT model. Here we further refine these arguments as we need more control over the high-
degree variables of the formula in order to conclude rapid mixing of the Glauber dynamics. Recall that the
degree of a variable v is the number of occurrences of literals involving the variable v in Φ and that the
maximum degree of the formula Φ is the maximum degree among its variables. The following important
definitions will be used throughout the paper. We usually use V to denote the set of variables and C to denote
the set of clauses of a k-CNF formula Φ. For any c ∈ C we denote by var(c) the set of variables appearing
in c, and for any S ⊆ C we denote var(S) =

⋃
c∈S var(c).

Definition 2 (r, r0, δ, high-degree, ∆, α0). Let r := 0.1178, r0 := 0.117841, and δ = 0.00001. Let k ≥ 3
be an integer. Let Φ = (V, C) be a k-CNF formula. We say that a variable v ∈ V is high-degree if the
degree of v is at least ∆ := ⌈2(r0−2δ)k⌉. Most of our technical results consider random k-CNF formulas
with density at most α0 := 2(r0−2δ)k/k3.

The bottleneck for the density threshold of Theorem 1 comes from our mixing time results, see Sec-
tion 2.2. Some of the time we also consider densities α ≤ 2rk. The constant r satisfies r < r0, where r0
will be relevant when establishing a marking of the variables. We could have chosen any value of r that is
less than r0.

We refer to Section 4 for details on our procedure to determine the bad variables/clauses of the for-
mula Φ. Roughly, bad variables consist of high-degree variables (as in Definition 2), plus those variables
that appear in a clause with at least two other bad variables (recursively); bad clauses are those clauses that
contain at least three bad variables. We use Vbad and Cbad to denote the sets of bad variables and clauses.
We use Vgood = V \Vbad to denote the set of good variables, and Cgood = C \Cbad to denote the set of good
clauses. The following proposition, proved in Section 4, summarises the main properties of the above sets.
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Proposition 3. Let Φ = (V, C) be a k-CNF formula. For any c ∈ Cgood, we have |var(c) ∩ Vbad| ≤ 2, and
for any c ∈ Cbad, we have |var(c) ∩ Vgood| = 0. Moreover, every good variable has degree less than ∆.
There is a procedure to determine Cbad that runs in time O(n+mk), where n is the number of variables of
Φ and m is the number of clauses of Φ.

It turns out that, w.h.p. over the choice of Φ, most clauses (and variables) in the random formula Φ
are good, see Lemma 15 for a precise statement. At this stage, it would be natural to try to rework the
Markov chain approach of [18]. To do this, we would split the set of good variables in marked variables
and control variables in such a way that marked variables have marginals close to 1/2. Then we run the
Glauber dynamics on the set of marked variables. However, as we explain in Section 2.2, the state-of-the-art
techniques used to analyse the mixing time of the single-site Glauber dynamics on bounded-degree formulas
do not generalise to the random k-SAT setting; the main reason for this is that they fail to capture the effect
that the high-degree variables have on the marginal probabilities of other variables. Therefore, we need
to develop an alternative approach that is robust against the presence of high-degree variables. Our main
contribution is an argument to apply the spectral independence framework [7, 8] to the random k-SAT model
that leads to nearly linear sampling algorithms. To do this, it is important to introduce a third type of good
variables, which we call the auxiliary variables. This motivates the following definition of marking.

Definition 4 (r-distributed, r-marking). Let r > 0. Let Φ = (V, C) be a k-CNF formula and V be a subset
of Vgood. We say that V is r-distributed if for each c ∈ Cgood we have |var(c) ∩ V | ≥ r(k − 3).

An r-marking of Φ is a partition (Vm,Va,Vc) of the variables of Φ such that

1. Vc contains all the bad variables and the set Vc \ Vbad is (2r)-distributed;

2. the sets of good variables Vm and Va are r-distributed.

The variables in Vm are called marked variables, the variables in Va are called auxiliary variables, and the
variables in Vc are called control variables.

In Section 5 we show that random k-CNF formulas have r0-markings when the density α is below the
threshold α0 = 2(r0−2δ)k/k3, and that the marginals of marked and auxiliary variables are close to 1/2; this
is where the value of r0 becomes important in the argument. We collect these results in Proposition 6 below;
first we give some relevant definitions.

Definition 5 (Ω∗, µA, Ω, ΦΛ, CΛ, VΛ, ΩΛ). Let Φ = (V, C) be a k-CNF formula. Let Ω∗ be the set of all
assignments V → {F,T}. Given any subset A ⊆ Ω∗, let µA be the uniform distribution on A. Let Ω be
the set of satisfying assignments of Φ. For any partial assignment Λ we denote by ΦΛ the formula obtained
by simplifying Φ under Λ, i.e., removing the clauses which are already satisfied by Λ, and removing false
literals from the remaining clauses. We denote by CΛ and VΛ the sets of clauses and variables of ΦΛ.
Moreover, we denote by ΩΛ the set of satisfying assignments of ΦΛ.

Proposition 6. There is an integer k0 such that for any k ≥ k0 and any density α with α ≤ α0 the following
holds w.h.p. over the choice of the random k-CNF formula Φ = Φ(k, n, ⌊αn⌋). There exists an r0-marking
(Vm,Va,Vc) of Φ. Moreover, for any such marking, for any v ∈ Vm ∪ Va, any V ⊆ Vm ∪ Va with v ̸∈ V ,
and any Λ: V → {F,T}, we have

max
{
Prµ

ΩΛ (v 7→ F) ,Prµ
ΩΛ (v 7→ T)

}
≤ 1

2
exp

(
1

k2(r0+δ)k

)
.

Proof. This follows directly by combining Lemmas 20 and 21, which are stated and proved in Section 5.
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The bound given in Proposition 6 on the marginal probabilities of the marked and auxiliary variables is
exploited several times, and we will explain some of these applications in this proof outline. We remark that
the bound on the marginals of marked and auxiliary variables holds for any pinning of any subset of these
variables, which will be relevant in the spectral independence argument.

Definition 7 (µ|V ). Let V be a finite set and let Ω ⊆ {F,T}V . Let µ be a distribution over Ω. For a set
V ⊆ V , we denote by µ|V the marginal distribution of µ on V .

Proposition 6 essentially states that the distribution µΩ|Vm∪Va
is very close to the uniform distribution

over all assignments Vm ∪ Va → {F,T}. This concept is formalised in the following definition.

Definition 8 (ε-uniform). Let V be a set of variables and µ be a probability distribution over the assignments
V → {F,T}. Let Λ: S → {F,T} be an assignment of some subset of variables S ⊆ V . We denote by
Prµ(Λ) the probability under µ of the event that the variables in S are assigned values according to Λ, and
by Prµ(·|Λ) the corresponding conditional distribution of µ.

For ε ∈ (0, 1), we say that the distribution µ is ε-uniform if for any variable v ∈ V and any partial
assignment Λ: V \ {v} → {F,T}, we have

max {Prµ (v 7→ F|Λ) ,Prµ (v 7→ T|Λ)} ≤ 1

2
eε.

From Proposition 6, it follows that the distribution µΩ|Vm
is ε-uniform for ε = (2−(r0+δ)k/k), so for any

Λ: Vm → {F,T}, the probability that the assignment of the marked variables is Λ is at least (1− eε/2)|Vm|.
The ε-uniform property also (trivially) guarantees that the space of assignments Λ: Vm → {F,T} with
PrµΩ(Λ) > 0 is connected via single-variable updates, so we can indeed consider the Glauber dynamics
over Vm. This leads to the main challenge of this work: does this chain mix rapidly?

2.2 Mixing time of the Glauber dynamics on the marked variables

Recently, there has been significant progress in showing that the single-variable Glauber dynamics on appro-
priately chosen subsets of variables mixes quickly for k-CNF formulas with bounded degree [18, 26]. These
approaches carefully execute a union bound over paths of clauses connecting marked variables in order to
bound the coupling time between two copies of the chain. However, these union bound arguments break
under the presence of high-degree variables that are present in random k-SAT; this is because the number of
paths connecting marked variables is very sensitive to the max degree of the formula and in particular grows
too fast in our setting. We give a more detailed discussion in Section 8.1.

Instead, we apply the spectral independence framework to show rapid mixing of a uniform-block Glauber
dynamics, which we review briefly below. Applications of spectral independence usually exploit decay of
correlations to show that the spectral independence condition holds, see [4, 7, 5] for examples. As we have
mentioned in the introduction, correlation decay fails to hold for densities exponential in k in the random
k-SAT model [33] and therefore, we have to develop a different approach to conclude that the spectral-
independence condition holds in our setting. This is our main contribution in this work; we show that
the marginal distribution on the marked variables, i.e., µΩ|Vm

, is (ε log n)-spectrally independent for some
ε > 0 that can be made arbitrarily small for sufficiently large k. Our argument builds on the coupling idea
of Moitra [32] (as refined in [21] for random k-SAT) and relates the spectral independence condition to
the expected number of failed clauses in this coupling process. This allows us to exploit the local sparsity
properties of the random k-SAT model to analyse the mixing time of the Glauber dynamics.

A caveat here is that the spectral independence of µΩ|Vm
is not enough on its own to conclude fast

mixing of the single-site Glauber dynamics. The most direct way to work around this is to analyse instead
the so-called ρ-uniform-block Glauber dynamics that updates ρ vertices at a time for some ρ that scales
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linearly in n; the main missing ingredient there is to show that the modified chain can be implemented
efficiently which we discuss in Section 2.3. We next give a quick overview of the relevant ingredients of the
spectral-independence literature that we will need.

2.2.1 The ρ-uniform-block Glauber dynamics, spectral independence, and the mixing time

Let V be a finite set of size M and µ be a distribution over the assignments V → {F,T}. Let Ω be the
set of assignments V → {F,T} with positive probability under µ. For an integer ρ ∈ {1, 2, . . . , |V |}, the
ρ-uniform-block Glauber dynamics for µ is a Markov chain Xt where X0 ∈ Ω is an arbitrary configuration
and, for t ≥ 1, Xt is obtained from Xt−1 by first picking a subset S ⊆ V of size ρ uniformly at random,
letting Λt be the restriction of Xt to V \S, and updating the configuration on S according to the probability
distribution µ(·|Λt). This chain satisfies the detailed balance equation for µ. Hence, when the chain is
irreducible, for ε > 0, we can consider its mixing time Tmix(ρ, ε) = maxσ∈Ωmin{t : dTV (Xt, µ) ≤ ε |
X0 = σ}. We say that µ is b-marginally bounded if for all v ∈ V , S ⊆ V \ {v}, Λ: S → {F,T} with
Prµ(Λ) > 0, and ω ∈ {F,T}, it either holds that Prµ(v 7→ ω|Λ) = 0 or Prµ(v 7→ ω|Λ) ≥ b. Spectral
independence results have recently been used in the b-marginally bounded setting to obtain fast mixing time
of the uniform-block Glauber dynamics [6, 8]. For S ⊂ V , Λ: S → {F,T} with Prµ(Λ) > 0, and u, v ∈ V
with u ̸∈ S and 0 < Prµ(u 7→ T|Λ) < 1, the influence of u on v (under µ and Λ) is defined as

IΛ(u→ v) = Prµ (v 7→ T|u 7→ T,Λ)− Prµ (v 7→ T|u 7→ F,Λ) . (1)

The influence matrix conditioned on Λ is the (two-dimensional) matrix whose entries consist of IΛ(u→ v)
over all relevant u and v. We denote by IΛ the matrix and by λ1(IΛ) its largest eigenvalue in absolute
value. For a real η > 0, we say that µ is η-spectrally independent if for all S ⊂ V and Λ: S → {F,T} with
Prµ(Λ) > 0 we have λ1(IΛ) ≤ η. From the results of [8], one can conclude the following bound for the
mixing time of the uniform-block Glauber dynamics, see Appendix B for details.

Lemma 9. The following holds for any reals b, η > 0, any κ ∈ (0, 1) and any integer M with M ≥
2
κ(4η/b

2 + 1). Let V be a set of size M , let µ be a distribution over the assignments V → {F,T}, let
Ω = {Λ: V → {F,T} : µ(Λ) > 0} and let µmin = minΛ∈Ω µ(Λ). If µ is b-marginally bounded and
η-spectrally independent, then, for ρ = ⌈κM⌉ and Cρ = (2/κ)4η/b

2+1, we have

Tmix(ρ, ε) ≤
⌈
Cρ

M

ρ

(
log log

1

µmin
+ log

1

2ε2

)⌉
.

We are going to consider the uniform-block Glauber dynamics on the marked variables of Φ, so V = Vm,
and the set of states coincides with the set of assignments Vm → {F,T} as all of them have positive
probability. In this setting, the target distribution is µΩ|Vm

. The distribution µΩ|Vm
is (1/e)-marginally-

bounded as a straightforward consequence of the fact that it is (1/k)-uniform, see Remark 47 for details.
Hence, in order to conclude rapid mixing it remains to establish spectral independence. For this, we are
going to use the well-known fact (see for instance [7]) that, for S ⊂ V and Λ: S → {F,T}, we have

λ1(IΛ) ≤ max
u∈V \S

∑
v∈V \S

|IΛ(u→ v)|. (2)

2.2.2 Spectral independence in the random k-SAT model

In this section we state our spectral independence results in the random k-SAT model. The results stated in
this section are proved in Section 8. Our main technical result is the following.
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Lemma 10. There is an integer k0 ≥ 3 such that for any integer k ≥ k0 and any density α with α ≤
2r0k/3/k3 the following holds. W.h.p. over the choice of the random k-CNF formula Φ = Φ(k, n, ⌊αn⌋),
for any r0-marking (Vm,Va,Vc) of Φ, the distribution µΩ|Vm

is (2−r0k log n)-spectrally independent.

We are going to describe some of the ideas behind the proof of Lemma 10. First, we highlight the fact
that, due to the presence of high-degree variables (which form logarithmically-sized connected components),
it is hard to conclude η-spectral independence with η = O(1). This has also been the case in recent
work on 2-spin systems on random graphs [5], where instead correlation decay is exploited to prove η-
spectral independence for some η = o(log n). Here, our η-spectral independence bound for η = ok(log n)
will be based on an appropriate coupling. Note, in light of Lemma 9, η = O(log n) is good enough for
proving polynomial mixing time of the uniform-block Glauber dynamics, but we need the improved bound
of Lemma 10 in order to conclude the following fast mixing-time result from Lemma 9 (see Section 8). We
remark that the more restrictive density threshold α ≤ 2r0k/3/k3 in the statement of Lemma 10 arises in the
union bound given in the proof of this lemma, and that for large enough k we have 20.039k ≤ 2r0k/3/k3. We
can now state our mixing time result.

Lemma 11. There is a function k0(θ) = Θ(log(1/θ)) such that, for any θ ∈ (0, 1), for any integer k ≥
k0(θ) and any density α with α ≤ 20.039k the following holds. W.h.p. over the choice of the random
k-CNF formula Φ = Φ(k, n, ⌊αn⌋), for any r0-marking (Vm,Va,Vc) of Φ and for ρ = ⌈2−k−1|Vm|⌉, the ρ-
uniform-block Glauber dynamics for updating the marked variables has mixing time Tmix(ρ, ε/2) ≤ T :=
⌈22k+3nθ log 2n

ε2
⌉.

Lemma 11 is stated for the block size ρ = ⌈2−k−1|Vm|⌉, but it could be proved more generally when
ρ = c|Vm| and c ∈ (0, 1). The fact that ρ ≤ |Vm|/2k in the statement will be relevant in implementing
efficiently the dynamics, discussed in Section 2.3.

Our approach to prove η-spectral independence significantly differs from those that in two-spin systems,
where it is enough to study sum of influences over trees (thanks to the tree of self-avoiding walks) and
exploit decay of correlations in this setting (very roughly, the further away two vertices are in the tree, the
smaller the influence that one vertex has in the other). Here we relate influences to the structure of the
dependency graph GΦ by running a coupling process on the auxiliary variables, and we state this connection
in the upcoming Lemma 38. First we define more formally dependency graph GΦ.

Definition 12 (GΦ). Let Φ = (V, C) be a k-CNF formula. We define the graph GΦ as follows. The vertex
set of GΦ is C and two clauses c1 and c2 are adjacent if and only if var(c1) ∩ var(c2) ̸= ∅. A set C ⊆ C is
connected if C is connected in the graph GΦ. We say that two variables u and v are connected in Φ if there
is a path c1, c2, . . . , cℓ in GΦ with u ∈ var(c1) and v ∈ var(cℓ).

One of the key ideas behind our analysis is exploiting the fact that, in the random k-SAT model, w.h.p.
over the choice of the random formula Φ, any logarithmic-sized set of clauses Y that is connected in GΦ

has constant tree-excess, that is, the number of edges connecting a pair of clauses in Y is |Y |+O(1). This
saves a factor of ∆ in the spectral independence bound by ensuring that there is a large independent set of
clauses in Y . We also obtain improved analysis by restricting the coupling process to auxiliary variables.
This enables us to get exponentially small bounds (in k) on the influences between marked variables.

2.3 Analysis of the connected components of ΦΛ

In this section we deal with the third challenge mentioned at the beginning of Section 2: can we determine
the transition probabilities of the Glauber dynamics so that we can actually simulate this Markov chain? In
fact, simulating the single-site Glauber dynamics on the marked variables was one of the main challenges
even in the bounded-degree case. In that case this was resolved using a method that is restricted to the
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bounded-degree setting (and whose bottleneck is the analysis of a rejection sampling procedure). A different
procedure is required for the random k-SAT setting.

One of the key ideas to simulate this chain is starting the chain on an assignment X0 : Vm → {F,T}
drawn from the uniform distribution over all assignments of Vm. Since the distribution µΩ|Vm

is (1/k)-
uniform (Proposition 6), the transition probabilities of the Glauber dynamics are close to uniform. This
allows us to show that the probability distribution of the assignment Xt that is output by the uniform-
block Glauber dynamics after t steps is also (1/k)-uniform (Corollary 22), which will be important in what
follows.

In order to run the ρ-uniform-block Glauber dynamics we need to be able to sample from the distribution
µΩΛ for any set S ⊆ Vm with |S| = ρ and any assignment Λ: Vm \ S → {F,T} that arises. Unless we
can restrict Λ, sampling from µΩΛ could potentially be as hard as sampling from µΩ. Fortunately for us,
the assignment Λ is not completely arbitrary; Λ is determined by the random choice of S and the current
state of the Glauber dynamics (which follows a (1/k)-uniform distribution as discussed above). We show
that we can efficiently sample from µΩΛ w.h.p. over the choice of Λ. An important observation is that
we can efficiently sample from µΩΛ when the connected components of GϕΛ are logarithmic in size, for
example, by applying brute force. This raises the following question: does GϕΛ break into small connected
components w.h.p. over the choice of Λ? Lemma 13 gives a positive answer when 0 ≤ ρ ≤ |V |/2k. Here
the reader can see V as the set of marked variables. The proof of Lemma 13 exploits sparsity properties
of logarithmic-sized connected sets of clauses in random formulas in conjunction with the fact that µ is
(1/k)-uniform.

Lemma 13. There is an integer k0 ≥ 3 such that, for any integer k ≥ k0, any density α ≤ 2rk, and any real
number b with a := 2k4 < b, the following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋).

