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Abstract

We give a nearly linear-time algorithm to approximately sample satisfying assignments in
the random k-SAT model when the density of the formula scales exponentially with k. The best
previously known sampling algorithm for the random k-SAT model applies when the density
α = m/n of the formula is less than 2k/300 and runs in time nexp(Θ(k)) (Galanis, Goldberg, Guo
and Yang, SIAM J. Comput., 2021). Here n is the number of variables and m is the number
of clauses. Our algorithm achieves a significantly faster running time of n1+ok(1) and samples
satisfying assignments up to density α ≤ 20.039k.

The main challenge in our setting is the presence of many variables with unbounded degree,
which causes significant correlations within the formula and impedes the application of relevant
Markov chain methods from the bounded-degree setting (Feng, Guo, Yin and Zhang, J. ACM,
2021; Jain, Pham and Vuong, 2021). Our main technical contribution is a ok(log n) bound of
the sum of influences in the k-SAT model which turns out to be robust against the presence
of high-degree variables. This allows us to apply the spectral independence framework and
obtain fast mixing results of a uniform-block Glauber dynamics on a carefully selected subset
of the variables. The final key ingredient in our method is to take advantage of the sparsity
of logarithmic-sized connected sets and the expansion properties of the random formula, and
establish relevant connectivity properties of the set of satisfying assignments that enable the
fast simulation of this Glauber dynamics.

Our results also allow us to conclude that, with high probability, a random k-CNF formula
with density at most 20.227k has a giant component of solutions that are connected in a graph
where solutions are adjacent if they have Hamming distance Ok(log n). We are also able to
deduce looseness results for random k-CNFs in the same regime.
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1 Introduction
The random k-SAT model is a foundational model in the study of randomised algorithms. For
integers k, n,m ≥ 2, the random formula Φ = Φ(k, n,m) is a k-CNF formula chosen uniformly
at random from the set of formulae with n Boolean variables and m clauses, where each clause
has k literals (repetitions allowed). Here, we consider the sparse regime where the density of the
formula, α = m/n, is bounded by an absolute constant. An important question is determining the
probability that the random formula is satisfiable as a function of its density (in the limit n→∞).
Interestingly, for all sufficiently large k, the probability that Φ is satisfiable drops abruptly from
1 to 0 when the density α crosses a certain threshold α⋆(k). Recently there has been tremendous
progress in establishing this phase transition, concluding that α⋆(k) = 2k log 2− 1

2(1+log 2)+ok(1)
as k → ∞ [19, 16]. Despite the good progress on pinning down this phase transition, finding
satisfying assignments for densities up to α∗ poses severe challenges. In fact, the best known
algorithm [12] for finding a satisfying assignment of a random formula Φ succeeds up to densities
(1 + ok(1))

2k

k log k, and going beyond such densities is a major open problem with links to phase
transitions [1].

Lately there has been significant interest in the related computational problem of sampling
satisfying assignments of Φ uniformly at random. This problem is closely connected to the problem
of estimating the number of satisfying assignments of Φ, also known as the value of the partition
function of the model. From a probabilistic viewpoint, the analysis of the partition function depends
on subtle properties of the solution set Ω = ΩΦ consisting of the satisfying assignments of Φ [2, 14,
45, 40]. In this direction, there has been substantial work on finding the so-called free energy of
the model, i.e., the asymptotic value of the quantity 1

nE[log(1 + |Ω|)]. Computing the k-SAT free
energy is a difficult problem which is still open (roughly, the difficulty comes from the asymmetry
of the model and the unbounded degrees), but there have been results for closely related models
including the permissive version of the model [14, 40, 17], the regular k-SAT model [18], and the
regular NAE-SAT model [44, 45]. Very recently, a formula for the free energy of the 2-SAT model
was given in [2].

Regarding the algorithmic problem of sampling satisfying assignments uniformly at random, in
the random k-SAT model progress has been slower relative to other well-studied models on random
graphs (such as k-colourings or independent sets). One of the main reasons for this is that the usual
distribution properties that are typically used to obtain fast algorithms (such as correlation decay
and spatial mixing) fail to hold for densities as low as α = ok(1) [40]. These issues are in fact present
already in the bounded-degree k-SAT setting, where the formulae are worst-case but every variable
is constrained to have a bounded-number of occurrences. For random formulae, these issues are
further aggravated by the fact that the degrees of a linear number of variables are unbounded. Very
recently, the authors of [24] gave an approximate counting algorithm (FPTAS) for the number of
satisfying assignments of Φ when k is large enough and α ≲ 2k/300 (where ≲ hides a polynomial
factor in 1/k). This algorithm elevates Moitra’s counting method for bounded-degree k-SAT [39]
to the random formula setting, and is the first polynomial-time approximate-counting algorithm
to achieve an exponential-in-k bound on α. However, its running time is nexp(Θ(k)) because the
algorithm repeatedly has to enumerate local structures (including solving LPs as a subroutine),
which does not scale well with k. Hence, the problem of finding a fast algorithm for sampling the
satisfying assignments in the random k-SAT model has remained open.

In this work we give a fast algorithm that in time n1+ok(1) approximately samples satisfying
assignments of a random k-SAT formula of density α ≤ 20.039k, within arbitrarily small polynomial
error. Our work also delves into the connections between the solution space geometry of k-CNF Φ
and algorithms for efficiently sampling from the solutions of Φ.
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A unifying theme of previous approaches to counting and sampling CSP solutions is a tool
called marking, first introduced in [39], which finds a set of “marked” variables such that the set of
satisfying assignments projected on these variables is connected. Marking is also an essential step
in the developing of our sampling algorithm. Our algorithm first runs a Markov chain to sample
assignments of a judiciously-chosen subset of marked variables of Φ (from the relevant marginal
distribution), and subsequently extending this random assignment to all the variables. This has the
advantage that it avoids the enumeration of local structures, and in fact achieves a nearly-linear
running time. We give a high-level overview of the techniques developed in our proofs in Section 2.
Roughly, our Markov chain is a uniform-block Glauber dynamics which, interestingly, mixes quickly
despite the presence of high-degree variables in the random formula. The main point of departure
from similar approaches that have been applied to the bounded-degree setting is that we completely
circumvent sophisticated coupling arguments that have been used there and which are unfortunately
severely constricted by the unbounded degrees in our setting (and made inapplicable). Instead, our
main technical contribution is to show that the stationary distribution of our chain is (ck log n)-
spectrally independent for some constant c ∈ (0, 1), allowing us to apply recently-developed tools
in the analysis of Markov chains. Unlike most applications of spectral independence, our proof
does not rely on correlation decay (which, as we mentioned, fails to hold for densities exponential
in k). We show our spectral-independence bounds by relating the probabilistic properties of the
solution space with the structure of the formula using coupling techniques, so that we can exploit
local sparsity properties of random k-SAT.

To formally state our main result, we say that an event E regarding the choice of the random
formula Φ holds with high probability (abbreviated w.h.p.) if Pr(E) = 1 − o(1) as n → ∞. The
total variation distance between two probability distributions µ and ν over the same space Ω is
given by 1

2

∑
x∈Ω|µ(x)− ν(x)| and is denoted by dTV(µ, ν). Our main result can now be stated as

follows.

Theorem 1. For any real θ ∈ (0, 1), there is k0 ≥ 3 with k0 = O(log(1/θ)) such that, for any integers
k ≥ k0 and ξ ≥ 1, and for any positive real α ≤ 20.039k, the following holds.

There is an efficient algorithm to sample from the satisfying assignments of a random k-CNF
formula Φ = Φ(k, n, bαnc) within n−ξ total variation distance of the uniform distribution. The
algorithm runs in time O(n1+θ), and succeeds w.h.p. over the choice of Φ.

Using standard techniques from the literature, this O(n1+θ) uniform sampling algorithm can
be used to obtain a randomised approximation scheme for counting satisfying assignments of Φ in
time O(n2+θ/ε2), where ε is the multiplicative error, see [21, Section 7] and Remark 56 for details.

Our results can be applied to analyse the solution space geometry of random k-CNF formulae for
the densities under consideration. Many involved heuristics in statistical physics make predictions
about the geometry of the solution space of a random k-CNF instance, often depicted in diagrams
like Figure 1. Some phases and transitions in this diagram are precisely understood. For example,
as mentioned above, the satisfiability threshold (pictured in the transition to the rightmost image in
Figure 1) was determined by [19]. Another transition of interest is the clustering threshold, above
which the solution space of a random k-CNF shatters into exponentially many linearly separated
connected components, each of which contains an exponentially small fraction of the satisfying
assignments of the formula, as rigorously understood in [15, 3, 37, 41].
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Figure 1: Heuristic phase diagrams such as above [36] depict the predicted evolution of the structure
of the solution space of a random k-CNF as the density α of the formula increases from left to right.
We primarily study the leftmost regime.

In the lower-density regime, the solution space geometry of random k-CNFs appears poorly
understood. It is widely believed that beneath a critical clause density, the solution space of a
random k-CNF is “connected.” However, from the literature, it is not even clear what “connected”
means. Connectivity is sometimes used in the statistical physics literature as a characterization of
the entropy or energy profile of the solution space of a random k-CNF formula as in [48]. In such
settings, connectivity is often characterized by an absence of clustering behavior, leaving somewhat
of a mystery as to the graphical properties of the solution space of a low density random k-CNF.

Conjectures about connectivity take different forms, and different notions of what connectivity
might mean are articulated in [48, 36, 15]. The most common precise notion of connectivity is with
respect to Hamming distance, i.e. understanding connectivity properties of the graph of solutions
to a random k-CNF, where solutions are f(n)-connected if their Hamming distance is at most
f(n). At lower densities, random k-CNFs still can have isolated solutions far in Hamming distance
from other satisfying assignments. However, the prevailing belief is that below some threshold,
the overwhelming majority of solutions to a random k-CNF lie in a giant component that is o(n)-
connected.

Much more is known about related notions and local versions of connectivity, like looseness,
which characterises how rigid a particular satisfying assignment is. Roughly speaking, a satisfying
assignment to a formula is f(n)-loose if any variable can be flipped to yield a new satisfying
assignment by changing at most f(n) additional variable assignments. In [1], the authors showed
o(n)-looseness holds in the connectivity regime for related, simpler random models, random q-
coloring, and hypergraph 2-coloring, conjecturing that o(n)-looseness holds for random k-CNF
instances below the clustering threshold. This conjecture was partially resolved in [15], where in
an analysis of the decimation process for random k-SAT, the authors observed that with high
probability over formulae and satisfying assignments, at least 99% of the variables were O(log n)-
loose. Looseness, however, is a local notion, not a global one. The set of elements in {0, 1}n that
have Hamming weight at least 2n/3 or at most n/3 is 1-loose, but Ω(n)-connected.

We will concern ourselves with the following precise notion of connectivity.

Definition 2 (D-Connectivity). Let Φ = (V, C) be a k-CNF formula. For any assignment Λ: V →
{F,T}, let ‖Λ‖1 be the number of variables Λ assigns to be T. Throughout, we implicitly consider
variable assignments in Fn

2 , so ‖ · ‖1 encodes Hamming weight and ‖Λ1 − Λ2‖1 encodes Hamming
distance.

We say a sequence of satisfying assignments ζ0 ↔ ζ1 ↔ · · · ↔ ζℓ of Φ is aD-path if ‖ζi−ζi−1‖1 ≤
D for each i ∈ [t]. We say two satisfying assignments of Φ, Λ,Λ′ ∈ Ω, are D-connected if there
exists a D-path connecting Λ and Λ′ (that is, ζ0 = Λ and ζℓ = Λ′).

Marking-based deterministic and MCMC algorithms are mysterious at first glance, as they
enable counting and sampling of k-CNF solutions even in regimes where the solution space is
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disconnected (i.e. not 1-connected). In this work, we leverage the idea of marking in a novel way
to construct paths that certify global connectivity properties of the solution space of k-CNFs at
densities close to where counting algorithms are known.

Theorem 3. There is k0 ≥ 3 and a polynomial p(k) with non-negative integer coefficients such
that, for any integer k ≥ k0, and for any positive real α ≤ 20.227k, the following claim holds with
high probability over the choice of a random k-CNF formula Φ = Φ(k, n, bαnc). Two satisfying
assignments chosen uniformly at random are p(k) log(n)-connected with probability at least 1−1/n.

In fact, we show it suffices to take p(k) = 2k5. Our new applications of marking also have
implications for other, more local, structural properties of the k-CNF solution space, like looseness.

Definition 4. Given a k-CNF formula Φ = (V, C) and a satisfying assignment Λ, a variable v ∈ V
is f(n)-loose with respect to Λ if there exists satisfying assignment to Φ, τ ∈ Ω, with τ(v) 6= Λ(v)
and ‖Λ− τ‖1 ≤ f(n).

For a random k-CNF formula Φ = Φ(k, n,m) and a satisfying assignment Λ chosen uniformly
at random, we say that Φ is f(n)-loose if with high probability over (Φ,Λ), all variables v ∈ V are
f(n)-loose with respect to Λ.

We observed earlier that looseness does not imply connectivity; in fact, the other direction of
implication is also false as looseness is an incomparable goal to connectivity. Looseness requires
that locally, we are able to flip any variable and get to a nearby solution rather than merely the
existence of a path away from a solution. Nonetheless, we are able to deduce some nontrivial results
about the looseness of the solution space of random k-CNFs.

Theorem 5. There is k0 ≥ 3 such that, for any integer k ≥ k0, and for any positive real α ≤ 20.227k,
the random k-CNF formula Φ(k, n, bαnc) is poly(k) log(n)-loose.

We note here that, independently of this work, He, Wu, and Wang [28] also obtained sampling
algorithms for random k-CNF formulae. The approach of [28] is based on bounding chains following
the recursive sampler method developed in [6, 27, 26]. Their algorithm works up to densities roughly
equal to 2k/3 and samples satisfying assignments within ε total variation distance of the uniform
distribution in time (n/ε)1+O(k−5).

2 Proof outline
Our nearly linear-time sampling algorithm is based on running a Markov chain; this is a standard
technique in approximate counting, where typically one runs a Markov chain on the whole state
space that converges to the desired distribution. The twist in k-SAT is that the state space of
the Markov chain needs to be carefully selected in order to avoid certain bottleneck phenomena
that impede fast convergence. This approach has been recently applied to bounded-degree k-CNF
formulae [21, 22, 31] building on the work of Moitra [39] (see also [32]) and using the Markov chain
known as single-site Glauber dynamics. The main difficulties in all of these works are that the
usual distribution properties that are typically used to obtain fast algorithms (such as correlation
decay and spatial mixing) fail on the set of all SAT solutions, and in fact even ensuring a connected
state space is a major problem. Working around this is one of the main challenges for us too, and
in the random k-SAT setting it is further aggravated by the fact that a linear number of variables
have degrees much higher than average. In fact, w.h.p., a good portion of vertices have degrees
depending on n. with the maximum degree of the formula scaling as log n/ log log n.
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This poses several new challenges for the Markov chain approach to work in our setting. First
of all, we have to ensure that the set of satisfying assignments that our Markov chain considers has
good connectivity properties. We address this problem in Section 2.1 of this proof outline, where
we find a suitable subset of marked variables where we can run the Glauber dynamics; this part is
inspired by Moitra’s “marking” approach, though here we need to add an extra layer of marking
to facilitate later the analysis of the Markov chain. Second and more importantly, state-of-the-art
arguments for bounding the mixing time of the single-site Glauber dynamics on k-CNF formulae,
such as [21, 31] break under the presence of high-degree variables. We focus on this in Section 2.2,
where we outline a novel argument that analyses the mixing time of the uniform-block Glauber
dynamics using recent advances in spectral independence [5, 34, 7, 10]. This is the first application
of the spectral-independence framework for k-CNF formulae, where the absence of correlation
decay limits the application of standard techniques (based on self-avoiding walk trees [7, 10]).
To obtain our spectral-independence bounds we need to combine the probabilistic structure of
satisfying assignments with the local sparsity properties of the random formula. The third challenge
in our approach is simulating the individual steps of the uniform-block Glauber dynamics since
they involve updating a linear number of variables, making the computation of the transition
probabilities more challenging. To this end, we need to initialise our block Glauber dynamics to
random values (instead of an arbitrary assignment that is typically used as initialisation), and show
that the formula breaks into small tree-like connected components that allows us to do the relevant
computations throughout the algorithm’s execution (cf. Section 2.3). Based on these pieces, the
full algorithm is presented in Section 2.4.

The fact that the formula breaks into small tree-like connected components when marked vari-
ables are assigned random values will also allow us to analyse the geometry of the space of satisfying
assignment of the random formula, and we will delve into this connection in Section 2.3.

2.1 Marking variables in the random k-SAT model
In order to ensure good connectivity properties which are essential for fast convergence of the
relevant Markov chain, our algorithm runs Glauber dynamics on a large subset Vm of so-called
“marked” variables of the random formula, leaving the rest of the variables unassigned. The
variables in Vm are chosen in a way that ensures that their marginals are near 1/2, which is
important for ensuring rapid mixing. Moitra [39] introduced a random “marking” procedure to
identify such a subset of variables in the bounded-degree case. The presence of high-degree variables
impedes a direct application of this technique in the random-formula setting, but in [24] the authors
show that by temporarily removing a small linear number of “bad” clauses that contain high-degree
variables, one can also achieve marginals near 1/2 for an appropriate set of variables in the random
k-SAT model. Here, we further refine these arguments, as we need more control over the high-
degree variables of the formula in order to conclude rapid mixing of the Glauber dynamics. Recall
that the degree of a variable v is the number of occurrences of literals involving the variable v in Φ
and that the maximum degree of the formula Φ is the maximum degree among its variables. The
following important definitions will be used throughout the paper. We usually use V to denote the
set of variables and C to denote the set of clauses of a k-CNF formula Φ. For any c ∈ C we denote
by var(c) the set of variables appearing in c, and for any S ⊆ C we denote var(S) =

⋃
c∈S var(c).

Definition 6 (high-degree, ∆r). Let r ∈ (0, 1) and let k ≥ 3 be an integer. Let Φ = (V, C) be a
k-CNF formula. We say that a variable v ∈ V is high-degree if the degree of v is at least∆r := d2rke.

We refer to Section 4 for details on our procedure to determine the bad variables/clauses of the
formula Φ. Roughly, bad variables consist of high-degree variables (as in Definition 6), plus those

5



variables that appear in a clause with at least two other bad variables (recursively); bad clauses are
those clauses that contain at least three bad variables. We use Vbad(r) and Cbad(r) to denote the
sets of bad variables and clauses. We use Vgood(r) = V \Vbad(r) to denote the set of good variables,
and Cgood(r) = C \ Cbad(r) to denote the set of good clauses. The following proposition, proved in
Section 4, summarises the main properties of the above sets.

Proposition 7. Let Φ = (V, C) be a k-CNF formula. For any c ∈ Cgood(r), we have |var(c)∩Vbad(r)| ≤
2, and for any c ∈ Cbad(r), we have |var(c)∩Vgood(r)| = 0. Moreover, every good variable has degree
less than ∆r. There is a procedure to determine Cbad that runs in time O(n+mk), where n is the
number of variables of Φ and m is the number of clauses of Φ.

It turns out that, w.h.p. over the choice of Φ, most clauses (and variables) in the random
formula Φ are good, see Lemma 20 for a precise statement. At this stage, it would be natural to try
to rework the Markov chain approach of [21]. To do this, we would split the set of good variables
into marked variables and control variables in such a way that marked variables have marginals
close to 1/2. Then we run the Glauber dynamics on the set of marked variables. However, as
we explain in Section 2.2, the state-of-the-art techniques used to analyse the mixing time of the
single-site Glauber dynamics on bounded-degree formulae do not generalise to the random k-SAT
setting; the main reason for this is that they fail to capture the effect that the high-degree variables
have on the marginal probabilities of other variables. Therefore, we need to develop an alternative
approach that is robust against the presence of high-degree variables. Our main contribution is an
argument to apply the spectral independence framework [10, 11] to the random k-SAT model that
leads to nearly linear sampling algorithms. To do this, it is important to introduce a third type
of good variables, which we call the auxiliary variables. This motivates the following definition of
marking.

Definition 8 (ρ-distributed, (r, rm, ra, rc)-marking, r0, r1, δ). Let r ∈ (0, 1). Let Φ = (V, C) be a k-
CNF formula and let V be a subset of Vgood(r). We say that V is ρ-distributed if for each c ∈ Cgood(r)
we have |var(c) ∩ V | ≥ ρ(k − 3). An (r, rm, ra, rc)-marking of Φ is a partition (Vm,Va,Vc) of the
variables of Φ such that

1. the set of good variables Vm is rm-distributed;

2. the set of good variables Va is ra-distributed.

3. Vc contains all the bad variables and the set Vc \ Vbad(r) is rc-distributed;

The variables in Vm are called marked variables, the variables in Va are called auxiliary variables,
and the variables in Vc are called control variables.

In our sampling algorithm we work with r = r0 − δ for r0 := 0.117841 and δ := 0.00001, and
work with an (r, r0, r0, 2r0)-marking. In our connectivity results (Theorems 3 and 5) we choose
r = r1 − δ for r1 := 0.227092 and work with an (r, r1, 0, r1)-marking in order to achieve the larger
density threshold.

In Section 5 we show that random k-CNF formulae have (r0 − δ, r0, r0, 2r0)-markings when the
density α is below the threshold 2(r0−δ)k/k3, and that the marginals of good variables are close to
1/2; this is where the value of r0 becomes important in the argument. We also show that random k-
CNF formulae have (r1−δ, r1, 0, r1)-markings when the density α is below the threshold 2(r1−δ)k/k3.
We state this result for r0 in Proposition 10 below; first we give some relevant definitions.
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Definition 9 (Ω∗, µA, Ω, ΦΛ, CΛ, VΛ, ΩΛ). Let Φ = (V, C) be a k-CNF formula. Let Ω∗ be the set
of all assignments V → {F,T}. Given any subset A ⊆ Ω∗, let µA be the uniform distribution on A.
Let Ω be the set of satisfying assignments of Φ. For any partial assignment Λ we denote by ΦΛ the
formula obtained by simplifying Φ under Λ, i.e., removing the clauses which are already satisfied
by Λ, and removing false literals from the remaining clauses. We denote by CΛ and VΛ the sets of
clauses and variables of ΦΛ. Moreover, we denote by ΩΛ the set of satisfying assignments of ΦΛ.

Proposition 10. There is an integer k0 such that for any k ≥ k0 and any density α with α ≤
2(r0−δ)k/k3 the following holds w.h.p. over the choice of the random k-CNF formula Φ = Φ(k, n, bαnc).
There exists an (r0 − δ, r0, r0, 2r0)-marking (Vm,Va,Vc) of Φ. Moreover, for any such marking, for
any v ∈ Vgood(r0 − δ), any V ⊆ Vm ∪ Va with v 6∈ V , and any Λ: V → {F,T}, we have

max
{
Prµ

ΩΛ (v 7→ F) ,Prµ
ΩΛ (v 7→ T)

}
≤ 1

2
exp

(
1

k2r0k

)
.

Proof. This follows directly by combining Lemmas 26 and 28, which are stated and proved in
Section 5.

We note that the density threshold of Theorem 1 is 20.039k, which is significantly smaller than
the threshold 2(r0−δ)k/k3 in Proposition 10. The bottleneck for the threshold Theorem 1 comes
from our mixing time results, see Section 2.2.

The bound given in Proposition 10 on the marginal probabilities of the marked and auxiliary
variables is exploited several times in this work, and we will explain some of these applications in
this proof outline. We remark that the bound on the marginals of good variables holds for any
pinning of any subset of marked and auxiliary variables, which will be relevant in the spectral
independence argument.

Definition 11 (µ|V ). Let V be a finite set and let Ω ⊆ {F,T}V . Let µ be a distribution over Ω. For
a set V ⊆ V , we denote by µ|V the marginal distribution of µ on V .

Proposition 10 implies that the distribution µΩ|Vm∪Va
is very close to the uniform distribution

over all assignments Vm ∪ Va → {F,T}. This concept is formalised in the following definition.

Definition 12 (ε-uniform). Let V be a set of variables and µ be a probability distribution over the
assignments V → {F,T}. Let Λ: S → {F,T} be an assignment of some subset of variables S ⊆ V .
We denote by Prµ(Λ) the probability under µ of the event that the variables in S are assigned
values according to Λ, and by Prµ(·|Λ) the corresponding conditional distribution of µ.

For ε ∈ (0, 1), we say that the distribution µ is ε-uniform if for any variable v ∈ V and any
partial assignment Λ: V \ {v} → {F,T}, we have

max {Prµ (v 7→ F|Λ) ,Prµ (v 7→ T|Λ)} ≤ 1

2
eε.

From Proposition 10, it follows that the distribution µΩ|Vm
is ε-uniform for ε = (2−r0k/k), so

for any Λ: Vm → {F,T}, the probability that the assignment of the marked variables is Λ is at least
(1 − eε/2)|Vm|. The ε-uniform property also (trivially) guarantees that the space of assignments
Λ: Vm → {F,T} with PrµΩ(Λ) > 0 is connected via single-variable updates, so we can indeed
consider the Glauber dynamics over Vm. This leads to the main challenge of this work: does this
chain mix rapidly?
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2.2 Mixing time of the Glauber dynamics on the marked variables
Recently, there has been significant progress in showing that the single-variable Glauber dynamics
on appropriately chosen subsets of variables mixes quickly for k-CNF formulae with bounded de-
gree [21, 31]. These approaches carefully execute a union bound over paths of clauses connecting
marked variables in order to bound the coupling time between two copies of the chain. However,
these union bound arguments break under the presence of high-degree variables that are present in
random k-SAT; this is because the number of paths connecting marked variables is very sensitive
to the max degree of the formula and in particular grows too fast in our setting. We give a more
detailed discussion in Section 8.1.

Instead, we apply the spectral independence framework to show rapid mixing of a uniform-block
Glauber dynamics, which we review briefly below. Applications of spectral independence usually
exploit decay of correlations to show that the spectral independence condition holds, see [7, 10, 8] for
examples. As we have mentioned in the introduction, correlation decay fails to hold for densities
exponential in k in the random k-SAT model [40] and therefore, we have to develop a different
approach to conclude that the spectral-independence condition holds in our setting. This is our
main contribution in this work; we show that the marginal distribution on the marked variables,
i.e., µΩ|Vm

, is (ε log n)-spectrally independent for some ε > 0 that can be made arbitrarily small
for sufficiently large k. Our argument builds on the coupling idea of Moitra [39] (as refined in [24]
for random k-SAT) and relates the spectral independence condition to the expected number of
failed clauses in this coupling process. This allows us to exploit the local sparsity properties of the
random k-SAT model to analyse the mixing time of the Glauber dynamics.

A caveat here is that the spectral independence of µΩ|Vm
is not enough on its own to conclude

fast mixing of the single-site Glauber dynamics. The most direct way to work around this is to
analyse instead the so-called ρ-uniform-block Glauber dynamics that updates ρ vertices at a time
for some ρ that scales linearly in n; the main missing ingredient there is to show that the modified
chain can be implemented efficiently which we discuss in Section 2.3. We next give a quick overview
of the relevant ingredients of the spectral-independence literature that we will need.

2.2.1 The ρ-uniform-block Glauber dynamics, spectral independence, and the mixing time

Let V be a finite set of sizeM and µ be a distribution over the assignments V → {F,T}. Let Ω be the
set of assignments V → {F,T} with positive probability under µ. For an integer ρ ∈ {1, 2, . . . , |V |},
the ρ-uniform-block Glauber dynamics for µ is a Markov chain Xt where X0 ∈ Ω is an arbitrary
configuration and, for t ≥ 1, Xt is obtained from Xt−1 by first picking a subset S ⊆ V of size ρ
uniformly at random, letting Λt be the restriction of Xt to V \ S, and updating the configuration
on S according to the probability distribution µ(·|Λt). This chain satisfies the detailed balance
equation for µ. Hence, when the chain is irreducible, for ε > 0, we can consider its mixing time
Tmix(ρ, ε) = maxσ∈Ωmin{t : dTV(Xt, µ) ≤ ε | X0 = σ}. We say that µ is b-marginally bounded
if for all v ∈ V , S ⊆ V \ {v}, Λ: S → {F,T} with Prµ(Λ) > 0, and ω ∈ {F,T}, it either holds
that Prµ(v 7→ ω|Λ) = 0 or Prµ(v 7→ ω|Λ) ≥ b. Spectral independence results have recently been
used in the b-marginally bounded setting to obtain fast mixing time of the uniform-block Glauber
dynamics [9, 11]. For S ⊂ V , Λ: S → {F,T} with Prµ(Λ) > 0, and u, v ∈ V with u 6∈ S and
0 < Prµ(u 7→ T|Λ) < 1, the influence of u on v (under µ and Λ) is defined as

IΛ(u→ v) = Prµ (v 7→ T|u 7→ T,Λ)− Prµ (v 7→ T|u 7→ F,Λ) . (1)

The influence matrix conditioned on Λ is the (two-dimensional) matrix whose entries consist of
IΛ(u → v) over all relevant u and v. We denote by IΛ the matrix and by λ1(IΛ) its largest
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eigenvalue in absolute value. For a real η > 0, we say that µ is η-spectrally independent if for all
S ⊂ V and Λ: S → {F,T} with Prµ(Λ) > 0 we have λ1(IΛ) ≤ η. From the results of [11], one
can conclude the following bound for the mixing time of the uniform-block Glauber dynamics, see
Appendix B for details.

Lemma 13. The following holds for any reals b, η > 0, any κ ∈ (0, 1) and any integer M with
M ≥ 2

κ(4η/b
2 + 1). Let V be a set of size M , let µ be a distribution over the assignments

V → {F,T}, let Ω = {Λ: V → {F,T} : µ(Λ) > 0} and let µmin = minΛ∈Ω µ(Λ). If µ is b-marginally
bounded and η-spectrally independent, then, for ρ = dκMe and Cρ = (2/κ)4η/b

2+1, we have

Tmix(ρ, ε) ≤
⌈
Cρ

M

ρ

(
log log

1

µmin
+ log

1

2ε2

)⌉
.

We are going to consider the uniform-block Glauber dynamics on the marked variables of Φ,
so V = Vm, and the set of states coincides with the set of assignments Vm → {F,T} as all of them
have positive probability. In this setting, the target distribution is µΩ|Vm

. The distribution µΩ|Vm

is (1/e)-marginally-bounded as a straightforward consequence of the fact that it is (1/k)-uniform,
see Remark 54 for details. Hence, in order to conclude rapid mixing it remains to establish spectral
independence. For this, we are going to use the well-known fact (see for instance [10]) that, for
S ⊂ V and Λ: S → {F,T}, we have

λ1(IΛ) ≤ max
u∈V \S

∑
v∈V \S

|IΛ(u→ v)|. (2)

2.2.2 Spectral independence in the random k-SAT model

In this section we state our spectral independence results in the random k-SAT model. The results
stated in this section are proved in Section 8. Our main technical result is the following.

Lemma 14. There is an integer k0 ≥ 3 such that for any integer k ≥ k0 and any density α
with α ≤ 2r0k/3/k3 the following holds. W.h.p. over the choice of the random k-CNF formula
Φ = Φ(k, n, bαnc), for any (r0 − δ, r0, r0, 2r0)-marking (Vm,Va,Vc) of Φ, the distribution µΩ|Vm

is
(2−(r0−δ)k log n)-spectrally independent.

We are going to describe some of the ideas behind the proof of Lemma 14. First, we highlight the
fact that, due to the presence of high-degree variables (which form logarithmically-sized connected
components), current techniques seem unable to conclude η-spectral independence with η = O(1).
This has also been the case in recent work on 2-spin systems on random graphs [8], where instead
correlation decay is exploited to prove η-spectral independence for some η = o(log n). Here, our
η-spectral independence bound for η = ok(log n) will be based on an appropriate coupling. Note, in
light of Lemma 13, η = O(log n) is good enough for proving polynomial mixing time of the uniform-
block Glauber dynamics, but we need the improved bound of Lemma 14 in order to conclude the
following fast mixing-time result from Lemma 13 (as illustrated Section 8).

Lemma 15. There is a function k0(θ) = Θ(log(1/θ)) such that, for any θ ∈ (0, 1), for any integer
k ≥ k0(θ) and any density α with α ≤ 20.039k the following holds. W.h.p. over the choice of the
random k-CNF formula Φ = Φ(k, n, bαnc), for any (r0−δ, r0, r0, 2r0)-marking (Vm,Va,Vc) of Φ and
for ρ = d2−k−1|Vm|e, the ρ-uniform-block Glauber dynamics for updating the marked variables has
mixing time Tmix(ρ, ε/2) ≤ T := d22k+3nθ log 2n

ε2
e.
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Lemma 15 is stated for the block size ρ = d2−k−1|Vm|e, but it could be proved more generally
when ρ = c|Vm| and c ∈ (0, 1). The fact that ρ ≤ |Vm|/2k in the statement will be relevant in
implementing efficiently the dynamics, discussed in Section 2.3.

We remark that the more restrictive density threshold α ≤ 2r0k/3/k3 in the statement of
Lemma 14 arises in the union bound given in the proof of this lemma, and that for large enough
k we have 20.039k ≤ 2r0k/3/k3, the former being the density threshold given in Lemma 15 and
Theorem 1.

Our approach to prove η-spectral independence significantly differs from those that in two-spin
systems, where it is enough to study sum of influences over trees (thanks to the tree of self-avoiding
walks) and exploit decay of correlations in this setting (very roughly, the further away two vertices
are in the tree, the smaller the influence that one vertex has in the other). Here we relate influences
to the structure of the dependency graph GΦ by running a coupling process on the auxiliary
variables, and we state this connection in the upcoming Lemma 45. First we define more formally
the dependency graph GΦ.

Definition 16 (GΦ). Let Φ = (V, C) be a k-CNF formula. We define the graph GΦ as follows. The
vertex set of GΦ is C and two clauses c1 and c2 are adjacent if and only if var(c1) ∩ var(c2) 6= ∅. A
set C ⊆ C is connected if C is connected in the graph GΦ. We say that two variables u and v are
connected in Φ if there is a path c1, c2, . . . , cℓ in GΦ with u ∈ var(c1) and v ∈ var(cℓ).

Let u ∈ Vm, S ⊂ Vm and Λ: S → {F,T}. The aim of the coupling process is bounding the
sum

∑
v∈Vm\(S∪{u})|IΛ(u → v)| in terms of the expected size of a connected set of failed clauses,

where the expectation is over the choices made in the coupling process. We refer to Section 8 for
a definition of failed clauses, as it is not relevant in this discussion. Here we give a brief overview
of how the coupling process on the auxiliary variables works. First, we start with two assignments
X = Λ∪(u 7→ T) and Y = Λ∪(u 7→ F), where Λ∪(u 7→ ω) denotes the assignment defined on S∪{u}
that agrees with Λ on S and sends u to ω. The process progressively extends X and Y on some
auxiliary variables v1, v2, . . . following the optimal coupling between the marginals PrµΩ(v 7→ ·|X)
and PrµΩ(v 7→ ·|Y ), see Section 8 for the definition of optimal coupling. The main property of this
process is that with high probability over the choices made, at some point the graphs GΦX and
GΦY factorise in small connected components in spite of the presence of bad variables and, on top
of that, ΦX and ΦY share most of these connected components. Then we can bound influences
between marked variables by analysing the connected components where ΦX and ΦY differ, which
turn out to be poly(k) log n in size after enough steps of the process.

One of the key ideas behind our analysis is exploiting the fact that, in the random k-SAT
model, w.h.p. over the choice of the random formula Φ, any logarithmic-sized set of clauses Z
that is connected in GΦ has constant tree-excess, that is, the number of edges connecting a pair
of clauses in Z is |Z|+ O(1). This saves a factor of ∆r0−δ in the spectral independence bound by
ensuring that there is a large independent set of clauses in the set of failed clauses. We also obtain
improved analysis by restricting the coupling process to auxiliary variables. This enables us to get
exponentially small bounds (in k) on the influences between marked variables, which leads to our
(2−(r0−δ)k log n)-spectral independence result.

2.3 Analysis of the connected components of ΦΛ. Applications to connectivity and looseness
In this section we deal with the third challenge mentioned at the beginning of Section 2: can we
determine the transition probabilities of the Glauber dynamics so that we can actually simulate this
Markov chain? In fact, simulating the single-site Glauber dynamics on the marked variables was
one of the main challenges even in the bounded-degree case. In that case this was resolved using a
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method that is restricted to the bounded-degree setting (and whose bottleneck is the analysis of a
rejection sampling procedure). A different procedure is required for the random k-SAT setting.

One of the key ideas to simulate this chain is starting the chain on an assignment X0 : Vm →
{F,T} drawn from the uniform distribution over all assignments of Vm. Since the distribution µΩ|Vm

is (1/k)-uniform (Proposition 10), the transition probabilities of the Glauber dynamics are close
to uniform. This allows us to show that the probability distribution of the assignment Xt that is
output by the uniform-block Glauber dynamics after t steps is also (1/k)-uniform (Corollary 29),
which will be important in what follows.

In order to run the ρ-uniform-block Glauber dynamics we need to be able to sample from the
distribution µΩΛ for any set S ⊆ Vm with |S| = ρ and any assignment Λ: Vm \ S → {F,T} that
arises. Unless we can restrict Λ, sampling from µΩΛ could potentially be as hard as sampling from
µΩ. Fortunately for us, the assignment Λ is not completely arbitrary; Λ is determined by the
random choice of S and the current state of the Glauber dynamics (which follows a (1/k)-uniform
distribution as discussed above). We show that we can efficiently sample from µΩΛ w.h.p. over
the choice of Λ. An important observation is that we can efficiently sample from µΩΛ when the
connected components of GΦΛ are logarithmic in size, for example, by applying brute force. This
raises the following question: does GΦΛ break into small connected components w.h.p. over the
choice of Λ? Lemma 17 gives a positive answer when 0 ≤ ρ ≤ |V |/2k. Here the reader can see V as
the set of marked variables. The proof of Lemma 17 exploits sparsity properties of logarithmic-sized
connected sets of clauses in random formulae in conjunction with the fact that µ is (1/k)-uniform.
Lemma 17 is stated with an added layer of generality, as we will also apply it to analyse the
geometry of the space of satisfying assignments of Φ with r = r1 − δ. In our sampling algorithm
setting we consider r = r0 − δ. Recall that r0 = 0.117841, r1 = 0.227092 and δ = 0.00001. The
restriction r ∈ (2δ, 1/(2 log 2)] in the statement of Lemma 17 is not optimal, but it is enough for
our purposes.

Lemma 17. Let r ∈ (2δ, 1/(2 log 2)]. There is an integer k0 ≥ 3 such that, for any integer k ≥ k0,
any density α ≤ 2(r−2δ)k, and any real number b with a := 2k4 < b, the following holds w.h.p. over
the choice of Φ = Φ(k, n, bαnc).

Let L be an integer satisfying a log n ≤ L ≤ b log n. Let V be a set of good variables of Φ that is
(r + δ)-distributed (Definition 8), let µ be a (1/k)-uniform distribution over the assignments V →
{F,T}, and let ρ be an integer with 0 ≤ ρ ≤ |V |/2k. Consider the following experiment. First, draw
S ⊆ V from the uniform distribution τ over subsets of V with size ρ. Then, sample an assignment Λ
from µ|V \S . Denote by F the event that that there is a connected set of clauses Y of Φ with |Y | ≥ L

such that all clauses in Y are unsatisfied by Λ. Then PrS∼τ

(
PrΛ∼µ|V \S

(F) ≤ 2−δkL
)
≥ 1− 2−δkL.

Proof sketch. The proof is in Section 6. For the sake of exposition, we first sketch the proof in the
case ρ = 0, where the conclusion in the statement reads PrΛ∼µ|V (F) ≤ 2−δkL. At the end of this
proof sketch we explain how we extend the proof to any ρ with 0 ≤ ρ ≤ |V |/2k.

The first step is exploiting local sparsity properties of random k-CNF formulae to find many
variables from V in any sufficiently large connected set of clauses. Our sparsity results hold for
connected sets of clauses with size at least 2k4 log n, and let us conclude the following result (stated
as Lemma 33 in Section 6): w.h.p. over the choice of Φ, for every connected set of clauses Z ⊆ C
we have

if 2k4 log(n) ≤ |Z| ≤ b log(n), then |var(Z) ∩ V | ≥ rk|Z|. (3)

The proof of Lemma 33 counts the variables from V in Z by using the fact that Z does not
contain many bad clauses (Lemma 20, which gives the restriction on r) and the fact that there
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are not many edges joining clauses in Z. In fact, for such a set Z, we show that the number of
edges is of order |Z| + O(1), that is, Z has constant tree-excess (Lemma 31). We also need the
following result on random k-CNF formulae. For each clause c ∈ C, let Z(c, L) = {Z ⊆ C : c ∈
Z,Z is connected in GΦ, |Z| = L}. Then, w.h.p. over the choice of Φ, [24, Lemma 40] shows that,
as long as L ≥ log n,

for any clause c ∈ C we have |Z(c, L)| ≤ (9k2α)L. (4)

Once we have established (3) and (4), the proof exploits the fact that µ is close to the uniform
distribution. First, we introduce some notation. Let L be an integer with a log n ≤ L ≤ b log n.
Let S = ∅ as we are dealing with the case ρ = 0. For c ∈ C and Z ∈ Z(c, L), we denote by
E1(Z, S) the event that none of the clauses of Z are satisfied by assignment Λ (Definition 9), where
Λ is drawn from µ|V \S , see Definition 11. We keep track of S in the notation here as this is
relevant in the general case. The first observation is that the event F from the statement satisfies
F =

⋃
c∈C,Z∈Z(c,L) E1(Z, S). We then claim that for any c ∈ C and Z ∈ Z(c, L) we have

PrΛ∼µ|V \S
(E1(Z, S)) ≤

2−δkL

|C| · |Z(c, L)|
, (5)

so the result would follow from a union bound over c and Z. Let us give some insight on how we
prove (5). Let c ∈ C and Z ∈ Z(c, L). The main idea is that, if all clauses in Z are unsatisfied by Λ
then, when we sampled Λ ∼ µ|V \S , for each variable v in var(Z)∩ (V \S) we picked the value that
does not satisfy the clauses of Z containing v. Thus, we can bound the probability that all clauses
in Z are unsatisfied as a product, over the variables in var(Z)∩ (V \S), of probabilities, each factor
corresponding to the probability that a variable is assigned a certain value (under some careful
conditioning, see the proof in Section 6 for details). Since the distribution µ is (1/k)-uniform, each
one of these factors can be bounded by exp(1/k)/2, obtaining

PrΛ∼µ|V \S
(E1(Z, S)) ≤

(
1

2
exp

(
1

k

))|var(Z)∩(V \S)|
. (6)

In (3) we gave a lower bound on |var(Z) ∩ V |, which can be applied in conjunction with (4) to
conclude, after some calculations, that the bound given in (5) holds.

The case ρ > 0 is more technical and one has to be more careful in these calculations. We
show that (5) holds when S does not contain many variables in var(Z) ∩ V . A slightly different
argument is needed when going from (6) to (5); here we have to bound |var(Z)∩ (V \S)| instead of
|var(Z) ∩ V |. It turns out that, as long as the bound |var(Z) ∩ V ∩ S| ≤ |var(Z) ∩ V |/k holds, the
calculations to go from (6) to (5) also hold in this setting. Finally, we show that the probability
that |var(Z)∩V ∩S| ≤ |var(Z)∩V |/k occurs when picking S is at least 1− 2δkL. The proof of this
fact is purely combinatorial, and requires the hypothesis ρ ≤ |V |/2k, see Section 6 for details.

Once we have established Lemma 17, we can use it to implement the ρ-uniform-block Glauber
dynamics on the marked variables for 0 < ρ ≤ |Vm| and complete our sampling algorithm, which
we explicitly state in Section 2.4.

Before concluding this section, we mention how we apply Lemma 17 to analyse the geometry
of the space of satisfying assignments of Φ in order to conclude the O(log n)-connectivity and
O(log n)-looseness results given in Theorems 3 and 5. First, we need the following definition.

Definition 18 (HΦ). Let Φ = (V, C) be a k-CNF formula. We define the graph HΦ as follows. The
vertex set of HΦ is V and two variables v1 and v2 are adjacent in HΦ if there is a clause c ∈ C with
v1, v2 ∈ var(c).
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We apply Lemma 17 with r = r1−δ and a density α ≤ 2(r1−3δ)k/k3. For an (r, r1, 0, r1)-marking
(Vm, ∅,Vc) of Φ, we let V = Vm and µ = µΩ|Vm

. In this setting, for ρ = 0, Lemma 17 allows us
to conclude that, w.h.p. over the choice of Λ ∼ µΩ|Vm

, the graph GΦΛ consists of connected
components with size at most O(log n). Thus, the connected components of HΦΛ have size at most
O(log n) as each clause contains at most k variables. This leads to the main idea behind the proof
of Theorem 3: we can construct O(log n)-paths between satisfying assignments by progressively
updating the variables in each one of the connected components of HΦΛ . As an example, let
E1, E2, . . . , Et be these connected components and let σ1 and σ2 be two satisfying assignments that
agree with Λ on Vm. Then we can find an O(log n)-path σ1 = ζ0 ↔ ζ1 ↔ · · · ↔ ζt = σ2 as follows:
the assignment ζj is the satisfying assignment that agrees with Λ, agrees with σ1 on the variables
in V \

(⋃j
i=1 Ej

)
and agrees with σ2 on the variables in

⋃j
i=1 Ej . The case when σ1 and σ2 differ on

some marked variables builds on the same idea though it is more technical and requires applying
Lemma 17 with ρ = 1. We refer to Section 10.1 for this argument and the proof of Theorem 3.

The fact that the connected components of HΦΛ are O(log n) in size with high probability over
Λ ∼ µΩ|Vm

is also related to the looseness of the formula Φ. Let v ∈ V \ Vm. For any satisfying
assignment σ that agrees with Λ on the marked variables, we can construct a satisfying assignment
τ with τ(v) 6= σ(v) and ‖σ− τ‖1 = O(log n) by updating the variables in the connected component
of v in HΦΛ , provided that there is a way to satisfy this connected component when giving v the
value τ(v). In Section 10.2 we formalise this idea and give all the details of this argument to prove
Theorem 5.

2.4 The sampling algorithm
To complete this proof outline, we explicitly describe Algorithm 1, our algorithm for sampling
satisfying assignments of k-CNF formulae. The algorithm uses a method Sample(ΦΛ, S) to sample
an assignment τ : S → {F,T} from the distribution µΩΛ |S . This method exploits the fact that
logarithmic-sized connected set of clauses have constant tree-excess, which does not hold in the
bounded-degree case. This tree-like property enables us to efficiently sample satisfying assignments
on the connected components of ΦΛ by a standard dynamic programming argument, see Section 7.
Lemma 19 is our main result on Sample(ΦΛ, S).

Lemma 19. There is an integer k0 ≥ 3 such that, for any integers k ≥ k0, b ≥ 2k4 and any density
α > 0, the following holds w.h.p. over the choice of Φ = Φ(k, n, bαnc). Let V be a subset of
variables and let Λ: V → {F,T} be a partial assignment such that all the connected components
in GΦΛ have size at most b log(n). Then, there is an algorithm that, for any S ⊆ V \ V , samples an
assignment from µΩΛ |S in time O(|S| log n).

The method Sample(ΦΛ, S) is used in Algorithm 1 to implement each step of the ρ-uniform-
block Glauber dynamics on the marked variables. It is also used to extend the assignment of
marked variables computed by the Glauber dynamics to a satisfying assignment of Φ. As a design
choice, this method returns error when the connected components of GΦΛ have size larger than
2k4(1 + ξ) log(n). We remark that the probability that Sample(ΦΛ, S) returns error is very small
when running the Glauber dynamics thanks to Lemma 17. We can now introduce Algorithm 1,
which has two parameters θ ∈ (0, 1) and ξ ≥ 1 as in Theorem 1.
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Algorithm 1 The approximate sampling algorithm for satisfying assignments of random k-CNF
formulae.
Input: A k-CNF formula Φ = (V, C) with n variables

1: Compute the sets of bad/good variables and bad/good clauses for Φ as in Proposition 7.
2: Let ε = n−ξ. Compute a marking (Vm,Va,Vc) for Φ as in Lemma 26 with p = ε/4. This

succeeds with probability at least 1− ε/4. If this does not succeed, the algorithm returns error.
3: For each v ∈ Vm, sample X0(v) ∈ {F,T} uniformly at random.
4: for t from 1 to T := d22k+3nθ log 2n

ε2
e do

5: Choose uniformly at random a set of marked variables S ⊆ Vm with size ρ := d2−k−1|Vm|e.
6: Let Λt be the assignment Xt−1 restricted to Vm \ S.
7: Y ← Sample(ΦΛt , S).
8: Xt ← Λt ∪ Y .
9: end for

10: Y ← Sample(ΦXT ,Va ∪ Vc).
11: return XT ∪ Y .

We remark here that Algorithm 1 only works for large enough k, and this hypothesis will be
used several times in our arguments. The quantity T defined in this algorithm corresponds to the
mixing time of the ρ-uniform-block Glauber dynamics given in Lemma 15.

3 Paper outline
The rest of this work is organised as follows. In Section 4 we introduce the procedure for determining
bad clauses. In Section 5 we prove Proposition 10 on markings of random formulae. In Section 6
we prove our technical result on the connected components of ΦΛ, Lemma 17. In Section 7 we
give the method Sample and prove Lemma 19. In Section 8 we prove the results on spectral
independence stated in Section 2.2 of the proof outline. In Section 9 we complete the proof of
Theorem 1 by combining our mixing time results (Lemma 15), our algorithm to sample from small
connected components (Lemma 19) and our result on the size of the connected components of ΦΛ

(Lemma 17). Finally, in Section 10 we prove Theorems 3 and 5 on the geometry of the space of
satisfying assignments of Φ.

To help keep track of the notation and definitions introduced in this work, the reader is referred
to the tables in Appendix C.

4 High-degree and bad variables in random CNF formulae
As we noted in the introduction, one of the keys to sampling satisfying assignments in the unbounded-
degree setting is to “sacrifice” a few variables per clause (treating them separately in the sampling
algorithm) and to (temporarily) remove a small linear number of clauses that contain these. The
point of this is to ensure that the remaining (“good”) clauses have mostly low-degree variables (at
most two bad ones) and also that the rest of the clauses (the “bad” ones) form small connected
components that interact with the good clauses in a manageable way.

Recall that, for r ∈ (0, 1), high-degree variables were introduced in Definition 6 as those variables
with at least ∆r := d2kre occurrences in the formula. In this work we consider two possible values
for r here, r = r0 − δ and r = r1 − δ, where r0 = 0.117841, r1 = 0.227092 and δ = 0.00001.
The values r0 and r1 arise as solutions of an optimisation problem in Section 5 when we establish
the markings that we use in our proofs. The marking used in our algorithmic results requires
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the more restrictive definition of high-degree variable with r = r0 − δ than the marking used in
our connectivity results with r = r1 − δ. Subtracting δ will make our calculations easier without
affecting our results.

By standard arguments about random graphs, one can determine that, w.h.p. over the choice of
Φ, the number of high-degree variables of Φ is bounded. We want to identify the clauses of Φ that
have at most 2 high-degree variables, since clauses with a lot of high-degree variables will interfere
with our sampling algorithms. This motivates the following construction. The bad variables and
bad clauses of Φ are identified by running the process given in Algorithm 2. Here Vbad(r) denotes
the set of bad variables and Cbad(r) denotes the set of bad clauses.

Algorithm 2 Computing bad variables and bad clauses for r ∈ (0, 1)

Input: A k-CNF formula Φ = (V, C)
1: V0(r) ← the set of high-degree variables, i.e., variables with at least ∆r =
d2rke occurrences in Φ.