Let L be an integer satisfying a log n ≤ L ≤ b log n. Let V be a set of good variables of Φ that is r0-
distributed, let µ be a (1/k)-uniform distribution over the assignments V → {F,T}, and let ρ be an integer
with 0 ≤ ρ ≤ |V |/2k. Consider the following experiment. First, draw S ⊆ V from the uniform distribution
τ over subsets of V with size ρ. Then, sample an assignment Λ from µ|V \S . Denote by F the event that that
there is a connected set of clauses Y of Φ with |Y | ≥ L such that all clauses in Y are unsatisfied by Λ. Then
PrS∼τ

(
PrΛ∼µ|V \S

(F) ≤ 2−δkL
)
≥ 1− 2−δkL.

Proof sketch. The proof is in Section 6. For the sake of exposition, we first sketch the proof in the case
ρ = 0, where the conclusion in the statement reads PrΛ∼µ|V (F) ≤ 2−δkL. At the end of this proof sketch
we explain how we extend the proof to any ρ with 0 ≤ ρ ≤ |V |/2k.

The first step is exploiting local sparsity properties of random k-CNF formulas to find many variables
from V in any sufficiently large connected set of clauses. Our sparsity results hold for connected sets
of clauses with size at least 2k4 log n, and let us conclude the following result (stated as Lemma 26 in
Section 6): w.h.p. over the choice of Φ, for every connected set of clauses Z ⊆ C we have

if 2k4 log(n) ≤ |Z| ≤ b log(n), then |var(Z) ∩ V | ≥ (r0 − δ)k|Z|. (3)

The proof of Lemma 26 counts the variables from V in Z by using the fact that Z does not contain many
bad clauses and the fact that there are not many edges joining clauses in Z. In fact, for such a set Z, we
show that the number of edges is of order |Z| + O(1), that is, Z has constant tree-excess (Lemma 24). We
also need the following result on random k-CNF formulas. For each clause c ∈ C, let Z(c, L) = {Z ⊆ C :
c ∈ Z,Z is connected in GΦ, |Z| = L}. Then, w.h.p. over the choice of Φ, [21, Lemma 40] shows that, as
long as L ≥ log n,

for any clause c ∈ C we have |Z(c, L)| ≤ (9k2α)L. (4)

Once we have established (3) and (4), the proof exploits the fact that µ is close to the uniform distribution.
First, we introduce some notation. Let L be an integer with a log n ≤ L ≤ b log n. Let S = ∅ as we
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are dealing with the case ρ = 0. For c ∈ C and Z ∈ Z(c, L), we denote by E1(Z, S) the event that
Z ⊆ CΛ, where Λ is drawn from µ|V \S , see Definition 7. We keep track of S in the notation here as
this is relevant in the general case. Recall that Z ⊆ CΛ means that none of the clauses in Z are satisfied
by the assignment Λ (Definition 5). The first observation is that the event F from the statement satisfies
F =

⋃
c∈C,Z∈Z(c,L) E1(Z, S). We then claim that for any c ∈ C and Z ∈ Z(c, L) we have

PrΛ∼µ|V \S
(E1(Z, S)) ≤

2−δkL

|C| · |Z(c, L)|
, (5)

so the result would follow from a union bound over c and Z. Let us give some insight on how we prove
(5). Let c ∈ C and Z ∈ Z(c, L). The main idea is that, if all clauses in Z are unsatisfied by Λ then, when
we sampled Λ ∼ µ|V \S , for each variable v in var(Z) ∩ (V \ S) we picked the value that does not satisfy
the clauses of Z containing v. Thus, we can bound the probability that all clauses in Z are unsatisfied as a
product, over the variables in var(Z)∩(V \S), of probabilities, each factor corresponding to the probability
that a variable is assigned a certain value (under some careful conditioning, see the proof in Section 6 for
details). Since the distribution µ is (1/k)-uniform, each one of these factors can be bounded by exp(1/k)/2,
obtaining

PrΛ∼µ|V \S
(E1(Z, S)) ≤

(
1

2
exp

(1
k

))|var(Z)∩(V \S)|
. (6)

In (3) we gave a lower bound on |var(Z) ∩ V |, which can be applied in conjunction with (4) to conclude,
after some calculations, that the bound given in (5) holds.

The case ρ > 0 is more technical and one has to be more careful in these calculations. We show that
(5) holds when S does not contain many variables in var(Z) ∩ V . A slightly different argument is needed
when going from (6) to (5); here we have to bound |var(Z) ∩ (V \ S)| instead of |var(Z) ∩ V |. It turns
out that, as long as the bound |var(Z) ∩ V ∩ S| ≤ |var(Z) ∩ V |/k holds, the calculations to go from (6) to
(5) also hold in this setting. Finally, we show that the probability that |var(Z) ∩ V ∩ S| ≤ |var(Z) ∩ V |/k
occurs when picking S is at least 1 − 2δkL. The proof of this fact is purely combinatorial, and requires the
hypothesis ρ ≤ |V |/2k, see Section 6 for details.

Once we have established Lemma 13, we can use it to implement the ρ-uniform-block Glauber dynamics
on the marked variables for 0 < ρ ≤ |Vm| and complete our sampling algorithm, which we explicitly state
in Section 2.4.

2.4 The sampling algorithm

To complete this proof outline, we explicitly describe Algorithm 1, our algorithm for sampling satisfying
assignments of k-CNF formulas. The algorithm uses a method Sample(ΦΛ, S) to sample an assignment
τ : S → {F,T} from the distribution µΩΛ |S . This method exploits the fact that logarithmic-sized connected
set of clauses have constant tree-excess, which does not hold in the bounded-degree case. This tree-like
property enables us to efficiently sample satisfying assignments on the connected components of ΦΛ by a
standard dynamic programming argument, see Section 7. Lemma 14 is our main result on Sample(ΦΛ, S).

Lemma 14. There is an integer k0 ≥ 3 such that, for any integers k ≥ k0, ξ ≥ 1 and any density α ≤ 2rk,
the following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). Let V be a subset of variables and let
Λ: V → {F,T} be a partial assignment such that all the connected components in GΦΛ have size at most
2k4(1+ ξ) log(n). Then, there is an algorithm that, for any S ⊆ V \ V , samples an assignment from µΩΛ |S
in time O(|S| log n).
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The method Sample(ΦΛ, S) is used in Algorithm 1 to implement each step of the ρ-uniform-block
Glauber dynamics on the marked variables. It is also used to extend the assignment of marked variables
computed by the Glauber dynamics to a satisfying assignment of Φ. As a design choice, this method returns
error when the connected components of GΦΛ have size larger than 2k4(1 + ξ) log(n). We remark that the
probability that Sample(ΦΛ, S) returns error is very small when running the Glauber dynamics thanks to
Lemma 13. We can now introduce Algorithm 1, which has two parameters θ ∈ (0, 1) and ξ ≥ 1 as in
Theorem 1.

Algorithm 1 The approximate sampling algorithm for satisfying assignments of random k-CNF formulas.
Input: A k-CNF formula Φ = (V, C) with n variables

1: Compute the sets of bad/good variables and bad/good clauses for Φ as in Proposition 3.
2: Let ε = n−ξ. Compute a marking (Vm,Va,Vc) for Φ as in Lemma 20 with p = ε/4. This succeeds

with probability at least 1− ε/4. If this does not succeed, the algorithm returns error.
3: For each v ∈ Vm, sample X0(v) ∈ {F,T} uniformly at random.
4: for t from 1 to T := ⌈22k+3nθ log 2n

ε2
⌉ do

5: Choose uniformly at random a set of marked variables S ⊆ Vm with size ρ := ⌈2−k−1|Vm|⌉.
6: Let Λt be the assignment Xt−1 restricted to Vm \ S.
7: Y ← Sample(ΦΛt , S).
8: Xt ← Λt ∪ Y .
9: end for

10: Y ← Sample(ΦXT ,Va ∪ Vc).
11: return XT ∪ Y .

We remark here that Algorithm 1 only works for large enough k, and this hypothesis will be used several
times in our arguments. The quantity T defined in this algorithm corresponds to the mixing time of the ρ-
uniform-block Glauber dynamics given in Lemma 11.

3 Paper outline

The rest of this work is organised as follows. In Section 4 we introduce the procedure for determining bad
clauses. In Section 5 we prove Proposition 6 on markings of random formulas. In Section 6 we prove our
technical result on the connected components of ΦΛ, Lemma 13. In Section 7 we give the method Sample
and prove Lemma 14. In Section 8 we prove the results on spectral independence stated in Section 2.2 of
the proof outline. Finally, in Section 9 we complete the proof of Theorem 1 by combining our mixing time
results (Lemma 11), our algorithm to sample from small connected components (Lemma 14) and our result
on the size of the connected components of ΦΛ (Lemma 13).

To help keep track of the notation and definitions introduced in this work, the reader is referred to the
tables in Appendix C.

4 High-degree and bad variables in random CNF formulas

As we noted in the introduction, one of the keys to sampling satisfying assignments in the unbounded-degree
setting is to “sacrifice” a few variables per clause (treating them separately in the sampling algorithm) and
to (temporarily) remove a small linear number of clauses that contain these. The point of this is to ensure
that the remaining (“good”) clauses have mostly low-degree variables (at most two bad ones) and also that
the rest of the clauses (the “bad” ones) form small connected components that interact with the good clauses
in a manageable way.
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Recall that high-degree variables were introduced in Definition 2. By standard arguments about random
graphs, one can determine that, w.h.p. over the choice of Φ, the number of high-degree variables of Φ is
bounded. We want to identify the clauses of Φ that have at most 2 high-degree variables, since clauses
with a lot of high-degree variables will interfere with our sampling algorithms. This motivates the follow-
ing construction. The bad variables and bad clauses of Φ are identified by running the process given in
Algorithm 2. Here Vbad denotes the set of bad variables and Cbad denotes the set of bad clauses.

Algorithm 2 Computing bad variables and bad clauses
Input: A k-CNF formula Φ = (V, C)

1: V0 ← the set of high-degree variables
2: C0 ← the set of clauses with at least 3 variables in V0
3: i← 0
4: while i = 0 or Vi ̸= Vi−1 do
5: i← i+ 1
6: Vi ← Vi−1 ∪ var(Ci−1)
7: Ci ← {c ∈ C : |var(c) ∩ Vi| ≥ 3}
8: end while
9: Cbad ← Ci and Vbad ← Vi

10: return Vbad, Cbad

We define the good clauses of Φ as Cgood = C \ Cbad and the good variables of Φ as Vgood = C \ Vbad.
We will use the observations given in Proposition 3 several times in this work.

Proposition 3. Let Φ = (V, C) be a k-CNF formula. For any c ∈ Cgood, we have |var(c) ∩ Vbad| ≤ 2, and
for any c ∈ Cbad, we have |var(c) ∩ Vgood| = 0. Moreover, every good variable has degree less than ∆.
There is a procedure to determine Cbad that runs in time O(n+mk), where n is the number of variables of
Φ and m is the number of clauses of Φ.

Proof. In this proof we briefly explain the implementation of Algorithm 2 announced in the statement. First,
for each clause c we keep track of the number of bad variables in var(c), denoted bad(c). We also have a
stack of of bad variables SV that are yet to be processed by the algorithm. At the start of the algorithm, we
set SV ← V0. While SV is non-empty, we take the variable v on the top of the stack and increase bad(c′)
by 1 for those clauses c′ where v appears. If any of these updates gives bad(c′) ≥ 3, we add var(c′) to
the stack SV , set the variables in var(c′) as bad and set the clause c′ as bad. At the end of this process, SV
is empty and we have found all the bad variables and bad clauses of Φ. As every variable is added to the
stack at most once and the list bad(·) is updated at most mk times (once per literal in Φ), the running time
is O(n+mk).

In our work we need a variation of a result of [21] that controls the number of bad clauses in connected
subgraphs of GΦ. We state this result in Lemma 15 and prove it in Appendix A.

Lemma 15 (Modified version of [21, Lemma 8.16]). There is an integer k0 ≥ 3 such that for any integer
k ≥ k0 and any density α ≤ α0 = 2(r0−2δ)k/k3, the following holds w.h.p. over the choice of the random
k-CNF formula Φ = Φ(k, n, ⌊αn⌋). For every connected set of clauses Y in GΦ such that |var(Y )| ≥
2k4 log n, we have |Y ∩ Cbad| ≤ |Y |/k.

Lemma 15 guarantees that, w.h.p. over the choice of Φ, bad clauses are a minority among all the clauses
of Φ. This will be used to show that bad clauses do not affect significantly the behaviour of our sampling
algorithm. We point out that the definitions of Vgood,Vbad, Cgood and Cbad given in [21] use the condition
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|var(c)∩Vi| ≥ k/10 instead of |var(c)∩Vi| ≥ 3. Hence, our definitions of good clauses and good variables
are more restrictive. However, it turns out that, with minor changes, the proof of Lemma 15 given in [21]
can be extended to our setting. These changes are explained in Appendix A.

5 Identifying a set of “marked” variables with good marginals

A property that is useful for sampling satisfying assignments is having a high proportion of variables in
each good clause such that the marginals of these variables are fairly close to 1/2. That is, having variables
which are roughly equally likely to be true or false in a random satisfying assignment. The marginals of
high-degree variables do vary. However, even in the random k-SAT model it turns out that there are enough
variables with marginals near 1/2. Following the basic approach of Moitra [32], we partition the good
variables of a random k-CNF formula into types. Here we have three type of variables (instead of two):
marked, auxiliary and control variables. The high-level goal is to do this in such a way that each clause has a
good proportion of each one of these types of variables. We call this construction a marking, see Definition 4
of the proof outline for the precise definition. For such marking, we will show that as long as the control
variables are left unassigned/unpinned, the marginals of the marked and auxiliary variables are all near 1/2
as a consequence the Lovász local lemma [17]. We first set up the notation and results that we need.

It is not difficult to show that in the random k-SAT model, w.h.p. over the choice of the formula Φ, two
distinct clauses share at most 2 variables (see Lemma 16). Previous work on counting/sampling satisfying
assignments had to analyse subsets of disjoint clauses in order to deal with the fact that small sets of clauses
might share most of their variables. The restriction to disjoint subsets imposes further restrictions on the
maximum degree of the formula and on the density of the formula in the random k-SAT model setting. Here
we manage to exploit Lemma 16 to avoid these restrictions.

Lemma 16. For any k ≥ 3 and any density α > 0 (possibly depending on k), the following holds w.h.p.
over the choice of the random k-CNF formula Φ = Φ(k, n, ⌊αn⌋). We have |var(c)| ≥ k − 1 and |var(c) ∩
var(c′)| ≤ 2 for all c, c′ ∈ C with c ̸= c′.

Proof. First, let us prove that, for k ≥ 3, w.h.p. over the choice of Φ, |var(c)| ≥ k − 1 for all c ∈ C.
Let us denote by Rc the event that a clause c has at least two repetitions among its variables, that is,
|var(c)| ≤ k − 2. We claim that Pr(Rc) ≤ q(k)/n2, where q =

(
k
3

)
+ k(k − 1)(k − 2)(k − 3)/4.

To prove this statement we note that the probability that a variable appears at least 3 times in c is at most(
k
3

)
nk−2/nk, and the probability that two distinct variables are repeated in c is at most p(k)n(n−1)nk−4/nk

for p(k) = k(k − 1)(k − 2)(k − 3)/4. Hence, by adding up both cases, we find that Pr(Rc) ≤ q(k)/n2,
and Pr(

⋃
c∈CRc) ≤ q(k)m/n2 ≤ q(k)α/n = O(1/n), so the result follows.

Let c, c′ ∈ C with c ̸= c′. We study |var(c) ∩ var(c′)|,

Pr
(∣∣var(c) ∩ var(c′)

∣∣ ≥ 3
)
≤ n(n− 1)(n− 2)n2(k−3)(k(k − 1)(k − 2))2

n2k
≤ k6

n3
.

Therefore, the probability that there is a pair of clauses c, c′ with |var(c) ∩ var(c′)| ≥ 3 is bounded from
above by m(m−1)

2
k6

n3 ≤ α2

2
k6

n = O
(
1
n

)
, which finishes the proof.

We will use the asymmetric version of the Lovász local lemma (LLL), proved by Lovász and originally
published in [38]. Before stating this result, let us introduce some notation. Let P be a finite collection of
mutually independent random variables. Let B an event that is a function of the random variables in P . Let
A be a collection of events that are a function of the random variables in P . We define Γ(B) as the set of
events A ∈ A such that A ̸= B and A and B are not independent. In this setting, PrP (B) is the probability
that the event B holds when sampling all the random variables in P .
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Theorem 17 (Asymmetric Lovász local lemma, [22, Theorems 1.1 and 2.1]). Let P be a finite collection of
mutually independent random variables. Let A be a collection of events that are a function of the random
variables in P . If there exists a function x : A → (0, 1) such that, for all A ∈ A, we have

PrP (A) ≤ x(A)
∏

N∈Γ(A)

(1− x(N)) ,

then PrP
(⋂

A∈AA
)
> 0. Furthermore, for any event B that is a function of the random variables in P ,

we have
PrP

(
B
∣∣∣⋂

A∈A
A
)
≤ PrP (B)

∏
A∈Γ(B)

(
1− x(A)

)−1
.

We are going to apply the LLL in Lemma 20 to find an r0-marking of Φ (Definition 4), w.h.p. over the
choice of the random formula, for some appropriate r0 ∈ (0, 1). Before proving Lemma 20, let us highlight
how strong the properties of an r-marking are. First, the fact that a set of marked variables is r-distributed
(Definition 4) will allow us to find, w.h.p. over the choice of Φ, a good amount of marked variables in
any set of clauses, even if the set includes bad clauses, see Lemma 26 for a precise statement. This result
is an essential ingredient in our proofs. Secondly, as long as the control variables are left unassigned, the
marginals of the marked and auxiliary variables will be near 1/2 as a consequence of the LLL, as we show
later in this section (Lemma 21). We remark that, in the definition of r-distributed set of variables, we ask
for |var(c) ∩ V | ≥ r(k − 3) instead of |var(c) ∩ V | ≥ rk to account for the fact that w.h.p. a good clause
has at most a repeated variable (Lemma 16) and at most two bad variables (Proposition 3), which will come
up in the proofs presented in this section. First, we need the following definition.

Definition 18 ( Φgood, Φbad). Let Φ = (V, C) be a k-CNF formula. Let Φgood = (Vgood, Cgood) be the CNF
formula obtained by taking the good clauses of Φ and ignoring the bad variables appearing in them. Let
Φbad be the k-CNF formula with variables Vbad and clauses Cbad.

Note that in GΦgood
two clauses c1 and c2 in Cgood are adjacent if and only if var(c1)∩var(c2)∩Vgood ̸=

∅. By definition of good variables, the maximum degree in GΦgood
is at most k(∆ − 1), which will be

important when applying the LLL. We also need the following version of Chernoff’s bounds.

Lemma 19 (Chernoff’s bounds - [35, Theorem 2.1 and Corollary 4.1]). Let n ∈ N, p ∈ [0, 1], and let
X1, . . . , Xn be n independent random variables with Xj ∈ {0, 1} and Pr(Xj = 1) = p for all j =
1, . . . , n. Let X =

∑n
j=1Xj . Then, for any r ∈ (p, 1) and any s ∈ (0, p), we have Pr (X ≥ rn) ≤

e−D(r,p)n and Pr (X ≤ sn) ≤ e−D(s,p)n, where, for reals x, y ∈ (0, 1), D(x, y) := x log (x/y) + (1 −
x) log ((1− x)/(1− y)) is the Kullback-Leibler divergence.

We can now state the main result of this section. The Lovász local lemma ideas in the proof of Lemma 20
are standard in the literature since the work of Moitra [32] but the quantities involved are adapted to our
setting.

Lemma 20. There is a positive integer k0 such that for any k ≥ k0 and any density α with α ≤ α0 the
following holds w.h.p. over the choice of the random k-CNF formula Φ = Φ(k, n, ⌊αn⌋):

1. there exists a partial assignment of bad variables that satisfies all bad clauses;

2. there exists an r0-marking of Φ. Furthermore, for any p ∈ (0, 1), such an r0-marking can be computed
with probability at least 1− p in time O(n log(1/p)).
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Proof of Lemma 20. We note that for any k ≥ 4 our density α ≤ α0 = 2(r0−2δ)k/k3 is below the threshold
ck > 1.3836 · 2k/k established in [20, Theorem 1.3]. For densities below this threshold, w.h.p. over
the choice of Φ, there is a satisfying assignment for Φ. When Φ is satisfiable, we claim that there is an
assignment of the bad variables that satisfies all bad clauses. Indeed, all the variables in bad clauses are bad
(Proposition 3) and, thus, the restriction of a satisfying assignment to Vbad must satisfy all the bad clauses.
In the rest of this proof we show that assertion 2 also holds.

In view of Lemma 16, we may assume that |var(c)| ≥ k − 1 for all c ∈ C. Let us find the r0-marking
(Vm,Va,Vc). If all clauses are bad, then we set Vc = V , Vm = ∅ and Va = ∅. This is trivially an r0-marking
for Φ. In the rest of the proof we assume that there are good variables. We study the following probability
space. For each good variable v, we set v as “marked” with probability β ∈ (0, 1/2), “auxiliary” with
probability β and “control” with probability 1 − 2β. This decision is made independently for each good
variable. Each bad variable is set as “control”. Let P be the set {Pv : v ∈ Vgood}, where Pv is the random
choice made in this experiment for v. Let Vm be the set of marked variables, let Va be the set of auxiliary
variables, and let Vc be the set of control variables obtained by running this experiment. For each clause
c ∈ Cgood, let Ac be the event that c has less than r0(k−3) marked variables or less than r0(k−3) auxiliary
variables or less than 2r0(k − 3) good control variables. We are going to apply the LLL on the formula
Φgood so as to show that Pr(

⋂
c∈Cgood Ac) > 0. For each c ∈ Cgood, in view of Proposition 3 and the fact

that |var(c)| ≥ k − 1, we have |var(c) ∩ Vgood| ≥ k − 3. Hence, we can apply the Chernoff bound given in
Lemma 19 with n = |var(c) ∩ Vgood|, p = β and s = r0 to obtain, for any choice V ∈ {Vm,Va},

PrP (|var(c) ∩ V | < r0(k − 3)) ≤ e−D(r0,β)(k−3).

When V = Vc \ Vbad, n = |var(c) ∩ Vgood|, p = 1− 2β and s = 2r0 we obtain

PrP (|var(c) ∩ V | < 2r0(k − 3)) ≤ e−D(2r0,1−2β)(k−3).

We have chosen r0 to be as large as possible under the restrictions that D(r0, β) ≥ r0 log 2 and
D(2r0, 1 − 2β) ≥ r0 log 2. The values β = 0.571027 and r0 = 0.117841 satisfy these restrictions. We
conclude that

PrP (Ac) ≤ 2 · e−D(r0,β)(k−3) + e−D(2r0,1−2β)(k−3) ≤ 3 · 2−r0(k−3).

Let ∆0 = 2r0(k−3)/(3e2k) and let x(Ac) = 1/(k∆0) for all c ∈ Cgood. We check that x satisfies the
condition of the LLL for P and A = {Ac : c ∈ Cgood}. For k ≥ 98, we find that ∆0 > 1 so x(Ac) ∈ (0, 1)
for all c ∈ Cgood. We note that Γ(Ac) = {Ac′ : c

′ ∈ Cgood, c′ ̸= c, var(c′)∩var(c)∩Vgood ̸= ∅}. The graph
GΦgood

, given in Definition 12, has maximum degree at most k(∆ − 1), so |Γ(Ac)| ≤ k(∆ − 1) ≤ k∆0,
where the latter inequality holds for large enough k as ∆ = ⌈2(r0−2δ)k⌉ (recall that δ = 0.00001). Therefore,
we have

x(Ac)
∏

N∈Γ(Ac)

(1− x(N)) ≥ 1

k∆0

(
1− 1

k∆0

)k∆0

≥ 1

e2k∆0
= 3 · 2−r0(k−3),

where we used (1− 1/z)z ≥ e−2 for all z ≥ 2 in the second inequality. Thus,

x(Ac)
∏

N∈Γ(Ac)

(1− x(N)) ≥ 3 · 2−r0(k−3) ≥ PrP (Ac) .

We conclude that, by the LLL, PrP
(⋂

c∈Cgood Ac

)
> 0, so there exists a partition (Vm,Va,Vc) of the

variables of Φ such that Vbad ⊆ Vc and each good clause contains at least r0(k − 3) marked variables,
r0(k − 3) auxiliary variables and 2r0(k − 3) good control variables. That is, (Vm,Va,Vc) satisfies items 1
and 2 of Definition 4 for r = r0. Moreover, with probability at least 1− δ, this partition can be computed in
4nα∆0k log(1/δ) steps with the algorithm of Moser and Tardos [34].
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In the remaining of this section we bound the marginals of µΩ (the uniform distribution over the satis-
fying assignments of the formula Φ, Definition 5) on any marked and auxiliary variable. In fact, we prove
the stronger result that the marginal distribution of µΩ on Vm ∪ Va is very close to the uniform distribution.
Recall also that all the variables in bad clauses of Φ are bad (Proposition 3), and thus, we can consider the
subformula Φbad := (Vbad, Cbad), which is satisfiable under the hypothesis of Lemma 20.

Lemma 21. Let Φ = (V, C) be a k-CNF formula that has an r0-marking (Vm,Va,Vc). Then either the
formula Φbad is unsatisfiable or the distribution µΩ|Vm∪Va

is (2−(r0+δ)k/k)-uniform.

Proof. Let us assume that Φbad is satisfiable and let us prove that the distribution µΩ|Vm∪Va
(Definition 7) is

(2−δk/k)-uniform. Let Λbad be an assignment of bad variables that satisfies all bad clauses. Let v ∈ Vm∪Va
and let Λ be an assignment of Vm ∪ Va \ {v} to {F,T}. Let Λ ∪ Λbad be the combined assignment of Λ
and Λbad. We note that PrµΩτ (·) = PrµΩ (· |τ) for any assignment τ of some variables. In light of this
observation, we are going to prove that

max
{
Prµ

ΩΛ∪Λbad
(v 7→ F) ,Prµ

ΩΛ∪Λbad
(v 7→ T)

}
≤ 1

2
exp

(
1

k2(r0+δ)k

)
. (7)

The result will then follow by the arbitrary choice of Λbad and the law of total probability. We apply the
LLL to the formula Φ′ := ΦΛ∪Λbad as follows. Let V ′ and C′ be the sets of variables and clauses of Φ′. Note
that, V ′ ⊆ Vgood, C′ ⊆ Cgood and GΦ′ is a subgraph of GΦgood

as all bad variables have been assigned a
value and all bad clauses have been satisfied. We set Pv = σ(v) for all v ∈ V ′, where σ : V ′ → {F,T} is
chosen uniformly at random from the set of assignments V ′ → {F,T}, and P = {Pv : v ∈ V ′}. We define
the set A as the set containing for all c ∈ C′ the event Ac = “the clause c is not satisfied by the random
assignment σ”. By the definition of (Vm,Va,Vc), there are at least 2r0(k − 3) good control variables in
c. Since good control variables are not assigned a value by Λ ∪ Λbad and, thus, they are in V ′, we have
PrP (Ac) ≤ 2−2r0(k−3). Recall that ∆ = ⌈2(r0−2δ)k⌉ (Definition 2). Let ∆0 = 22r0(k−3)/(e2k) and let
x(Ac) = 1

k∆0
for all c ∈ C′. Let us show that x satisfies the LLL condition in this setting. In view of

Γ(Ac) = {Ac′ : c
′ ∈ C′ : c′ ̸= c, var(c) ∩ var(c′) ∩ V ′ ̸= ∅}, which can be identified with a subset of the

neighbours of c in GΦgood
, and |Γ(Ac)| ≤ k∆ ≤ k∆0 for large enough k, we find that

x(Ac)
∏

N∈Γ(Ac)

(1− x(N)) ≥ 1

k∆0

(
1− 1

k∆0

)∆0

≥ 1

e2k∆0
= 2−r0(k−3) ≥ PrP (Ac) ,

where we used (1 − 1/z)z ≥ e−2 for all z ≥ 2. Let A = {v 7→ T} := {σ : V ′ → {F,T} with σ(v) = T}.
In Φ′, we have Γ(A) = {Ac : c ∈ C′, v ∈ var(c)}, so |Γ(A)| < ∆. By the LLL, we obtain

PrP

(
v 7→ T

∣∣∣⋂
c∈C′

Ac

)
≤ 1

2

∏
N∈Γ(A)

(
1− x(N)

)−1 ≤ 1

2

(
1− 1

k∆0

)−(∆−1)

.

For x > 1, we have (1− 1/x)−1 = 1 + 1/(x− 1) ≤ exp(1/(x− 1)). We find that

PrP

(
v 7→ T

∣∣∣⋂
c∈C′

Ac

)
≤ 1

2
exp

(
∆− 1

k∆0 − 1

)
≤ 1

2
exp

(
1

k2(r0+δ)k

)
,

where in the latter inequality we used (p − j)/(q − j) ≤ p/q for all 0 < j < p ≤ q and the fact
that ∆ = ⌈2(r0−2δ)k⌉ ≤ 2−(r0+δ)k · 22r0(k−3)/(3e2k) = 2−(r0+δ)k∆0 for large enough k. We note that
Prµ

ΩΛ∪Λbad
(·) = PrP

(
· |
⋂

c∈C′ Ac

)
, which completes the proof of one of the upper bounds of (7). The

other upper bound is proved analogously by applying the LLL with A = {v 7→ F}.
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The (2−(r0+δ)k/k)-uniform property proved in Lemma 21 is remarkably strong: as long as the control
variables are left unassigned, the rest of the variables have marginals close to 1/2, even if some of the
marked and auxiliary variables are pinned / have already been assigned a value. This property is used
several times in this work and will allow us to prove that, for any pinning of some marked variables, the
influences between marked variables are bounded. In the following corollary we extend Lemma 21 to the
distributions computed by the Glauber dynamics on the marked variables.

Corollary 22. Let Φ = (V, C) be a k-CNF formula such that Φbad is satisfiable and Φ has an r0-marking
(Vm,Va,Vc). Let ρ be an integer with 1 ≤ ρ < |Vm|. Let t be a non-negative integer and let Xt be the (ran-
dom) assignment obtained after running the ρ-uniform-block Glauber dynamics on the marked variables for
t steps, starting on an assignment X0 that is chosen uniformly at random. Then the probability distribution
of Xt is (2−(r0+δ)k/k)-uniform.

Proof. Let ε = (2−(r0+δ)k/k). Let V1, V2, . . . , be a possible choice of sets of marked variables to be
updated when running the ρ-uniform-block Glauber dynamics. We are going to prove that, conditioning
on this choice of sets of variables, the probability distribution of Xt is ε-uniform. Note that by the law
of total probability and the fact that the choice of V1, V2, . . . is arbitrary, this is enough to conclude the
result. We carry out the proof by induction on t. Let πt be the probability distribution of Xt. As π0 is
the uniform distribution over assignments on Vm, the claim holds for t = 0. Let us now assume that πt−1

is ε-uniform and let us prove that this is also the case for πt. To show the desired uniformity of πt (cf.
Definition 8), consider arbitrary v ∈ Vm and Λ: Vm \ {v} → {F,T}, we need to bound Prπt (v 7→ F|Λ)
and Prπt (v 7→ T|Λ). We distinguish two cases:

• Case v ∈ Vt. By definition of the Glauber dynamics, the values of Xt on Vt are obtained by
sampling from the distribution µΩ conditioned on the restriction of Xt−1 to Vm \ Vt. Thus, we
have Prπt (v 7→ F|Λ) = Prµ

ΩΛ (v 7→ F) since the conditioning involving Λ sets all the marked vari-
ables other than v. As µΩ|Vm∪Va

is ε-uniform by Lemma 21, we conclude that Prπt (v 7→ F|Λ) =

Prµ
ΩΛ (v 7→ F) ≤ 1

2 exp(ε). The same bound holds for v 7→ T.

• Case v ̸∈ Vt. If v is not updated in steps 1 through t, then Prπt (v 7→ F|Λ) = Prπ0 (v 7→ F) = 1/2.
Otherwise, let j be the largest integer with j < t such that v ∈ Vj . Let Λj be the restriction of Λ
to Vm \

⋃
i∈{j+1,j+2,...,t} Vi. By the induction hypothesis, Prπt (v 7→ F|Λ) = Prπj (v 7→ F|Λj) ≤

(1/2) exp(ε). The same bound holds for v 7→ T.

As both cases are exhaustive, the proof is concluded.

Previous work on counting/sampling satisfying assignments of k-CNF formulas does not require the use
of auxiliary variables, so the marking used is of the form (Vm,Vc). Here auxiliary variables play an essential
role in bounding the influences between marked variables as we illustrated in Section 2. In order for this
approach to be successful, we have to show that a large proportion of the variables are marked. We conclude
this section with the following bound on the size of Vm.

Corollary 23. There is an integer k0 such that for any k ≥ k0 and any density α with α ≤ α0 the following
holds w.h.p. over the choice of the random k-CNF formula Φ = Φ(k, n, ⌊αn⌋). For any set of good
variables V that is r0-distributed we have |V | ≥ (r0 − δ)(kα/∆)n.

Proof. W.h.p. over the choice of Φ, Lemma 15 holds. We combine this with the inequality α0 ≤ ∆/k3 and
the fact that a good variable occurs in at most ∆ good clauses to find that

|V | ≥
r0(k − 3)|Cgood|

∆
≥ r0(k − 3)

∆

(
1− 1

k

)
|C| ≥ r0(k − 4)

∆
(αn− 1),

which is at least (r0 − δ)(kα/∆)n for large enough k.
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6 Analysis of the connected components of ΦΛ

In this section we prove Lemma 13, which bounds the size of the connected components of ΦΛ, where Λ is
drawn from a (1/k)-uniform distribution over a r0-distributed set of good variables. In order to carry out
this proof, we have to understand the structure of logarithmic-sized sets of clauses of the random k-CNF
formula Φ. Section 6.1 is devoted to this purpose. In Section 6.2 we apply the results of Section 6.1 to obtain
a lower bound of the number of marked/auxiliary variables in logarithmic-sized sets of clauses. Finally, in
Section 6.3 we complete the proof of Lemma 13.

6.1 Logarithmic-sized sets of clauses in the random k-SAT model

A connected graph H = (V,E) has tree-excess c ∈ Z≥0 if |E| = c + |V | − 1. It turns out that, w.h.p.
over the choice of Φ, small connected sets of clauses of Φ have tree-excess that only depends on k and the
density α. This property is established in Lemma 24 and is essential to our proofs.

Lemma 24. Let k ≥ 3 be an integer. Let b > 0 and α > 0 be real numbers. W.h.p. over the choice of the
random k-CNF formula Φ = Φ(k, n, ⌊αn⌋), every connected subset of clauses with size at most b log(n)
has tree-excess at most c := max{1, 2b log(ek2α)}.

Proof. Let n be the number of variables and m be the number of clauses of Φ, so m/n ≤ α. Note that the
probability that two clauses of Φ are not disjoint is at most k2/n. Let ℓ ∈ {1, 2, . . . , ⌊b log(n)⌋}. We upper
bound the probability that there is a connected subset of clauses of size ℓ with tree-excess at least c+ 1 by(

m

ℓ

)
ℓℓ−2

(
ℓ(ℓ− 1)/2

c+ 1

)(
k2

n

)ℓ+c

, (8)

where the factors appearing are the following ones:

•
(
m
ℓ

)
is the number of subsets of clauses of size ℓ;

• ℓℓ−2 is the number of trees on ℓ labelled vertices;

•
(
ℓ(ℓ−1)/2

c+1

)
is the number of ways to pick c+ 1 pairs of distinct clauses of a set of size ℓ;

•
(
k2/n

)ℓ+c is an upper bound of the probability that all the edges chosen in the two previous items
appear in the graph GΦ.

We are going to show that the probability given in (8) is O(n−c/4), where the hidden constant only depends
on k. If this holds, by a union bound over ℓ ∈ {1, 2, . . . , ⌊b log(n)⌋}, we would find that the probability
that there is a connected subset of clauses of Φ with size at most b log(n) and tree-excess at least c + 1
is O(b log(n)n−c/4) = o(1). This would complete the proof. Using the inequality

(
p
q

)
≤ (ep/q)q and

m/n ≤ α we can bound (8) by(em
ℓ

)ℓ
ℓℓ−2

(
eℓ(ℓ− 1)/2

c+ 1

)c+1(k2

n

)ℓ+c

≤
(em

ℓ

)ℓ
ℓℓ−2

(
eℓ2/2

c+ 1

)c+1(
k2

n

)ℓ+c

=

(
e

2c+ 2

)c+1(emk2

n

)ℓ(
k2ℓ2

n

)c

≤
(

e

2c+ 2

)c+1 (
ek2α

)ℓ(k2ℓ2

n

)c

.

(9)

Now we distinguish two cases:
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• Case when ek2α ≤ 1 . We have c = 1 by definition. Thus, (9) can be further bounded by(
e

2c+ 2

)c+1(k2ℓ2

n

)c

= O

(
(log n)2

n

)
= O

(
n−c/4

)
as we wanted.

• Case when ek2α > 1. Then, as ℓ ≤ b log n and b log(ek2α) ≤ c/2 by definition, we have(
ek2α

)ℓ ≤ (ek2α)b logn = nb log(ek2α) ≤ nc/2.

We conclude that (9) can be further bounded by(
e

2c+ 2

)c+1(k2ℓ2√
n

)c

=

(
e

2c+ 2

)c+1(k4ℓ4

n

)c/2

= O
(
n−c/4

)
as we wanted, where we used c > 0.

Recall that in Lemma 15 we established that, in sets of clauses that have at least 2k4 log n variables,
the number of bad clauses of Φ is not too large. We aim to apply Lemma 15 to logarithmic-sized sets of
clauses. In general, |Y |might be significantly larger than |var(Y )|, so it is not clear how to apply Lemma 15.
However, in the random k-CNF formula setting the following holds.

Lemma 25. Let k ≥ 3 be an integer and let a > 0 and α > 0 be real numbers. W.h.p. over the choice of
Φ = Φ(k, n, ⌊αn⌋), for every set of clauses Y with |Y | ≥ a log n, we have |var(Y )| ≥ a log n.