2: C0(r)← the set of clauses with at least 3 variables in V0(r)
3: i← 0
4: while i = 0 or Vi(r) 6= Vi−1(r) do
5: i← i+ 1
6: Vi(r)← Vi−1(r) ∪ var(Ci−1(r))
7: Ci(r)← {c ∈ C : |var(c) ∩ Vi(r)| ≥ 3}
8: end while
9: Cbad(r)← Ci(r) and Vbad ← Vi(r)

10: return Vbad(r), Cbad(r)

We define the good clauses of Φ as Cgood(r) = C \ Cbad(r) and the good variables of Φ as
Vgood(r) = C \ Vbad(r). The sets Vgood(r),Vbad(r), Cgood(r), Cbad(r) depend on the parameter r ∈
(0, 1). The value of r here will be r0 − δ except in Section 10 where we prove our connectivity
results for r = r1− δ, and in some of the marking results in Section 5. We will use the observations
given in Proposition 7 several times in this work.

Proposition 7. Let Φ = (V, C) be a k-CNF formula. For any c ∈ Cgood(r), we have |var(c)∩Vbad(r)| ≤
2, and for any c ∈ Cbad(r), we have |var(c)∩Vgood(r)| = 0. Moreover, every good variable has degree
less than ∆r. There is a procedure to determine Cbad that runs in time O(n+mk), where n is the
number of variables of Φ and m is the number of clauses of Φ.

Proof. In this proof we briefly explain the implementation of Algorithm 2. First, for each clause c
we keep track of the number of bad variables in var(c), denoted bad(c). We also have a stack of
bad variables SV that are yet to be processed by the algorithm. At the start of the algorithm, we
set SV ← V0. While SV is non-empty, we take the variable v on the top of the stack and increase
bad(c′) by 1 for those clauses c′ where v appears. If any of these updates gives bad(c′) ≥ 3, we
add var(c′) to the stack SV , set the variables in var(c′) as bad and set the clause c′ as bad. At the
end of this process, SV is empty and we have found all the bad variables and bad clauses of Φ. As
every variable is added to the stack at most once and the list bad(·) is updated at most mk times
(once per literal in Φ), the running time is O(n+mk).

In our work we need a variation of result of [24] that controls the number of bad clauses in
connected subgraphs of GΦ. We state this result in Lemma 20 and prove it in Appendix A.
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Lemma 20 (Modified version of [24, Lemma 8.16]). Let r ∈ (0, 1/(2 log 2)]. There is a positive
integer k0 such that for any integer k ≥ k0, ∆r = d2rke, and any density α with α ≤ ∆r/k

3, the
following holds w.h.p. over the choice of Φ = Φ(k, n, bαnc). For every connected set of clauses Y
in GΦ such that |var(Y )| ≥ 2k4 log n, we have |Y ∩ Cbad(r)| ≤ |Y |/k.

We also need a bound on the number of bad clauses of Φ, which is also proved in Appendix A.

Lemma 21 (Modified version of [24, Lemma 8.12]). Let r ∈ (0, 1/(2 log 2)]. There is a positive
integer k0 such that for any integer k ≥ k0, ∆r = d2rke, and any density α with α ≤ ∆r/k

3, the
following holds w.h.p. over the choice of Φ = Φ(k, n, bαnc). We have |Cbad(r)| ≤ 2(α/∆r)n/2

k10

and |Vbad(r)| ≤ 2(k + 1)(α/∆r)n/2
k10 .

Lemmas 20 and 21 guarantee that, w.h.p. over the choice of Φ, bad clauses are a minority
among all the clauses of Φ. This will be used to show that bad clauses do not affect significantly the
behaviour of our sampling algorithm. We point out that the definitions of Vgood(r),Vbad(r), Cgood(r)
and Cbad(r) given in [24] have r = 1/300 and, in Algorithm 2, use the condition |var(c) ∩ Vi(r)| ≥
k/10 instead of |var(c) ∩ Vi(r)| ≥ 3

Hence, our definitions of good clauses and good variables are more restrictive. However, it turns
out that, with minor changes, the proof of Lemma 20 given in [24] can be extended to our setting.
These changes are explained in Appendix A.

5 Identifying a set of “marked” variables with good marginals
A property that is useful for sampling satisfying assignments is having a high proportion of variables
in each good clause such that the marginals of these variables are fairly close to 1/2. That is, having
variables which are roughly equally likely to be true or false in a random satisfying assignment.
The marginals of high-degree variables do vary. However, even in the random k-SAT model it
turns out that there are enough variables with marginals near 1/2. Following the basic approach of
Moitra [39], we partition the good variables of a random k-CNF formula into types. Here we have
three types of variables (instead of two): marked, auxiliary and control variables. The high-level
goal is to do this in such a way that each clause has a good proportion of each one of these types
of variables. We call this construction a marking, see Definition 8 of the proof outline for the
precise definition. For such a marking, we will show that as long as the control variables are left
unassigned/unpinned, the marginals of the marked and auxiliary variables are all near 1/2 as a
consequence the Lovász local lemma [20]. We first set up the notation and results that we need.

It is not difficult to show that in the random k-SAT model, w.h.p. over the choice of the
formula Φ, two distinct clauses share at most 2 variables (see Lemma 22). Previous work on
counting/sampling satisfying assignments of bounded degree formulae had to analyse subsets of
disjoint clauses in order to deal with the fact that small sets of clauses might share most of their
variables. The restriction to disjoint subsets imposes further restrictions on the maximum degree
of the formula and on the density of the formula in the random k-SAT model setting. Here we
manage to exploit Lemma 22 to avoid these restrictions.

Lemma 22. For any k ≥ 3 and any density α > 0 (possibly depending on k), the following holds
w.h.p. over the choice of the random k-CNF formula Φ = Φ(k, n, bαnc). We have |var(c)| ≥ k − 1
and |var(c) ∩ var(c′)| ≤ 2 for all c, c′ ∈ C with c 6= c′.

Proof. First, let us prove that, for k ≥ 3, w.h.p. over the choice of Φ, |var(c)| ≥ k− 1 for all c ∈ C.
Let us denote by Rc the event that a clause c has at least two repetitions among its variables, that
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is, |var(c)| ≤ k − 2. We claim that Pr(Rc) ≤ q(k)/n2, where q =
(
k
3

)
+ k(k − 1)(k − 2)(k − 3)/4.

To prove this statement we note that the probability that a variable appears at least 3 times in c
is at most

(
k
3

)
nk−2/nk, and the probability that two distinct variables are repeated in c is at most

p(k)n(n− 1)nk−4/nk for p(k) = k(k− 1)(k− 2)(k− 3)/4. Hence, by adding up both cases, we find
that Pr(Rc) ≤ q(k)/n2, and Pr(

⋃
c∈CRc) ≤ q(k)m/n2 ≤ q(k)α/n = O(1/n), so the result follows.

Let c, c′ ∈ C with c 6= c′. We study |var(c) ∩ var(c′)|,

Pr
(∣∣var(c) ∩ var(c′)

∣∣ ≥ 3
)
≤ n(n− 1)(n− 2)n2(k−3)(k(k − 1)(k − 2))2

n2k
≤ k6

n3
.

Therefore, the probability that there is a pair of clauses c, c′ with |var(c) ∩ var(c′)| ≥ 3 is bounded
from above by m(m−1)

2
k6

n3 ≤ α2

2
k6

n = O
(
1
n

)
, which finishes the proof.

We will use the asymmetric version of the Lovász local lemma (LLL), proved by Lovász and
originally published in [46]. Before stating this result, let us introduce some notation. Let P be
a finite collection of mutually independent random variables. Let B an event that is a function
of the random variables in P. Let A be a collection of events that are a function of the random
variables in P. We define Γ(B) as the set of events A ∈ A such that A 6= B and A and B are not
independent. In this setting, PrP (B) is the probability that the event B holds when sampling all
the random variables in P.

Theorem 23 (Asymmetric Lovász local lemma, [25, Theorems 1.1 and 2.1]). Let P be a finite
collection of mutually independent random variables. Let A be a collection of events that are a
function of the random variables in P. If there exists a function x : A → (0, 1) such that, for all
A ∈ A, we have

PrP (A) ≤ x(A)
∏

N∈Γ(A)

(1− x(N)) ,

then PrP
(⋂

A∈AA
)
> 0. Furthermore, for any event B that is a function of the random variables

in P, we have
PrP

(
B
∣∣∣⋂

A∈A
A
)
≤ PrP (B)

∏
A∈Γ(B)

(
1− x(A)

)−1
.

We are going to apply the LLL in Lemma 26 to find an (r0− δ, r0, r0, 2r0)-marking of Φ (Defin-
ition 8), w.h.p. over the choice of the random formula, for some appropriate r0 ∈ (0, 1). Before
proving Lemma 26, let us highlight how strong the properties of a marking are. First, the fact
that a set of marked variables is ρ-distributed (Definition 8) will allow us to find, w.h.p. over
the choice of Φ, a good amount of marked variables in any set of clauses, even if the set includes
bad clauses, see Lemma 33 for a precise statement. This result is an essential ingredient in our
proofs. Secondly, as long as the control variables are left unassigned, the marginals of the marked
and auxiliary variables will be near 1/2 as a consequence of the LLL, as we show later in this
section (Lemma 28). We remark that, in the definition of ρ-distributed set of variables, we ask for
|var(c)∩V | ≥ ρ(k−3) instead of |var(c)∩V | ≥ ρk to account for the fact that w.h.p. a good clause
has at most a repeated variable (Lemma 22) and at most two bad variables (Proposition 7), which
will come up in the proofs presented in this section. First, we need the following definition.

Definition 24 (Φgood(r), Φbad(r)). Let r ∈ (0, 1). Let Φ = (V, C) be a k-CNF formula. Let
Φgood(r) = (Vgood(r), Cgood(r)) be the CNF formula obtained by taking the good clauses of Φ and
ignoring the bad variables appearing in them. Let Φbad(r) be the k-CNF formula with variables
Vbad(r) and clauses Cbad(r).
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Note that in GΦgood(r) two clauses c1 and c2 in Cgood are adjacent if and only if var(c1)∩var(c2)∩
Vgood 6= ∅. By definition of good variables, the maximum degree in GΦgood(r) is at most k(∆r − 1),
which will be important when applying the LLL. We also need the following version of Chernoff’s
bounds.

Lemma 25 (Chernoff’s bounds - [43, Theorem 2.1 and Corollary 4.1]). Let n ∈ N, p ∈ [0, 1],
and let X1, . . . , Xn be n independent random variables with Xj ∈ {0, 1} and Pr(Xj = 1) = p
for all j = 1, . . . , n. Let X =

∑n
j=1Xj . Then, for any t ∈ (p, 1) and any s ∈ (0, p), we have

Pr (X ≥ tn) ≤ e−D(t,p)n and Pr (X ≤ sn) ≤ e−D(s,p)n, where, for reals x, y ∈ (0, 1), D(x, y) :=
x log (x/y) + (1− x) log ((1− x)/(1− y)) is the Kullback-Leibler divergence.

We can now state the main result of this section. The Lovász local lemma ideas in the proof of
Lemma 26 are standard in the literature since the work of Moitra [39] but the quantities involved
are adapted to our setting.

Lemma 26. There is a positive integer k0 such that for any k ≥ k0 and any density α with
α ≤ 2(r0−δ)k/k3 the following holds w.h.p. over the choice of the random k-CNF formula Φ =
Φ(k, n, bαnc):

1. there exists a partial assignment of bad variables that satisfies all bad clauses;

2. there exists an (r0−δ, r0, r0, 2r0)-marking of Φ. Furthermore, for any p ∈ (0, 1), such an (r0−
δ, r0, r0, 2r0)-marking can be computed with probability at least 1− p in time O(n log(1/p)).

Proof. In this proof we set r = r0 − δ. We note that for any k ≥ 4 our density α ≤ 2(r0−δ)k/k3 is
below the threshold ck > 1.3836 · 2k/k established in [23, Theorem 1.3]. For densities below this
threshold, w.h.p. over the choice of Φ, there is a satisfying assignment for Φ. When Φ is satisfiable,
we claim that there is an assignment of the bad variables that satisfies all bad clauses. Indeed,
all the variables in bad clauses are bad (Proposition 7) and, thus, the restriction of a satisfying
assignment to Vbad(r) must satisfy all the bad clauses. In the rest of this proof we show that
assertion 2 also holds.

In view of Lemma 22, we may assume that |var(c)| ≥ k − 1 for all c ∈ C. Let us find the
(r, r0, r0, 2r0)-marking (Vm,Va,Vc). If all clauses are bad, then we set Vc = V, Vm = ∅ and Va = ∅.
This is trivially an (r, r0, r0, 2r0)-marking for Φ. In the rest of the proof we assume that there
are good variables. We study the following probability space. For each good variable v, we set
v as “marked” with probability β ∈ (0, 1/2), “auxiliary” with probability β and “control” with
probability 1− 2β. This decision is made independently for each good variable. Each bad variable
is set as “control”. Let P be the set {Pv : v ∈ Vgood(r)}, where Pv is the random choice made
in this experiment for v. Let Vm be the set of marked variables, let Va be the set of auxiliary
variables, and let Vc be the set of control variables obtained by running this experiment. For each
clause c ∈ Cgood(r), let Ac be the event that c has less than r0(k− 3) marked variables or less than
r0(k − 3) auxiliary variables or less than 2r0(k − 3) good control variables. We are going to apply
the LLL on the formula Φgood(r) so as to show that Pr(

⋂
c∈Cgood(r)Ac) > 0. For each c ∈ Cgood(r),

in view of Proposition 7 and the fact that |var(c)| ≥ k − 1, we have |var(c) ∩ Vgood(r)| ≥ k − 3.
Hence, we can apply the Chernoff bound given in Lemma 25 with n = |var(c) ∩ Vgood(r)|, p = β
and s = r0 to obtain, for any choice V ∈ {Vm,Va},

PrP (|var(c) ∩ V | < r0(k − 3)) ≤ e−D(r0,β)(k−3).

When V = Vc \ Vbad, n = |var(c) ∩ Vgood(r)|, p = 1− 2β and s = 2r0 we obtain

PrP (|var(c) ∩ V | < 2r0(k − 3)) ≤ e−D(2r0,1−2β)(k−3).
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We have chosen r0 to be as large as possible under the restrictions that D(r0, β) ≥ r0 log 2 and
D(2r0, 1−2β) ≥ r0 log 2. The values β = 0.571027 and r0 = 0.117841 satisfy these restrictions. We
conclude that

PrP (Ac) ≤ 2 · e−D(r0,β)(k−3) + e−D(2r0,1−2β)(k−3) ≤ 3 · 2−r0(k−3).

Let ∆′ = 2r0(k−3)/(3e2k) and let x(Ac) = 1/(k∆′) for all c ∈ Cgood(r). We check that x satisfies
the condition of the LLL for P and A = {Ac : c ∈ Cgood(r)}. For k ≥ 43, 1/(k∆′) ∈ (0, 1)
and thus x(Ac) ∈ (0, 1) for all c ∈ Cgood(r). We note that Γ(Ac) = {Ac′ : c′ ∈ Cgood(r), c′ 6=
c, var(c′)∩var(c)∩Vgood(r) 6= ∅}. The graph GΦgood(r), given in Definition 16, has maximum degree
at most k(∆r−1), so |Γ(Ac)| ≤ k(∆r−1) ≤ k∆′, where the latter inequality holds for large enough
k as ∆r = d2rke and r = r0 − δ. Therefore, we have

x(Ac)
∏

N∈Γ(Ac)

(1− x(N)) ≥ 1

k∆′

(
1− 1

k∆′

)k∆′

≥ 1

e2k∆′ = 3 · 2−r0(k−3), (7)

where we used (1− 1/z)z ≥ e−2 for all z ≥ 2 in the second inequality. Thus,

x(Ac)
∏

N∈Γ(Ac)

(1− x(N)) ≥ 3 · 2−r0(k−3) ≥ PrP (Ac) .

We conclude that, by the LLL, PrP
(⋂

c∈Cgood(r)Ac

)
> 0, so there exists a partition (Vm,Va,Vc) of

the variables of Φ such that Vbad(r) ⊆ Vc and each good clause contains at least r0(k − 3) marked
variables, r0(k − 3) auxiliary variables and 2r0(k − 3) good control variables. That is, (Vm,Va,Vc)
satisfies Definition 8 for r = r0 − δ, rm = r0, ra = r0, and rc = 2r0. Moreover, with probability at
least 1 − δ, this partition can be computed in 4nα∆′k log(1/δ) steps with the algorithm of Moser
and Tardos [42].

We now give the marking result that we use in our connectivity results, which holds for densities
at most 2(r1−δ)k/k3, where r1 = 0.227092. The larger density threshold comes from the fact that
the marking result is less strong – we do not require auxiliary variables nor a high number of good
control variables in every clause.

Lemma 27. There is a positive integer k0 such that for any k ≥ k0 and any density α with
α ≤ 2(r1−δ)k/k3 the following holds w.h.p. over the choice of the random k-CNF formula Φ =
Φ(k, n, bαnc):

1. there exists a partial assignment of bad variables that satisfies all bad clauses;

2. there exists an (r1 − δ, r1, 0, r1)-marking of Φ. Furthermore, for any p ∈ (0, 1), such an
(r1−δ, r1, 0, r1)-marking can be computed with probability at least 1−p in time O(n log(1/p)).

Proof. The proof is analogous to that of Lemma 26. Here we explain the main differences. First,
we set r = r1 − δ instead of r = r0 − δ. The second difference is that we study the following
probability space: each good variable v is set as “marked” with probability β and “control” with
probability 1 − β. We let Ac be the event that c has less than r1(k − 3) marked variables or less
than r1(k − 3) good control variables. A Chernoff bound as in the proof of Lemma 26 gives

PrP (Ac) ≤ e−D(r1,β)(k−3) + e−D(r1,1−β)(k−3) ≤ 2 · 2−r1(k−3),
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where we chose r1 as large as possible so that D(r1, β) ≥ r1 log 2 and D(r1, 1− β) ≥ r1 log 2. The
choices β = 1/2 and r1 = 0.227092 satisfy these restrictions. We let ∆′ = 2r1(k−3)/(3e2k) and let
x(Ac) = 1/(k∆′) for all c ∈ Cgood(r). It remains to check that we can apply the asymmetric LLL
on the formula Φgood(r) to conclude that Pr(

⋂
c∈Cgood(r)Ac) > 0. This was done in equation (7) in

Lemma 26. We note that the bound given in (7) also holds in our current setting if we replace r0
by r1. We find that x(Ac)

∏
N∈Γ(Ac)

(1− x(N)) ≥ 3 · 2−r1(k−3) ≥ PrP (Ac) and, thus, there exists
a partition (Vm,Va,Vc) of the variables of Φ such that Vbad(r) ⊆ Vc, Va = ∅, and each good clause
contains at least r1(k − 3) marked variables and at least r1(k − 3) good control variables.

In the remaining of this section we bound the marginals of µΩ (recall that µΩ is the uniform
distribution over the satisfying assignments of the formula Φ, Definition 9) on any marked and
auxiliary variable. In fact, we prove the stronger result that the marginal distribution of µΩ on
Vm∪Va is ε-uniform, i.e., very close to the uniform distribution, see Definition 12. We give a bound
for each one of the markings established in Lemmas 26 and 27. Here we write Λ1 ∪ Λ2 for the
combined assignment of Λ1 and Λ2.

Lemma 28. Let Φ = (V, C) be a satisfiable k-CNF formula. The following claims hold.

1. Let r = r0 − δ and let (Vm,Va,Vc) be a (r, r0, r0, 2r0)-marking of Φ. Then for any satisfying
assignment Λbad of Φbad(r), any assignment Λ: S → {F,T} where S ⊆ Vm ∪ Va, and any
v ∈ Vgood(r) \ S we have

max {PrµΩ (v 7→ F|Λ ∪ Λbad) ,PrµΩ (v 7→ T|Λ ∪ Λbad)} ≤
1

2
exp

(
1

k2r0k

)
.

In particular, the distribution µΩ|Vm∪Va
is (2−r0k/k)-uniform.

2. Let r = r1 − δ and let (Vm, ∅,Vc) be a (r, r1, ∅, r1)-marking of Φ. Then, for any satisfying
assignment Λbad of Φbad(r), any assignment Λ: S → {F,T} where S ⊆ Vm, and any v ∈
Vgood(r) \ S we have

max {PrµΩ (v 7→ F|Λ ∪ Λbad) ,PrµΩ (v 7→ T|Λ ∪ Λbad)} ≤
1

2
exp

(
1

k

)
.

In particular, the distribution µΩ|Vm
is (1/k)-uniform.

Proof. We prove each one of the claims separately. The proofs are analogous so for the second
claim we only highlight the differences in the proof.

1. Here r = r0− δ. Let Λbad be an assignment of bad variables that satisfies all bad clauses. Let
S ⊆ Vm ∪ Va, let Λ be an assignment of S to {F,T}, and let v ∈ Vgood(r) \ S. We note that
PrµΩτ (·) = PrµΩ (· |τ) for any assignment τ of some variables. In light of this observation, we
are going to prove that

max
{
Prµ

ΩΛ∪Λbad
(v 7→ F) ,Prµ

ΩΛ∪Λbad
(v 7→ T)

}
≤ 1

2
exp

(
1

k2r0k

)
. (8)

We apply the LLL to the formula Φ′ := ΦΛ∪Λbad as follows. Let V ′ and C′ be the sets of
variables and clauses of Φ′. Note that, V ′ ⊆ Vgood(r), C′ ⊆ Cgood(r) and GΦ′ is a subgraph
of GΦgood(r) as all bad variables have been assigned a value and all bad clauses have been
satisfied. We set Pv = σ(v) for all v ∈ V ′, where σ : V ′ → {F,T} is chosen uniformly at
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random from the set of assignments V ′ → {F,T}, and P = {Pv : v ∈ V ′}. We define the set A
as the set containing for all c ∈ C′ the event Ac = “the clause c is not satisfied by the random
assignment σ”. By the definition of (Vm,Va,Vc), there are at least 2r0(k − 3) good control
variables in c. Since good control variables are not assigned a value by Λ ∪ Λbad and, thus,
they are in V ′, we have PrP (Ac) ≤ 2−2r0(k−3). Recall that ∆r = d2(r0−δ)ke (Definition 6). Let
∆′ = 22r0(k−3)/(e2k) and let x(Ac) =

1
k∆0

for all c ∈ C′. Let us show that x satisfies the LLL
condition in this setting. In view of Γ(Ac) = {Ac′ : c

′ ∈ C′, c′ 6= c, var(c) ∩ var(c′) ∩ V ′ 6= ∅},
which can be identified with a subset of the neighbours of c in GΦgood(r), and |Γ(Ac)| ≤ k∆r ≤
k∆′ for large enough k, we find that

x(Ac)
∏

N∈Γ(Ac)

(1− x(N)) ≥ 1

k∆′

(
1− 1

k∆′

)k∆′

≥ 1

e2k∆′ = 2−2r0(k−3) ≥ PrP (Ac) ,

where we used (1−1/z)z ≥ e−2 for all z ≥ 2. LetA = {v 7→ T} := {σ : V ′ → {F,T} with σ(v) =
T}. In Φ′, we have Γ(A) = {Ac : c ∈ C′, v ∈ var(c)}, so |Γ(A)| < ∆r. By the LLL, we obtain

PrP

(
v 7→ T

∣∣∣⋂
c∈C′

Ac

)
≤ 1

2

∏
N∈Γ(A)

(
1− x(N)

)−1 ≤ 1

2

(
1− 1

k∆′

)−(∆r−1)

.

For x > 1, we have (1− 1/x)−1 = 1 + 1/(x− 1) ≤ exp(1/(x− 1)). We find that

PrP

(
v 7→ T

∣∣∣⋂
c∈C′

Ac

)
≤ 1

2
exp

(
∆r − 1

k∆′ − 1

)
≤ 1

2
exp

(
1

k2r0k

)
,

where in the latter inequality we used (p − j)/(q − j) ≤ p/q for all 0 < j < p ≤ q and
the fact that ∆r = d2(r0−δ)ke ≤ 2−r0k · 22r0(k−3)/(e2k) = 2−r0k∆′ for large enough k. We
note that Prµ

ΩΛ∪Λbad
(·) = PrP

(
· |
⋂

c∈C′ Ac

)
, which completes the proof of one of the upper

bounds of (8). The other upper bound is proved analogously by applying the LLL with
A = {v 7→ F}. Finally, we conclude that the distribution µΩ|Vm∪Va

is (2−r0k/k)-uniform by
the arbitrary choice of Λbad and the law of total probability, see Definition 12.

2. The proof is analogous. The only changes are r = r1 − δ, ∆′ = 2r1(k−3)/(e2k), and the
fact that, since each good clause has at least r1(k − 3) good control variables, we have
PrP (Ac) ≤ 2−r1(k−3). This time we have x(Ac)

∏
N∈Γ(Ac)

(1− x(N)) ≥ 1
e2k∆′ ≥ PrP (Ac),

which justifies our choice of ∆′. Thus, we can apply the LLL, and the conclusion this time
becomes

PrP

(
v 7→ T

∣∣∣⋂
c∈C′

Ac

)
≤ 1

2
exp

(
∆r − 1

k∆′ − 1

)
≤ 1

2
exp

(
1

k

)
,

where in the latter inequality we used (p− j)/(q− j) ≤ p/q for all 0 < j < p ≤ q and the fact
that ∆r = d2(r1−δ)ke ≤ 2r1(k−3)/(e2k) = ∆′ for large enough k.

The (1/k)-uniform property proved in Lemma 28 is remarkably strong: as long as the control
variables are left unassigned, the rest of the variables have marginals close to 1/2, even if some of
the marked and auxiliary variables are pinned / have already been assigned a value. This property
is used several times in this work and will allow us to prove that, for any pinning of some marked
variables, the influences between marked variables are bounded. In the following corollary we extend
Lemma 28 to the distributions computed by the Glauber dynamics on the marked variables.
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Corollary 29. Let r = r0 − δ. Let Φ = (V, C) be a satisfiable k-CNF formula that has an
(r, r0, r0, 2r0)-marking (Vm,Va,Vc). Let ρ be an integer with 1 ≤ ρ < |Vm|. Let t be a non-negative
integer and let Xt be the (random) assignment obtained after running the ρ-uniform-block Glauber
dynamics on the marked variables for t steps, starting on an assignment X0 that is chosen uniformly
at random. Then the probability distribution of Xt is (2−r0k/k)-uniform.