Proof. Let ℓ := ⌈a log n⌉ − 1 and let m = ⌊αn⌋. We prove the equivalent statement that, w.h.p. over the
choice of Φ, for every set of clauses Y with |var(Y )| ≤ ℓ, we have |Y | ≤ ℓ. We note that if there is a
set of clauses Y with |var(Y )| ≤ ℓ and |Y | > ℓ, then for any subset Y ′ of Y with |Y ′| = ℓ + 1 we have
|var(Y ′)| ≤ |var(Y )| ≤ ℓ. Hence, it suffices to prove that there is no set Y of clauses with | var(Y )| ≤ ℓ
and |Y | = ℓ+ 1. We can assume n is large enough so that ℓ ≤ e · n.

Let E be the event that there is a set of clauses Y of size ℓ + 1 and a set of variables X of size ℓ such
that all clauses in Y have all variables in X . Then by a union bound

Pr (E) ≤
(

m

ℓ+ 1

)(
n

ℓ

)(
ℓ

n

)(ℓ+1)k

,

where the first factor is the number of sets Y , the second factor is the number of sets X and the third factor
is the probability that all variables in the clauses of Y are in X . From the well-known bound

(
p
q

)
≤ (ep/q)q,

we obtain

Pr (E) ≤
(

em

ℓ+ 1

)ℓ+1 (en
ℓ

)ℓ( ℓ

n

)(ℓ+1)k

≤
(em

ℓ

)ℓ+1 (en
ℓ

)ℓ+1
(
ℓ

n

)(ℓ+1)k

≤
(eαn

ℓ

)ℓ+1 (en
ℓ

)ℓ+1
(
ℓ

n

)(ℓ+1)k

=

(
e2α

ℓk−2

nk−2

)ℓ+1

,

which is O(log(n)/n) because k ≥ 3 and ℓ = O(log n).
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6.2 Number of marked variables in logarithmic-sized sets of clauses

Our results on random k-CNF formulas can now be combined to give a lower bound on the number of
marked / auxiliary variables in logarithmic-sized sets of clauses. We prove this result in a more general
setting by considering a set of good variables V that is r0-distributed for the formula Φ. The reader can
think of V as the set of marked variables or the set of auxiliary variables. Recall that α0 = 2(r0−2δ)k/k3

(Definition 2).

Lemma 26. Let δ̂ ∈ (0, r0). There is a positive integer k0 such that, for any integer k ≥ k0, any density α ≤
α0 and any real number b with 2k4 < b, the following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋).
Let V be a set of good variables that is r0-distributed. Then, for every set of clauses Y that is connected in
GΦ such that 2k4 log(n) ≤ |Y | ≤ b log(n), we have |var(Y ) ∩ V | ≥ (r0 − δ̂)k|Y |.

Proof. Let a = 2k4. We apply Lemma 15 to find that there is k1 such that for k ≥ k1, w.h.p. over the choice
of Φ, for every set of clauses Y that is connected in GΦ,

if |var(Y )| ≥ a log(n), then |Y ∩ Cbad| ≤ |Y |/k. (10)

We apply Lemma 25 with a = 2k4 to find that, w.h.p. over the choice of Φ, for every set of clauses Y , we
have

if |Y | ≥ a log(n), then |var(Y )| ≥ a log(n). (11)

Finally, for any b > 0, we apply Lemma 24, obtaining that, w.h.p. over the choice of Φ, for every set of
clauses Y that is connected in GΦ,

if |Y | ≤ b log n, then Y has tree-excess at most c = max{1, 2b log(ek2α)} = O(1). (12)

Let Y be a set of clauses that is connected in GΦ such that a log(n) ≤ |Y | ≤ b log(n). Then, by (11)
and (10), we have |Y ∩ Cgood| ≥ |Y |(1 − 1/k). By definition of r0-distributed (Definition 4), each good
clause has at least r0(k− 3) variables in V . As there are at most |Y | − 1 + c edges in GΦ joining clauses in
Y , see (12), and two distinct clauses only share at most two variables by Lemma 16, we have

|var(Y ) ∩ V | ≥ r0(k − 3)

(
1− 1

k

)
|Y | − 2(|Y |+ c− 1)

≥ (r0(k − 4)− 2)|Y | − 2(c− 1).

There is k0 ≥ k1 such that for k ≥ k0, we find that, for any set of clauses Y that is connected in GΦ and has
a log(n) ≤ |Y | ≤ b log(n), |var(Y )∩ V | ≥ (r0− δ̂/2)k|Y | − 2(c− 1). Therefore, using 2(c− 1) = O(1),
for large enough n we conclude that |var(Y ) ∩ V | ≥ (r0 − δ̂)k|Y | and the result follows.

6.3 Proof of Lemma 13

We use the following result of [21] on the number of connected sets of clauses in GΦ.

Lemma 27 ([21, Lemma 8.6]). W.h.p. over the choice of Φ, for any clause c, the number of connected sets
of clauses in GΦ with size ℓ ≥ log n containing c is at most (9k2α)ℓ.

We can now complete the proof of Lemma 13.

Lemma 13. There is an integer k0 ≥ 3 such that, for any integer k ≥ k0, any density α ≤ 2rk, and any real
number b with a := 2k4 < b, the following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋).

Let L be an integer satisfying a log n ≤ L ≤ b log n. Let V be a set of good variables of Φ that is r0-
distributed, let µ be a (1/k)-uniform distribution over the assignments V → {F,T}, and let ρ be an integer
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with 0 ≤ ρ ≤ |V |/2k. Consider the following experiment. First, draw S ⊆ V from the uniform distribution
τ over subsets of V with size ρ. Then, sample an assignment Λ from µ|V \S . Denote by F the event that that
there is a connected set of clauses Y of Φ with |Y | ≥ L such that all clauses in Y are unsatisfied by Λ. Then
PrS∼τ

(
PrΛ∼µ|V \S

(F) ≤ 2−δkL
)
≥ 1− 2−δkL.

Proof. Since δ = 0.00001, a = 2k4, r = 0.1178, and r0 = 0.117841, we can pick k0 large enough so that
for all k ≥ k0 we have

2rk ≤ 2(r0−3δ)k

18ek3
≤ α0 = 2(r0−2δ)k/k3. (13)

We apply Lemma 26 with our choices of b and with δ̂ = δ to conclude that, w.h.p. over the choice of Φ, for
every connected set of clauses Z ⊆ C we have

if a log(n) ≤ |Z| ≤ b log(n), then |var(Z) ∩ V | ≥ (r0 − δ)k|Z|. (14)

We also need the following result on random k-CNF formulas. For each clause c ∈ C, let

Z(c, L) = {Z ⊆ C : c ∈ Z,Z is connected in GΦ, |Z| = L}.

Then, w.h.p. over the choice of Φ, Lemma 27 shows that, as long as L ≥ log n,

for any clause c ∈ C we have |Z(c, L)| ≤ (9k2α)L. (15)

The facts that we have just established using Lemma 26 and Lemma 27 are all the properties of random
formulas that we need in this proof.

Let L be an integer with a log n ≤ L ≤ b log n. First, we are going to fix S ⊆ V with |S| = ρ and
study the event F described in the statement. For c ∈ C and Z ∈ Z(c, L), we denote by E1(Z, S) the event
that Z ⊆ CΛ, where Λ is drawn from µ|V \S , see Definition 7. Recall that Z ⊆ CΛ means that none of the
clauses in Z are satisfied by the assignment Λ (Definition 5). We note that F =

⋃
c∈C,Z∈Z(c,L) E1(Z, S).

We are going to show that, for large enough n,

PrS∼τ

(
PrΛ∼µ|V \S

(⋃
c∈C,Z∈Z(c,L)

E1(Z, S)
)

> 2−δkL

)
≤ 2−δkL, (16)

which is equivalent to the result stated in this lemma. We note that the left-hand side of (16) can be upper
bounded by

PrS∼τ

(
∃c ∈ C, Z ∈ Z(c, L) : PrΛ∼µ|V \S

(E1(Z, S)) >
2−δkL

|C| · |Z(c, L)|

)
≤

∑
c∈C,Z∈Z(c,L)

PrS∼τ

(
PrΛ∼µ|V \S

(E1(Z, S)) >
2−δkL

|C| · |Z(c, L)|

)
.

(17)

We are going to show that, for any c ∈ C and Z ∈ Z(c, L),

PrS∼τ

(
PrΛ∼µ|V \S

(E1(Z, S)) >
2−δkL

|C| · |Z(c, L)|

)
≤
(
2ek · 2−(r0−δ)k

)L
. (18)

Before proving (18), let us complete the proof assuming that this inequality holds. Recall that α ≤ 2rk and
that, in the first line of this proof, we chose k0 large enough so that 2kr ≤ 2(r0−3δ)k/(18ek3). Hence, in
light of (15), we have |Z(c, L)| ≤ (2(r0−3δ)k/(2ek))L. We use the following observation,

for k > 1/(δ log 2) and for large enough n, |C| ≤ nα ≤ nδ2k5 log 2 ≤ 2δkL. (19)
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Combining (17), (18) and (19), we conclude the left-hand size of (16) is bounded above by

∑
c∈C,Z∈Z(c,L)

(
2ek · 2−(r0−δ)k

)L
≤ nα ·

(
2(r0−3δ)k

2ek

)L

·
(
2ek · 2−(r0−δ)k

)L
= nα2−2δkL ≤ 2−δkL,

which completes the proof of (16), and hence the proof of the lemma, subject to (18).
To prove (18), we are going to find many S for which PrΛ∼µ|V \S

(E1(Z, S)) ≤ 2−δkL/(|C| · |Z(c, L)|)
holds. With this in mind, we introduce an event that may occur when sampling S:

E2(Z) :=“the random set S ⊆ V that we select contains fewer

than ℓ := ⌈|var(Z) ∩ V |/k⌉ variables in var(Z) ∩ V ”.
(20)

We will show (in equation (24)) that the event E2(Z) holds for most choices of S. Before proving this claim,
let us assume that E2(Z) holds for S and let us prove that PrΛ∼µ|V \S

(E1(Z, S)) ≤ 2−δkL/(|C| · |Z(c, L)|).
If there are c1, c2 ∈ Z and v ∈ var(c1) ∩ var(c2) ∩ (V \ S) such that c1 ̸= c2 and the literal of v in
c1 is the negation of the literal of v in c2, then at least one of c1 and c2 is satisfied by the assignment
Λ: V \S → {F,T}. In this case we have PrΛ∼µ|V \S

(E1(Z, S)) = 0. Let us now consider the complementary
case:

for all c1, c2 ∈ Z with c1 ̸= c2 and v ∈ var(c1) ∩ var(c2) ∩ (V \ S),
the literal of v in c1 is the same as the literal of v in c2.

(21)

In this setting, we call ω(v) the value of v that does not satisfy the clauses in Z that contain v. Note that
ω(v) is well-defined by assumption (21). Let u1, u2, . . . , ut be the list of variables in (var(Z) ∩ V ) \ S.
We denote byWj the event that uj is assigned the value ω(uj) by Λ when sampling Λ ∼ µ|V \S . Then, by
definition ofWj , we have

PrΛ∼µ|V \S
(E1(Z, S)) =

t∏
j=1

PrΛ∼µ|V \S

(
Wj

∣∣∣ ⋂j−1

i=1
Wi

)
.

As µ is (1/k)-uniform, we find that PrΛ∼µ|V \S
(Wj |

⋂j−1
i=1 Wi) ≤ (1/2) exp(1/k) for all j ∈ {1, 2, . . . , t}.

We conclude that

PrΛ∼µ|V \S
(E1(Z, S)) ≤

(
1

2
exp

(1
k

))t

.

From (14) and the fact that E2(Z) holds for S, we have

t = |var(Z)∩(V \S)| ≥ |var(Z)∩V |−⌈|var(Z)∩V |/k⌉ ≥ |var(Z)∩V |(1−1/k)−1 ≥ (r0−δ)L(k−1)−1.

It follows that

PrΛ∼µ|V \S
(E1(Z, S)) ≤

(
1

2
exp

(1
k

))(r0−δ)(k−1)L−1

≤ 2

(
2 · 2−(r0−δ)k exp

((r0 − δ)(k − 1)

k

))L

≤
(
4e · 2−(r0−δ)k

)L
,
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where we used that 1/2 ≤ (1/2) exp(1/k) < 1 in the second and third inequality. As α ≤ 2rk ≤
2(r0−3δ)k/(18ek3) ≤ 2(r0−3δ)k/(9 · 4ek2) by hypothesis and (13), we find that

(
4e · 2−(r0−δ)k

)L
=

(
9 · 4ek2 · α · 2−(r0−δ)k

9k2α

)L

≤
(
2−2δk

9k2α

)L

≤ 2−2δkL

|Z(c, L)|
≤ 2−δkL

|C| · Z(c, L)|
, (22)

where in the second to last inequality we applied the bound on the size of Z(c, L) given in (15), and in the
last inequality we used (19). As S was picked as any subset of V with |S| = ρ such that E2(Z) holds, it
follows that

PrS∼τ

(
PrΛ∼µ|V \S

(E1(Z, S)) >
2−δkL

|C| · |Z(c, L)|

)
≤ PrS∼τ

(
E2(Z)

)
. (23)

In order to prove (18), which finishes the proof, we need to show PrS∼τ

(
E2(Z)

)
≤ (2ek · 2−(r0−δ)k)L.

The probability of E2(Z) can be bounded as follows. Recall that |S| = ρ. If ρ < ℓ, then, by the definition
of E2(Z) in (20), we obtain PrS∼τ (E2(Z)) = 1. Otherwise, the number of choices of S (with |S| = ρ) such
that |S ∩ var(Z) ∩ V | ≥ ℓ is at most

(|var(Z)∩V |
ℓ

)(|V |−ℓ
ρ−ℓ

)
. Hence, we have

PrS∼τ

(
E2(Z)

)
≤
(
|V |
ρ

)−1(|var(Z) ∩ V |
ℓ

)(
|V | − ℓ

ρ− ℓ

)
=

ρ(ρ− 1) · · · (ρ− ℓ+ 1)

|V |(|V | − 1) · · · (|V | − ℓ+ 1)

(
|var(Z) ∩ V |

ℓ

)
≤
(

ρ

|V |

)ℓ(e|var(Z) ∩ V |
ℓ

)ℓ

≤
(

ρ

|V |
ek

)ℓ

,

where we used ℓ := ⌈|var(Z) ∩ V |/k⌉ ≥ |var(Z) ∩ V |/k, (p − i)/(q − i) ≤ p/q for any 0 < i < p < q
and

(
p
q

)
≤ (ep/q)q. Combining this with the hypothesis ρ ≤ |V |/2k and the bound ℓ ≥ (r0− δ)L, see (14),

we obtain

PrS∼τ

(
E2(Z)

)
≤
(
ek2−k

)ℓ
≤
(
(ek)r0−δ · 2−(r0−δ)k

)L
≤
(
2ek · 2−(r0−δ)k

)L
. (24)

The bound (18) follows from combining (23) and (24), which completes the proof.

7 Sampling from small connected components

In this section we prove Lemma 14. Recall that Lemma 14 claims the existence of a procedure to sample
from marginals of the uniform distribution on the satisfying assignments of ΦΛ when the connected com-
ponents of GΦΛ have small size. Here we make this procedure explicit. Our algorithm exploits the fact
that the tree-excess of logarithmic-sized subsets of GΦ is bounded by a constant depending only on k, see
Lemma 24, and the fact that when GΦ is acyclic, we can exactly count and sample satisfying assignments
efficiently (Proposition 28).

Proposition 28. There is an algorithm that, for any k-CNF formula Φ = (V, C) such that GΦ is a tree,
computes the number of satisfying assignments of Φ in time O(4k|C|).

Proof. We give an algorithm based on dynamic programming. Let us fix a vertex / clause c of GΦ as the
root and consider the corresponding directed tree structure T := (GΦ, c). For any clause c′ of Φ, let Tc′ be
the subtree of T hanging from c′. For any assignment σ : var(c′)→ {F,T}, let sa(c′, σ) denote the number
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of satisfying assignments of the formula determined by Tc′ that extend σ. Our goal is computing the number
of satisfying assignments of Φ, which, under this notation, is equal to

sa(Φ) :=
∑

σ : var(c)→{F,T}

sa(c, σ). (25)

We do this by computing sa(c′, σ) for any clause c′ and any assignment σ : var(c′) → {F,T}. Using the
tree structure of T , we show that sa(c′, σ) satisfies a recurrence. There are two cases:

1. c′ is a leaf. Then sa(c′, σ) = 1 if c′ is satisfied by σ and 0 otherwise.

2. c′ is not a leaf. Let T1, . . . , Tl be the trees hanging from c′ in T and let c1, . . . , cl be their roots. Then,
since T1, . . . , Tl do not share variables as GΦ is acyclic, we have

sa(c′, σ) =
l∏

j=1

∑
τ∈A(cj ,σ)

sa(cj , τ),

where A(cj , σ) is the set of assignments of the variables in var(cj) that agree with σ on var(c′) ∩
var(cj).

We can apply this recurrence with dynamic programming to compute sa(c, σ) for any assignment σ : var(c)→
{F,T}. More explicitly, we compute sa(c′, σ) by levels of the tree, starting from the deepest level, where
all nodes are leaves, and ending at the root c. This involves computing at most 2k entries sa(c′, ·) per clause
c′ of Φ. After computing all the entries appearing in this recurrence, we compute the number of satisfying
assignments of Φ, sa(Φ), as in equation (25). The overall procedure takes at most O(4k|C|) steps since each
entry sa(c′, σ) is accessed at most 2k times when computing the corresponding entries for the parent of c′,
and there are at most 2k|C(T )| entries.

In Algorithm 3 we give an algorithm based on Proposition 28 to count satisfying assignments of a k-
CNF formula. Recall the folklore fact that if we can count satisfying assignments then we can sample from
the marginal of µΩ on v by counting the satisfying assignments of Φv 7→F and Φv 7→T.

Algorithm 3 Counting satisfying assignments via trees
Input: a k-CNF formula Φ = (V, C)
Output: The number of satisfying assignments of Φ.

1: Find a spanning forest T of GΦ.
2: Let VT be the set of variables that gives rise to edges of GΦ that are not in T .
3: count← 0.
4: for all Λ: VT → {F,T} do
5: Note that the graph GΦΛ is acyclic. Hence, we can count the number of satisfying assignments of ΦΛ

in time O(4k|C(ΦΛ)|) by applying Proposition 28 to each connected component of GΦΛ and taking
the product of the numbers obtained. Let sa(ΦΛ) be the result of this computation.

6: count← count+ sa(ΦΛ).
7: end for
8: return count

Proposition 29. Let Φ = (V, C) be a k-CNF formula and let c be the tree-excess of GΦ. Then Algorithm 3
counts the number of satisfying assignments of Φ in time O(2k(c+2)|C|).
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Proof. We note that, in the execution of Algorithm 3, we have |VT | ≤ kc. Hence, there are at most 2kc

iterations of the for loop and each one takes O(4k|C|) steps, so the running time follows. The fact that the
algorithm is correct follows from the correctness of the procedure presented in Proposition 28.

Even though the running time of Algorithm 3 is not polynomial in the size of the formula Φ (in fact, it
is exponential in general), we obtain linear running time when the formulas considered have constant tree-
excess. As shown in Lemma 24, this is the case for logarithmic-sized subsets of clauses of random formulas.
We can now finish the proof of Lemma 14.

Lemma 14. There is an integer k0 ≥ 3 such that, for any integers k ≥ k0, ξ ≥ 1 and any density α ≤ 2rk,
the following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). Let V be a subset of variables and let
Λ: V → {F,T} be a partial assignment such that all the connected components in GΦΛ have size at most
2k4(1+ ξ) log(n). Then, there is an algorithm that, for any S ⊆ V \ V , samples an assignment from µΩΛ |S
in time O(|S| log n).