Proof. Let ε = (2−r0k/k). Let V1, V2, . . . , be a possible choice of sets of marked variables to
be updated when running the ρ-uniform-block Glauber dynamics. We are going to prove that,
conditioning on this choice of sets of variables, the probability distribution of Xt is ε-uniform. Note
that by the law of total probability and the fact that the choice of V1, V2, . . . is arbitrary, this is
enough to conclude the result. We carry out the proof by induction on t. Let πt be the probability
distribution of Xt. As π0 is the uniform distribution over assignments on Vm, the claim holds
for t = 0. Let us now assume that πt−1 is ε-uniform and let us prove that this is also the case
for πt. To show the desired uniformity of πt (cf. Definition 12), consider arbitrary v ∈ Vm and
Λ: Vm \ {v} → {F,T}, we need to bound Prπt (v 7→ F|Λ) and Prπt (v 7→ T|Λ). We distinguish two
cases:

• Case v ∈ Vt. By definition of the Glauber dynamics, the values of Xt on Vt are obtained
by sampling from the distribution µΩ conditioned on the restriction of Xt−1 to Vm \ Vt.
Thus, we have Prπt (v 7→ F|Λ) = Prµ

ΩΛ (v 7→ F) since the conditioning involving Λ sets all
the marked variables other than v. As µΩ|Vm∪Va

is ε-uniform by Lemma 28, we conclude that
Prπt (v 7→ F|Λ) = Prµ

ΩΛ (v 7→ F) ≤ 1
2 exp(ε). The same bound holds for v 7→ T.

• Case v 6∈ Vt. If v is not updated in steps 1 through t, then Prπt (v 7→ F|Λ) = Prπ0 (v 7→ F) =
1/2. Otherwise, let j be the largest integer with j < t such that v ∈ Vj . Let Λj be the
restriction of Λ to Vm \

⋃
i∈{j+1,j+2,...,t} Vi. By the induction hypothesis, Prπt (v 7→ F|Λ) =

Prπj (v 7→ F|Λj) ≤ (1/2) exp(ε). The same bound holds for v 7→ T.

As both cases are exhaustive, the proof is concluded.

Previous work on counting/sampling satisfying assignments of k-CNF formulae does not require
the use of auxiliary variables, so the marking used is of the form (Vm,Vc). Here auxiliary variables
play an essential role in bounding the influences between marked variables as we illustrated in
Section 2. In order for this approach to be successful, we have to show that a large proportion of
the variables are marked. We conclude this section with the following bound on the size of Vm.

Corollary 30. Let r ∈ (0, 1/(2 log 2)). There is an integer k0 such that for any k ≥ k0 and any
density α with α ≤ ∆r/k

3 the following holds w.h.p. over the choice of the random k-CNF formula
Φ = Φ(k, n, bαnc). For any ρ ∈ (0, 1) and any set of good variables V that is ρ-distributed we have
|V | ≥ (ρ− δ)(kα/∆r)n.

Proof. W.h.p. over the choice of Φ, by Lemma 21 we have |Cbad(r)| ≤ 2(α/∆r)n/2
k10 ≤ αn/4k, so

|Cgood(r)| ≥ |C| − αn/4k ≥ αn− 1− αn/4k = αn(1− 1/4k)− 1. Since V is ρ-distributed, counting
repetitions, there are at least ρ(k−3)|Cgood(r)| occurrences of the variables of V in the good clauses
of Φ. Each good variable occurs in at most ∆r good clauses, so we find that

|V | ≥
ρ(k − 3)|Cgood(r)|

∆r
≥ ρ(k − 3)

∆r

(
αn

(
1− 1

4k

)
− 1

)
≥ ρ(k − 4)

∆r
(αn− 1),

which is at least (ρ− δ)(kα/∆r)n for large enough k.
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6 Analysis of the connected components of ΦΛ

In this section we prove Lemma 17, which bounds the size of the connected components of ΦΛ,
where Λ is drawn from a (1/k)-uniform distribution over an (r+δ)-distributed set of good variables.
In order to carry out this proof, we have to understand the structure of logarithmic-sized sets of
clauses of the random k-CNF formula Φ. Section 6.1 is devoted to this purpose. In Section 6.2 we
apply the results of Section 6.1 to obtain a lower bound of the number of marked/auxiliary variables
in logarithmic-sized sets of clauses. Finally, in Section 6.3 we complete the proof of Lemma 17.

6.1 Logarithmic-sized sets of clauses in the random k-SAT model
A connected graph H = (V,E) has tree-excess c ∈ Z≥0 if |E| = c + |V | − 1. It turns out that,
w.h.p. over the choice of Φ, small connected sets of clauses of Φ have tree-excess bounded by a
quantity that only depends on k and the density α. This property is established in Lemma 31 and
is essential to our proofs.

Lemma 31. Let k ≥ 3 be an integer. Let b > 0 and α > 0 be real numbers. W.h.p. over the choice
of the random k-CNF formula Φ = Φ(k, n, bαnc), every connected subset of clauses with size at
most b log(n) has tree-excess at most c := max{1, 2b log(ek2α)}.

Proof. Let n be the number of variables andm be the number of clauses of Φ, som/n ≤ α. Note that
the probability that two clauses of Φ are not disjoint is at most k2/n. Let ℓ ∈ {1, 2, . . . , bb log(n)c}.
We upper bound the probability that there is a connected subset of clauses of size ℓ with tree-excess
at least c+ 1 by (

m

ℓ

)
ℓℓ−2

(
ℓ(ℓ− 1)/2

c+ 1

)(
k2

n

)ℓ+c

, (9)

where the factors appearing are the following ones:

•
(
m
ℓ

)
is the number of subsets of clauses of size ℓ;

• ℓℓ−2 is the number of trees on ℓ labelled vertices;

•
(
ℓ(ℓ−1)/2

c+1

)
is the number of ways to pick c+ 1 pairs of distinct clauses of a set of size ℓ;

•
(
k2/n

)ℓ+c is an upper bound of the probability that all the edges chosen in the two previous
items appear in the graph GΦ.

We are going to show that the probability given in (9) is O(n−c/4), where the hidden constant
only depends on k. If this holds, by a union bound over ℓ ∈ {1, 2, . . . , bb log(n)c}, we would find
that the probability that there is a connected subset of clauses of Φ with size at most b log(n) and
tree-excess at least c + 1 is O(b log(n)n−c/4) = o(1). This would complete the proof. Using the
inequality

(
p
q

)
≤ (ep/q)q and m/n ≤ α we can bound (9) by

(em
ℓ

)ℓ
ℓℓ−2

(
eℓ(ℓ− 1)/2

c+ 1

)c+1(k2

n

)ℓ+c

≤
(em

ℓ

)ℓ
ℓℓ−2

(
eℓ2/2

c+ 1

)c+1(
k2

n

)ℓ+c

=

(
e

2c+ 2

)c+1(emk2

n

)ℓ(
k2ℓ2

n

)c

≤
(

e

2c+ 2

)c+1 (
ek2α

)ℓ(k2ℓ2

n

)c

.

(10)

Now we distinguish two cases:
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• Case when ek2α ≤ 1 . We have c = 1 by definition. Thus, (10) can be further bounded by(
e

2c+ 2

)c+1(k2ℓ2

n

)c

= O

(
(log n)2

n

)
= O

(
n−c/4

)
as we wanted.

• Case when ek2α > 1. Then, as ℓ ≤ b log n and b log(ek2α) ≤ c/2 by definition, we have(
ek2α

)ℓ ≤ (ek2α)b logn = nb log(ek2α) ≤ nc/2.

We conclude that (10) can be further bounded by(
e

2c+ 2

)c+1(k2ℓ2√
n

)c

=

(
e

2c+ 2

)c+1(k4ℓ4

n

)c/2

= O
(
n−c/4

)
as we wanted, where we used c > 0.

Recall that in Lemma 20 we established that, in sets of clauses that have at least 2k4 log n
variables, the number of bad clauses of Φ is not too large. We aim to apply Lemma 20 to logarithmic-
sized sets of clauses. In general, |Y | might be significantly larger than |var(Y )|, so it is not clear
how to apply Lemma 20. However, in the random k-CNF formula setting the following holds.

Lemma 32. Let k ≥ 3 be an integer and let a > 0 and α > 0 be real numbers. W.h.p. over the
choice of Φ = Φ(k, n, bαnc), for every set of clauses Y with |Y | ≥ a log n, we have |var(Y )| ≥ a log n.

Proof. Let ℓ := da log ne − 1 and let m = bαnc. We prove the equivalent statement that, w.h.p.
over the choice of Φ, for every set of clauses Y with |var(Y )| ≤ ℓ, we have |Y | ≤ ℓ. We note that
if there is a set of clauses Y with |var(Y )| ≤ ℓ and |Y | > ℓ, then for any subset Y ′ of Y with
|Y ′| = ℓ + 1 we have |var(Y ′)| ≤ |var(Y )| ≤ ℓ. Hence, it suffices to prove that there is no set Y of
clauses with | var(Y )| ≤ ℓ and |Y | = ℓ+ 1. We can assume n is large enough so that ℓ ≤ e · n.

Let E be the event that there is a set of clauses Y of size ℓ+ 1 and a set of variables X of size
ℓ such that all clauses in Y have all variables in X. Then by a union bound

Pr (E) ≤
(

m

ℓ+ 1

)(
n

ℓ

)(
ℓ

n

)(ℓ+1)k

,

where the first factor is the number of sets Y , the second factor is the number of sets X and the
third factor is the probability that all variables in the clauses of Y are in X. From the well-known
bound

(
p
q

)
≤ (ep/q)q, we obtain

Pr (E) ≤
(

em

ℓ+ 1

)ℓ+1 (en
ℓ

)ℓ( ℓ

n

)(ℓ+1)k

≤
(em

ℓ

)ℓ+1 (en
ℓ

)ℓ+1
(
ℓ

n

)(ℓ+1)k

≤
(eαn

ℓ

)ℓ+1 (en
ℓ

)ℓ+1
(
ℓ

n

)(ℓ+1)k

=

(
e2α

ℓk−2

nk−2

)ℓ+1

,

which is O(log(n)/n) because k ≥ 3 and ℓ = O(log n).
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6.2 Number of marked variables in logarithmic-sized sets of clauses
Our results on random k-CNF formulae can now be combined to give a lower bound on the number
of marked / auxiliary variables in logarithmic-sized sets of clauses. We prove this result in a more
general setting by considering a set of good variables V that is r′-distributed for the formula Φ.
The reader can think of V as the set of marked variables or the set of auxiliary variables for one of
the markings established in Section 5.

Lemma 33. Let r ∈ (0, 1/(2 log 2)], r′ ∈ (0, 1) and δ̂ ∈ (0, r). There is a positive integer k0 such
that, for any integer k ≥ k0, any density α ≤ ∆r/k

3 and any real number b with 2k4 < b, the
following holds w.h.p. over the choice of Φ = Φ(k, n, bαnc). Let V be a set of good variables that
is r′-distributed. Then, for every set of clauses Y that is connected in GΦ such that 2k4 log(n) ≤
|Y | ≤ b log(n), we have |var(Y ) ∩ V | ≥ (r′ − δ̂)k|Y |.

Proof. Let a = 2k4. We apply Lemma 20 to find that there is k1 such that for k ≥ k1, w.h.p. over
the choice of Φ, for every set of clauses Y that is connected in GΦ,

if |var(Y )| ≥ a log(n), then |Y ∩ Cbad(r)| ≤ |Y |/k. (11)

We apply Lemma 32 with a = 2k4 to find that, w.h.p. over the choice of Φ, for every set of clauses
Y , we have

if |Y | ≥ a log(n), then |var(Y )| ≥ a log(n). (12)

Finally, for any b > 0, we apply Lemma 31, obtaining that, w.h.p. over the choice of Φ, for every
set of clauses Y that is connected in GΦ,

if |Y | ≤ b log n, then Y has tree-excess at most c = max{1, 2b log(ek2α)} = O(1). (13)

Let Y be a set of clauses that is connected in GΦ such that a log(n) ≤ |Y | ≤ b log(n). Then, by (12)
and (11), we have |Y ∩Cgood(r)| ≥ |Y |(1− 1/k). By definition of r′-distributed (Definition 8), each
good clause has at least r′(k−3) variables in V . As there are at most |Y |−1+c edges in GΦ joining
clauses in Y , see (13), and two distinct clauses only share at most two variables by Lemma 22, we
have

|var(Y ) ∩ V | ≥ r′(k − 3)

(
1− 1

k

)
|Y | − 2(|Y |+ c− 1)

≥ (r′(k − 4)− 2)|Y | − 2(c− 1).

There is k0 ≥ k1 such that for k ≥ k0, we find that, for any set of clauses Y that is connected in
GΦ and has a log(n) ≤ |Y | ≤ b log(n), |var(Y ) ∩ V | ≥ (r′ − δ̂/2)k|Y | − 2(c − 1). Therefore, using
2(c − 1) = O(1), for large enough n we conclude that |var(Y ) ∩ V | ≥ (r′ − δ̂)k|Y | and the result
follows.

6.3 Proof of Lemma 17
We use the following result of [24] on the number of connected sets of clauses in GΦ.

Lemma 34 ([24, Lemma 8.6]). Let α > 0. W.h.p. over the choice of Φ = Φ(k, n, bαnc), for any
clause c, the number of connected sets of clauses in GΦ with size ℓ ≥ log n containing c is at most
(9k2α)ℓ.

We can now complete the proof of Lemma 17. Recall that we will apply this result with r = r0−δ
or r = r1 − δ, where δ = 0.00001.
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Lemma 17. Let r ∈ (2δ, 1/(2 log 2)]. There is an integer k0 ≥ 3 such that, for any integer k ≥ k0,
any density α ≤ 2(r−2δ)k, and any real number b with a := 2k4 < b, the following holds w.h.p. over
the choice of Φ = Φ(k, n, bαnc).

Let L be an integer satisfying a log n ≤ L ≤ b log n. Let V be a set of good variables of Φ that is
(r + δ)-distributed (Definition 8), let µ be a (1/k)-uniform distribution over the assignments V →
{F,T}, and let ρ be an integer with 0 ≤ ρ ≤ |V |/2k. Consider the following experiment. First, draw
S ⊆ V from the uniform distribution τ over subsets of V with size ρ. Then, sample an assignment Λ
from µ|V \S . Denote by F the event that that there is a connected set of clauses Y of Φ with |Y | ≥ L

such that all clauses in Y are unsatisfied by Λ. Then PrS∼τ

(
PrΛ∼µ|V \S

(F) ≤ 2−δkL
)
≥ 1− 2−δkL.

Proof. We apply Lemma 33 with our choices of b and with δ̂ = δ to conclude that, w.h.p. over the
choice of Φ, for every connected set of clauses Z ⊆ C we have

if a log(n) ≤ |Z| ≤ b log(n), then |var(Z) ∩ V | ≥ rk|Z|. (14)

We also need the following result on random k-CNF formulae. For each clause c ∈ C, let

Z(c, L) = {Z ⊆ C : c ∈ Z,Z is connected in GΦ, |Z| = L}.

Then, w.h.p. over the choice of Φ, Lemma 34 shows that, as long as L ≥ log n,

for any clause c ∈ C we have |Z(c, L)| ≤ (9k2α)L. (15)

The facts that we have just established using Lemma 33 and Lemma 34 are all the properties of
random formulae that we need in this proof. The hypothesis α ≤ ∆r is used when calling Lemma 20
in the proof of Lemma 33.

Let L be an integer with a log n ≤ L ≤ b log n. First, we are going to fix S ⊆ V with |S| = ρ and
study the event F described in the statement. For c ∈ C and Z ∈ Z(c, L), we denote by E1(Z, S)
the event that Z ⊆ CΛ, where Λ is drawn from µ|V \S , see Definition 11. Recall that Z ⊆ CΛ
means that none of the clauses in Z are satisfied by the assignment Λ (Definition 9). We note that
F =

⋃
c∈C,Z∈Z(c,L) E1(Z, S). We are going to show that, for large enough n,

PrS∼τ

(
PrΛ∼µ|V \S

(⋃
c∈C,Z∈Z(c,L)

E1(Z, S)
)

> 2−δkL

)
≤ 2−δkL, (16)

which is equivalent to the result stated in this lemma. We note that the left-hand side of (16) can
be upper bounded by

PrS∼τ

(
∃c ∈ C, Z ∈ Z(c, L) : PrΛ∼µ|V \S

(E1(Z, S)) >
2−δkL

|C| · |Z(c, L)|

)
≤

∑
c∈C,Z∈Z(c,L)

PrS∼τ

(
PrΛ∼µ|V \S

(E1(Z, S)) >
2−δkL

|C| · |Z(c, L)|

)
.

(17)

We are going to show that, for any c ∈ C and Z ∈ Z(c, L),

PrS∼τ

(
PrΛ∼µ|V \S

(E1(Z, S)) >
2−δkL

|C| · |Z(c, L)|

)
≤
(
2ek · 2−rk

)L
. (18)

Before proving (18), let us complete the proof assuming that this inequality holds. In light of (15),
we have |Z(c, L)| ≤ (9k22(r−2δ)k)L. We use the following observation,

for k > 1/(δ log 2) and for large enough n, |C| ≤ nα ≤ nδk5 log 2 ≤ 2(δ/2)kL. (19)
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Combining (17), (18) and (19), we conclude that, for large enough k, the left-hand size of (16) is
bounded above by∑

c∈C,Z∈Z(c,L)

(
2ek · 2−rk

)L
≤ nα ·

(
9k22(r−2δ)k

)L
·
(
2ek · 2−rk

)L
= nα

(
18ek32−2δk

)L
≤ 2−δkL,

which completes the proof of (16), and hence the proof of the lemma, subject to (18).
To prove (18), we are going to find many S for which PrΛ∼µ|V \S

(E1(Z, S)) ≤ 2−δkL/(|C|·|Z(c, L)|)
holds. With this in mind, we introduce an event that may occur when sampling S:

E2(Z) :=“the random set S ⊆ V that we select contains fewer
than ℓ := d|var(Z) ∩ V |/ke variables in var(Z) ∩ V ”.

(20)

We will show (in equation (24)) that the event E2(Z) holds for most choices of S. Before proving
this claim, let us assume that E2(Z) holds for S and let us prove that PrΛ∼µ|V \S

(E1(Z, S)) ≤
2−δkL/(|C| · |Z(c, L)|). If there are c1, c2 ∈ Z and v ∈ var(c1) ∩ var(c2) ∩ (V \ S) such that c1 6= c2
and the literal of v in c1 is the negation of the literal of v in c2, then at least one of c1 and c2 is
satisfied by the assignment Λ: V \ S → {F,T}. In this case we have PrΛ∼µ|V \S

(E1(Z, S)) = 0. Let
us now consider the complementary case:

for all c1, c2 ∈ Z with c1 6= c2 and v ∈ var(c1) ∩ var(c2) ∩ (V \ S),
the literal of v in c1 is the same as the literal of v in c2.

(21)

In this setting, we call ω(v) the value of v that does not satisfy the clauses in Z that contain
v. Note that ω(v) is well-defined by assumption (21). Let u1, u2, . . . , ut be the list of variables
in (var(Z) ∩ V ) \ S. We denote by Wj the event that uj is assigned the value ω(uj) by Λ when
sampling Λ ∼ µ|V \S . Then, by definition of Wj , we have

PrΛ∼µ|V \S
(E1(Z, S)) =

t∏
j=1

PrΛ∼µ|V \S

(
Wj

∣∣∣ ⋂j−1

i=1
Wi

)
.

As µ is (1/k)-uniform, we find that PrΛ∼µ|V \S
(Wj |

⋂j−1
i=1 Wi) ≤ (1/2) exp(1/k) for all j ∈ {1, 2, . . . , t}.

We conclude that

PrΛ∼µ|V \S
(E1(Z, S)) ≤

(
1

2
exp

(1
k

))t

.

From (14) and the fact that E2(Z) holds for S, we have

t = |var(Z)∩ (V \S)| ≥ |var(Z)∩V |−d|var(Z)∩V |/ke ≥ |var(Z)∩V |(1−1/k)−1 ≥ rL(k−1)−1.

It follows that

PrΛ∼µ|V \S
(E1(Z, S)) ≤

(
1

2
exp

(1
k

))r(k−1)L−1

≤ 2

(
2 · 2−rk exp

(r(k − 1)

k

))L

≤
(
4e · 2−rk

)L
,
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where we used that 1/2 ≤ (1/2) exp(1/k) < 1 in the second and third inequality. For large enough
k, we find that

(
4e · 2−rk

)L
=

(
9 · 4ek2 · α · 2−rk

9k2α

)L

≤
(
9 · 4ek2 · 2−2δk

9k2α

)L

≤ 2−(3/2)δkL

|Z(c, L)|
≤ 2−δkL

|C| · Z(c, L)|
, (22)

where in the second to last inequality we applied 9 · 4ek2 ≤ 2(δ/2)k and the bound on the size of
Z(c, L) given in (15), and in the last inequality we used (19). As S was picked as any subset of V
with |S| = ρ such that E2(Z) holds, it follows that

PrS∼τ

(
PrΛ∼µ|V \S

(E1(Z, S)) >
2−δkL

|C| · |Z(c, L)|

)
≤ PrS∼τ

(
E2(Z)

)
. (23)

In order to prove (18), which finishes the proof, we need to show PrS∼τ

(
E2(Z)

)
≤ (2ek · 2−rk)L.

The probability of E2(Z) can be bounded as follows. Recall that |S| = ρ. If ρ < ℓ, then, by the
definition of E2(Z) in (20), we obtain PrS∼τ (E2(Z)) = 1. Otherwise, the number of choices of S
(with |S| = ρ) such that |S ∩ var(Z) ∩ V | ≥ ℓ is at most

(|var(Z)∩V |
ℓ

)(|V |−ℓ
ρ−ℓ

)
. Hence, we have

PrS∼τ

(
E2(Z)

)
≤
(
|V |
ρ

)−1(|var(Z) ∩ V |
ℓ

)(
|V | − ℓ

ρ− ℓ

)
=

ρ(ρ− 1) · · · (ρ− ℓ+ 1)

|V |(|V | − 1) · · · (|V | − ℓ+ 1)

(
|var(Z) ∩ V |

ℓ

)
≤
(

ρ

|V |

)ℓ(e|var(Z) ∩ V |
ℓ

)ℓ

≤
(

ρ

|V |
ek

)ℓ

,

where we used ℓ := d|var(Z) ∩ V |/ke ≥ |var(Z) ∩ V |/k, (p− i)/(q − i) ≤ p/q for any 0 < i < p < q
and

(
p
q

)
≤ (ep/q)q. Combining this with the hypothesis ρ ≤ |V |/2k and the bound ℓ ≥ rL, see (14),

we obtain
PrS∼τ

(
E2(Z)

)
≤
(
ek2−k

)ℓ
≤
(
(ek)r · 2−rk

)L
≤
(
2ek · 2−rk

)L
. (24)

The bound (18) follows from combining (23) and (24), which completes the proof.

7 Sampling from small connected components
In this section we prove Lemma 19. Recall that Lemma 19 claims the existence of a procedure
to sample from marginals of the uniform distribution on the satisfying assignments of ΦΛ when
the connected components of GΦΛ have small size. Here we make this procedure explicit. Our
algorithm exploits the fact that the tree-excess of logarithmic-sized subsets of GΦ is bounded by
a constant depending only on k, see Lemma 31, and the fact that when GΦ is acyclic, we can
exactly count and sample satisfying assignments efficiently via a dynamic programming algorithm
(Proposition 35).

Proposition 35. There is an algorithm that, for any k-CNF formula Φ = (V, C) such that GΦ is a
tree, computes the number of satisfying assignments of Φ in time O(4k|C|).

Proof. We give an algorithm based on dynamic programming. Let us fix a vertex / clause c of GΦ

as the root and consider the corresponding directed tree structure T := (GΦ, c). For any clause
c′ of Φ, let Tc′ be the subtree of T hanging from c′. For any assignment σ : var(c′) → {F,T}, let
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sa(c′, σ) denote the number of satisfying assignments of the formula determined by Tc′ that extend
σ. Our goal is computing the number of satisfying assignments of Φ, which, under this notation, is
equal to

sa(Φ) :=
∑

σ : var(c)→{F,T}

sa(c, σ). (25)

We do this by computing sa(c′, σ) for any clause c′ and any assignment σ : var(c′)→ {F,T}. Using
the tree structure of T , we show that sa(c′, σ) satisfies a recurrence. There are two cases:

1. c′ is a leaf. Then sa(c′, σ) = 1 if c′ is satisfied by σ and 0 otherwise.

2. c′ is not a leaf. Let T1, . . . , Tl be the trees hanging from c′ in T and let c1, . . . , cl be their
roots. Then, since T1, . . . , Tl do not share variables as GΦ is acyclic, we have

sa(c′, σ) =

l∏
j=1

∑
τ∈A(cj ,σ)

sa(cj , τ),

where A(cj , σ) is the set of assignments of the variables in var(cj) that agree with σ on
var(c′) ∩ var(cj).

We can apply this recurrence with dynamic programming to compute sa(c, σ) for any assignment
σ : var(c) → {F,T}. More explicitly, we compute sa(c′, σ) by levels of the tree, starting from the
deepest level, where all nodes are leaves, and ending at the root c. This involves computing at most
2k entries sa(c′, ·) per clause c′ of Φ. After computing all the entries appearing in this recurrence,
we compute the number of satisfying assignments of Φ, sa(Φ), as in equation (25). The overall
procedure takes at most O(4k|C|) steps since each entry sa(c′, σ) is accessed at most 2k times when
computing the corresponding entries for the parent of c′, and there are at most 2k|C(T )| entries.

In Algorithm 3 we give an algorithm based on Proposition 35 to count satisfying assignments of
a k-CNF formula. Recall the folklore fact that if we can count satisfying assignments then we can
sample from the marginal of µΩ on v by counting the satisfying assignments of Φv 7→F and Φv 7→T.