Proof. We apply Lemma 24 with b = 2k4(ξ+1), so, w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋), any con-
nected set of clauses in GΦ with size at most b log(n) has tree-excess at most c = max{1, 2b log(eαk2)} =
O(1). First, we give an algorithm for the case |S| = 1. Let Φ, V and Λ as in the statement, and let S = {v}.
Let H be the connected component of the clauses that contain v in GΦΛ , and let Φ′ = (V ′, C′) be the sub-
formula of ΦΛ with GΦ′ = H . The formula Φ′ has size at most b log(n). Moreover, the graph GΦ′ = H has
tree-excess at most c as H is a subgraph of GΦ with size at most b log(n). Thus, we can apply Proposition 29
to count the number of satisfying assignments of Φ′v→F and Φ′v→T in time O(2k(c+2)|C′|) = O(log n). Let
these numbers be t0 and t1 respectively. It is straightforward to use t0 and t1 to sample from the marginal
of the distribution µΩΛ for v; we only have to sample an integer t ∈ [0, t0 + t1) and output F if t < t0 and
T otherwise. The whole process takes time O(log n).

Finally, we argue how to extend this algorithm to the case |S| > 1. For this, first, we give an order to the
variables in S, say u1, u2, . . . , uℓ. We then call the algorithm described in the paragraph above once for each
variable in u1, u2, . . . , uℓ. The inputs of the algorithm in the j-th call are the variable uj and the assignment
Λj = Λ ∪ τj−1, where τj−1 is the assignment obtained in the previous calls for u1, . . . , uj−1. After this
process, τℓ is an assignment of all the variables in S that follows the distribution µΩΛ |S . This assignment
has been computed in O(|S| log n) steps as we wanted.

8 Mixing time of the Markov chain

In this section we study the mixing time of the ρ-uniform-block Glauber dynamics on the marked variables
and prove Lemma 11. As explained in Section 2.2, in order to conclude rapid mixing of this Markov chain
we apply the spectral independence framework, which has recently been extended to the ρ-uniform-block
Glauber dynamics [8]. Traditionally in path coupling or spectral independence arguments one has to bound
a sum of influences by a constant in order to obtain rapid mixing of the single-site Glauber dynamics.
However, due to the presence of high-degree variables, an O(1) upper bound seems unattainable in the
random k-SAT formula setting; in the worst case paths of high-degree variable may significantly affect
influences. This seems also to be the case for other random models, such as the hardcore model on random
graphs [5]. Here we show that that sums of influences are at most ε log n for small ε (Lemma 10). Even
though this is generally not enough to conclude rapid mixing of the single-site Glauber dynamics, it turns
out to be enough to conclude rapid mixing of the ρ-uniform-block Glauber dynamics for ρ = Θ(n). This
section is divided as follows. In Section 8.1, we explain why bounded-degree methods to bound the mixing
time of the Glauber dynamics fail to generalise from the bounded-degree k-SAT model to the random k-SAT
model. In Section 8.2 we prove Lemmas 38 and 10. In Section 8.3 we prove Lemma 11.
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8.1 Previous work on the Glauber dynamics for bounded-degree k-SAT formulas

In this section we explain why previously known arguments for showing rapid mixing of the Glauber dy-
namics on bounded-degree k-SAT formulas do not extend to the random k-SAT model. This section is not
used in our work and may be skipped by a reader who just wants to understand our approach and result. The
best result currently known on bounded-degree formulas is [26], where the authors show, for large enough k,
how to efficiently sample satisfying assignments of k-CNF formulas in which their variables have maximum
degree ∆̂ ≤ C 20.1742·k/k3, where C > 0 is a constant that does not depend on k.1 Their result actually
holds in the more general setting of atomic constrain satisfaction problems (albeit with a different bound
on ∆̂). As part of their work, they show that the single-site Glauber dynamics on a set of marked vari-
ables mixes quickly. Their argument is restricted to atomic CSPs with bounded-degree and strongly exploits
the properties of the Glauber dynamics in this setting. They study the optimal coupling of the single-site
Glauber dynamics, we refer to [31] for the definition of coupling of Markov chains. In such a coupling the
goal is to show that two copies of the chain starting from truth assignments differing in at least a marked
variable (a so-called discrepancy) can be coupled in a small number of steps. Here it is crucial that the mar-
ginals of the marked variables are near 1/2, so the optimal coupling generates new discrepancies with small
probability. At this stage, the high-level idea to conclude rapid mixing of the Glauber dynamics is bounding
the probability that the dynamics has not coupled by a product of probabilities, each corresponding to the
event that a clause is unsatisfied at a certain time, and aggregating over all possible discrepancy sequences.

The fundamental observation in [26], based on the work on monotone k-CNF formulas presented in [24],
is that if there is an update of a marked variable that generates a discrepancy in the chains, then there
is another marked variable where the chains disagree that is connected to the former variable through a
path of clauses, where consecutive clauses in the path share at least a variable. Moreover, each one of the
clauses in this path is unsatisfied by at least one of the two copies of the chain. As a consequence, from a
discrepancy at time t one can find a sequence of discrepancies going back to time 0, and these discrepancies
are joined by a path of clauses. Thus, the union bound over discrepancy sequences is essentially a union
bound over paths of clauses with a particular time structure, where the same clause can be appear in the
path several times. Extending this idea to the random k-SAT model presents two main issues. First of
all, the number of discrepancy sequences of any given length may be too large due to the presence of bad
clauses and the fact that they can repeatedly appear in the sequence. Moreover, it may be the case that
these discrepancy sequences mostly consist of bad clauses, which are always unsatisfied in both chains and,
thus, the probability that they are unsatisfied is not small. Interestingly, similar issues arise when directly
extending the bounded-degree approach based on the coupling process of [32, 18] to our setting. In [18]
the mixing time argument only succeeds when ∆̂ ≤ 2k/20/(8k) and is also based on a union bound over
path of clauses that are unsatisfied or contain discrepancies after running a coupling process. However, very
importantly, these paths of clauses are simple (clauses are not repeated) and the combinatorial structures
appearing in the coupling process are less complex than the discrepancy sequences of [26]. This allowed
the authors of [21] to exploit the expansion properties of random k-CNF formulas to analyse the coupling
process of [32] on the random setting. Here we incorporate some novel ideas to the work of [21] in order to
obtain a tighter analysis that leads to nearly linear running time of our sampling algorithm.

8.2 Spectral independence in the k-SAT model

In this section we prove Lemma 10. In order to bound the sum of influences of marked variables, we follow
the coupling process technique that is standard in the literature [21, 32, 18]. In this work we introduce the
concept of auxiliary variables in the coupling process and exploit the sparsity properties of logarithmic-sized

1In [26] the maximum degree ∆̂ of Φ is defined as the maximum over c ∈ C of the number of clauses that share a variable with
c. Under this definition of ∆̂, their result holds for ∆̂ ≤ C20.1742·k/k2.
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sets of clauses, which allows us to conclude a 2−r0k log n spectral independence bound. The key idea is that
if we progressively extend two assignments X and Y on auxiliary variables following the optimal coupling,
at some point the formulas ΦX and ΦY factorise in small connected components in spite of the presence
of bad variables and, on top of that, ΦX and ΦY share most of these connected components. Then we
can bound influences between marked variables by analysing the connected components where ΦX and ΦY

differ. First, let us introduce some notation.
Let µ and ν be two distributions over the same space Ω̂. A coupling τ of µ and ν is a joint distribution

over Ω̂ × Ω̂ such that the projection of τ on the first coordinate is µ and the projection on the second
coordinate is ν. Recall that the total variation distance of µ and ν is defined by dTV(µ, ν) =

1
2

∑
x∈Ω̂|µ(x)−

ν(x)|. If a random variable X has distribution µ, we also write dTV(X, ν) to mean dTV(µ, ν).

Proposition 30 (Coupling lemma). Let τ be a coupling of µ and ν. Then dTV (µ, ν) ≤ Pr(X,Y )∼τ (X ̸= Y ).
Moreover, there exists a coupling that achieves equality.

The coupling τ of µ and ν that minimises Pr(X,Y )∼τ (X ̸= Y ) is called optimal. Let us now assume
that µ and ν are Bernoulli distributions with parameters 0 ≤ p ≤ q ≤ 1 respectively, so Prµ(X = 1) = p
and Prν(Y = 1) = q. The monotone coupling τ of µ and ν is defined as follows. We pick U uniformly at
random in [0, 1] and set X = 1 only when U ≤ p and Y = 1 only when U ≤ q. For this coupling we have
Pr(X,Y )∼τ (X ̸= Y ) = q − p = dTV(X,Y ) and, hence, the monotone coupling is optimal.

Before presenting our coupling process, we show how we can bound a sum of influences between marked
variables with the help of the coupling lemma. In all this section we fix a k-CNF formula Φ and a r0-marking
(Vm,Va,Vc) of Φ. Given two assignments Λ1 and Λ2 on disjoint sets of variables, we denote by Λ1 ∪ Λ2

the combined assignment on the union of their domains.

Proposition 31. Let u ∈ Vm and Λ: S → {F,T} with S ⊆ Vm \ {u}. Let (X,Y ) be a coupling where X
follows the distribution µΩΛ∪u7→T |Vm

and Y follows the distribution µΩΛ∪u7→F |Vm
. Then∑

v∈Vm\(S∪{u})

∣∣IΛ(u→ v)
∣∣ ≤ ∑

v∈Vm\(S∪{u})

Pr (X(v) ̸= Y (v)) . (26)

Proof. Let v ∈ Vm. Then for any ω ∈ {F,T}, we have Pr(v 7→ ω|Λ, u 7→ T) = Pr(X(v) = ω) and
Pr(v 7→ ω|Λ, u 7→ F) = Pr(Y (v) = ω). Thus, by the coupling lemma,∣∣IΛ(u→ v)

∣∣ = |Pr(X(v) = T)− Pr(Y (v) = T)| = dTV (X(v), Y (v)) ≤ Pr (X(v) ̸= Y (v)) ,

and the proof follows by adding over v ∈ Vm \ (S ∪ {u}).

For two assignments X and Y on a subset of variables V , we say that X and Y have a discrepancy at
v ∈ V when X(v) ̸= Y (v). In [18] the authors manage to bound (26) by a constant that does not depend on
n when the considered formula has bounded degree. However, their argument breaks under the presence of
high-degree variables due to the fact that we cannot control the number of bad clauses in a path of clauses
unless the path has length at least Ω(log n). Here instead we perform the coupling process developed in [21]
over auxiliary variables, which accounts for the presence of bad clauses.

Before presenting our algorithm for the coupling process on auxiliary variables, let us describe some
of the notation and structures that are used in this algorithm. Let u ∈ Vm and Λ: S → {F,T} with
S ⊆ Vm \ {u}. We start with two assignments X̂ and Ŷ that have a discrepancy at u and agree with Λ on S.
In the coupling process we identify a set of failed clauses, denoted Fd ∪Fu. At each step of the process, we
check if a clause is failed or extend the coupling to an auxiliary variable. It is important in our arguments
that all clauses containing a discrepancy are failed, and that we make sure that the set of failed clauses is
connected in GΦ at all times. In order to achieve connectivity of failed clauses, at each step of the coupling
process we only consider clauses that are adjacent to failed clauses in GΦ. For ease of reading, here we
present a list of the structures that appear in our algorithm.
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1. Vd. Set of discrepancies, i.e., variables v with X̂(v) ̸= Ŷ (v).

2. Fd. Set of all clauses containing a variable in Vd. These are failed clauses.

3. Vset. Set of variables that are assigned a value in the coupling.

4. Fu. Set of clauses that have been considered by the coupling process, and are either bad or are
unsatisfied by at least one of X̂ and Ŷ and have all their auxiliary variables in Vset. These are failed
clauses.

5. Crem. Set of clauses that have unassigned auxiliary variables or have not been explored yet.

Our coupling process on auxiliary variables is given in Algorithm 4.

Algorithm 4 The coupling process on auxiliary variables
Input: A k-CNF formula Φ = (V, C), an r0-marking M = (Vm,Va,Vc), u ∈ Vm and Λ: S → {F,T}

with S ⊆ Vm \ {u}.
Output: a pair of assignments X̂, Ŷ : Vset → {F,T} for some set of variables Vset such that:
◦ S ∪ {u} ⊆ Vset ⊆ S ∪ {u} ∪ Va,
◦ X̂ and Ŷ agree with Λ on S, X̂(u) = T and Ŷ (u) = F.

1: We fix two total orders ≤V and ≤C over the variables and clauses of Φ. These are only relevant to have
a pre-determined order in which clauses and variables are considered in this algorithm.

2: Initialise X̂ and Ŷ as Λ, and set X̂(u) = T and Ŷ (u) = F.
3: Vset ← S ∪ {u}, Vd ← {u}, Fd ← {c ∈ C : u ∈ var(c)}, Fu ← ∅, Crem ← C.
4: while ∃c ∈ Crem : var(c) ∩ (Vd ∪ var(Fu)) ̸= ∅ do
5: Let c be smallest clause according to ≤C with var(c) ∩ (Vd ∪ var(Fu)) ̸= ∅.
6: if c is a bad clause then
7: Remove c from Crem and add c to Fu.
8: end if
9: if c is a good clause and (var(c) ∩ Va) \ Vset = ∅ then

10: Remove c from Crem (as all auxiliary variables in c have been set).
11: if c is unsatisfied by at least one of X̂ and Ŷ then
12: Add c to Fu.
13: end if
14: end if
15: if c is a good clause and (var(c) ∩ Va) \ Vset ̸= ∅ then
16: Let v be the smallest variable in (var(c) ∩ Va) \ Vset (according to ≤V ).
17: Extend X̂ and Ŷ to v by sampling from the monotone coupling between the marginal distributions

of µ
ΩX̂ and µ

ΩŶ on v, and add v to Vset.
18: if X̂(v) ̸= Ŷ (v) then
19: Add v to Vd. Add all clauses containing v to Fd.
20: end if
21: end if
22: end while
23: return (X̂, Ŷ ).

First, we analyse the sets Vset, Vd, Fd, Fu and Crem and prove the connectivity property of Fd ∪ Fu. In
the rest of this section we fix the inputs of Algorithm 4 unless stated otherwise.
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Proposition 32 (Properties of the coupling process). The coupling process in Algorithm 4 terminates even-
tually and, at the end of the process, the sets Vset, Vd, Fd, Fu and Crem that are computed during the
execution of the process present the following properties:

1. We have S ∪ {u} ⊆ Vset ⊆ Va ∪ S ∪ {u}, Vd = {v ∈ Vset : X̂(v) ̸= Ŷ (v)}, and Fd is the set of
clauses containing a variable in Vd.

2. For all c ∈ Fu we have var(c) ∩ Va ⊆ Vset and c is unsatisfied by at least one of X̂ and Ŷ .

3. For all c ∈ Crem, we have var(c) ∩ (Vd ∪ var(Fu)) = ∅.

4. For all c ∈ C \ (Crem ∪ Fu), we have var(c) ∩ (Vd ∪ var(Fu)) ̸= ∅, var(c) ∩ Va ⊆ Vset and c is
satisfied by X̂ and Ŷ .

5. The set Fd ∪ Fu is connected in GΦ.

Proof. Each iteration of the coupling procedure either removes a clause from Crem, or samples the values
X̂(v) and Ŷ (v) for an auxiliary variable v and adds v to Vset ⊆ V . As Crem and V are finite, the coupling
terminates after a finite number of iterations. We prove the five properties in the statement separately. First,
we note that the sets Vset, Vd, Fd, Fu never decrease in size during the execution of Algorithm 4, whereas
the set Crem never increases in size.

Property 1. Note that at the start of Algorithm 4 (line 3) this property holds. The result then follows
from the fact that the sets Vset, Vd and Fd are only updated from line 15 to line 20 of Algorithm 4, and these
steps preserve Property 1.

Property 2. This follows from the facts that the set Fu is originally empty and is only extended in lines 7
and 12, and bad clauses do not contain auxiliary variables.

Property 3. This property follows from the fact that clauses that satisfy var(c) ∩ (Vd ∪ var(Fu)) ̸= ∅ at
some point are eventually removed from Crem in either line 7 (if they are bad) or in line 10 (if they are good,
once all the auxiliary variables of the clause are in Vset).

Property 4. If c ∈ C \ (Crem ∪ Fu), then c has been removed from Crem in line 10 but it has not been
added to Fu in line 12, which proves this property.

Property 5. We note that at the start of the coupling process (line 3) Fd ∪ Fu is connected. Let us
analyse every line of the algorithm where the sets Fd and Fu are enlarged. When it comes to Fd, this
occurs in line 19 if this line is executed. Let c be the clause considered in that iteration of the coupling
process and let v be the variable of c considered in line 16. We recall that var(c) ∩ (Vd ∪ var(Fu)) ̸= ∅
and v ∈ (var(c) ∩ Va) \ Vset. In line 19 we add all to Fd all the clauses containing v. Let Cv be the set of
such clauses. Since ∅ ̸= var(c) ∩ (Vd ∪ var(Fu)) ⊆ var(c) ∩ var(Fd ∪ Fu) and c ∈ Cv, we conclude that
Fd ∪ Fu ∪ Cv is connected as we wanted. When it comes to Fu, we add clauses in lines 7 and 12. In this
case, we add a clause c such that var(c) ∩ (Vd ∪ var(Fu)) ̸= ∅, so Fd ∪ Fu ∪ {c} is connected in GΦ.

We can now prove our main result concerning the structure of ΦX̂ and ΦŶ .

Lemma 33. Let X̂ and Ŷ be the assignments returned by Algorithm 4 and let Crem and Fu be as in Pro-
position 32. There are sets of clauses C1 ⊆ Crem and C2, C3 ⊆ Fu such that ΦX̂ = (V \ Vset, C1 ∪ C2) and
ΦŶ = (V \ Vset, C1 ∪ C3), where the variables in Vset are removed from the clauses in C1, C2, C3.

Proof. We determine the set of clauses that are unsatisfied by X̂ or Ŷ with the help of Proposition 32. We
distinguish 3 disjoint cases:

• c ∈ Crem. Then var(c) ∩ Vd = ∅, so X̂ and Ŷ agree in all the variables in var(Crem) ∩ Vset. As a
consequence, the restrictions of ΦX̂ and ΦŶ to Crem give rise to the same CNF formula. Note that
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some of the clauses in Crem might be satisfied by both X̂ and Ŷ , but they are never satisfied by only
one of the two assignments.

• c ∈ Fu. Then c is unsatisfied by at least one of X̂ and Ŷ and, thus, it appears in at least one of ΦX̂

and ΦŶ . The clause c may contain a variable v ∈ Vd.

• c ∈ C \(Crem∪Fu). By Proposition 32, we have var(c)∩(Vd∪var(Fu)) ̸= ∅ and var(c)∩Va ⊆ Vset.
Since c ̸∈ Fu, it follows that c is satisfied by both X̂ and Ŷ and, thus, c does not appear in any of the
formulas ΦX̂ and ΦŶ .

We conclude that we can write CX̂ = C1 ∪ C2 and CŶ = C1 ∪ C3, where C1 ⊆ Crem and C2, C3 ⊆ Fu as
we wanted.

In order to further analyse the probability distribution of the output of Algorithm 4, we introduce the
following definition.

Definition 34 (run, R(Φ,M, u,Λ), τR(Φ,M, u,Λ), Vset(R), Vd(R), Fu(R), Fd(R), Crem(R)). A run
of Algorithm 4 is a sequence of all the random choices (X̂(v), Ŷ (v)) made in line 17 when executing
Algorithm 4. Let R(Φ,M, u,Λ) be the set of all possible runs of Algorithm 4 for the inputs Φ,M, u,Λ
and let τR(Φ,M, u,Λ) be the probability distribution that Algorithm 4 yields onR(Φ,M, u,Λ). Each run
R ∈ R(Φ,M, u,Λ) determines the output (X̂, Ŷ ) and the sets Vset(R),Vd(R),Fu(R),Fd(R), Crem(R)
that are computed in Algorithm 4.

With the aim of applying Proposition 31, we extend the coupling (X̂, Ŷ ) to all marked and auxiliary
variables.

Definition 35 (The coupling (X,Y )). Let R ∈ R(Φ,M, u,Λ) and let (X̂, Ŷ ) be the corresponding output
of the run R. Let ≤V be a total order on the variables of Φ and let v1 ≤V v2 ≤V · · · ≤V vt be the variables
in (Vm∪Va)\Vset. We extend the assignments X̂, Ŷ : Vset → {F,T} to v1, v2, . . . , vt inductively (as follows)
to obtain a coupling (X,Y ) such that X follows the distribution µΩΛ∪u7→T |(Vm∪Va)\Vset

and Y follows the
distribution µΩΛ∪u7→F |(Vm∪Va)\Vset

. Assume that X and Y are defined on Vset ∪ {v1, v2, . . . , vj−1} for j ∈
{1, 2, . . . , t}. Then we sample (X(vj), Y (vj)) from the monotone coupling of the marginal distributions (on
vj) of µΩX and µΩY .

Remark 36. When R ∈ R(Φ,M, u,Λ) follows the probability distribution τR(Φ,M, u,Λ) (Definition 34),
the pair of random assignments (X,Y ) of Definition 35 is a coupling of the distributions µΩΛ∪u7→T |Vm∪Va

and µΩΛ∪u7→F |Vm∪Va
.

In Lemma 37 we bound the probabilities Pr(X(v) ̸= Y (v)|R) for any v ∈ (Vm ∪ Va) \ Vset(R) and
R ∈ R(Φ,M, u,Λ).

Lemma 37. Let R ∈ R(Φ,M, u,Λ). Let (X,Y ) be the coupling of Definition 35. Then for any v ∈
(Vm ∪ Va) \ Vset(R) we have Pr(X(v) ̸= Y (v)|R) ≤ 2−(r0+δ)k+1/k.

Proof. Let X̂ and Ŷ be the output of Algorithm 4 for the run R. Let v1, v2, . . . , vt be the variables in
(Vm ∪ Va) \ Vset(R) in the order that they are considered in Definition 35. Let j ∈ {1, 2, . . . , t} and let
Λ′,Λ′′ : Vset(R) ∪ {v1, v2, . . . , vj−1} → {F,T} be two assignments such that Λ′|Vset

= X̂ and Λ′′|Vset
=

Ŷ . When X agrees with Λ′ and Y agrees with Λ′′, the values X(vj) and Y (vj) are sampled from the
optimal/monotone coupling between the marginals on vj of the distributions µΩΛ′ and µΩΛ′′ . Let us denote
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these marginals by νX and νY respectively. Thus, by the coupling lemma (Proposition 30) and Proposition 6
(or Lemma 21) on the marginals of marked and auxiliary variables, we have

Pr
(
X(vj) ̸= Y (vj)|Λ′,Λ′′) = dTV (νX , νY ) =

∣∣Pr(X(vj) = T|Λ′)− Pr(Y (vj) = T|Λ′′)
∣∣

≤ |Pr(X(vj) = T|Λ′)− 1/2|+ |1/2− Pr(Y (vj) = T|Λ′′)|

≤ exp

(
1

k2(r0+δ)k

)
− 1.

Applying the inequality ez ≤ 1+2z for z ∈ (0, 1), we find that Pr (X(vj) ̸= Y (vj)|Λ′,Λ′′) ≤ 2−(r0+δ)k+1/k.
Thus, from the arbitrary choice of Λ′,Λ′′ and the law of total probability we conclude that the bound
Pr (X(vj) ̸= Y (vj)|R) ≤ 2−(r0+δ)k+1/k holds.

Combining all the results presented up to this stage in the current section allows us to bound the sum∑
v∈Vm\(S∪{u})

∣∣IΛ(u→ v)
∣∣ in terms of the properties of the coupling process over auxiliary variables. In

fact, we bound this sum of influences between marked variables by the expected number of failed clauses in
the coupling process on auxiliary variables.

Lemma 38. There is an integer k0 such that for any k ≥ k0 and any density α with α ≤ α0 the following
holds w.h.p. over the choice of the random k-CNF formula Φ = Φ(k, n, ⌊αn⌋). Let (Vm,Va,Vc) be an
r0-marking of Φ, and let u ∈ Vm and Λ: S → {F,T} with S ⊆ Vm \ {u}. Then for a random run R of the
coupling process on the auxiliary variables (Algorithm 4), we have∑

v∈Vm\(S∪{u})

∣∣IΛ(u→ v)
∣∣ ≤ 2−(r0+δ)k+1E [|Fu(R)|] .

Proof. Let (X,Y ) be the coupling in Definition 35 for a (random) run R ∼ τR(Φ,M, u,Λ) of Algorithm 4.
We are going to show that

Pr(X(v) = Y (v)|R) = 1 for all v ∈ V := (Vm ∪ Va) \ (Vset(R) ∪ var(Fu(R))). (27)

Let X̂, Ŷ : Vset(R) → {F,T} be the output of Algorithm 4 for the run R. By Lemma 33 we conclude
that we can write CX̂ = C1 ∪ C2 and CŶ = C1 ∪ C3, where C1 ⊆ Crem(R) and C2, C3 ⊆ Fu(R). Thus,
the variables in V (see (27) for a definition of V ) either appear in a clause in C1 or they are not present
in any of the formulas ΦX̂ and ΦŶ . Moreover, by Proposition 32, we have var(c) ∩ var(c′) = ∅ for all
c ∈ Crem(R) and c′ ∈ Fu(R). We conclude that the distributions µ

ΩX̂

∣∣
V

and µ
ΩŶ

∣∣
V

agree – both are the
uniform distribution over the satisfying assignments of the CNF formula (V, C1). Let v1, v2, . . . , vt be the
variables in V in the order they are considered in the definition of the coupling (X,Y ). By induction on
j ∈ {1, 2, . . . , t}, the marginals on vj in Definition 35 are the same when coupling X(vj) and Y (vj) and,
thus, X(vj) = Y (vj) for all j ∈ {1, 2, . . . , t}.

Since S ∪ {u} ⊆ Vset(R) ⊆ S ∪ {u} ∪ Va, we have Vm \ V = S ∪ {u} ∪ (Vm ∩ var(Fu(R))). In light
of Lemma 37 and (27), we find that∑
v∈Vm\(S∪{u})

Pr(X(v) ̸= Y (v)|R) ≤
∑

v∈Vm∩var(Fu(R))

Pr(X(v) ̸= Y (v)|R) ≤ 2

k
2−(r0+δ)k|var(Fu(R))|.

From |var(Fu(R))| ≤ k|Fu(R)| we conclude that∑
v∈Vm\(S∪{u})

Pr(X(v) ̸= Y (v)|R) ≤ 2−(r0+δ)k+1|Fu(R)|. (28)
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In the rest of this proof we are going to aggregate (28) over R ∈ R(Φ,M, u,Λ) with the aim of applying
Proposition 31. Let (X,Y ) be the coupling in Definition 35 for a (random) run R ∼ τR(Φ,M, u,Λ) of
Algorithm 4. We have∑

v∈Vm\(S∪{u})

Pr(X(v) ̸= Y (v)) =
∑

v∈Vm\(S∪{u})

∑
R∈R(Φ,M,u,Λ)

Pr(R) Pr(X(v) ̸= Y (v)|R)

=
∑

R∈R(Φ,M,u,Λ)

Pr(R)
∑

v∈Vm\(S∪{u})

Pr(X(v) ̸= Y (v)|R)

≤ 2−(r0+δ)k+1
∑

R∈R(Φ,M,u,Λ)

Pr(R)|Fu(R)|

= 2−(r0+δ)k+1E [|Fu(R)|] .

Finally, we note that we can indeed apply Proposition 31 to the restriction of X and Y on Vm as (X,Y ) is a
coupling of the distributions µΩΛ∪u7→T |Vm∪Va

and µΩΛ∪u7→F |Vm∪Va
(Remark 36). This finishes the proof.

In the remainder of this section we bound E [|Fu(R)|], which would complete our proof of Lemma 10
when combined with Lemma 38. In order to do this we exploit the fact that Fu(R)∪Fd(R) is connected in
GΦ (Proposition 32), the local sparsity properties of random CNF formulas and the properties of the marking
(Vm,Va,Vc). It is important that the bound on E [|Fu(R)|] is poly(k) log n in order to conclude fast mixing
time of the ρ-uniform-block Glauber dynamics when applying the spectral independence framework. First,
we bound the probability that some good clauses are failed in Algorithm 4. At first glance this seems to be
a straightforward task thanks to the fact that the marginals of marked and auxiliary variables are close to
1/2 (see Proposition 6). However, for any good clauses c1 and c2, the events that c1 ∈ Fd(R) ∪ Fu(R)
and c2 ∈ Fd(R) ∪ Fu(R) may not be independent; any value given to the variables in c1 may affects the
marginals of the variables in c2 and whether these variables are considered by the coupling process or not.
However, we show that, as long as c1 and c2 do not share good variables, these dependencies are not very
strong and we can indeed bound the probability that c1, c2 ∈ Fd(R) ∪ Fu(R) with a careful probability
argument that analyses the coupling process step by step, see Lemma 42. With this in mind, we introduce
the following definitions.

Definition 39 (Rt(Φ,M, u,Λ), A≤t). For a positive integer t, we letRt(Φ,M, u,Λ) be the set containing
for each R ∈ R(Φ,M, u,Λ) a tuple with the first min{t, length(R)} entries of the sequence R. That is,
Rt(Φ,M, u,Λ) is the set containing all possible sequences of the first t choices that Algorithm 4 makes
in line 17. Note that if R ∈ R(Φ,M, u,Λ) has length(R) ≤ t, then R ∈ Rt(Φ,M, u,Λ). Each
Rt ∈ Rt(Φ,M, u,Λ) determines two partial assignments Λ′ and Λ′′ of marked and auxiliary variables
that correspond to the assignments X̂ and Ŷ after length(Rt) iterations of line 17 following Rt. Let A≤t

be the σ-algebra containing all the subsets ofRt(Φ,M, u,Λ).

Intuitively, A≤t contains all the possible events that may occur in the first t iterations of line 17, which
is the only randomised operation in Algorithm 4. When bounding the probability that a clause is failed, we
will express this event in terms of events concerning the values that X̂ and Ŷ take on its variables. This
motivates Definition 40.

Definition 40 (Dv(j)). We define the following events for variable v ∈ Va and a random run R ∼
τR(Φ,M, u,Λ) of Algorithm 4. Let Dv(1) be the event that v ∈ Vset(R) and X̂(v) ̸= Ŷ (v). Let Dv(2)
be the event that v ∈ Vset(R) and X̂(v) = F. Let Dv(3) be the event that v ∈ Vset(R) and X̂(v) = T.
Let Dv(4) be the event that v ∈ Vset(R) and Ŷ (v) = F. Let Dv(5) be the event that v ∈ Vset(R) and
Ŷ (v) = T.
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Finally, in order to study the events Dv(j) for v ∈ V we will have to reason about the first time that a
variable in V is added to Vset(R), which motivates the following definition.

Definition 41 (τ(V ), f(V )). For a set of auxiliary variables V , we let τ(V ) be the random variable that
takes the value t if the first time that a variable in V is added to Vset(R) in Algorithm 4 is the t-th time
line 17 is executed, and we denote by f(V ) this variable. We set τ(V ) = ∞ if V ∩ Vset(R) = ∅, in which
case f(V ) is not defined.

We now have all the tools that we need to analyse the coupling process step by step.

Lemma 42. Let V ⊆ Va and let iv ∈ {1, 2, 3, 4, 5} for each v ∈ V . Let h(1) = 2−(δ+r0)k+1/k and
h(i) = exp(1/k)

2 for i ∈ {2, 3, 4, 5}. Then, we have

PrR∼τR(Φ,M,u,Λ)

(⋂
v∈V

Dv(iv)
)
≤
∏
v∈V

h(iv).

Proof. We are going to prove, for any positive integer t and A ∈ A≤t,

Pr
(⋂

v∈V
Dv(iv)

∣∣∣A, τ(V ) = t
)
≤
∏
v∈V

h(iv). (29)

The lemma will then follow from the arbitrary choice of A and t and the law of total probability.
We carry out the proof of (29) by induction on M = |V |. Equation (29) holds when V is empty. Let

us assume that (29) holds when |V | < M . Let V be a set of auxiliary variables with M = |V | and indexes
iv for all v ∈ V , let t be a positive integer and let A ∈ A≤t. To simplify the notation, for each w ∈ V we
define At(w, V ) = A ∩ [τ(V ) = t] ∩ [f(V ) = w]. Then, we have

Pr
(⋂

v∈V
Dv(iv)

∣∣∣A, τ(V ) = t
)
≤
∑
w∈V

Pr (f(V ) = w|A, τ(V ) = t) · Pr (Dw(iw)|At(w, V ))

· Pr
(⋂

v∈V \{w}
Dv(iv)

∣∣∣∣At(w, V ), Dw(iw)

)
.

We note that τ(V \{w}) > t when conditioning on τ(V ) = t and f(V ) = w. Let A′ = At(w, V )∩Dw(iw).
We have

Pr

(⋂
v∈V \{w}

Dv(iv)

∣∣∣∣A′
)

=
∞∑

j=t+1

Pr
(
τ(V \ {w}) = j|A′)

· Pr
(⋂

v∈V \{w}
Dv(iv)

∣∣∣∣A′, τ(V \ {w}) = j

)
.

By our induction hypothesis for V \ {w}, the condition τ(V \ {w}) = j and the event the event A′ ∈ A≤j ,
we find that

Pr

(⋂
v∈V \{w}

Dv(iv)

∣∣∣∣A′
)
≤

∞∑
j=t+1

Pr
(
τ(V \ {w}) = j|A′) ∏

v∈V \{w}

h(iv) ≤
∏

v∈V \{w}

h(iv).

As a consequence, we obtain

Pr
(⋂

v∈V
Dv(iv)

∣∣∣A, τ(V ) = t
)
≤
∑
w∈V

Pr (f(V ) = w|A, τ(V ) = t) · Pr (Dw(iw)|At(w, V ))

·
∏

v∈V \{w}

h(iv).
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We are going to show that Pr(Dw(iw)|At(w, V )) ≤ h(iw). Once we have proved this, the proof of (29) is
completed by noting that

∑
w∈V Pr (f(V ) = w|A, τ(V ) = t) = 1.

Let us now bound Pr(Diw
w |At(w, V )). Recall here that At(w, V ) implies the event w ∈ Vset(R). Recall

also that At(w, V ) ∈ A≤t, see Definition 39. For each Rt ∈ At(w, V ) ⊆ Rt(Φ,M, u,Λ), we are going
to apply Proposition 6 and the fact that X̂(w) and Ŷ (w) follow the optimal coupling between two marginal
distributions on v of the form µΩΛ′ and µΩΛ′′ for some assignments Λ′,Λ′′ on some marked and auxiliary
variables that are determined by Rt. Here it is important for applying Proposition 6 that the event At(w, V ) is
inA≤t, so every partial run Rt ∈ At(w, V ) only gives information about what has happened in Algorithm 4
before w is added to Vset(R). Thus, aggregating over all possible runs Rt ∈ At(w, V ), we find that

max
{
Pr
(
X̂(w) = F

∣∣∣At(w, V )
)
,Pr

(
X̂(w) = T

∣∣∣At(w, V )
)}
≤ 1

2
exp

(
1

k2(r0+δ)k

)
≤ 1

2
exp

(1
k

)
,

(30)

where the probability is over the random run R ∼ τR(Φ,M, u,Λ). The bound (30) also applies with Ŷ in-
stead of X̂ . In particular, we conclude that Pr(Dj

w|At(w, V )) ≤ exp(1/k)/2 = h(j) for all j ∈ {2, 3, 4, 5}.
Moreover, using the definition of optimal coupling for two Bernoulli distributions, the probability that
X̂(w) ̸= Ŷ (w) can be bounded as

Pr
(
X̂(w) ̸= Ŷ (w)

∣∣∣At(w, V )
)
=
∣∣∣Pr(X̂(w) = T

∣∣∣At(w, V )
)
− Pr

(
Ŷ (w) = T

∣∣∣At(w, V )
)∣∣∣

≤
∣∣∣Pr(X̂(w) = T

∣∣∣At(w, V )
)
− 1/2

∣∣∣+ ∣∣∣1/2− Pr
(
Ŷ (w) = T

∣∣∣At(w, V )
)∣∣∣

≤ exp

(
1

k2(δ+r0)k

)
− 1.

Hence, applying the bound ez ≤ 1 + 2z for z ∈ (0, 1) and the definition of the event D1
vj , we have

Pr(D1
vj |At(w, V )) ≤ 2/(k2(δ+r0)k) = h(1). This finishes the proof of (29). From the arbitrary choice of

A and t and the law of total probability, the statement follows.

We can now bound the probability that some good clauses are failed with the help of Lemma 42.

Lemma 43. Let Φ, u,Λ be the input of Algorithm 4. Let c1, . . . , cℓ ∈ Cgood such that the variable u does
not appear in any of the clauses in c1, . . . , cℓ, and var(ci) ∩ var(cj) ∩ Vgood = ∅ for all 1 ≤ i < j ≤ ℓ.
Then, for R ∼ τR(Φ,M, u,Λ), we have Pr(c1, . . . , cℓ ∈ Fd(R) ∪ Fu(R)) ≤ 2(−r0k+4)ℓ.