Algorithm 3 Counting satisfying assignments via trees
Input: a k-CNF formula Φ = (V, C)
Output: The number of satisfying assignments of Φ.

1: Find a spanning forest T of GΦ.
2: Let VT be the set of variables that gives rise to edges of GΦ that are not in T .
3: count← 0.
4: for all Λ: VT → {F,T} do
5: Note that the graph GΦΛ is acyclic. Hence, we can count the number of satisfying assignments

of ΦΛ in time O(4k|C(ΦΛ)|) by applying Proposition 35 to each connected component of GΦΛ

and taking the product of the numbers obtained. Let sa(ΦΛ) be the result of this computation.
6: count← count+ sa(ΦΛ).
7: end for
8: return count

Proposition 36. Let Φ = (V, C) be a k-CNF formula and let c be the tree-excess of GΦ. Then
Algorithm 3 counts the number of satisfying assignments of Φ in time O(2k(c+2)|C|).

29



Proof. We note that, in the execution of Algorithm 3, we have |VT | ≤ kc. Hence, there are at
most 2kc iterations of the for loop and each one takes O(4k|C|) steps, so the running time follows.
The fact that the algorithm is correct follows from the correctness of the procedure presented in
Proposition 35.

Even though the running time of Algorithm 3 is not polynomial in the size of the formula Φ
(in fact, it is exponential in general), we obtain linear running time when the formulae considered
have constant tree-excess. As shown in Lemma 31, this is the case for logarithmic-sized subsets of
clauses of random formulae. We can now finish the proof of Lemma 19.

Lemma 19. There is an integer k0 ≥ 3 such that, for any integers k ≥ k0, b ≥ 2k4 and any density
α > 0, the following holds w.h.p. over the choice of Φ = Φ(k, n, bαnc). Let V be a subset of
variables and let Λ: V → {F,T} be a partial assignment such that all the connected components
in GΦΛ have size at most b log(n). Then, there is an algorithm that, for any S ⊆ V \ V , samples an
assignment from µΩΛ |S in time O(|S| log n).

Proof. We apply Lemma 31, so, w.h.p. over the choice of Φ = Φ(k, n, bαnc), any connected set of
clauses in GΦ with size at most b log(n) has tree-excess at most c = max{1, 2b log(eαk2)} = O(1).
First, we give an algorithm for the case |S| = 1. Let Φ, V and Λ as in the statement, and let
S = {v}. Let H be the connected component of the clauses that contain v in GΦΛ , and let
Φ′ = (V ′, C′) be the subformula of ΦΛ with GΦ′ = H. The formula Φ′ has size at most b log(n).
Moreover, the graph GΦ′ = H has tree-excess at most c as H is a subgraph of GΦ with size at
most b log(n). Thus, we can apply Proposition 36 to count the number of satisfying assignments of
Φ′v→F and Φ′v→T in time O(2k(c+2)|C′|) = O(log n). Let these numbers be t0 and t1 respectively.
It is straightforward to use t0 and t1 to sample from the marginal of the distribution µΩΛ for v; we
only have to sample an integer t ∈ [0, t0 + t1) and output F if t < t0 and T otherwise. The whole
process takes time O(log n).

Finally, we argue how to extend this algorithm to the case |S| > 1. For this, first, we give
an order to the variables in S, say u1, u2, . . . , uℓ. We then call the algorithm described in the
paragraph above once for each variable in u1, u2, . . . , uℓ. The inputs of the algorithm in the j-th
call are the variable uj and the assignment Λj = Λ ∪ τj−1, where τj−1 is the assignment obtained
in the previous calls for u1, . . . , uj−1. After this process, τℓ is an assignment of all the variables in
S that follows the distribution µΩΛ |S . This assignment has been computed in O(|S| log n) steps as
we wanted.

8 Mixing time of the Markov chain
In this section we study the mixing time of the ρ-uniform-block Glauber dynamics on the marked
variables and prove Lemma 15. As explained in Section 2.2, in order to conclude rapid mixing
of this Markov chain we apply the spectral independence framework, which has recently been
extended to the ρ-uniform-block Glauber dynamics [11]. Traditionally in path coupling or spectral
independence arguments one has to bound a sum of influences by a constant in order to obtain
rapid mixing of the single-site Glauber dynamics. However, due to the presence of high-degree
variables, an O(1) upper bound seems unattainable in the random k-SAT formula setting; in the
worst case paths of high-degree variable may significantly affect influences. This seems also to be
the case for other random models, such as the hardcore model on random graphs [8]. Here we
show that that sums of influences are at most ε log n for small ε (Lemma 14). Even though this is
generally not enough to conclude rapid mixing of the single-site Glauber dynamics, it turns out to
be enough to conclude rapid mixing of the ρ-uniform-block Glauber dynamics for ρ = Θ(n). An
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essential ingredient in our argument is exploiting the auxiliary variables in introduced in Section 5.
Therefore, in this section we will work with r = r0 − δ and a (r, r0, r0, 2r0)-marking (Vm,Va,Vc).
Since r is fixed, we drop it from the notation and write, for instance, Vgood instead of Vgood(r).

This section is divided as follows. In Section 8.1, we explain why bounded-degree methods to
bound the mixing time of the Glauber dynamics fail to generalise from the bounded-degree k-SAT
model to the random k-SAT model. In Section 8.2 we prove Lemmas 45 and 14. In Section 8.3 we
prove Lemma 15.

8.1 Previous work on the Glauber dynamics for bounded-degree k-SAT formulae
In this section we explain why previously known arguments for showing rapid mixing of the Glauber
dynamics on bounded-degree k-SAT formulae do not extend to the random k-SAT model. This
section is not used in our work and may be skipped by a reader who just wants to understand our
approach and result. The best result currently known on bounded-degree formulae is [31], where
the authors show, for large enough k, how to efficiently sample satisfying assignments of k-CNF
formulae in which their variables have maximum degree ∆̂ ≤ C 20.1742·k/k3, where C > 0 is a
constant that does not depend on k.1 Their result actually holds in the more general setting of
atomic constrain satisfaction problems (albeit with a different bound on ∆̂). As part of their work,
they show that the single-site Glauber dynamics on a set of marked variables mixes quickly. Their
argument is restricted to atomic CSPs with bounded-degree and strongly exploits the properties of
the Glauber dynamics in this setting. They study the optimal coupling of the single-site Glauber
dynamics, we refer to [38] for the definition of coupling of Markov chains. In such a coupling the
goal is to show that two copies of the chain starting from truth assignments differing in at least
a marked variable (a so-called discrepancy) can be coupled in a small number of steps. Here it is
crucial that the marginals of the marked variables are near 1/2, so the optimal coupling generates
new discrepancies with small probability. At this stage, the high-level idea to conclude rapid
mixing of the Glauber dynamics is bounding the probability that the dynamics has not coupled by
a product of probabilities, each corresponding to the event that a clause is unsatisfied at a certain
time, and aggregating over all possible discrepancy sequences.

The fundamental observation in [31], based on the work on monotone k-CNF formulae presented
in [29], is that if there is an update of a marked variable that generates a discrepancy in the chains,
then there is another marked variable where the chains disagree that is connected to the former
variable through a path of clauses, where consecutive clauses in the path share at least a variable.
Moreover, each one of the clauses in this path is unsatisfied by at least one of the two copies of
the chain. As a consequence, from a discrepancy at time t one can find a sequence of discrepancies
going back to time 0, and these discrepancies are joined by a path of clauses. Thus, the union bound
over discrepancy sequences is essentially a union bound over paths of clauses with a particular time
structure, where the same clause can be appear in the path several times. Extending this idea to the
random k-SAT model presents two main issues. First of all, the number of discrepancy sequences
of any given length may be too large due to the presence of bad clauses and the fact that they can
repeatedly appear in the sequence. Moreover, it may be the case that these discrepancy sequences
mostly consist of bad clauses, which are always unsatisfied in both chains and, thus, the probability
that they are unsatisfied is not small. Interestingly, similar issues arise when directly extending
the bounded-degree approach based on the coupling process of [39, 21] to our setting. In [21] the
mixing time argument only succeeds when ∆̂ ≤ 2k/20/(8k) and is also based on a union bound
over path of clauses that are unsatisfied or contain discrepancies after running a coupling process.

1In [31] the maximum degree ∆̂ of Φ is defined as the maximum over c ∈ C of the number of clauses that share a
variable with c. Under this definition of ∆̂, their result holds for ∆̂ ≤ C20.1742·k/k2.
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However, very importantly, these paths of clauses are simple (clauses are not repeated) and the
combinatorial structures appearing in the coupling process are less complex than the discrepancy
sequences of [31]. This allowed the authors of [24] to exploit the expansion properties of random
k-CNF formulae to analyse the coupling process of [39] on the random setting. Here we incorporate
novel ideas to the work of [24] in order to obtain a tighter analysis that leads to nearly linear running
time of our sampling algorithm.

8.2 Spectral independence in the k-SAT model
In this section we prove Lemma 14. In order to bound the sum of influences of marked variables,
we follow the coupling process technique that is standard in the literature [24, 39, 21]. In this work
we introduce the concept of auxiliary variables in the coupling process and exploit the sparsity
properties of logarithmic-sized sets of clauses, which allows us to conclude a 2−r0k log n spectral
independence bound. The key idea is that if we progressively extend two assignments X and Y on
auxiliary variables following the optimal coupling, with high probability over X and Y , at some
point the formulae ΦX and ΦY factorise in small connected components in spite of the presence of
bad variables and, on top of that, ΦX and ΦY share most of these connected components. Then
we can bound influences between marked variables by analysing the connected components where
ΦX and ΦY differ. First, let us introduce the notation and results on couplings that we need.

Let µ and ν be two distributions over the same space Ω̂. A coupling τ of µ and ν is a joint
distribution over Ω̂× Ω̂ such that the projection of τ on the first coordinate is µ and the projection
on the second coordinate is ν. Recall that the total variation distance of µ and ν is defined
by dTV(µ, ν) = 1

2

∑
x∈Ω̂|µ(x) − ν(x)|. If a random variable X has distribution µ, we also write

dTV(X, ν) to mean dTV(µ, ν). An important property of couplings is the coupling lemma.
Proposition 37 (Coupling lemma). Let τ be a coupling of µ and ν. Then dTV(µ, ν) ≤ Pr(X,Y )∼τ (X 6=
Y ). Moreover, there exists a coupling that achieves equality.

The coupling τ of µ and ν that minimises Pr(X,Y )∼τ (X 6= Y ) is called optimal. Let us now
assume that µ and ν are Bernoulli distributions with parameters 0 ≤ p ≤ q ≤ 1 respectively, so
Prµ(X = 1) = p and Prν(Y = 1) = q. The monotone coupling τ of µ and ν is defined as follows. We
pick U uniformly at random in [0, 1] and set X = 1 only when U ≤ p and Y = 1 only when U ≤ q.
For this coupling we have Pr(X,Y )∼τ (X 6= Y ) = q − p = dTV(X,Y ) and, hence, the monotone
coupling is optimal. This optimal coupling will come up in the coupling process when sampling
from the marginals of auxiliary variables.

Before presenting our coupling process, we show how we can bound a sum of influences between
marked variables with the help of the coupling lemma. In all this section we fix a k-CNF formula Φ
and a (r, r0, r0, 2r0)-marking (Vm,Va,Vc) of Φ. Given two assignments Λ1 and Λ2 on disjoint sets of
variables, recall that we denote by Λ1∪Λ2 the combined assignment on the union of their domains.
Proposition 38. Let u ∈ Vm and Λ: S → {F,T} with S ⊆ Vm \{u}. Let (X,Y ) be a coupling where
X follows the distribution µΩΛ∪u 7→T |Vm

and Y follows the distribution µΩΛ∪u 7→F |Vm
. Then∑

v∈Vm\(S∪{u})

∣∣IΛ(u→ v)
∣∣ ≤ ∑

v∈Vm\(S∪{u})

Pr (X(v) 6= Y (v)) . (26)

Proof. Let v ∈ Vm. Then for any ω ∈ {F,T}, we have Pr(v 7→ ω|Λ, u 7→ T) = Pr(X(v) = ω) and
Pr(v 7→ ω|Λ, u 7→ F) = Pr(Y (v) = ω). Thus, by the coupling lemma,∣∣IΛ(u→ v)

∣∣ = |Pr(X(v) = T)− Pr(Y (v) = T)| = dTV(X(v), Y (v)) ≤ Pr (X(v) 6= Y (v)) ,

and the proof follows by adding over v ∈ Vm \ (S ∪ {u}).
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For two assignmentsX and Y on a subset of variables V , we say thatX and Y have a discrepancy
at v ∈ V when X(v) 6= Y (v). In [21] the authors manage to bound (26) by a constant that does not
depend on n when the considered formula has bounded degree. However, their argument breaks
under the presence of high-degree variables due to the fact that we cannot control the number of bad
clauses in a path of clauses unless the path has length at least Ω(log n). Here instead we perform
the coupling process developed in [24] over auxiliary variables, which accounts for the presence of
bad clauses.

Before presenting our algorithm for the coupling process on auxiliary variables, let us describe
some of the notation and structures that are used in this algorithm. Let u ∈ Vm and Λ: S → {F,T}
with S ⊆ Vm \ {u}. We start with two assignments X̂ and Ŷ that have a discrepancy at u and
agree with Λ on S. In the coupling process we identify a set of failed clauses, denoted Fd ∪ Fu.
At each step of the process, we check if a clause is failed or extend the coupling to an auxiliary
variable. It is important in our arguments that all clauses containing a discrepancy are failed, and
that we make sure that the set of failed clauses is connected in GΦ at all times. In order to achieve
connectivity of failed clauses, at each step of the coupling process we only consider clauses that are
adjacent to failed clauses in GΦ. For ease of reading, here we present a list of the structures that
appear in our algorithm.

1. Vd. Set of discrepancies, i.e., variables v with X̂(v) 6= Ŷ (v).

2. Fd. Set of all clauses containing a variable in Vd. These are failed clauses.

3. Vset. Set of variables that are assigned a value in the coupling.

4. Fu. Set of clauses that have been considered by the coupling process, and are either bad, or
are unsatisfied by at least one of X̂ and Ŷ and have all their auxiliary variables in Vset. These
are failed clauses.

5. Crem. Set of clauses that have unassigned auxiliary variables or have not been explored yet.

Our coupling process on auxiliary variables is given in Algorithm 4.
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Algorithm 4 The coupling process on auxiliary variables
Input: A k-CNF formula Φ = (V, C), an (r, r0, r0, 2r0)-marking M = (Vm,Va,Vc), u ∈ Vm and

Λ: S → {F,T} with S ⊆ Vm \ {u}.
Output: a pair of assignments X̂, Ŷ : Vset → {F,T} for some set of variables Vset such that:
◦ S ∪ {u} ⊆ Vset ⊆ S ∪ {u} ∪ Va,
◦ X̂ and Ŷ agree with Λ on S, X̂(u) = T and Ŷ (u) = F.

1: We fix two total orders ≤V and ≤C over the variables and clauses of Φ. These are only relevant
to have a pre-determined order in which clauses and variables are considered in this algorithm.

2: Initialise X̂ and Ŷ as Λ, and set X̂(u) = T and Ŷ (u) = F.
3: Vset ← S ∪ {u}, Vd ← {u}, Fd ← {c ∈ C : u ∈ var(c)}, Fu ← ∅, Crem ← C.
4: while ∃c ∈ Crem : var(c) ∩ (Vd ∪ var(Fu)) 6= ∅ do
5: Let c be smallest clause according to ≤C with var(c) ∩ (Vd ∪ var(Fu)) 6= ∅.
6: if c is a bad clause then
7: Remove c from Crem and add c to Fu.
8: end if
9: if c is a good clause and (var(c) ∩ Va) \ Vset = ∅ then

10: Remove c from Crem (as all auxiliary variables in c have been set).
11: if c is unsatisfied by at least one of X̂ and Ŷ then
12: Add c to Fu.
13: end if
14: end if
15: if c is a good clause and (var(c) ∩ Va) \ Vset 6= ∅ then
16: Let v be the smallest variable in (var(c) ∩ Va) \ Vset (according to ≤V).
17: Extend X̂ and Ŷ to v by sampling from the optimal coupling between the marginal distri-

butions of µ
ΩX̂ and µ

ΩŶ on v, and add v to Vset.
18: if X̂(v) 6= Ŷ (v) then
19: Add v to Vd. Add all clauses containing v to Fd.
20: end if
21: end if
22: end while
23: return (X̂, Ŷ ).

First, we analyse the sets Vset, Vd, Fd, Fu and Crem and prove the connectivity property of
Fd ∪ Fu. In the rest of this section we fix the inputs of Algorithm 4 unless stated otherwise.

Proposition 39 (Properties of the coupling process). The coupling process in Algorithm 4 terminates
eventually and, at the end of the process, the sets Vset, Vd, Fd, Fu and Crem present the following
properties:

1. We have S ∪ {u} ⊆ Vset ⊆ Va ∪ S ∪ {u}, Vd = {v ∈ Vset : X̂(v) 6= Ŷ (v)}, and Fd is the set of
clauses containing a variable in Vd.

2. For all c ∈ Fu we have var(c) ∩ Va ⊆ Vset and c is unsatisfied by at least one of X̂ and Ŷ .

3. For all c ∈ Crem, we have var(c) ∩ (Vd ∪ var(Fu)) = ∅.

4. For all c ∈ C \ (Crem ∪ Fu), we have var(c) ∩ (Vd ∪ var(Fu)) 6= ∅, var(c) ∩ Va ⊆ Vset and c is
satisfied by X̂ and Ŷ .

5. The set Fd ∪ Fu is connected in GΦ.
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Proof. Each iteration of the coupling procedure either removes a clause from Crem, or samples the
values X̂(v) and Ŷ (v) for an auxiliary variable v and adds v to Vset ⊆ V . As Crem and V are finite,
the coupling terminates after a finite number of iterations. We prove the five properties in the
statement separately. First, we note that the sets Vset, Vd, Fd, Fu never decrease in size during the
execution of Algorithm 4, whereas the set Crem never increases in size.

Property 1. Note that at the start of Algorithm 4 (line 3) this property holds. The result then
follows from the fact that the sets Vset, Vd and Fd are only updated from line 15 to line 20 of
Algorithm 4, and these steps preserve Property 1.

Property 2. This follows from the facts that the set Fu is originally empty, it is only extended
in lines 7 and 12, and bad clauses do not contain auxiliary variables.

Property 3. This property follows from the fact that clauses that satisfy var(c)∩(Vd∪var(Fu)) 6=
∅ at some point are eventually removed from Crem in either line 7 (if they are bad) or in line 10 (if
they are good, once all the auxiliary variables of the clause are in Vset).

Property 4. If c ∈ C \ (Crem ∪ Fu), then c has been removed from Crem in line 10 but it has not
been added to Fu in line 12, which proves this property.

Property 5. We note that at the start of the coupling process (line 3) Fd ∪ Fu is connected.
Let us analyse every line of the algorithm where the sets Fd and Fu are enlarged. When it
comes to Fd, this occurs in line 19 if this line is executed. Let c be the clause considered in that
iteration of the coupling process and let v be the variable of c considered in line 16. We recall
that var(c) ∩ (Vd ∪ var(Fu)) 6= ∅ and v ∈ (var(c) ∩ Va) \ Vset. In line 19 we add all to Fd all
the clauses containing v. Let Cv be the set of such clauses. Since ∅ 6= var(c) ∩ (Vd ∪ var(Fu)) ⊆
var(c) ∩ var(Fd ∪ Fu) and c ∈ Cv, we conclude that Fd ∪ Fu ∪ Cv is connected as we wanted.
When it comes to Fu, we add clauses in lines 7 and 12. In this case, we add a clause c such that
var(c) ∩ (Vd ∪ var(Fu)) 6= ∅, so Fd ∪ Fu ∪ {c} is connected in GΦ.

We can now prove our main result concerning the structure of ΦX̂ and ΦŶ .

Lemma 40. Let X̂ and Ŷ be the assignments returned by Algorithm 4 and let Crem and Fu be as in
Proposition 39. There are sets of clauses C1 ⊆ Crem and C2, C3 ⊆ Fu such that ΦX̂ = (V\Vset, C1∪C2)
and ΦŶ = (V \ Vset, C1 ∪ C3), where the variables in Vset are removed from the clauses in C1, C2, C3.

Proof. We determine the set of clauses that are unsatisfied by X̂ or Ŷ with the help of Proposi-
tion 39. We distinguish 3 disjoint cases:

• c ∈ Crem. Then var(c) ∩ Vd = ∅, so X̂ and Ŷ agree in all the variables in var(Crem) ∩ Vset.
As a consequence, the restrictions of ΦX̂ and ΦŶ to Crem give rise to the same CNF formula.
Note that some of the clauses in Crem might be satisfied by both X̂ and Ŷ , but they are never
satisfied by only one of the two assignments.

• c ∈ Fu. Then c is unsatisfied by at least one of X̂ and Ŷ and, thus, it appears in at least one
of ΦX̂ and ΦŶ . The clause c may contain a variable v ∈ Vd.

• c ∈ C\(Crem∪Fu). By Proposition 39, we have var(c)∩(Vd∪var(Fu)) 6= ∅ and var(c)∩Va ⊆ Vset.
Since c 6∈ Fu, it follows that c is satisfied by both X̂ and Ŷ and, thus, c does not appear in
any of the formulae ΦX̂ and ΦŶ .

We conclude that we can write CX̂ = C1∪C2 and CŶ = C1∪C3, where C1 ⊆ Crem and C2, C3 ⊆ Fu

as we wanted.
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In order to further analyse the probability distribution of the output of Algorithm 4, we intro-
duce the following definition.
Definition 41 (run, R(Φ,M, u,Λ), τR(Φ,M, u,Λ), Vset(R), Vd(R), Fu(R), Fd(R), Crem(R)). A
run of Algorithm 4 is a sequence of all the random choices (X̂(v), Ŷ (v)) made in line 17 when
executing Algorithm 4. Let R(Φ,M, u,Λ) be the set of all possible runs of Algorithm 4 for
the inputs Φ,M, u,Λ and let τR(Φ,M, u,Λ) be the probability distribution that Algorithm 4
yields on R(Φ,M, u,Λ). Each run R ∈ R(Φ,M, u,Λ) determines the output (X̂, Ŷ ) and the sets
Vset(R),Vd(R),Fu(R),Fd(R), Crem(R) that are computed in Algorithm 4.

With the aim of applying Proposition 38, we extend the coupling (X̂, Ŷ ) to all marked and
auxiliary variables.
Definition 42 (The coupling (X,Y )). Let R ∈ R(Φ,M, u,Λ) and let (X̂, Ŷ ) be the correspond-
ing output of the run R. Let ≤V be a total order on the variables of Φ and let v1 ≤V v2 ≤V
· · · ≤V vt be the variables in (Vm ∪ Va) \ Vset. We extend the assignments X̂, Ŷ : Vset → {F,T} to
v1, v2, . . . , vt inductively (as follows) to obtain a coupling (X,Y ) such that X follows the distribu-
tion µΩΛ∪u 7→T |(Vm∪Va)\Vset

and Y follows the distribution µΩΛ∪u 7→F |(Vm∪Va)\Vset
. Assume that X and

Y are defined on Vset ∪ {v1, v2, . . . , vj−1} for j ∈ {1, 2, . . . , t}. Then we sample (X(vj), Y (vj)) from
the optimal/monotone coupling of the marginal distributions (on vj) of µΩX and µΩY .
Remark 43. When R ∈ R(Φ,M, u,Λ) follows the probability distribution τR(Φ,M, u,Λ) (Defini-
tion 41), the pair of random assignments (X,Y ) of Definition 42 is a coupling of the distributions
µΩΛ∪u 7→T |Vm∪Va

and µΩΛ∪u 7→F |Vm∪Va
.

In Lemma 44 we bound the probabilities Pr(X(v) 6= Y (v)|R) for any R ∈ R(Φ,M, u,Λ) and
v ∈ (Vm ∪ Va) \ Vset(R).
Lemma 44. Let R ∈ R(Φ,M, u,Λ). Let (X,Y ) be the coupling of Definition 42. Then for any
v ∈ (Vm ∪ Va) \ Vset(R) we have Pr(X(v) 6= Y (v)|R) ≤ 2−r0k+1/k.
Proof. Let X̂ and Ŷ be the output of Algorithm 4 for the run R. Let v1, v2, . . . , vt be the variables
in (Vm ∪ Va) \ Vset(R) in the order that they are considered in Definition 42. Let j ∈ {1, 2, . . . , t}
and let Λ′,Λ′′ : Vset(R) ∪ {v1, v2, . . . , vj−1} → {F,T} be two assignments such that Λ′|Vset

= X̂ and
Λ′′|Vset

= Ŷ . When X agrees with Λ′ and Y agrees with Λ′′, the values X(vj) and Y (vj) are sampled
from the optimal/monotone coupling between the marginals on vj of the distributions µΩΛ′ and
µΩΛ′′ . Let us denote these marginals by νX and νY respectively. Thus, by the coupling lemma
(Proposition 37) and Proposition 10 (or Lemma 28) on the marginals of marked and auxiliary
variables, we have

Pr
(
X(vj) 6= Y (vj)|Λ′,Λ′′) = dTV(νX , νY ) =

∣∣Pr(X(vj) = T|Λ′)− Pr(Y (vj) = T|Λ′′)
∣∣

≤ |Pr(X(vj) = T|Λ′)− 1/2|+ |1/2− Pr(Y (vj) = T|Λ′′)|

≤ exp

(
1

k2r0k

)
− 1.

Applying the inequality ez ≤ 1 + 2z for z ∈ (0, 1), we find that Pr (X(vj) 6= Y (vj)|Λ′,Λ′′) ≤
2−r0k+1/k. Thus, from the arbitrary choice of Λ′,Λ′′ and the law of total probability we conclude
that the bound Pr (X(vj) 6= Y (vj)|R) ≤ 2−r0k+1/k holds.