Proof. Let c1, . . . , cℓ be some good clauses of Φ as in the statement. The hypothesis that u does not appear
in any of these clauses is necessary as if u ∈ var(c) then c ∈ Fd(R) by definition. We consider a random
run R ∼ τR(Φ,M, u,Λ) of Algorithm 4 and let X̂, Ŷ be the (random) output of Algorithm 4 for the run
R. For j ∈ {1, 2, . . . , ℓ}, let Fj(1) be the event that there is v ∈ var(cj) ∩ Va such that v ∈ Vset(R) and
X̂(v) ̸= Ŷ (v), let Fj(2) be the event that var(cj) ∩ Va ⊆ Vset(R) and cj is unsatisfied by X̂ , and let Fj(3)

be the event that var(cj) ∩ Va ⊆ Vset(R) and cj is unsatisfied by Ŷ . In light of Proposition 32, we have
[c1, . . . , cℓ ∈ Fd(R) ∪ Fu(R)] =

⋂ℓ
j=1(Fj(1) ∪ Fj(2) ∪ Fj(3)). We obtain

Pr

(⋂ℓ

j=1
(Fj(1) ∪ Fj(2) ∪ Fj(3))

)
≤

∑
(i1,i2,...,iℓ)∈{1,2,3}ℓ

Pr

(⋂ℓ

j=1
Fj(ij)

)
. (31)

We note that Fj(1) =
⋃

v∈var(cj)∩Va
Dv(1), see Definition 40. Let (i1, i2, . . . , iℓ) ∈ {1, 2, 3}ℓ, and let

I1 = {j : ij = 1}, I2 = {j : ij = 2} and I3 = {j : ij = 3}. If the event
⋂

j∈I1 Fj(ij) holds, then,
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for each j ∈ I1 there is a variable uj ∈ var(cj) ∩ Va such that Duj (1) holds. Thus, for the set of tuples
T =

∏
j∈I1(var(cj) ∩ Va), where

∏
here denotes the cartesian product of sets, we have⋂

j∈I1

Fj(ij) =
⋃

(u1,u2,...,u|I1|)∈T

⋂
j∈I1

Duj (1). (32)

Now we explain how we bound Pr
((⋂

j∈I2∪I3 Fj(ij)
)
∩
(⋂

j∈I1 Duj (1)
))

for a tuple (u1, u2, . . . , u|I1|) ∈
T . We are going to show that

Pr
((⋂

j∈I2∪I3
Fj(ij)

)
∩
(⋂

j∈I1
Duj (1)

))
≤
(
exp(1/k)

2

)(k−3)r0|I2∪I3|( 2

k2(r0+δ)k

)|I1|
. (33)

The proof of (33) is not as straightforward as it may seem at first glance due to the dependencies among
the events Fj(ij), Duj (1). The key idea is re-writing the LHS of (33) as in the statement of Lemma 42.
Indeed we note that for each j ∈ I2 and for each variable v ∈ var(cj) ∩ Va, the event Fj(2) implies that
there is iv ∈ {2, 3} such that Dv(iv) holds, concluding Fj(2) =

⋂
v∈var(cj)∩Va

Dv(iv), see Definition 40.
Analogously, for each j ∈ I3 and for each variable v ∈ var(cj) ∩ Va, we find iv ∈ {4, 5} such that
Fj(3) =

⋂
v∈var(cj)∩Va

Dv(iv). Therefore, we have(⋂
j∈I2∪I3

Fj(ij)
)
∩
(⋂

j∈I1
Duj (1)

)
=
⋂
v∈Vf

Dv(iv), (34)

where Vf contains exactly all the auxiliary variables in the clauses cj with j ∈ I2 ∪ I3 and the variables
u1, u2, . . . , u|I1|. Recall now that each good clause contains at least r0(k− 3) auxiliary variables, and, thus,
the bound given in (33) follows from (34) and Lemma 42. Combining (33), (32) and (31), and counting the
number of tuples in T , we conclude that

Pr

(⋂ℓ

j=1
(Fj(1) ∪ Fj(2) ∪ Fj(3))

)
≤

∑
(i1,i2,...,iℓ)∈{1,2,3}ℓ

k|I1|
(
exp(1/k)

2

)(k−3)r0|I2∪I3|( 2

k2(r0+δ)k

)|I1|

≤
∑

(i1,i2,...,iℓ)∈{1,2,3}ℓ

(
e23r0

2kr0

)|I2∪I3|( 2

2(r0+δ)k

)|I1|

=

(
e23r0

2kr0
+

e23r0

2kr0
+

2

2(r0+δ)k

)ℓ

,

where we used the multinomial theorem. The result now follows from 2e23r0 + 2 ≤ 24.

Following [21] and motivated by Lemma 43, we introduce the combinatorial structure that we use in our
proof of Lemma 10 to bound the expected number of failed clauses.

Definition 44 (G≤k, D3(GΦ, c, ℓ)). For a graph G = (V,E) and a positive integer k, let G≤k be the graph
with vertex set V in which vertices u and v are connected if and only if there is a path from u to v in G
of length at most k. Given the graph GΦ, a clause c and a positive integer ℓ, let D3(GΦ, c, ℓ) be the set of
subsets T ⊆ V (GΦ) such that the following holds:

1. |T | = ℓ and c ∈ T ;

2. for any c1, c2 ∈ T , var(c1) ∩ var(c2) ∩ Vgood = ∅;

3. the graph G≤3
Φ [T ], which is the subgraph of G≤3

Φ induced by T , is connected;
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4. we have |T ∩ Cgood| ≥ (1− 8/k)ℓ.

In [21] the authors consider connected sets in G≤4
Φ instead of G≤3

Φ . Here we manage to perform our
union bound on D3(GΦ, c, ℓ) thanks to the fact that the set of failed clauses is connected in our refinement
of the coupling process.

Lemma 45 ([21, Corollary 8.19] for G≤3). Let G = (V,E) be a connected graph, let v ∈ V and let ℓ be a
positive integer. Let nG,ℓ(v) denote the number of connected induced subgraphs of G with size ℓ containing
v. Then, for ℓ′ = min{3ℓ, |V |}, we have nG≤3,ℓ(v) ≤ 2ℓ

′
nG,ℓ′(v).

Proof. Let T be a connected subgraph of G≤3 with size ℓ containing v. We claim that, for all positive ℓ, we
can find a connected subset H of G with size ℓ′ = min{3ℓ, |V |} containing T . The proof is straightforward
by induction on ℓ, see [21, Lemma 8.18] for the analogous result on G≤4. We note that there are at most(

ℓ′

ℓ−1

)
≤ 2ℓ

′
subsets T of H containing v that could be mapped to H by the previous construction. Hence,

we conclude that nG≤3,ℓ(v) ≤ 2ℓ
′
nG,ℓ′(v) as we wanted.

Lemma 46 ([21, Lemma 7.9] for D3(GΦ, c, ℓ)). Let ℓ be an integer which is at least log n. W.h.p. over the
choice of Φ, every clause c ∈ Cgood has the property that the size of D3(GΦ, c, ℓ) is at most (18k2α)3ℓ.

Proof. This follows from bounding the number of connected sets of size ℓ in G≤3
Φ that contain c by combin-

ing Lemmas 27 and 45.

We have now all the tools that we need to bound the expected number of failed clauses in the coupling
process given in Algorithm 4 and complete the proof of Lemma 10.

Lemma 10. There is an integer k0 ≥ 3 such that for any integer k ≥ k0 and any density α with α ≤
2r0k/3/k3 the following holds. W.h.p. over the choice of the random k-CNF formula Φ = Φ(k, n, ⌊αn⌋),
for any r0-marking (Vm,Va,Vc) of Φ, the distribution µΩ|Vm

is (2−r0k log n)-spectrally independent.

Proof. Let u ∈ Vm and Λ: S → {F,T} with S ⊆ Vm \ {u}. First of all, we apply Lemma 38 to bound∑
v∈Vm\(S∪{u})

∣∣IΛ(u→ v)
∣∣ by 2−(r0+δ)k+1E [|Fu(R)|], where R ∼ τR(Φ,M, u,Λ). In the rest of this

proof we show that Pr(|Fu(R)| ≥ 2k4 log n) ≤ O(1/n) and, thus, for large enough n, E [|Fu(R)|] =∑
R∈R(Φ,M,u,Λ) Pr(R)|Fu(R)| ≤ 4k4 log n. Putting all this together, and using the fact that 8k4 ≤ 2δk

for large enough k (here δ = 0.00001) we would obtain the bound
∑

v∈Vm\(S∪{u})
∣∣IΛ(u→ v)

∣∣ ≤ 8 ·
2−(r0+δ)kk4 log n ≤ 2−r0k log n and, thus, the result would follow.

So to finish we just need to show that, w.h.p. over the choice of Φ, Pr(|Fu(R)| ≥ 2k4 log n) ≤ O(1/n).
Let L = ⌈2k4 log n⌉ and let ℓ = ⌈0.5k4 log n⌉. First, we are going to show that, w.h.p. over the choice of
Φ, the following holds:

if Z ⊆ C is connected and |Z| = L, then ∃c ∈ Z ∩ Cgood and T ∈ D3(GΦ, c, ℓ) with T ⊆ Z. (35)

In order to prove (35), we are going to find a large independent set of Z ∩ Cgood, and we are going to
extend it with some clauses in Z ∩ Cbad to obtain T ∈ D3(GΦ, c, ℓ). We need three results that hold
w.h.p. over the choice of Φ: Lemmas 15, 25 and 24. We note that we can apply Lemma 15 as our density
satisfies α ≤ 2r0k/3/k3 ≤ 2(r0−2δ)k/k3, where δ = 0.00001. For Z as in (35) we have |Z| ≥ 2k4 log n,
so by Lemma 25, we find that |var(Z)| ≥ 2k4 log n and, thus, in light of Lemma 15, we conclude that
|Z ∩ Cgood| ≥ (1 − 1/k)|Z| and |Z ∩ Cbad| ≤ |Z|/k. From Lemma 24, w.h.p. over the choice of Φ, all
connected sets of clauses with size at most 4k4 log n have tree-excess at most t := max{1, 8k4 log(ek2α)}.
Thus, we can find U ⊆ Z∩Cgood such that U is a forest (disjoint union of trees) and |U | ≥ (1−1/k)|Z|− t.
In particular, U is bipartite, so there is I ⊆ U such that var(c) ∩ var(c′) = ∅ for all c, c′ ∈ I and |I| ≥

35



|U |/2 ≥ (1− 1/k)L/2− t/2 ≥ 1
2k

4 log n, where the last inequality holds for large enough n. Let I ′ be an
independent set of Z∩Cgood with the largest possible size. Then we have shown that |I ′| ≥ ℓ = ⌈12k

4 log n⌉.
We claim that the set T ′ := I ′ ∪ (Z ∩ Cbad) is connected in (GΦ[Z])≤3, where GΦ[Z] is the subgraph

of GΦ induced by Z. Assume for contradiction that T ′ is not connected in (GΦ[Z])≤3. In this case, we can
write T ′ = S1 ∪ S2 such that for all c1 ∈ S1 and c2 ∈ S2, the shortest path between c1 and c2 through
clauses in Z has length at least 4. Let (c1, c2) ∈ S1 × S2 be the pair with the shortest path in Z, and let
this path be c1 = e1, e2, . . . , ej = c2. Then j ≥ 5 and e2, . . . , ej−1 ∈ Z \ T ′. Moreover, we find that
var(e3) ∩ var(c) = ∅ for all c ∈ T ′ as otherwise e1, e2, . . . , ej would not be the shortest path between S1

and S2. Moreover, since T ′ contain all bad clauses in Z, we conclude that e3 is a good clause. It follows that
I ′ ∪ {e3} is an independent set of good clauses of Z, which contradicts the fact that I ′ has largest possible
size among such sets.

Finally, as |T ′| ≥ ℓ, we can find a good clause c and a subset T of T ′ with size ℓ such that c ∈ T , T is
connected in G≤3

Φ and |T ∩ Cbad| ≤ |Z ∩ Cbad| ≤ L/k ≤ 8ℓ/k. We conclude that T ∈ D3(GΦ, c, ℓ). This
finishes the proof of (35).

In the rest of the proof we use (35) to bound Pr(|Fu(R)| ≥ L). Recall that the set of failed clauses
Fd(R) ∪ Fu(R) is connected (Proposition 32). If |Fu(R)| ≥ L, then there is Z ⊆ Fd(R) ∪ Fu(R) with
|Z| = L such that Z is connected in GΦ, and, thus, we can find c and T as in (35). We have shown that
the event |Fu(R)| ≥ L is contained in the event that there is a good clause c and T ∈ D3(Φ, c, ℓ) such that
T ⊆ Fd(R) ∪ Fu(R). As a consequence, we have

Pr [|Fu(R)| ≥ L] ≤
∑
c∈C

∑
T∈D3(Φ,c,ℓ)

Pr [T ⊆ Fd(R) ∪ Fu(R)]

≤
∑
c∈C

∑
T∈D3(Φ,c,ℓ)

Pr [T ∩ Cgood ⊆ Fd(R) ∪ Fu(R)] .

We note that for any T ∈ D3(Φ, c, ℓ) there is at most one good clause c′ that contains the marked variable
u. Thus, by definition of D3(Φ, c, ℓ), there are at least (1− 8/k)ℓ− 1 good clauses in T that do not contain
the variable u. Hence, we can apply Lemma 46 on the size of D3(Φ, c, ℓ) and Lemma 43 on the probability
of good clauses (that do not share good variables) failing to further obtain

Pr [|Fu(R)| ≥ L] ≤ m
(
18k2α

)3ℓ
2−(r0k−4)[(1−8/k)ℓ−1].

In what follows it is essential that α ≤ 2r0k/3/k3, and this is the only proof in this paper where we need this
bound on the density – other proofs only require the less restrictive bound α ≤ 2rk for r = 0.1178. Thus,
we conclude that

Pr [|Fu(R)| ≥ L] ≤ m

(
18

2r0k/3

k

)3ℓ

2−(r0k−4)(1−8/k)ℓ 2r0k−4 = m

(
183

k3
28r0+4(1−8/k)

)ℓ

2r0k−4.

Finally, for large enough k we find that Pr [|Fu(R)| ≥ L] ≤ me−ℓ2r0k ≤ mn−0.5k42r0k = O(1/n) as we
wanted.

8.3 Mixing time of the ρ-uniform-block Glauber dynamics

Finally, we combine the results in this section with Lemma 9 to complete the proof of Lemma 11.

Remark 47. The distribution µΩ|Vm
on assignments of the marked variables (Definition 7) is b-marginally

bounded for b = 1 − (1/2) exp(1/k) by Proposition 6 (or, equivalently, Lemmas 20 and 21). Since
exp(1/k) ≤ 1 + 2/k, we have b ≥ 1/2− 1/k ≥ 1/e for k ≥ 8.
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Lemma 11. There is a function k0(θ) = Θ(log(1/θ)) such that, for any θ ∈ (0, 1), for any integer k ≥
k0(θ) and any density α with α ≤ 20.039k the following holds. W.h.p. over the choice of the random
k-CNF formula Φ = Φ(k, n, ⌊αn⌋), for any r0-marking (Vm,Va,Vc) of Φ and for ρ = ⌈2−k−1|Vm|⌉, the ρ-
uniform-block Glauber dynamics for updating the marked variables has mixing time Tmix(ρ, ε/2) ≤ T :=
⌈22k+3nθ log 2n

ε2
⌉.

Proof. In view of Lemma 10, as α ≤ 20.039k ≤ 2r0k/3/k3 for large enough k, w.h.p. over the choice of
Φ, the distribution µΩ|Vm

is η-spectrally independent for η = 2−r0k log n. Moreover, this distribution is
b-marginally bounded for b = 1/e when k ≥ 8. We are going to apply Lemma 9 with V = Vm, µ = µΩ|Vm

,
M = |Vm| and κ = 2−k−1. First, we check that the hypothesis M ≥ 2

κ(4η/b
2 + 1) of Lemma 9 holds. By

Corollary 23, we have M ≥ (r0 − δ)(kα/∆)n = Ω(n), so M ≥ 2
κ(4η/b

2 + 1) holds for large enough n as
2
κ(4η/b

2 + 1) = O(log n). Hence, we can apply Lemma 9 to obtain

Tmix(ρ, ε/2) ≤
⌈
Cρ

M

ρ

(
log log

1

µmin
+ log

2

ε2

)⌉
,

where Cρ = (2/κ)4η/b
2+1. We have

Cρ = exp

(
(log 2)(k + 2)

(4η
b2

+ 1
))
≤ 2k+2 exp

(
(log 2)(logn)(k + 2)4e2

2r0k

)
,

so there exists a function k0(θ) = Θ(log(1/θ)) such that when k ≥ k0(θ), we have Cρ ≤ 2k+2nθ. In light
of Remark 47, we have µmin ≥ bM , so log log(1/µmin) ≤ log(M log(1/b)) = logM as b = 1/e. Thus, we
conclude that

Tmix(ρ, ε/2) ≤
⌈
22k+3nθ

(
logM + log

2

ε2

)⌉
≤
⌈
22k+3nθ log

2n

ε2

⌉
.

9 Proof of Theorem 1

In this section we complete the proof of Theorem 1. The proofs in this section do not present any challen-
ging steps. In fact, they amount to combining the main technical results that have already been proved in this
work. We start by showing that the calls to the method Sample in Algorithm 1 are unlikely to ever return
error, that is, the connected components of GΦΛ have size at most 2k4(1 + ξ) log(n) almost every time the
method is called. As pointed out in our proof outline, this is a straightforward consequence of Lemma 13
and the fact that the probability distribution of the output of the Glauber dynamics is (1/k)-uniform (Corol-
lary 22).

Lemma 48. Let θ ∈ (0, 1). There is an integer k0 ≥ 3 such that, for any integers k ≥ k0, ξ ≥ 1 and
any density α ≤ 2rk, the following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). In the execution of
Algorithm 1 with input Φ, with probability at least 1− n−3ξ over the random choices made by Algorithm 1,
every time that the algorithm calls the method Sample(ΦΛ, S), the connected components of GΦΛ have size
at most 2k4(1 + ξ) log(n).

Proof. Let ε = n−ξ and let T = ⌈22k+3nθ log 2n
ε2
⌉ be the mixing time established in Lemma 11. We assume

that k is large enough so that 2rk ≤ α0 = 2(r0−2δ)k/k3. Algorithm 1 calls the method Sample exactly T +1
times in total: T times in line 7 (when simulating the ρ-uniform-block Glauber dynamics) and one time in
line 10 to extend the assignment XT of marked variables to all variables.

Let t ∈ {0, 1, . . . , T} and let πt be the probability distribution of Xt, where Xt is the state of the ρ-
block-uniform Glauber dynamics on the marked variables described in Algorithm 1 after t steps. Recall
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that ρ = ⌈2−k−1|Vm|⌉ and that X0 is chosen uniformly at random. First, we focus on the case t < T . We
are going to apply Lemma 13 with a = 2k4, b = 2a(1 + ξ), V = Vm, µ = πt and this choice of ρ. The
set Vm is r0-distributed by the definition of r0-marking (Definition 4). Moreover, πt is (1/k)-uniform by
Corollary 22, and we have ρ ≤ |Vm|/2k. Hence, we can indeed apply Lemma 13. Consider the following
experiment described in Lemma 13 for L = ⌈a(1 + ξ) log n⌉, which satisfies a log n ≤ L ≤ b log n. First,
draw S ⊆ Vm from the uniform distribution τ over subsets of Vm with size ρ. Then, sample an assignment
Λt+1 from µ|Vm\S , the marginal of µ on Vm \ S. Denote by F the event that that there is a connected set of
clauses Y of Φ with |Y | ≥ L such that all clauses in Y are unsatisfied by Λt+1. Then we have

PrS∼τ

(
PrΛt+1∼πt|Vm\S

(F) ≤ 2−δkL
)
≥ 1− 2−δkL. (36)

Alternatively, this experiment is the same as first sampling an assignment Xt of all variables in Vm from πt,
and then restricting the assignment to a random set S ∼ τ , obtaining Λt+1. Note that this exact experiment
occurs before calling the method Sample in the t-th step of the ρ-uniform-block Glauber dynamics in Al-
gorithm 1. Thus, in light of (36), the probability that in step t+ 1 of the execution of Algorithm 1 the graph
GΦΛt+1 has a connected component with size at least L is at most 2−δkL + 2−δkL, where the first 2−δkL

comes from the probability of choosing a wrong set S ∼ τ in (36) and the second 2−δkL comes from the
bound on the probability of the event F once we have chosen S. We have shown that with probability at
least 1− 2·2−δkL, all the connected components of the graph GΦΛt appearing in step t+ 1 of the execution
of Algorithm 1 have size less than L. We have 2·2−δkL ≤ n−δka(1+ξ) log 2 ≤ n−5ξ for large enough k, so
the probability that Sample returns error at step t+1 is at most n−5ξ. The case t = T is analogous, the only
difference here is that we call Sample on ΦXT , where XT ∼ πT is an assignment of all marked variables,
so we apply Lemma 13 with ρ = 0.