Combining all the results presented up to this stage in the current section allows us relate the
sum

∑
v∈Vm\(S∪{u})

∣∣IΛ(u→ v)
∣∣ to the coupling process over auxiliary variables. In fact, we bound

this sum of influences between marked variables by the expected number of failed clauses in the
coupling process on auxiliary variables. Recall that here r = r0 − δ.
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Lemma 45. There is an integer k0 such that for any k ≥ k0 and any density α with α ≤ 2(r0−δ)k/k3

the following holds w.h.p. over the choice of the random k-CNF formula Φ = Φ(k, n, bαnc). Let
(Vm,Va,Vc) be an (r0 − δ, r0, r0, 2r0)-marking of Φ, and let u ∈ Vm and Λ: S → {F,T} with
S ⊆ Vm \ {u}. Then for a random run R of the coupling process on the auxiliary variables
(Algorithm 4), we have ∑

v∈Vm\(S∪{u})

∣∣IΛ(u→ v)
∣∣ ≤ 2−r0k+1E [|Fu(R)|] .

Proof. Let (X,Y ) be the coupling in Definition 42 for a (random) run R ∼ τR(Φ,M, u,Λ) of
Algorithm 4. We are going to show that

Pr(X(v) = Y (v)|R) = 1 for all v ∈ V := (Vm ∪ Va) \ (Vset(R) ∪ var(Fu(R))). (27)

Let X̂, Ŷ : Vset(R)→ {F,T} be the output of Algorithm 4 for the run R. By Lemma 40 we conclude
that we can write CX̂ = C1∪C2 and CŶ = C1∪C3, where C1 ⊆ Crem(R) and C2, C3 ⊆ Fu(R). Thus, the
variables in V (see (27) for a definition of V ) either appear in a clause in C1 or they are not present
in any of the formulae ΦX̂ and ΦŶ . Moreover, by Proposition 39, we have var(c) ∩ var(c′) = ∅ for
all c ∈ Crem(R) and c′ ∈ Fu(R). We conclude that the distributions µ

ΩX̂

∣∣
V

and µ
ΩŶ

∣∣
V

agree –
both are the uniform distribution over the satisfying assignments of the CNF formula (V, C1). Let
v1, v2, . . . , vt be the variables in V in the order they are considered in the definition of the coupling
(X,Y ). By induction on j ∈ {1, 2, . . . , t}, the marginals on vj in Definition 42 are the same when
coupling X(vj) and Y (vj). Thus, we have X(vj) = Y (vj) for all j ∈ {1, 2, . . . , t}.

Since S ∪ {u} ⊆ Vset(R) ⊆ S ∪ {u} ∪ Va, we have Vm \ V = S ∪ {u} ∪ (Vm ∩ var(Fu(R))). In
light of Lemma 44 and (27), we find that∑

v∈Vm\(S∪{u})

Pr(X(v) 6= Y (v)|R) ≤
∑

v∈Vm∩var(Fu(R))

Pr(X(v) 6= Y (v)|R) ≤ 2

k
2−r0k|var(Fu(R))|.

From |var(Fu(R))| ≤ k|Fu(R)| we conclude that∑
v∈Vm\(S∪{u})

Pr(X(v) 6= Y (v)|R) ≤ 2−r0k+1|Fu(R)|. (28)

In the rest of this proof we are going to aggregate (28) over R ∈ R(Φ,M, u,Λ) with the aim of
applying Proposition 38. Let (X,Y ) be the coupling in Definition 42 for a (random) run R ∼
τR(Φ,M, u,Λ) of Algorithm 4. We have∑

v∈Vm\(S∪{u})

Pr(X(v) 6= Y (v)) =
∑

v∈Vm\(S∪{u})

∑
R∈R(Φ,M,u,Λ)

Pr(R) Pr(X(v) 6= Y (v)|R)

=
∑

R∈R(Φ,M,u,Λ)

Pr(R)
∑

v∈Vm\(S∪{u})

Pr(X(v) 6= Y (v)|R)

≤ 2−r0k+1
∑

R∈R(Φ,M,u,Λ)

Pr(R)|Fu(R)|

= 2−r0k+1E [|Fu(R)|] .

Finally, we note that we can indeed apply Proposition 38 to the restriction of X and Y on Vm
as (X,Y ) is a coupling of the distributions µΩΛ∪u 7→T |Vm∪Va

and µΩΛ∪u 7→F |Vm∪Va
(Remark 43). This

finishes the proof.

37



In the remainder of this section we bound E [|Fu(R)|], which would complete our proof of
Lemma 14 when combined with Lemma 45. In order to do this we exploit the fact that Fu(R) ∪
Fd(R) is connected in GΦ (Proposition 39), the local sparsity properties of random CNF formulae
and the properties of the marking (Vm,Va,Vc). It is important that the bound on E [|Fu(R)|]
is poly(k) log n in order to conclude fast mixing time of the ρ-uniform-block Glauber dynamics
when applying the spectral independence framework. First, we bound the probability that some
good clauses are failed in Algorithm 4. At first glance this seems to be a straightforward task
thanks to the fact that the marginals of marked and auxiliary variables are close to 1/2 (see
Proposition 10). However, for any good clauses c1 and c2, the events that c1 ∈ Fd(R)∪Fu(R) and
c2 ∈ Fd(R)∪Fu(R) may not be independent; any value given to the variables in c1 may affects the
marginals of the variables in c2 and whether these variables are considered by the coupling process
or not. However, we show that, as long as c1 and c2 do not share good variables, these dependencies
are not very strong and we can indeed bound the probability that c1, c2 ∈ Fd(R) ∪ Fu(R) with a
careful probability argument that analyses the coupling process step by step, see Lemma 49. With
this in mind, we introduce the following definitions.

Definition 46 (Rt(Φ,M, u,Λ), A≤t). For a positive integer t, we let Rt(Φ,M, u,Λ) be the set
containing for each R ∈ R(Φ,M, u,Λ) a tuple with the first min{t, length(R)} entries of the
sequence R. That is, Rt(Φ,M, u,Λ) is the set containing all possible sequences of the first t choices
that Algorithm 4 makes in line 17. Note that if R ∈ R(Φ,M, u,Λ) has length(R) ≤ t, then R ∈
Rt(Φ,M, u,Λ). Each Rt ∈ Rt(Φ,M, u,Λ) determines two partial assignments Λ′ and Λ′′ of marked
and auxiliary variables that correspond to the assignments X̂ and Ŷ after length(Rt) iterations of
line 17 following Rt. Let A≤t be the σ-algebra containing all the subsets of Rt(Φ,M, u,Λ).

Intuitively, A≤t contains all the possible events that may occur in the first t iterations of line 17,
which is the only randomised operation in Algorithm 4. When bounding the probability that a
clause is failed, we will express this event in terms of events concerning the values that X̂ and Ŷ
take on its variables. This motivates Definition 47.

Definition 47 (Dv(j)). We define the following events for variable v ∈ Va and a random run R ∼
τR(Φ,M, u,Λ) of Algorithm 4. Let Dv(1) be the event that v ∈ Vset(R) and X̂(v) 6= Ŷ (v). Let
Dv(2) be the event that v ∈ Vset(R) and X̂(v) = F. Let Dv(3) be the event that v ∈ Vset(R) and
X̂(v) = T. Let Dv(4) be the event that v ∈ Vset(R) and Ŷ (v) = F. Let Dv(5) be the event that
v ∈ Vset(R) and Ŷ (v) = T.

Finally, in order to study the events Dv(j) for v ∈ V we will have to reason about the first time
that a variable in V is added to Vset(R), which motivates the following definition.

Definition 48 (τ(V ), f(V )). For a set of auxiliary variables V , we let τ(V ) be the random variable
that takes the value t if the first time that a variable in V is added to Vset(R) in Algorithm 4
is the t-th time line 17 is executed, and we denote by f(V ) this variable. We set τ(V ) = ∞ if
V ∩ Vset(R) = ∅, in which case f(V ) is not defined.

We now have all the tools that we need to analyse the coupling process step by step.

Lemma 49. Let V ⊆ Va and let iv ∈ {1, 2, 3, 4, 5} for each v ∈ V . Let h(1) = 2−r0k+1/k and
h(i) = exp(1/k)

2 for i ∈ {2, 3, 4, 5}. Then, we have

PrR∼τR(Φ,M,u,Λ)

(⋂
v∈V

Dv(iv)
)
≤
∏
v∈V

h(iv).
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Proof. We are going to prove, for any positive integer t and A ∈ A≤t,

Pr
(⋂

v∈V
Dv(iv)

∣∣∣A, τ(V ) = t
)
≤
∏
v∈V

h(iv). (29)

The lemma will then follow from the arbitrary choice of A and t and the law of total probability.
We carry out the proof of (29) by induction on M = |V |. Equation (29) holds when V is empty.

Let us assume that (29) holds when |V | < M . Let V be a set of auxiliary variables with M = |V |
and indexes iv for all v ∈ V , let t be a positive integer and let A ∈ A≤t. To simplify the notation,
for each w ∈ V we define At(w, V ) = A ∩ [τ(V ) = t] ∩ [f(V ) = w]. Then, we have

Pr
(⋂

v∈V
Dv(iv)

∣∣∣A, τ(V ) = t
)
≤
∑
w∈V

Pr (f(V ) = w|A, τ(V ) = t) · Pr (Dw(iw)|At(w, V ))

· Pr
(⋂

v∈V \{w}
Dv(iv)

∣∣∣∣At(w, V ), Dw(iw)

)
.

We note that τ(V \ {w}) > t when conditioning on τ(V ) = t and f(V ) = w. Let A′ = At(w, V ) ∩
Dw(iw). We have

Pr

(⋂
v∈V \{w}

Dv(iv)

∣∣∣∣A′
)

=

∞∑
j=t+1

Pr
(
τ(V \ {w}) = j|A′)

· Pr
(⋂

v∈V \{w}
Dv(iv)

∣∣∣∣A′, τ(V \ {w}) = j

)
.

By our induction hypothesis for V \ {w}, the condition τ(V \ {w}) = j and the event A′ ∈ A≤j ,
we find that

Pr

(⋂
v∈V \{w}

Dv(iv)

∣∣∣∣A′
)
≤

∞∑
j=t+1

Pr
(
τ(V \ {w}) = j|A′) ∏

v∈V \{w}

h(iv) ≤
∏

v∈V \{w}

h(iv).

As a consequence, we obtain

Pr
(⋂

v∈V
Dv(iv)

∣∣∣A, τ(V ) = t
)
≤
∑
w∈V

Pr (f(V ) = w|A, τ(V ) = t) · Pr (Dw(iw)|At(w, V ))

·
∏

v∈V \{w}

h(iv).

We are going to show that Pr(Dw(iw)|At(w, V )) ≤ h(iw). Once we have proved this, the proof of
(29) is completed by noting that

∑
w∈V Pr (f(V ) = w|A, τ(V ) = t) = 1.

Let us now bound Pr(Dw(iw)|At(w, V )). Recall here that At(w, V ) implies the event w ∈
Vset(R). Recall also thatAt(w, V ) ∈ A≤t, see Definition 46. For eachRt ∈ At(w, V ) ⊆ Rt(Φ,M, u,Λ),
we are going to apply Proposition 10 and the fact that X̂(w) and Ŷ (w) follow the optimal coupling
between two marginal distributions on v of the form µΩΛ′ and µΩΛ′′ for some assignments Λ′,Λ′′

on some marked and auxiliary variables that are determined by Rt. Here it is important for ap-
plying Proposition 10 that the event At(w, V ) is in A≤t, so every partial run Rt ∈ At(w, V ) only
gives information about what has happened in Algorithm 4 before w is added to Vset(R). Thus,
aggregating over all possible runs Rt ∈ At(w, V ), we find that

max
{
Pr
(
X̂(w) = F

∣∣∣At(w, V )
)
,Pr

(
X̂(w) = T

∣∣∣At(w, V )
)}
≤ 1

2
exp

(
1

k2r0k

)
≤ 1

2
exp

(1
k

)
,

(30)
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where the probability is over the random run R ∼ τR(Φ,M, u,Λ). The bound (30) also applies with
Ŷ instead of X̂. In particular, we conclude that Pr(Dw(j)|At(w, V )) ≤ exp(1/k)/2 = h(j) for all
j ∈ {2, 3, 4, 5}. Moreover, using the definition of optimal coupling for two Bernoulli distributions,
the probability that X̂(w) 6= Ŷ (w) can be bounded as

Pr
(
X̂(w) 6= Ŷ (w)

∣∣∣At(w, V )
)
=
∣∣∣Pr(X̂(w) = T

∣∣∣At(w, V )
)
− Pr

(
Ŷ (w) = T

∣∣∣At(w, V )
)∣∣∣

≤
∣∣∣Pr(X̂(w) = T

∣∣∣At(w, V )
)
− 1/2

∣∣∣+ ∣∣∣1/2− Pr
(
Ŷ (w) = T

∣∣∣At(w, V )
)∣∣∣

≤ exp

(
1

k2r0k

)
− 1.

Hence, applying the bound ez ≤ 1 + 2z for z ∈ (0, 1) and the definition of the event Dvj (1), we
have Pr(Dvj (1)|At(w, V )) ≤ 2/(k2r0k) = h(1). This finishes the proof of (29). From the arbitrary
choice of A and t and the law of total probability, the statement follows.

We can now bound the probability that some good clauses are failed with the help of Lemma 49.

Lemma 50. Let Φ, u,Λ be the input of Algorithm 4. Let c1, . . . , cℓ ∈ Cgood such that the variable
u does not appear in any of the clauses in c1, . . . , cℓ, and var(ci) ∩ var(cj) ∩ Vgood = ∅ for all
1 ≤ i < j ≤ ℓ. Then, for R ∼ τR(Φ,M, u,Λ), we have Pr(c1, . . . , cℓ ∈ Fd(R)∪Fu(R)) ≤ 2(−r0k+4)ℓ.

Proof. Let c1, . . . , cℓ be some good clauses of Φ as in the statement. The hypothesis that u does
not appear in any of these clauses is necessary as if u ∈ var(c) then c ∈ Fd(R) by definition. We
consider a random run R ∼ τR(Φ,M, u,Λ) of Algorithm 4 and let X̂, Ŷ be the (random) output of
Algorithm 4 for the run R. For j ∈ {1, 2, . . . , ℓ}, let Fj(1) be the event that there is v ∈ var(cj)∩Va
such that v ∈ Vset(R) and X̂(v) 6= Ŷ (v), let Fj(2) be the event that var(cj) ∩ Va ⊆ Vset(R) and cj
is unsatisfied by X̂, and let Fj(3) be the event that var(cj) ∩ Va ⊆ Vset(R) and cj is unsatisfied by
Ŷ . In light of Proposition 39, we have [c1, . . . , cℓ ∈ Fd(R) ∪Fu(R)] =

⋂ℓ
j=1(Fj(1) ∪ Fj(2) ∪ Fj(3)).

We obtain

Pr

(⋂ℓ

j=1
(Fj(1) ∪ Fj(2) ∪ Fj(3))

)
≤

∑
(i1,i2,...,iℓ)∈{1,2,3}ℓ

Pr

(⋂ℓ

j=1
Fj(ij)

)
. (31)

We note that Fj(1) =
⋃

v∈var(cj)∩Va
Dv(1), see Definition 47. Let (i1, i2, . . . , iℓ) ∈ {1, 2, 3}ℓ, and let

I1 = {j : ij = 1}, I2 = {j : ij = 2} and I3 = {j : ij = 3}. If the event
⋂

j∈I1 Fj(ij) holds, then, for
each j ∈ I1 there is a variable uj ∈ var(cj) ∩ Va such that Duj (1) holds. Thus, for the set of tuples
T =

∏
j∈I1(var(cj) ∩ Va), where

∏
here denotes the cartesian product of sets, we have⋂

j∈I1

Fj(ij) =
⋃

(u1,u2,...,u|I1|)∈T

⋂
j∈I1

Duj (1). (32)

Now we explain how we bound Pr
((⋂

j∈I2∪I3 Fj(ij)
)
∩
(⋂

j∈I1 Duj (1)
))

for a tuple (u1, u2, . . . , u|I1|) ∈
T . We are going to show that

Pr
((⋂

j∈I2∪I3
Fj(ij)

)
∩
(⋂

j∈I1
Duj (1)

))
≤
(
exp(1/k)

2

)(k−3)r0|I2∪I3|( 2

k2r0k

)|I1|
. (33)

The proof of (33) is not as straightforward as it may seem at first glance due to the dependencies
among the events Fj(ij), Duj (1). The key idea is re-writing the LHS of (33) as in the statement of
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Lemma 49. Indeed we note that for each j ∈ I2 and for each variable v ∈ var(cj)∩Va, the event Fj(2)
implies that there is iv ∈ {2, 3} such that Dv(iv) holds, concluding Fj(2) =

⋂
v∈var(cj)∩Va

Dv(iv),
see Definition 47. Analogously, for each j ∈ I3 and for each variable v ∈ var(cj) ∩ Va, we find
iv ∈ {4, 5} such that Fj(3) =

⋂
v∈var(cj)∩Va

Dv(iv). Therefore, we have(⋂
j∈I2∪I3

Fj(ij)
)
∩
(⋂

j∈I1
Duj (1)

)
=
⋂
v∈Vf

Dv(iv), (34)

where Vf contains exactly all the auxiliary variables in the clauses cj with j ∈ I2 ∪ I3 and the
variables u1, u2, . . . , u|I1|. Recall now that each good clause contains at least r0(k − 3) auxiliary
variables, and, thus, the bound given in (33) follows from (34) and Lemma 49. Combining (33),
(32) and (31), and counting the number of tuples in T , we conclude that

Pr

(⋂ℓ

j=1
(Fj(1) ∪ Fj(2) ∪ Fj(3))

)
≤

∑
(i1,i2,...,iℓ)∈{1,2,3}ℓ

k|I1|
(
exp(1/k)

2

)(k−3)r0|I2∪I3|( 2

k2r0k

)|I1|

≤
∑

(i1,i2,...,iℓ)∈{1,2,3}ℓ

(
e23r0

2kr0

)|I2∪I3|( 2

2r0k

)|I1|

=

(
e23r0

2kr0
+

e23r0

2kr0
+

2

2r0k

)ℓ

,

where we used the multinomial theorem. The result now follows from 2e23r0 + 2 ≤ 24.

Following [24] and motivated by Lemma 50, we introduce the combinatorial structure that we
use in our proof of Lemma 14 to bound the expected number of failed clauses.

Definition 51 (G≤k, D3(GΦ, c, ℓ)). For a graph G = (V,E) and a positive integer k, let G≤k be
the graph with vertex set V in which vertices u and v are connected if and only if there is a path
from u to v in G of length at most k. Given the graph GΦ, a clause c and a positive integer ℓ, let
D3(GΦ, c, ℓ) be the set of subsets T ⊆ V (GΦ) such that the following holds:

1. |T | = ℓ and c ∈ T ;

2. for any c1, c2 ∈ T , var(c1) ∩ var(c2) ∩ Vgood = ∅;

3. the graph G≤3
Φ [T ], which is the subgraph of G≤3

Φ induced by T , is connected;

4. we have |T ∩ Cgood| ≥ (1− 8/k)ℓ.

In [24] the authors consider connected sets in G≤4
Φ instead of G≤3

Φ . Here we manage to perform
our union bound on D3(GΦ, c, ℓ) thanks to the fact that the set of failed clauses is connected in our
refinement of the coupling process.

Lemma 52 ([24, Corollary 8.19] for G≤3). Let G = (V,E) be a connected graph, let v ∈ V and let
ℓ be a positive integer. Let nG,ℓ(v) denote the number of connected induced subgraphs of G with
size ℓ containing v. Then, for ℓ′ = min{3ℓ, |V |}, we have nG≤3,ℓ(v) ≤ 2ℓ

′
nG,ℓ′(v).

Proof. Let T be a connected subgraph of G≤3 with size ℓ containing v. We claim that, for all
positive ℓ, we can find a connected subset H of G with size ℓ′ = min{3ℓ, |V |} containing T . The
proof is straightforward by induction on ℓ, see [24, Lemma 8.18] for the analogous result on G≤4.
We note that there are at most

(
ℓ′

ℓ−1

)
≤ 2ℓ

′ subsets T of H containing v that could be mapped to H

by the previous construction. Hence, we conclude that nG≤3,ℓ(v) ≤ 2ℓ
′
nG,ℓ′(v) as we wanted.
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Lemma 53 ([24, Lemma 7.9] for D3(GΦ, c, ℓ)). Let ℓ be an integer which is at least log n. W.h.p.
over the choice of Φ, every clause c ∈ Cgood has the property that the size of D3(GΦ, c, ℓ) is at most
(18k2α)3ℓ.

Proof. This follows from bounding the number of connected sets of size ℓ in G≤3
Φ that contain c by

combining Lemmas 34 and 52.

We have now all the tools that we need to bound the expected number of failed clauses in the
coupling process given in Algorithm 4 and complete the proof of Lemma 14.

Lemma 14. There is an integer k0 ≥ 3 such that for any integer k ≥ k0 and any density α
with α ≤ 2r0k/3/k3 the following holds. W.h.p. over the choice of the random k-CNF formula
Φ = Φ(k, n, bαnc), for any (r0 − δ, r0, r0, 2r0)-marking (Vm,Va,Vc) of Φ, the distribution µΩ|Vm

is
(2−(r0−δ)k log n)-spectrally independent.

Proof. Let u ∈ Vm and Λ: S → {F,T} with S ⊆ Vm\{u}. First of all, we apply Lemma 45 to bound∑
v∈Vm\(S∪{u})

∣∣IΛ(u→ v)
∣∣ by 2−r0k+1E [|Fu(R)|], where R ∼ τR(Φ,M, u,Λ). In the rest of this

proof we show that Pr(|Fu(R)| ≥ 2k4 log n) ≤ O(1/n) and, thus, for large enough n, E [|Fu(R)|] =∑
R∈R(Φ,M,u,Λ) Pr(R)|Fu(R)| ≤ 4k4 log n. Putting all this together, and using the fact that 8k4 ≤

2δk for large enough k (here δ = 0.00001) we would obtain the bound
∑

v∈Vm\(S∪{u})
∣∣IΛ(u→ v)

∣∣ ≤
8 · 2−r0kk4 log n ≤ 2−(r0−δ)k log n and, thus, the result would follow.

So to finish we just need to show that, w.h.p. over the choice of Φ, Pr(|Fu(R)| ≥ 2k4 log n) ≤
O(1/n). Let L = d2k4 log ne and let ℓ = d0.5k4 log ne. First, we are going to show that, w.h.p.
over the choice of Φ, the following holds:

if Z ⊆ C is connected and |Z| = L, then ∃c ∈ Z ∩ Cgood and T ∈ D3(GΦ, c, ℓ) with T ⊆ Z. (35)

In order to prove (35), we are going to find a large independent set of Z ∩ Cgood, and we are going
to extend it with some clauses in Z ∩ Cbad to obtain T ∈ D3(GΦ, c, ℓ). We need three results that
hold w.h.p. over the choice of Φ: Lemmas 20, 32 and 31. We note that we can apply Lemma 20 for
r = r0−δ as our density satisfies α ≤ 2r0k/3/k3 ≤ d2(r0−δ)ke/k3 = ∆r/k

3, where δ = 0.00001. For Z
as in (35) we have |Z| ≥ 2k4 log n, so by Lemma 32 with a = 2k4, we find that |var(Z)| ≥ 2k4 log n
and, thus, in light of Lemma 20, we conclude that |Z∩Cgood| ≥ (1−1/k)|Z| and |Z∩Cbad| ≤ |Z|/k.
From Lemma 31 with b = 4k4, w.h.p. over the choice of Φ, all connected sets of clauses with
size at most 4k4 log n have tree-excess at most t := max{1, 8k4 log(ek2α)}. Thus, we can find
U ⊆ Z ∩ Cgood such that U is a forest (disjoint union of trees) and |U | ≥ (1 − 1/k)|Z| − t. In
particular, U is bipartite, so there is I ⊆ U such that var(c) ∩ var(c′) = ∅ for all c, c′ ∈ I and
|I| ≥ |U |/2 ≥ (1 − 1/k)L/2 − t/2 ≥ 1

2k
4 log n, where the last inequality holds for large enough n.

Let I ′ be an independent set of Z ∩ Cgood with the largest possible size. Then we have shown that
|I ′| ≥ ℓ = d12k

4 log ne.
We claim that the set T ′ := I ′ ∪ (Z ∩ Cbad) is connected in (GΦ[Z])≤3, where GΦ[Z] is the

subgraph of GΦ induced by Z. Assume for contradiction that T ′ is not connected in (GΦ[Z])≤3. In
this case, we can write T ′ = S1∪S2 such that for all c1 ∈ S1 and c2 ∈ S2, the shortest path between
c1 and c2 through clauses in Z has length at least 4. Let (c1, c2) ∈ S1 × S2 be the pair with the
shortest path in Z, and let this path be c1 = e1, e2, . . . , ej = c2. Then j ≥ 5 and e2, . . . , ej−1 ∈ Z\T ′.
Moreover, we find that var(e3) ∩ var(c) = ∅ for all c ∈ T ′ as otherwise e1, e2, . . . , ej would not be
the shortest path between S1 and S2. Moreover, since T ′ contain all bad clauses in Z, we conclude
that e3 is a good clause. It follows that I ′ ∪ {e3} is an independent set of good clauses of Z, which
contradicts the fact that I ′ has largest possible size among such sets.
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Finally, as |T ′| ≥ ℓ, we can find a good clause c and a subset T of T ′ with size ℓ such that c ∈ T ,
T is connected in G≤3

Φ and |T ∩Cbad| ≤ |Z∩Cbad| ≤ L/k ≤ 8ℓ/k. We conclude that T ∈ D3(GΦ, c, ℓ).
This finishes the proof of (35).

In the rest of the proof we use (35) to bound Pr(|Fu(R)| ≥ L). Recall that the set of failed clauses
Fd(R) ∪ Fu(R) is connected (Proposition 39). If |Fu(R)| ≥ L, then there is Z ⊆ Fd(R) ∪ Fu(R)
with |Z| = L such that Z is connected in GΦ, and, thus, we can find c and T as in (35). We
have shown that the event |Fu(R)| ≥ L is contained in the event that there is a good clause c and
T ∈ D3(Φ, c, ℓ) such that T ⊆ Fd(R) ∪ Fu(R). As a consequence, we have

Pr [|Fu(R)| ≥ L] ≤
∑
c∈C

∑
T∈D3(Φ,c,ℓ)

Pr [T ⊆ Fd(R) ∪ Fu(R)]

≤
∑
c∈C

∑
T∈D3(Φ,c,ℓ)

Pr [T ∩ Cgood ⊆ Fd(R) ∪ Fu(R)] .

We note that for any T ∈ D3(Φ, c, ℓ) there is at most one good clause c′ that contains the marked
variable u. Thus, by definition of D3(Φ, c, ℓ), there are at least (1 − 8/k)ℓ − 1 good clauses in T
that do not contain the variable u. Hence, we can apply Lemma 53 on the size of D3(Φ, c, ℓ) and
Lemma 50 on the probability of good clauses (that do not share good variables) failing to further
obtain

Pr [|Fu(R)| ≥ L] ≤ m
(
18k2α

)3ℓ
2−(r0k−4)[(1−8/k)ℓ−1].

In what follows it is essential that α ≤ 2r0k/3/k3, and this is the only proof in this paper where we
need this bound on the density – other proofs only require the less restrictive bounds α ≤ 2(r0−δ)k/k3

or α ≤ 2(r0−3δ)k/k3. Thus, we conclude that

Pr [|Fu(R)| ≥ L] ≤ m

(
18

2r0k/3

k

)3ℓ

2−(r0k−4)(1−8/k)ℓ 2r0k−4 = m

(
183

k3
28r0+4(1−8/k)

)ℓ

2r0k−4.

Finally, for large enough k we find that Pr [|Fu(R)| ≥ L] ≤ me−ℓ2r0k ≤ mn−0.5k42r0k = O(1/n) as
we wanted.

8.3 Mixing time of the ρ-uniform-block Glauber dynamics
Finally, we combine the results in this section with Lemma 13 to complete the proof of Lemma 15.

Remark 54. The distribution µΩ|Vm
on assignments of the marked variables (Definition 11) is b-

marginally bounded for b = 1 − (1/2) exp(1/k) by Proposition 10 (or, equivalently, Lemmas 26
and 28). Since exp(1/k) ≤ 1 + 2/k, we have b ≥ 1/2− 1/k ≥ 1/e for k ≥ 8.

Lemma 15. There is a function k0(θ) = Θ(log(1/θ)) such that, for any θ ∈ (0, 1), for any integer
k ≥ k0(θ) and any density α with α ≤ 20.039k the following holds. W.h.p. over the choice of the
random k-CNF formula Φ = Φ(k, n, bαnc), for any (r0−δ, r0, r0, 2r0)-marking (Vm,Va,Vc) of Φ and
for ρ = d2−k−1|Vm|e, the ρ-uniform-block Glauber dynamics for updating the marked variables has
mixing time Tmix(ρ, ε/2) ≤ T := d22k+3nθ log 2n

ε2
e.

Proof. In view of Lemma 14, as α ≤ 20.039k ≤ 2r0k/3/k3 for large enough k, w.h.p. over the choice
of Φ, the distribution µΩ|Vm

is η-spectrally independent for η = 2−(r0−δ)k log n. Moreover, this
distribution is b-marginally bounded for b = 1/e when k ≥ 8. We are going to apply Lemma 13
with V = Vm, µ = µΩ|Vm

, M = |Vm| and κ = 2−k−1. First, we check that the hypothesis
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M ≥ 2
κ(4η/b

2 + 1) of Lemma 13 holds. By Corollary 30 with r = r0 − δ and V = Vm, we have
M ≥ (r0 − δ)(kα/∆r)n = Ω(n), so M ≥ 2

κ(4η/b
2 + 1) holds for large enough n as 2

κ(4η/b
2 + 1) =

O(log n). Hence, we can apply Lemma 13 to obtain

Tmix(ρ, ε/2) ≤
⌈
Cρ

M

ρ

(
log log

1

µmin
+ log

2

ε2

)⌉
,

where ρ = dκMe and Cρ = (2/κ)4η/b
2+1. We have

Cρ = exp

(
(log 2)(k + 2)

(4η
b2

+ 1
))
≤ 2k+2 exp

(
(log 2)(log n)(k + 2)4e2

2(r0−δ)k

)
,

so there exists a function k0(θ) = Θ(log(1/θ)) such that when k ≥ k0(θ), we have Cρ ≤ 2k+2nθ. In
light of Remark 54, we have µmin ≥ bM , so log log(1/µmin) ≤ log(M log(1/b)) = logM as b = 1/e.
Thus, we conclude that

Tmix(ρ, ε/2) ≤
⌈
22k+3nθ

(
logM + log

2

ε2

)⌉
≤
⌈
22k+3nθ log

2n

ε2

⌉
.

9 Proof of Theorem 1
In this section we complete the proof of Theorem 1. The proofs in this section do not present any
challenging steps. In fact, they amount to combining the main technical results that have already
been proved in this work. We start by showing that the calls to the method Sample in Algorithm 1
are unlikely to ever return error, that is, the connected components of GΦΛ have size at most
2k4(1 + ξ) log(n) almost every time the method is called. As pointed out in our proof outline, this
is a straightforward consequence of Lemma 17 and the fact that the probability distribution of the
output of the Glauber dynamics is (1/k)-uniform (Corollary 29).

Lemma 55. Let θ ∈ (0, 1). There is an integer k0 ≥ 3 such that, for any integers k ≥ k0, ξ ≥ 1
and any density α ≤ 2(r0−3δ)k/k3, the following holds w.h.p. over the choice of Φ = Φ(k, n, bαnc).
In the execution of Algorithm 1 with input Φ, with probability at least 1− n−3ξ over the random
choices made by Algorithm 1, every time that the algorithm calls the method Sample(ΦΛ, S), the
connected components of GΦΛ have size at most 2k4(1 + ξ) log(n).

Proof. Let ε = n−ξ and let T = d22k+3nθ log 2n
ε2
e be the mixing time established in Lemma 15.

Note that α ≤ 2(r0−3δ)k/k3 ≤ 2(r0−δ)k/k3, so we an indeed compute the marking (Vm,Va,Vc) in
Algorithm 1 with the help of Lemma 26. We need α ≤ 2(r0−3δ)k/k3 so that we can apply Lemma 17
with r = r0 − δ. Algorithm 1 calls the method Sample exactly T + 1 times in total: T times in
line 7 (when simulating the ρ-uniform-block Glauber dynamics) and one time in line 10 to extend
the assignment XT of marked variables to all variables.

Let t ∈ {0, 1, . . . , T} and let πt be the probability distribution of Xt, where Xt is the state of
the ρ-block-uniform Glauber dynamics on the marked variables described in Algorithm 1 after t
steps. Recall that ρ = d2−k−1|Vm|e and that X0 is chosen uniformly at random. First, we focus on
the case t < T . We are going to apply Lemma 17 with r = r0− δ, a = 2k4, b = 2a(1 + ξ), V = Vm,
µ = πt and this choice of ρ. The set Vm is r0-distributed by the definition of (r0 − δ, r0, r0, 2r0)-
marking (Definition 8). Moreover, πt is (1/k)-uniform by Corollary 29, and we have ρ ≤ |Vm|/2k.
Hence, we can indeed apply Lemma 17. Consider the following experiment described in Lemma 17
for L = da(1 + ξ) log ne, which satisfies a log n ≤ L ≤ b log n. First, draw S ⊆ Vm from the uniform
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distribution τ over subsets of Vm with size ρ. Then, sample an assignment Λt+1 from πt|Vm\S , the
marginal of πt on Vm \ S. Denote by F the event that that there is a connected set of clauses Y of
Φ with |Y | ≥ L such that all clauses in Y are unsatisfied by Λt+1. Then we have

PrS∼τ

(
PrΛt+1∼πt|Vm\S

(F) ≤ 2−δkL
)
≥ 1− 2−δkL. (36)

Alternatively, this experiment is the same as first sampling an assignment Xt of all variables in Vm
from πt, and then restricting the assignment to a random set S ∼ τ , obtaining Λt+1. Note that this
exact experiment occurs before calling the method Sample in the t-th step of the ρ-uniform-block
Glauber dynamics in Algorithm 1. Thus, in light of (36), the probability that in step t + 1 of
the execution of Algorithm 1 the graph GΦΛt+1 has a connected component with size at least L is
at most 2−δkL + 2−δkL, where the first 2−δkL comes from the probability of choosing a wrong set
S ∼ τ in (36) and the second 2−δkL comes from the bound on the probability of the event F once
we have chosen S. We have shown that with probability at least 1 − 2·2−δkL, all the connected
components of the graph GΦΛt appearing in step t + 1 of the execution of Algorithm 1 have size
less than L. We have 2·2−δkL ≤ 2·n−δka(1+ξ) log 2 ≤ n−5ξ for large enough k, so the probability that
Sample returns error at step t+1 is at most n−5ξ. The case t = T is analogous, the only difference
here is that we call Sample on ΦXT , where XT ∼ πT is an assignment of all marked variables, so
we apply Lemma 17 with ρ = 0 instead of ρ = d2−k−1|Vm|e.

Finally, we carry out a union bound over t ∈ {0, 1, . . . , T}, so the probability that any of the
calls to Sample returns error is at most (T +1)n−5ξ ≤ n−3ξ for large enough n as T = O(nθ log n) =
O(n log n).

Once we have established Lemmas 15, 19, and 55, the proof of Theorem 1 follows as below.

Theorem 1. For any real θ ∈ (0, 1), there is k0 ≥ 3 with k0 = O(log(1/θ)) such that, for any integers
k ≥ k0 and ξ ≥ 1, and for any positive real α ≤ 20.039k, the following holds.

There is an efficient algorithm to sample from the satisfying assignments of a random k-CNF
formula Φ = Φ(k, n, bαnc) within n−ξ total variation distance of the uniform distribution. The
algorithm runs in time O(n1+θ), and succeeds w.h.p. over the choice of Φ.

Proof. Let k0(θ) = Θ(log(1/θ)) be large enough so that, for all integers k ≥ k0(θ), ξ ≥ 1 and all
densities α ≤ 20.039·k, the conclusions of Lemmas 26, 15, 19, and 55 hold w.h.p. over the choice of the
random k-CNF formula Φ = Φ(k, n, bαnc). These lemmas are enough to analyse Algorithm 1 and
tackle this proof. We analyse the distribution µalg of the output of Algorithm 1. This distribution
outputs either a satisfying assignment of the input formula Φ or error. Let ε = n−ξ. Let E be the
event that running Algorithm 1 outputs error. This happens with probability at most ε/4 when
computing the marking (Vm,Va,Vc) in line 2 of the algorithm, and in lines 7 and 10 if the method
Sample(Φ̂, S) returns error, which occurs when GΦ̂ has a connected component with size more than
2k4(1 + ξ) log(n). In view of Lemma 55, the probability that Algorithm 1 outputs error due to
the failure of the method Sample is at most n−3ξ = ε3. We conclude that the probability that
the algorithm outputs error is bounded above by ε/4 + ε3 ≤ ε/2 . Let µGlauber be the distribution
that Algorithm 1 would output if there were no errors (that is, the distribution assuming that the
method Sample always outputs from the appropriate distribution). Then dTV(µalg, µGlauber) is the
probability that an error occurs, which is at most ε/2. Let πGlauber be the distribution output by
the ρ-uniform-block Glauber dynamics on Vm after T steps. By Lemma 15 on the mixing time of
the Glauber dynamics, we have dTV(πGlauber, µΩ|Vm

) ≤ ε/2. As µGlauber comes from sampling an
assignment XT from πGlauber and then completing XT to all V by sampling from µΩ(·|XT ), we have
dTV(µGlauber, µΩ) ≤ dTV(πGlauber, µΩ|Vm

) ≤ ε/2. We find that dTV(µalg, µΩ) ≤ dTV(µalg, µGlauber)+
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dTV(µGlauber, µΩ) ≤ ε/2 + ε/2 = ε as we wanted. The running time of Algorithm 1 is now easily
obtained by adding up the running times of the following subroutines. The good clauses and good
variables are computed in time O(n+ km) = O(n), see Proposition 7. The marking (Vm,Va,Vc) is
computed with probability at least 1− ε/4 in time O(n∆rk

2 log(4/ε)) = O(n log n), see Lemma 26.
Recall that there are T +1 = O(nθ log(n/ε2)) = O(nθ log n) calls to the method Sample(Φ′, S), and
each call takes time O(|S| log n) = O(n log n) by Lemma 19. We conclude that the running time of
Algorithm 1 is O(n1+θ log(n)2). The result now follows by choosing k1 = k0(θ/2), so the running
time for k ≥ k1 is O(n1+θ/2 log(n)2) = O(n1+θ).

We have now proved that it is possible to (approximately) sample uniformly at random from
the satisfying assignments of Φ = Φ(k, n, bαnc). At this point, standard techniques can be applied
to obtain a randomised approximation scheme for counting the satisfying assignments of Φ. These
techniques are based on the self-reducibility of k-SAT [33]. The following remark shows how to
obtain a randomised approximation scheme that runs in time O(nθ(n/ε)2) following [21, Chapter
7], where the authors base their counting algorithm on the simulated annealing method [47, 30, 35].

Remark 56 (Approximate counting for random k-SAT formulae). Let k0(θ) be the integer depending
on θ ∈ (0, 1) obtained in Theorem 1. Let k1 = k0(θ/2), let k ≥ k1 be an integer, let ξ be a positive
integer and let α ≤ 20.039k be a density. We apply Theorem 1 to obtain an algorithm to sample
from the satisfying assignments of Φ = Φ(k, n, bαnc) within n−4ξ total variation distance from the
uniform distribution. This algorithm runs in time O(n1+θ/2) and succeeds w.h.p. over the choice
of Φ.

Let ε ∈ (0, 1) with ε ≥ n−ξ. A modified version of the approximate counting algorithm of [21,
Section 7], using O(ε−2n log(n/ε)) samples from the sampling algorithm above, approximates the
number of satisfying assignments of the k-CNF formula Φ with multiplicative error ε, thus, achieving
running time O(nθ/2(n/ε)2 log(n/ε)) = O(nθ(n/ε)2). Here we describe these minor modifications.

Let Ωbad be the set of assignments X : V → {F,T} that satisfy the bad clauses of Φ. For
X ∈ Ωbad, we define F (X) to be the set of good clauses that are not satisfied by X. For κ ∈ R, we
define wκ(X) = exp(−κ|F (X)|) and we define the partition function Z(κ) =

∑
X∈Ωbad

wκ(X). The
simulated annealing algorithm of [21, Section 7] uses Z(κ) (with Ω∗ from Definition 9 in place of
Ωbad) to approximate the number of satisfying assignments of Φ. We note that Z(0) = |Ωbad|, which
can be computed in linear time in n using the exact counting algorithm given in Proposition 36.
Here one has to use the fact that the connected components of GΦ′ for the formula Φ′ = (V, Cbad)
have size at most 2k4 log n, see Lemma 69 from Appendix A and Lemma 32, and the fact that
these connected component have tree-excess upper bounded as a function of k (Lemma 31). Once
one has performed these modifications, the algorithm given in [21, Section 7] applies without any
difficulties.

10 Proof of Theorems 3 and 5
In this section we exploit Lemma 17 to prove Theorems 3 and 5 on the connectivity and looseness of
the solution space of random k-CNF formulae. We recall that the density threshold in Theorems 3
and 5 is α ≤ 20.227k, significantly larger than our algorithmic threshold in Theorem 1, which is
α ≤ 20.039k. In order to conclude connectivity for densities up to 20.227k, we let r1 = 0.227092 and
consider the threshold ∆r = d2rke for r = r1− δ in the definition of high-degree variables instead of
∆r0−δ = d2(r0−δ)ke. In all this section we set r = r1 − δ, so we omit r in the notation and we write
Vgood instead of Vgood(r). We work with an (r, r1, 0, r1)-marking (Vm, ∅,Vc) (the set of auxiliary
variables is empty), which we can find w.h.p. over the choice of Φ = Φ(k, n, bαnc) as in Lemma 27.
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Let us briefly recall some of the properties of this marking. First of all, by definition, the set Vm
is r1-distributed and is a subset of Vgood. Moreover, the distribution µΩ|Vm

is (1/k)-uniform by
Lemma 28. In light of Lemma 17 for r = r1 − δ, these properties allow us to show that, when
sampling Λ ∼ µΩ|Vm

, the connected components of ΦΛ are logarithmic in size with probability
1 − o(1) over the choice Λ ∼ µΩ|Vm

. In fact, this is also the case when Λ ∼ µΩ|Vm\{v} for any
variable v.

Corollary 57. There is an integer k0 ≥ 3 such that, for any integer k ≥ k0, any density α ≤ α1 :=
2(r1−3δ)k, the following holds w.h.p. over the choice of Φ = Φ(k, n, bαnc).

Let V be a set of good variables of Φ that is r1-distributed, let µ be a (1/k)-uniform distribution
over the assignments V → {F,T} and let v ∈ V . Then, with probability at least 1− n−k over the
choice Λ ∼ µ|V \{v}, the connected components of ΦΛ have size at most 2k4 log n.

Proof. The result is an application of Lemma 17 with r = r1 − δ, b = 4k4, ρ = 1 and L =
d2k4 log ne. We need large enough k0 such that 2−δkL ≤ 2−δ2k5 logn ≤ n−k for all k ≥ k0. For
these parameters, in the setting of Lemma 17, the distribution τ is the uniform distribution over
the variables in V . The experiment in the statement of Lemma 17 consists in sampling v ∼ τ
and then sampling Λ ∼ µ|V \{v}. Let Fv be the event, concerning the choice Λ ∼ µ|V \{v}, that
there is a connected set of clauses Y of Φ with |Y | ≥ d2k4 log ne such that all clauses in Y are
unsatisfied by Λ. Then by Lemma 17 we have Prv∼τ

(
PrΛ∼µ|V \{v}

(Fv) ≤ 2−δkL
)
≥ 1−2−δkL. From

2−δkL ≤ n−k, we obtain the bound Prv∼τ

(
PrΛ∼µ|V \{v}

(Fv) ≤ 2−δkL
)
≥ 1 − n−k. Since τ is the

uniform distribution over the variables in V , for v ∼ τ , either the event that PrΛ∼µ|V \{v}
(Fv) ≤

2−δkL has probability 1 or it has probability at most 1− 1/|V | ≤ 1− 1/n. The latter option is not
possible due to Prv∼τ

(
PrΛ∼µ|V \{v}

(Fv) ≤ 2−δkL
)
≥ 1 − n−k and k ≥ 3. Thus, we conclude that

Prv∼τ

(
PrΛ∼µ|V \{v}

(Fv) ≤ 2−δkL
)
= 1, so for any v ∈ V we have PrΛ∼µ|V \{v}

(Fv) ≤ 2−δkL ≤ n−k.
That is, for any v ∈ V , with probability at least 1−n−k over the choice of Λ ∼ µ|V \{v} the connected
components of ΦΛ have size at most L− 1 = d2k4 log ne− 1 < 2k4 log n as we wanted to prove.

Our connectivity and looseness results will follow from Corollary 57. In Section 10.1 we prove
Theorem 3 and in Section 10.2 we prove Theorem 5.

10.1 Proof of Theorem 3
We consider Algorithm 5 that receives two satisfying assignments of a k-CNF formula Φ as the input
and constructs a path between them. Before introducing this algorithm, recall that the graph HΦ

is the dependency graph of the variables of Φ introduced in Definition 18.
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Algorithm 5 Finding a (poly(k) log n)-path between two satisfying assignments
Input: a k-CNF formula Φ = (V, C) with n variables, an (r, r1, 0, r1)-marking (Vm, ∅,Vc) of Φ, and

two satisfying assignments σ, σ′.
1: Let v1, v2, . . . , vℓ be the variables in Vm.
2: ζ0 ← σ.

/* Stage 1: Update the marked variables */
3: for i ∈ [ℓ] do

4: Find ζi ∈ Ω with marked variables specified by ζi(vj) =

{
σ′(vj), j ≤ i;

σ(vj), j > i;

such that ‖ζi − ζi−1‖1 is minimised.
5: end for
6: ξ0 = ζℓ

/* Stage 2: Update the rest of variables */
7: Let τ ′ = σ′|Vm

and suppose that HΦτ ′ has connected components E1, E2, . . . , Et.
8: for i ∈ [t] do

9: Let ξi ∈ Ω be defined as ξi(v) =
{
σ′(v), v ∈

(
V \

⋃t
j=1 Ej

)
∪
(⋃i

j=1 Ej
)
;

ζℓ(v), v ∈
⋃t

j=i+1 Ej .
10: end for
11: return The path σ = ζ0 ↔ · · · ↔ ζℓ = ξ0 ↔ · · · ↔ ξr = σ′.

To prove Theorem 3, it suffices to show that the output of Algorithm 5 is with high probability
a D-path in the solution space for D = 2k5 log n for the inputs σ ∼ µΩ and σ′ ∼ µΩ. We will
not actually require σ ∼ µΩ and σ′ ∼ µΩ in the proof; instead we will just use the fact that the
restrictions of σ and σ′ on Vm follow a (1/k)-uniform distribution as guaranteed by Lemma 28, see
the proof of Lemma 59 for details.

We need the following two lemmas to establish Theorem 3. The first lemma (Lemma 58) shows
that all the truth assignments ζi, ξi in the algorithm exist and satisfy the formula (i.e. the algorithm
is well-defined), implying our constructed path is indeed a valid path comprising only satisfying
assignments. The second lemma (Lemma 59) shows that w.h.p., two adjacent assignments differ
by at most 2k5 log n variables. This result is an application of Corollary 57.

Lemma 58. For any k-CNF formula Φ with n variables, any (r, r1, 0, r1)-marking (Vm, ∅,Vc) of Φ,
and any two satisfying assignments σ, σ′, Algorithm 5 on these inputs is well-defined in the following
sense:

1. It is always possible to implement Line 4 such that ζi ∈ Ω.

2. We have ξi ∈ Ω for each i ∈ [t].

Proof. To prove item 1, we are going to show that for any partial assignment X : Vm → {F,T},
we have PrµΩ(X) > 0 and, thus, can extend X to some satisfying assignment. If this claim holds,
then we can indeed compute the satisfying assignments ζ1, ζ2, . . . , ζℓ in Algorithm 5. Recall that
the distribution µΩ|Vm

is (1/k)-uniform, see Lemma 28. From the definition of (1/k)-uniform
distribution, we find that an analogous statement to Proposition 10 holds for our (r, r1, 0, r1)-
marking (here r = r1 − δ): for any v ∈ Vgood(r), any V ⊆ Vm with v 6∈ V , and any Λ: V → {F,T},
we have

max
{
Prµ

ΩΛ (v 7→ F|Λ) ,PrµΩ (v 7→ T|Λ)
}
≤ 1

2
exp

(
1

k

)
.
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Thus, by induction on the size of a set S ⊆ Vm, we conclude that any assignment Λ: S → {F,T}
has PrµΩ(Λ) > 0, finishing the proof of item 1.

Next consider item 2. Let τ ′ = σ′|Vm
as in Algorithm 5. All clauses that do not appear in GΦτ ′

are satisfied by the partial assignment τ ′. Now consider two satisfying assignments Λ,Λ′ such that
Λ(Vm) = Λ′(Vm) = τ ′. Let GΦτ ′ have connected components C1, C2, . . . , Ct′ . In particular, Λ|var(Ci)
and Λ′|var(Ci) each satisfy all clauses in Ci. Each clause in Φτ ′ is in exactly one connected component
Ci. Consequently, any assignment X such that X|Vm

= τ ′ and X|var(Ci) ∈ {Λ|var(Ci),Λ
′|var(Ci)} for

all i ∈ [t′] is a satisfying assignment (any variables that do not appear in Vm ∪
(⋃t′

i=1 var(Ci)
)

can be chosen arbitrarily). We note that there are two types of connected components of HΦτ .
The first type are those corresponding to var(Ci) for some i ∈ [t′]. The second type are those
connected components with variables in V \

(
Vm ∪

(⋃t′

i=1 var(Ci)
))

. These connected components
are singleton and consist of one variable v that does not appear in Φτ or, equivalently, every clause
of Φ containing v is satisfied by τ . As a consequence, taking Λ = ζℓ, Λ′ = σ′ and X = ξi in
the argument above, we conclude that ξ0, ξ1, . . . , ξt are satisfying assignments by construction in
Algorithm 5 and item 2 holds.

Lemma 59. There is an integer k0 ≥ 3 such that, for any integer k ≥ k0, any density α ≤ 2(r1−3δ)k,
the following holds w.h.p. over the choice of Φ = Φ(k, n, bαnc). In Algorithm 5 with inputs
the formula Φ, an (r, r1, 0, r1)-marking of Φ and the two satisfying assignments σ and σ′, with
probability at least 1− 1/n over the choices σ ∼ µΩ, σ

′ ∼ µΩ, we have

1. ‖ζi − ζi−1‖1 ≤ 2k5 log n for all i ∈ [ℓ];

2. ‖ξi − ξi−1‖1 ≤ 2k5 log n for all i ∈ [t].

Proof. Let Φ and (Vm, ∅,Va) be the first two inputs of Algorithm 5, and let v1, v2, . . . , vℓ be the
variables in Vm in the order considered in Algorithm 5. Let σ ∼ µΩ and σ′ ∼ µΩ. Let σ = ζ0 ↔
· · · ↔ ζℓ = ξ0 ↔ · · · ↔ ξr = σ′ be the path between σ and σ′ output by Algorithm 5. In light
of Lemma 58, the assignments ζ0, ζ1, . . . , ζℓ, ξ1, . . . , ξr are satisfying assignments of Φ. We also
note that the set of marked variables Vm is r1-distributed and does not contain bad variables by
Definition 8. We are going to apply Corollary 57 with V = Vm several times in this proof. In view
of Lemma 28, the distribution µΩ|Vm

is (1/k)-uniform, and this will be relevant when applying
Corollary 57. We prove that Item 1 holds with probability at least 1 − 1/(2n) and that Item 2
holds with probability 1− 1/(2n), so the result follows from a union bound.