Finally, we carry out a union bound over t ∈ {0, 1, . . . , T}, so the probability that any of the calls to
Sample returns error is at most (T +1)n−5ξ ≤ n−3ξ for large enough n as T = O(nθ log n) = O(n log n).

Once we have established Lemmas 11, 14, and 48, the proof of Theorem 1 follows as below.

Theorem 1. For any real θ ∈ (0, 1), there is k0 ≥ 3 with k0 = O(log(1/θ)) such that, for any integers
k ≥ k0 and ξ ≥ 1, and for any positive real α ≤ 20.039k, the following holds.

There is an efficient algorithm to sample from the satisfying assignments of a random k-CNF formula
Φ = Φ(k, n, ⌊αn⌋) within n−ξ total variation distance of the uniform distribution. The algorithm runs in
time O(n1+θ), and succeeds w.h.p. over the choice of Φ.

Proof. Let k0(θ) = Θ(log(1/θ)) be large enough so that, for all integers k ≥ k0(θ), ξ ≥ 1 and all densities
α ≤ 20.039·k, the conclusions of Lemmas 11, 14, and 48 hold w.h.p. over the choice of the random k-
CNF formula Φ = Φ(k, n, ⌊αn⌋). These lemmas are enough to analyse Algorithm 1 and tackle this proof.
We analyse the distribution µalg of the output of Algorithm 1. This distribution outputs either a satisfying
assignment of the input formula Φ or error. Let ε = n−ξ. Let E be the event that running Algorithm 1
outputs error. This happens with probability at most ε/4 when computing the marking (Vm,Va,Vc) in line
2 of the algorithm, and in lines 7 and 10 if the method Sample(Φ̂, S) returns error, which occurs when GΦ̂
has a connected component with size more than 2k4(1 + ξ) log(n). In view of Lemma 48, the probability
that Algorithm 1 outputs error due to the failure of the method Sample is at most n−3ξ = ε3. We conclude
that the probability that the algorithm outputs error is bounded above by ε/4 + ε3 ≤ ε/2 . Let µGlauber

be the distribution that Algorithm 1 would output if there were no errors (that is, the distribution assuming
that the method Sample always outputs from the appropriate distribution). Then dTV (µalg, µGlauber) is the
probability that an error occurs, which is at most ε/2. Let πGlauber be the distribution output by the ρ-
uniform-block Glauber dynamics on Vm after T steps. By Lemma 11 on the mixing time of the Glauber
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dynamics, we have dTV (πGlauber, µΩ|Vm
) ≤ ε/2. As µGlauber comes from sampling an assignment XT

from πGlauber and then completing XT to all V by sampling from µΩ(·|XT ), we have dTV (µGlauber, µΩ) ≤
dTV (πGlauber, µΩ|Vm

) ≤ ε/2. We find that dTV (µalg, µΩ) ≤ dTV (µalg, µGlauber) + dTV (µGlauber, µΩ) ≤
ε/2 + ε/2 = ε as we wanted. The running time of Algorithm 1 is now easily obtained by adding up
the running times of the following subroutines. The good clauses and good variables are computed in
time O(n + km) = O(n), see Proposition 3. The marking (Vm,Va,Vc) is computed with probability
at least 1 − ε/4 in time O(n∆k2 log(4/ε)) = O(n log n), see Lemma 20. Recall that there are T + 1 =
O(nθ log(n/ε2)) = O(nθ log n) calls to the method Sample(Φ′, S), and each call takes time O(|S| log n) =
O(n log n) by Lemma 14. We conclude that the running time of Algorithm 1 is O(n1+θ log(n)2). The
result now follows by choosing k1 = k0(θ/2), so the running time for k ≥ k1 is O(n1+θ/2 log(n)2) =
O(n1+θ).

We have now proved that it is possible to (approximately) sample uniformly at random from the sat-
isfying assignments of Φ = Φ(k, n, ⌊αn⌋). At this point, standard techniques can be applied to obtain a
randomised approximation scheme for counting the satisfying assignments of Φ. These techniques are based
on the self-reducibility of k-SAT [28]. The following remark shows how to obtain a randomised approxima-
tion scheme that runs in time O(nθ(n/ε)2) following [18, Chapter 7], where the authors base their counting
algorithm on the simulated annealing method [39, 25, 30].

Remark 49 (Approximate counting for random k-SAT formulas). Let k0(θ) be the integer depending on
θ ∈ (0, 1) obtained in Theorem 1. Let k1 = k0(θ/2), let k ≥ k1 be an integer, let ξ be a positive integer
and let α ≤ 20.039·k be a density. We apply Theorem 1 to obtain an algorithm to sample from the satisfying
assignments of Φ = Φ(k, n, ⌊αn⌋) within n−4ξ total variation distance from the uniform distribution. This
algorithm runs in time O(n1+θ/2) and succeeds w.h.p. over the choice of Φ.

Let ε ∈ (0, 1) with ε ≥ n−ξ. A modified version of the approximate counting algorithm of [18, Sec-
tion 7], using O(ε−2n log(n/ε)) samples from the sampling algorithm above, approximates the number of
satisfying assignments of the k-CNF formula Φ with multiplicative error ε, thus, achieving running time
O(nθ/2(n/ε)2 log(n/ε)) = O(nθ(n/ε)2). Here we describe these minor modifications.

Let Ωbad be the set of assignments X : V → {F,T} that satisfy the bad clauses of Φ. For X ∈ Ωbad,
we define F (X) to be the set of good clauses that are not satisfied by X . For κ ∈ R, we define wκ(X) =
exp(−κ|F (X)|) and we define the partition function Z(κ) =

∑
X∈Ωbad

wκ(X). The simulated annealing
algorithm of [18, Section 7] uses Z(κ) (with Ω∗ from Definition 5 in place of Ωbad) to approximate the
number of satisfying assignments of Φ. We note that Z(0) = |Ωbad|, which can be computed in linear time
in n using the exact counting algorithm given in Proposition 29. Here one has to use the fact that the con-
nected components of GΦ′ for the formula Φ′ = (V, Cbad) have size at most 2k4 log n, see Lemma 55 from
Appendix A and Lemma 25, and the fact that these connected component have tree-excess upper bounded
as a function of k (Lemma 24). Once one has performed these modifications, the algorithm given in [18,
Section 7] applies without any difficulties.
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Appendix A Proof of Lemma 15

In this section we prove Lemma 15. Recall that this result is [21, Lemma 8.16] with a less restrictive bound
on the density of the formula and a more restrictive definition of good variables/clauses, see Section 4 for
details. Moreover, the obtained upper bound on the number of bad clauses in our version of [21, Lemma
8.16] is tighter. The original proof of Lemma 15 given in [21, Section 8] is split into a sequence of results
on random formulas. Here we restate some of these results — only those whose statement needs to change
as a consequence of our definition of good variables/clauses and the tighter upper bound. We also explain
how these changes affect the proofs if any modifications are necessary.

Let us fix some notation first. The results stated in this section only hold for large enough k unless we
say otherwise. Moreover, across this section we fix a density α with α ≤ α0 := 2(r0−2δ)k/k3. We note that
in [21] α is at most 2k/300/k3. However, in the proofs of [21, Section 8], the only properties of α needed
are that there is a real number r0 ∈ (0, 1/2) such that, for large enough k, α is bounded above by 2r0k, and
that α ≤ ∆/k3, where ∆ is the threshold for the definition of high-degree variables. In our setting we have
r0 = 0.117841 and ∆ = ⌈2(r0−2δ)k⌉, so this is not a problem. We need some definitions. For any set of
variables S ⊆ V of Φ, we denote by HD(S) the set of high-degree variables in S. We denote V0 = HD(V).
Corollary 50 ([21, Corollary 8.4]). W.h.p. over the choice of Φ, for every set of variables Y such that
2 ≤ |Y | ≤ n/2k, the number of clauses that contain at least 3 variables from Y is at most |Y |.
Proof. This is a consequence of [21, Lemma 35] with b = 3 and t = 2/(b− 1) = 1.

A k-CNF formula Φ = (V, C) gives rise to a graph HΦ with vertices in V that is defined as follows. Two
variables v1 and v2 are adjacent in HΦ if there is a clause c ∈ C with v1, v2 ∈ var(c).

Lemma 51 ([21, Lemma 8.8]). There is a positive integer k0 such that for any integer k ≥ k0 and any
density α with α ≤ α0, the following holds w.h.p. over the choice of Φ = Φ(k, n, ⌊αn⌋). Every connected
set U of variables in HΦ with size at least 2k4 log n satisfies that |HD(U)| ≤ 1

2k3
|U |.

Proof. The proof is that of [21, Lemma 8.8], with the difference that δ0 = 1/(2k3) instead of δ0 = 1/21600,
as the exact value of δ0 does not play a role in the proof as long as 1/δ0 = poly(k).

Lemma 52 ([11, Lemma 2.4] and [21, Lemma 8.10]). Let k ≥ 3 be an integer and let α be a positive
real number with α ≤ ek/2/(2e2k2). For any ε ∈ [1/n, 1) (depending on n) such that ε < e−3k for all
n, the following holds w.h.p. over the choice of the random formula Φ = Φ(k, n, ⌊αn⌋). Let Z be a set
of clauses with size at most εn and let c1, . . . , cl ∈ C \ Z be distinct clauses. For s ∈ {1, 2, . . . , ℓ}, let
Ns := var(Z) ∪

⋃s−1
j=1 var(cj). If |var(cs) ∩Ns| ≥ 3 for all s ∈ {1, 2, . . . , ℓ}, then ℓ ≤ εn.

Proof. The proof is almost identical to the proof of [11, Lemma 2.4]. There are four differences. First, here,
as it is also the case in [21, Lemma 44], ε can depend on n. This will arise later in this proof. Second, the
proof of [11, Lemma 2.4] is carried out for the condition |var(cs) ∩Ns| ≥ λ, where λ is an integer with
λ > 4. Here we set λ = 3 and impose stricter hypotheses on α and ε to compensate for a smaller λ. Their
(more relaxed) hypotheses on α and ε are α ≤ 2k log 2, ε ≤ k−3 and ελ ≤ (2e)−4k/e. Third, we substitute
the last inequality of [11, Equation 4], which is[(

em/n

ε

)2

exp(2k)(2kε)λ

]εn
≤
[
(2e)2k ελ/2

]εn
,

by the inequality [(
em/n

ε

)2

exp(2k)(2kε)λ

]εn
≤
[
(em/n)2 exp(2k)(2k)3ε

]εn
≤ [exp(3k − 1)ε]εn ,

(37)
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where we used λ = 3 and m/n ≤ α ≤ ek/2/(2e2k2). Now, as it is done in [21, Lemma 8.10], we
distinguish two cases depending on ε. If ε ≥ 10(log n)/n, then using this in conjunction with ε < e−3k,
the right hand size of (37) is bounded by e−εn ≤ 1/n10 = o(1/n). If 1/n ≤ ε < 10(log n)/n, then, for
large enough n, the right hand size of (37) is bounded above by exp(3k − 1)ε = o(1). The last difference
between the proofs is that our argument works for all k ≥ 3, whereas the bound [11, Equation 4] only holds
for large k.

The remaining results in this section do not need any changes in their original proofs, other than that
every time Corollary 8.4, Lemma 8.8 and Lemmas 8.10-8.16 are invoked in [21, Section 8], we use the
version given in this appendix instead. We note that the statements of these results are slightly different
to their [21, Section 8] versions, and these changes are again due to the fact that we use λ = 3 instead of
λ = k/10 in the definition of good variables/clauses.

Corollary 53 ([21, Corollary 8.11]). W.h.p. over the choice of Φ, the following holds. Let Z be a set of
clauses with size at most 2n/2k

10
and let c1, . . . , cl ∈ C \ Z be distinct clauses. For s ∈ {1, 2, . . . , ℓ}, let

Ns := var(Z) ∪
⋃s−1

j=1 var(cj). If |var(cs) ∩Ns| ≥ 3 for all s ∈ {1, 2, . . . , ℓ}, then ℓ ≤ |Z|.

Proof. The proof given in [21, Corollary 8.11] also applies here.

Lemma 54 ([21, Lemma 8.13]). W.h.p. over the choice of Φ, for any bad component S of variables, we
have |S| ≤ 2k|HD(S)|.

Proof. The proof given in [21, Lemma 8.13] applies using our versions of [21, Corollary 8.4 and Corollary
8.11].

Lemma 55 ([21, Lemma 8.14]). W.h.p. over the choice of Φ, every bad component S has size at most
2k4 log n.

Proof. The proof given in [21, Lemma 8.14] applies using our versions of [21, Lemma 8.8 and Lemma
8.13].

Lemma 56 ([21, Lemma 8.15]). W.h.p. over the choice of Φ, for every connected set of S variables with
size at least 2k4 log n, we have |S ∩ Vbad| ≤ |S|/k2.

Proof. The proof is analogous to that given in [21, Lemma 8.15]. The only differences are that we apply
Lemma 51 instead of [21, Lemma 8.8], we apply Lemma 54 instead of [21, Lemma 8.13], and we have
δ0 = 1/(2k3) instead of δ0 = 1/21600.

Lemma 15 ([21, Lemma 8.16]). There is an integer k0 ≥ 3 such that for any integer k ≥ k0 and any
density α ≤ α0 = 2(r0−2δ)k/k3, the following holds w.h.p. over the choice of the random k-CNF formula
Φ = Φ(k, n, ⌊αn⌋). For every connected set of clauses Y in GΦ such that |var(Y )| ≥ 2k4 log n, we have
|Y ∩ Cbad| ≤ |Y |/k.

Proof. The same proof applies using our versions of [21, Corollary 8.4 and Lemma 8.15].

44



Appendix B Proof of Lemma 9

In this section we collect the results from [8] that one needs to combine to obtain Lemma 9 on the mixing
time of the ρ-uniform-block Glauber dynamics.

Definition 57. Let µ be a distribution supported on Ω ⊆ [q]V . Let f : Ω → R≥0. We denote the entropy of
f by Entµ(f), that is, Entµ(f) = Eµ(f log f)) − Eµ(f) log(Eµ(f)) when Eµ(f) > 0, and Entµ(f) = 0
when Eµ(f) = 0. For S ⊆ V , we denote EntSµ(f) = Eτ∼µ|V \S

Entµ(f | τ), where Entµ(f | τ) is the entropy
of f conditioning to the event that the assignment drawn from µ agrees with τ in V \ S.

Let ρ ∈ {1, 2, . . . , n}. We say that µ satisfies the ρ-uniform block factorisation of entropy (with constant
Cρ) if for all f : Ω→ R≥0 we have

ρ

n
Entµ(f) ≤ Cρ

1(
n
ρ

) ∑
S∈(Vρ)

EntSµ(f).

One of the main results of [8] is showing that µ satisfies the ρ-uniform block factorisation of entropy
when the distribution µ is η-spectrally independent and b-marginally bounded. In the proof of [5, Corollary
19] the authors observe that the proof of Lemma 58 also holds when η depends on n and, in particular, in
the case η = ε log n.

Lemma 58 ( [8, Lemma 2.4]). The following holds for any reals b, η > 0, any κ ∈ (0, 1) and any integer n
with n ≥ 2

κ(4η/b
2 + 1).

Let q ≥ 2 be an integer, let V be a set of size n and let µ be a distribution over [q]V . If µ is b-marginally
bounded and η-spectrally independent, then µ satisfies the ⌈κn⌉-uniform block factorisation of entropy with
constant C = (2/κ)4η/b

2+1.

It turns out that one can bound the mixing time of the ρ-uniform-block Glauber dynamics when the
target distribution µ satisfies the ρ-uniform block factorisation of entropy.

Lemma 59 (See, e.g., [8, Lemma 2.6 and Fact 3.5(4)] or [5, Lemma 17]). Let q ≥ 2, ρ ≥ 1 be integers and
V be a set of size n ≥ ρ+1. Let µ be a distribution supported on Ω ⊆ [q]V that satisfies the ρ-uniform-block
factorisation of entropy with multiplier Cρ. Then, for any ε > 0, the mixing time of the ρ-uniform-block
Glauber dynamics on µ satisfies, for µmin = minΛ∈Ω µ(Λ),

Tmix(ε) ≤
⌈
Cρ

n

ρ

(
log log

1

µmin
+ log

1

2ε2

)⌉
.

Proof of Lemma 9. The proof of Lemma 9 follows directly from combining Lemmas 58 and 59.
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Appendix C Notation and definitions reference

Here we gather the notation and definitions that are used globally in our work. If some notation is not here,
then it is only used in one section of our work (and it is defined in that section).

C.1 Table of notation

Notation Description Reference
Φ(k, n,m) A random k-CNF formula with n variables and m clauses. Section 1
α The density of the formula Φ, so α = m/n. Section 1
V The set of variables of Φ. Section 1
C The set of clauses of Φ. Section 1
w.h.p. Stands for “with high probability”. Section 1
dTV The total variation distance between two distributions. Section 1
r The constant r = 0.1178 determines the density threshold Definition 2

α ≤ 2rk in Lemma 13.
ξ Our sampling algorithm has error at most n−ξ. Theorem 1
r0, δ r0 = 0.117841 and δ = 0.00001. Definition 2
∆ The high-degree threshold, set to ⌈2(r0−2δ)k⌉. Definition 2
α0 The density threshold for the existence of an r0-marking, Definition 2

set to 2(r0−2δ)k/k3.
var(c) The set of variables in a clause c. Section 2.1
var(S) The set of variables

⋃
c∈S var(c). Section 2.1

Cgood, Cbad Good and bad clauses, a partition of C. Section 4
Vgood, Vbad Good and bad variables, a partition of V . Section 4
Vm, Va, Vc The sets of marked, auxiliary and control variables. Definition 4
Ω∗ The set of all assignments V → {F,T} Definition 5
Ω The set of satisfying assignments of Φ. Definition 5
µA The uniform distribution over A ⊆ Ω∗. Definition 5
ΦΛ The formula Φ simplified under Λ. Definition 5
VΛ, CΛ The variables and clauses of ΦΛ Definition 5
ΩΛ The set of satisfying assignments of ΦΛ. Definition 5
µ|V The marginal distribution of µ on V . Definition 7
Tmix(ρ, ε) The mixing time of the ρ-uniform-block Glauber dynamics. Section 2.2.1
IΛ(u→ v) The influence of u on v (under Λ). Section 2.2.1, (1)
GΦ The dependency graph of C. Definition 12
Φgood The subformula of Φ with all good variables and good clauses. Definition 18
Φbad The subformula of Φ with all bad variables and bad clauses. Definition 18
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C.2 Table of definitions

Name Reference
high-degree Definition 2, page 3
r-distributed Definition 4, page 4
r-marking Definition 4, page 4
ε-uniform Definition 8, page 5
b-marginally bounded Section 2.2.1, page 6
η-spectrally independent Section 2.2.1, page 6
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