Item 1. Let i ∈ [ℓ] and let τi be the restriction of ζi to Vm. By construction, τi agrees with
σ′ on v1, v2, . . . , vi and it agrees with σ on vi+1, vi+2, . . . , vℓ. Let Λi denote the restriction of τi
on Vm \ {vi}, which agrees with ζi and ζi−1 on Vm \ {vi}. Recall that, by definition, ζi is the
satisfying assignment that extends τi that minimises ‖ζi − ζi−1‖1, see Algorithm 5. We consider
the connected components of GΦΛi , which can be seen as CNF formulae with variables in Vc ∪{vi}
due to the fact that all marked variables other than vi are set by Λi. Each one of these connected
components are satisfied as CNF formulae by the assignments ζi and ζi−1. We conclude that ζi
and ζi−1 agree on the variables of all these connected components except for those variables in the
connected component of the clauses containing vi, where ζi and ζi−1 may disagree. Let us denote this
connected component by Cvi , which is empty when all the clauses containing vi are satisfied by Λi.
We have ‖ζi− ζi−1‖1 ≤ k|Cvi |, where the factor k comes from the fact that each clause has at most
k variables. We now bound the size of Cvi . Since the restrictions of σ and σ′ to Vm follow µΩ|Vm

,
which is (1/k)-uniform, we find, by Definition 12, that τi also follows an (1/k)-uniform distribution
over the assignments Vm → {F,T}. Let us denote this distribution by µi. Then Λi ∼ µi|Vm\{vi}
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and, by Corollary 57 with V = Vm, Λ = Λi and µ = µi, with probability at least 1− n−k over the
choice Λi ∼ µi|Vm\{vi}, the connected component Cvi ⊂ GΦΛi containing vi has at most 2k4 log n

clauses. Thus, with probability at least 1 − n−k, we have ‖ζi − ζi−1‖1 ≤ k|Cvi | ≤ 2k5 log n. By a
union bound over i ∈ [ℓ] and the fact that k ≥ 3 and ℓ ≤ n, we conclude that, with probability at
least 1− 1/n2, we have ‖ζi − ζi−1‖1 ≤ 2k5 log n for all i ∈ [ℓ].

Item 2. Let τ ′ = σ′|Vm as in Algorithm 5. By construction, ξ0 = ζℓ and ξt = σ′ agree with
τ ′ on Vm. Since σ′ ∼ µΩ, we have τ ′ ∼ µΩ|Vm

, which is (1/k)-uniform by Lemma 28. In view
of Corollary 57 for V = Vm, Λ = τ ′ and µ = µΩ|Vm

, with probability at least 1 − n−k, all of the
connected components of GΦτ ′ , have size at most 2k4 log n. Thus, all the connected components of
HΦτ ′ have size at most 2k5 log n. By construction, see Line 9 in Algorithm 5, the assignments ξi−1

and ξi agree on the variables in all the connected components of HΦτ ′ except for the variables in
the i-th connected component, where they may disagree. Thus, they disagree on at most 2k5 log n
variables. This gives the desired result.

We can now complete the proof of Theorem 3.

Theorem 3. There is k0 ≥ 3 and a polynomial p(k) with non-negative integer coefficients such
that, for any integer k ≥ k0, and for any positive real α ≤ 20.227k, the following claim holds with
high probability over the choice of a random k-CNF formula Φ = Φ(k, n, bαnc). Two satisfying
assignments chosen uniformly at random are p(k) log(n)-connected with probability at least 1−1/n.

Proof. Since α ≤ 20.227k ≤ 2(r1−3δ)k/k3 ≤ 2(r1−δ)k/k3 for large enough k, w.h.p. over the choice
of Φ, there is an (r, r1, 0, r1)-marking (Vm, ∅,Vc) of Φ, see Lemma 27. We run Algorithm 5 with
inputs Φ, and the associated marking (Vm, ∅,Vc). W.h.p. over the choice of Φ, Lemma 59 holds.
Therefore, with probability at least 1 − 1/n over the choice of two random satisfying assignments
σ ∼ µΩ and σ′ ∼ µΩ, the output path of Algorithm 5 is well-defined by Lemma 58 and satisfies
that ‖ζi − ζi−1‖1 ≤ 2k5 log n for all i ∈ [ℓ] and ‖ξi − ξi−1‖1 ≤ 2k5 log n for all i ∈ [t] by Lemma 59.
Hence, it is a D-path in the solution space Ω for D = 2k5 log n as we wanted.

10.2 Proof of Theorem 5
We next show O(log n)-looseness for all variables with high probability over (Φ, σ) for random
k-CNF instances Φ and uniformly random satisfying assignment σ ∈ Ω. Consequently, in an
algorithmic regime where α� 2ck for some c < 1, we resolve a conjecture of [1]. Our proof exploits
Corollary 57 on the size of the connected components of ΦΛ. It is important in our arguments that
every variable in the formula is flippable.

Definition 60. Let Φ = Φ(k, n,m) be a random k-CNF. A variable v ∈ V is flippable if there exists
a pair of satisfying assignments (X,Y ) to Φ, in one of which X(v) = F and in the other Y (v) = T.

Lemma 61. For α < 2k−2, with high probability over the choice of Φ = Φ(k,m, n), all variables in
Φ are flippable.

Proof. Observe that we can define an NAE-SAT problem based on Φ. By definition, any NAE-
satisfying assignment ensures that every clause contains at least one satisfied literal and at least one
unsatisfied literal. By Theorem 2 in [4], with high probability Φ is NAE-satisfiable. Consequently,
we can find some assignment σ that NAE-satisfies Φ with high probability, and then the opposite
assignment σ also NAE-satisfies Φ by the symmetry of NAE-SAT solutions. In particular, both σ
and σ are solutions to the original SAT formula Φ. Observe that for every variable v ∈ V we have
X(v) = T and X(v) = F in exactly one of σ, σ and thus, with high probability, every variable in Φ
is flippable.
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Lemma 62. For any variable v ∈ V and any partial assignment X : Vm \ {v} → {F,T}, we have

PrµΩ(v 7→ F|X) > 0 and PrµΩ(v 7→ T|X) > 0.

Proof. We prove PrµΩ(v → F|X) > 0; the proof of PrµΩ(v → T|X) > 0 is analogous. We distinguish
two cases.

The first case is when v is a good variable. Lemma 28 gives PrµΩ (v 7→ F|X,Λbad) ≥ 1 −
exp(1/k)/2 > 0 for any satisfying assignment of the bad clauses Λbad. Thus, we have PrµΩ (v 7→ F|X) >
0.

The second case is when v is a bad variable. By Lemma 61 there exists a satisfying assignment
σ with σ(v) = F. Let Λbad = σ|Vbad

be the assignment on bad variables and so in particular
PrµΩ(Λbad) > 0. Then by Lemma 28 we have PrµΩ (X|Λbad) ≥ (1 − exp(1/k)/2)|Vm| > 0. This
implies that PrµΩ(X,Λbad) > 0 and in particular PrµΩ(v 7→ F, X) > 0, so PrµΩ(v 7→ F|X) > 0.

We can now prove Theorem 5 with the help of Corollary 57.

Theorem 5. There is k0 ≥ 3 such that, for any integer k ≥ k0, and for any positive real α ≤ 20.227k,
the random k-CNF formula Φ(k, n, bαnc) is poly(k) log(n)-loose.

Proof. Note that 20.227k ≤ 2(r1−3δ)k ≤ 2(r1−δ)k/k3 for large enough k. Thus, w.h.p. over the choice
of Φ, there is an (r, r1, ∅, r1)-marking (Vm, ∅,Vc) of Φ, see Lemma 26. The distribution µΩ|Vm

is
(1/k)-uniform by Lemma 28. Hence, Corollary 57 holds for V = Vm and µ = µΩ|Vm

. Let v be a
variable of Φ. Let σ ∼ µΩ and let Λ be the restriction of σ to Vm \ {v}. Then, with probability at
least 1−n−k, the connected components of GΦΛ have size at most 2k4 log n. Let CΛj be the connected
component containing the variable v, which is empty if all clauses containing v are satisfied. Let
ω be the negation of σ(v). By Lemma 62, we have PrµΩ(v 7→ ω|Λ) > 0. Therefore, there is an
assignment Y of the variables in var(CΛj ) that satisfies the clauses in CΛj and has Y (v) = ω. We
construct the assignment σ′ that has σ′(v) = ω, agrees with Y in var(CΛj ) and agrees with σ in the
rest of the variables of Φ. In particular, this assignment agrees with Λ and satisfies each one of the
connected components of ΦΛ. Thus, σ′ is a satisfying assignment of Φ. Moreover, w.h.p. σ′ differs
with σ in at most 2k5 log n variables (the variables in var(CΛj )). We have shown that, w.h.p. over
the choice of Φ, with probability at least 1− n−k a random assignment σ ∼ µΩ is (2k5 log n)-loose,
so the statement follows.
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Appendix A Proof of Lemma 20
In this section we prove Lemma 20. Recall that this result is [24, Lemma 8.16] with a less restrictive
bound on the density of the formula and a more restrictive definition of good variables/clauses, see
Section 4 for details. Moreover, the obtained upper bound on the number of bad clauses in our
version of [24, Lemma 8.16] is tighter. The original proof of Lemma 20 given in [24, Section 8] is split
into a sequence of results on random formulae. Here we restate some of these results — only those
whose statement needs to change as a consequence of our definition of good variables/clauses and
the tighter upper bound. We also explain how these changes affect the proofs if any modifications
are necessary.

Let us fix some notation first. The results stated in this section only hold for large enough k
unless we say otherwise. We note that in [24] the density α is at most 2k/300/k3 and ∆ = 2k/300,
where ∆ is the threshold in the definition of high-degree variables, and the proofs are carried out for
these particular values. It turns out that, following the proofs in [24, Section 8], the only properties
of α and ∆ needed in order to proof Lemma 20 are that, for r ∈ (0, 1/(2 log 2)), we have ∆r = d2rke
and α is bounded above by ∆r/k

3 (note the subscript r here to indicate that ∆r depends on r).
First, we need some definitions. For any set of variables S ⊆ V of Φ, we denote by HD(S, r) the set
of high-degree variables in S (recall that a variable is of high-degree if the degree of v is at least
∆r).

Lemma 63 ([24, Lemma 8.1]). Let r ∈ (0, 1). There is a positive integer k0 such that for any integer
k ≥ k0, ∆r = d2rke, and any density α with α ≤ ∆r/k

3, the following holds w.h.p. over the choice
of Φ = Φ(k, n, bαnc). The size of V0(r) := HD(V, r) is at most (α/∆r)n/2

k10 .

Proof. The proof is the same to that of [24, Lemma 8.1], apart from one change that we highlight
here. The degrees of the variables in Φ have the same distribution as a balls-and-bins experiment
with km balls and n bins. Let D1, D2, . . . , Dn be independent variables following the Poisson
distribution Poi(µ) with parameter µ = kα. The degrees of the variables of Φ have the same
distribution as {D1, D2, . . . , Dn} conditioned on the event E that D1 + D2 + · · · + Dn = m, see
for instance [38, Chapter 5.4]. Let U = {i ∈ [n] : Di ≥ ∆r}. We want to show that Pr(|U | >
(α/∆r)n/2

k10 |E) = o(1). In [24, Lemma 8.1] the authors show that Pr(|U | > n/2k
10 |E) = o(1).

Their bound is not tight, but it is enough for their purposes. In fact, one can change k10 by any
polynomial and the result would still hold for large enough k. Here we obtain the extra factor
α/∆r by slightly modifying the application of the tail bound Pr(Poi(µ) ≥ x) ≤ e−µ(eµ)x/xx. For
x = ∆r, instead of using the bound e−µ(eµ)x/xx ≤ e−∆r ≤ 2−k10−1, which holds for large enough
k as µ/x ≤ k−2 and ∆r is exponential in k, we use the bound e−µ(eµ)x/xx ≤ (eµ/x)e−x+1 ≤
(α/∆r)2

−k10−1. The rest of the proof is analogous; we have E[|U |] ≥ n(α/∆r)2
−k10−1, so by a

Chernoff bound we find that Pr(|U | ≥ (α/∆r)n/2
k10) ≤ exp(−Ω(n)). From the connection between

a balls-and-bins experiment and the Poisson distribution, see [38, Theorem 5.7], we conclude that
Pr(|U | ≥ (α/∆r)n/2

k10 |E) ≤ exp(−Ω(n)) as we wanted.

Corollary 64 ([24, Corollary 8.4]). There is a positive integer k0 such that for any integer k ≥ k0 and
any density α with α ≤ 2k/(ek3) the following holds w.h.p. over the choice of Φ = Φ(k, n, bαnc).
For every set of variables Y such that 2 ≤ |Y | ≤ n/2k, the number of clauses that contain at least
3 variables from Y is at most |Y |.

Proof. This is a consequence of [24, Lemma 35] with b = 3 and t = 2/(b− 1) = 1, whose proof only
requires α ≤ 2k/(ek3).

Recall that the graph HΦ is the dependency graph of the variables of Φ, see Definition 18.
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Lemma 65 ([24, Lemma 8.8]). Let r ∈ (0, 1). There is a positive integer k0 such that for any integer
k ≥ k0, ∆r = d2rke, and any density α with α ≤ ∆r/k

3, the following holds w.h.p. over the choice
of Φ = Φ(k, n, bαnc). Every connected set U of variables in HΦ with size at least 2k4 log n satisfies
that |HD(U, r)| ≤ 1

2k3
|U |.

Proof. The proof is that of [24, Lemma 8.8], with the difference that δ0 = 1/(2k3) instead of δ0 =
1/21600, as the exact value of δ0 does not play a role in the proof as long as, for θ0 = ∆r−2(k+1),
we have δ0θ0 log θ0

k2α
≥ 3 log k+logα, which holds for large enough k when δ0 = poly(k). Moreover,

the only restriction on α is that of Corollary 64, and the fact that α ≤ ∆r/k
3.

Lemma 66 ([13, Lemma 2.4] and [24, Lemma 8.10]). Let k ≥ 3 be an integer and let α be a positive
real number with α ≤ ek/2/(2e2k2). For any ε ∈ [1/n, 1) (depending on n) such that ε < e−3k for all
n, the following holds w.h.p. over the choice of the random formula Φ = Φ(k, n, bαnc). Let Z be a
set of clauses with size at most εn and let c1, . . . , cl ∈ C \Z be distinct clauses. For s ∈ {1, 2, . . . , ℓ},
let Ns := var(Z) ∪

⋃s−1
j=1 var(cj). If |var(cs) ∩Ns| ≥ 3 for all s ∈ {1, 2, . . . , ℓ}, then ℓ ≤ εn.

Proof. The proof is almost identical to the proof of [13, Lemma 2.4]. There are four differences.
First, here, as it is also the case in [24, Lemma 44], ε can depend on n. This will arise later in
this proof. Second, the proof of [13, Lemma 2.4] is carried out for the condition |var(cs) ∩Ns| ≥ λ,
where λ is an integer with λ > 4. Here we set λ = 3 and impose stricter hypotheses on α and ε to
compensate for a smaller λ. Their (more relaxed) hypotheses on α and ε are α ≤ 2k log 2, ε ≤ k−3

and ελ ≤ (2e)−4k/e. Third, we substitute the last inequality of [13, Equation 4], which is[(
em/n

ε

)2

exp(2k)(2kε)λ

]εn
≤
[
(2e)2k ελ/2

]εn
,

by the inequality [(
em/n

ε

)2

exp(2k)(2kε)λ

]εn
≤
[
(em/n)2 exp(2k)(2k)3ε

]εn
≤ [exp(3k − 1)ε]εn ,

(37)

where we used λ = 3 and m/n ≤ α ≤ ek/2/(2e2k2). Now, as it is done in [24, Lemma 8.10], we
distinguish two cases depending on ε. If ε ≥ 10(log n)/n, then using this in conjunction with ε <
e−3k, the right hand size of (37) is bounded by e−εn ≤ 1/n10 = o(1/n). If 1/n ≤ ε < 10(log n)/n,
then, for large enough n, the right hand size of (37) is bounded above by exp(3k− 1)ε = o(1). The
last difference between the proofs is that our argument works for all k ≥ 3, whereas the bound [13,
Equation 4] only holds for large k.

The remaining results in this section do not need any changes in their original proofs, other
than that every time Corollary 8.4, Lemma 8.8 and Lemmas 8.10-8.16 are invoked in [24, Section
8], we use the version given in this appendix instead. We note that the statements of these results
are slightly different to their [24, Section 8] versions, and these changes are again due to the fact
that we use λ = 3 instead of λ = k/10 in the definition of good variables/clauses.

Corollary 67 ([24, Corollary 8.11]). Let r ∈ (0, 1/(2 log 2)]. There is a positive integer k0 such that
for any integer k ≥ k0, ∆r = d2rke, and any density α with α ≤ ∆r/k

3, the following holds w.h.p.
over the choice of Φ = Φ(k, n, bαnc). Let Z be a set of clauses with size at most 2n/2k

10 and let
c1, . . . , cl ∈ C \ Z be distinct clauses. For s ∈ {1, 2, . . . , ℓ}, let Ns := var(Z) ∪

⋃s−1
j=1 var(cj). If

|var(cs) ∩Ns| ≥ 3 for all s ∈ {1, 2, . . . , ℓ}, then ℓ ≤ |Z|.

57



Proof. The proof given in [24, Corollary 8.11] also applies here. We note that the density α is at
most ek/2/(2e2k2) so we can indeed apply Lemma 66 when the proof given in [24, Corollary 8.11]
invokes [24, Lemma 8.10].

Lemma 68 ([24, Lemma 8.13]). Let r ∈ (0, 1/(2 log 2)]. There is a positive integer k0 such that for
any integer k ≥ k0, ∆r = d2rke, and any density α with α ≤ ∆r/k

3, the following holds w.h.p. over
the choice of Φ = Φ(k, n, bαnc). For any bad component S of variables, we have |S| ≤ 2k|HD(S, r)|.

Proof. The proof given in [24, Lemma 8.13] applies using our versions of [24, Lemma 8.1, Corollary
8.4 and Corollary 8.11].

Lemma 69 ([24, Lemma 8.14]). Let r ∈ (0, 1/(2 log 2)]. There is a positive integer k0 such that for
any integer k ≥ k0, ∆r = d2rke, and any density α with α ≤ ∆r/k

3, the following holds w.h.p. over
the choice of Φ = Φ(k, n, bαnc). Every bad component S has size at most 2k4 log n.

Proof. The proof given in [24, Lemma 8.14] applies using our versions of [24, Lemma 8.8 and
Lemma 8.13].

Lemma 70 ([24, Lemma 8.15]). Let r ∈ (0, 1/(2 log 2)]. There is a positive integer k0 such that for
any integer k ≥ k0, ∆r = d2rke, and any density α with α ≤ ∆r/k

3, the following holds w.h.p. over
the choice of Φ = Φ(k, n, bαnc). For every connected set of S variables with size at least 2k4 log n,
we have |S ∩ Vbad| ≤ |S|/k2.

Proof. The proof is analogous to that given in [24, Lemma 8.15]. The only differences are that we
apply Lemma 65 instead of [24, Lemma 8.8], we apply Lemma 68 instead of [24, Lemma 8.13], and
we have δ0 = 1/(2k3) instead of δ0 = 1/21600.

Lemma 20 ([24, Lemma 8.16]). Let r ∈ (0, 1/(2 log 2)]. There is a positive integer k0 such that
for any integer k ≥ k0, ∆r = d2rke, and any density α with α ≤ ∆r/k

3, the following holds
w.h.p. over the choice of Φ = Φ(k, n, bαnc). For every connected set of clauses Y in GΦ such that
|var(Y )| ≥ 2k4 log n, we have |Y ∩ Cbad(r)| ≤ |Y |/k.

Proof. The same proof applies using our versions of [24, Corollary 8.4 and Lemma 8.15].

Lemma 21 ([24, Lemma 8.12]). Let r ∈ (0, 1/(2 log 2)]. There is a positive integer k0 such that
for any integer k ≥ k0, ∆r = d2rke, and any density α with α ≤ ∆r/k

3, the following holds
w.h.p. over the choice of Φ = Φ(k, n, bαnc). We have |Cbad(r)| ≤ 2(α/∆r)n/2

k10 and |Vbad(r)| ≤
2(k + 1)(α/∆r)n/2

k10 .

Proof. We consider the set of high-degree variables V0(r) = HD(V, r), which w.h.p. over the choice
of Φ has |V0(r)| ≤ (α/∆r)n/2

k10 by Lemma 63. In view of Corollary 64 with Y = V0(r), we have
|C0(r)| ≤ |V0(r)| ≤ n/2k

10 , where C0(r) is the set of clauses with at least 3 variables in V0(r),
see Algorithm 2. From Corollary 67 and the construction of Cbad(r) in Algorithm 2, we find that
|Cbad(r)| ≤ 2|C0(r)| ≤ 2|V0(r)| ≤ 2(α/∆r)n/2

k10 . By construction of Vbad(r), see Algorithm 2, we
conclude that |Vbad(r)| ≤ |V0(r)|+ k|Cbad(r)| ≤ 2(k + 1)(α/∆r)n/2

k10 .
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Appendix B Proof of Lemma 13
In this section we collect the results from [11] that one needs to combine to obtain Lemma 13 on
the mixing time of the ρ-uniform-block Glauber dynamics.

Definition 71. Let µ be a distribution supported on Ω ⊆ [q]V . Let f : Ω → R≥0. We denote the
entropy of f by Entµ(f), that is, Entµ(f) = Eµ(f log f)) − Eµ(f) log(Eµ(f)) when Eµ(f) > 0,
and Entµ(f) = 0 when Eµ(f) = 0. For S ⊆ V , we denote EntSµ(f) = Eτ∼µ|V \S

Entµ(f | τ), where
Entµ(f | τ) is the entropy of f conditioning to the event that the assignment drawn from µ agrees
with τ in V \ S.

Let ρ ∈ {1, 2, . . . , n}. We say that µ satisfies the ρ-uniform block factorisation of entropy (with
constant Cρ) if for all f : Ω→ R≥0 we have

ρ

n
Entµ(f) ≤ Cρ

1(
n
ρ

) ∑
S∈(V

ρ
)

EntSµ(f).

One of the main results of [11] is showing that µ satisfies the ρ-uniform block factorisation of
entropy when the distribution µ is η-spectrally independent and b-marginally bounded. In the proof
of [8, Corollary 19] the authors observe that the proof of Lemma 72 also holds when η depends on
n and, in particular, in the case η = ε log n.

Lemma 72 ( [11, Lemma 2.4]). The following holds for any reals b, η > 0, any κ ∈ (0, 1) and any
integer n with n ≥ 2

κ(4η/b
2 + 1).

Let q ≥ 2 be an integer, let V be a set of size n and let µ be a distribution over [q]V . If
µ is b-marginally bounded and η-spectrally independent, then µ satisfies the dκne-uniform block
factorisation of entropy with constant C = (2/κ)4η/b

2+1.

It turns out that one can bound the mixing time of the ρ-uniform-block Glauber dynamics when
the target distribution µ satisfies the ρ-uniform block factorisation of entropy.

Lemma 73 (See, e.g., [11, Lemma 2.6 and Fact 3.5(4)] or [8, Lemma 17]). Let q ≥ 2, ρ ≥ 1 be
integers and V be a set of size n ≥ ρ + 1. Let µ be a distribution supported on Ω ⊆ [q]V that
satisfies the ρ-uniform-block factorisation of entropy with multiplier Cρ. Then, for any ε > 0, the
mixing time of the ρ-uniform-block Glauber dynamics on µ satisfies, for µmin = minΛ∈Ω µ(Λ),

Tmix(ε) ≤
⌈
Cρ

n

ρ

(
log log

1

µmin
+ log

1

2ε2

)⌉
.

Proof of Lemma 13. The proof of Lemma 13 follows directly from combining Lemmas 72 and 73.
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Appendix C Notation and definitions reference
Here we gather the notation and definitions that are used globally in our work. If some notation is
not here, then it is only used in one section of our work (and it is defined in that section).

C.1 Table of notation

Notation Description Reference
Φ(k, n,m) A random k-CNF formula with n variables and m clauses. Section 1
α The density of the formula Φ, so α = m/n. Section 1
V The set of variables of Φ. Section 1
C The set of clauses of Φ. Section 1
w.h.p. Stands for “with high probability”. Section 1
dTV The total variation distance between two distributions. Section 1
ξ Our sampling algorithm has error at most n−ξ. Theorem 1
∆r The high-degree threshold, set to d2(r0−δ)ke. Definition 6
r0, r1, δ r0 = 0.117841, r1 = 0.227092 and δ = 0.00001. Definition 8
var(c) The set of variables in a clause c. Section 2.1
var(S) The set of variables

⋃
c∈S var(c). Section 2.1

Cgood(r), Cbad(r) Good and bad clauses, a partition of C. Section 4
Vgood(r), Vbad(r) Good and bad variables, a partition of V. Section 4
Vm, Va, Vc The sets of marked, auxiliary and control variables. Definition 8
Ω∗ The set of all assignments V → {F,T} Definition 9
Ω The set of satisfying assignments of Φ. Definition 9
µA The uniform distribution over A ⊆ Ω∗. Definition 9
ΦΛ The formula Φ simplified under Λ. Definition 9
VΛ, CΛ The variables and clauses of ΦΛ Definition 9
ΩΛ The set of satisfying assignments of ΦΛ. Definition 9
µ|V The marginal distribution of µ on V . Definition 11
Tmix(ρ, ε) The mixing time of the ρ-uniform-block Glauber dynamics. Section 2.2.1
IΛ(u→ v) The influence of u on v (under Λ). Section 2.2.1, (1)
GΦ The dependency graph of C. Definition 16
HΦ The dependency graph of V. Definition 18
Φgood(r) The subformula of Φ with all good variables and good clauses. Definition 24
Φbad(r) The subformula of Φ with all bad variables and bad clauses. Definition 24

C.2 Table of definitions

Name Reference
high-degree Definition 6, page 5
r-distributed Definition 8, page 6
(r, rm, ra, rc)-marking Definition 8, page 6
ε-uniform Definition 12, page 7
b-marginally bounded Section 2.2.1, page 8
η-spectrally independent Section 2.2.1, page 8
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