
PERFECT SAMPLING FROM SPATIAL MIXING
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AbstRact. We introduce a new perfect sampling technique that can be applied to general Gibbs distribu-
tions and runs in linear time if the correlation decays faster than the neighborhood growth. In particular,
in graphs with sub-exponential neighborhood growth like Z𝑑 , our algorithm achieves linear running
time as long as Gibbs sampling is rapidly mixing. As concrete applications, we obtain the currently best
perfect samplers for colorings and for monomer-dimer models in such graphs.

1. IntRoduction

Spin systems model nearest neighbor interactions of complex systems. These models originated
from statistical physics, and have found a wide range of applications in probability theory, machine
learning, and theoretical computer science, often under different names such as Markov random fields
or Boltzmann machines. Given an underlying graph 𝐺 = (𝑉 , 𝐸), a configuration 𝜎 is an assignment
from vertices to a finite set of spins, usually denoted by [𝑞]. The weight of a configuration is specified
by the 𝑞-dimensional vector 𝑏𝑣 assigned to each vertex 𝑣 ∈ 𝑉 and the 𝑞-by-𝑞 symmetric interaction
matrix 𝐴𝑒 assigned to each edge 𝑒 ∈ 𝐸, namely,

𝑤 (𝜎) =
∏
𝑣∈𝑉

𝑏𝑣 (𝜎𝑣)
∏

𝑒={𝑢,𝑣 }∈𝐸
𝐴𝑒 (𝜎𝑢, 𝜎𝑣) .(1)

The equilibrium state of the system is described by the Gibbs distribution 𝜇, where the probability of a
configuration is proportional to its weight.

A central algorithmic problem related to spin systems is to sample from the Gibbs distribution. A
canonical Markov chain for sampling approximately from the Gibbs distribution is the Gibbs sampler
(a.k.a. heat bath or Glauber dynamics). The efficiency of the sampler is determined by its mixing time,
namely how long it takes to converge to the desired distribution. One (conjectured) general criterion
for rapid mixing of such Markov chains is the spatial mixing property [45], which roughly states that
the correlation among variables decays rapidly in the system as their distances increase. It is widely
believed that spatial mixing (in some form) implies the rapid mixing of the Gibbs sampler. However,
rigorous implications have only been established for special classes of graphs or systems, such as for
lattice graphs [33, 11], neighborhood amenable graphs [19], or for monotone systems [36], and very
recently, for anti-ferromagnetic 2-spin systems [3, 7].

One main drawback for Gibbs samplers or Markov chains in general, is that one needs to know the
mixing time in advance to implement the algorithms with provably small errors. The mixing time is
usually hard to analyze and very pessimistic. The so-called perfect samplers are thus more desirable,
which run in a Las Vegas fashion and return exact samples upon halting. There have been a number of
techniques available to design perfect samplers, such as Coupling FromThe Past (CFTP) [37], including
the monotone & anti-monotone CFTP [37, 25] and the bounding chains [27, 5], Randomness Recycler
(RR) [16], and Partial Rejection Sampling (PRS) [24, 14]. Nevertheless, none of these techniques ad-
dresses general spin systems or relates to the important spatial mixing properties of the system.

In this paper, we introduce a new technique to perfectly sample from Gibbs distributions of spin
systems. The correctness of our algorithm relies on only the conditional independence property of
Gibbs distributions. Moreover, the expected running time is linear in the size of the system, when the
correlation decays more rapidly than the growth of the neighborhood.
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Theorem 1.1 (informal). For any spin system with bounded maximum degree,1 if strong spatial mixing
holds with a rate faster than the neighborhood growth of the underlying graph, then there exists a perfect
sampler with running time 𝑂 (𝑛) in expectation, where 𝑛 represents the number of vertices of the graph.

More details and undefined terms are explained in Section 2. Formal statements of our results are
given in Theorem 2.4 for spin systems on sub-exponential neighborhood growth graphs, and in The-
orem 2.6 for spin systems on general graphs. Applications on list colorings and on monomer-dimer
models are given in Theorem 2.9 and Theorem 2.10.

Lattice graphs, such as Z𝑑 , are of special interests in statistical physics and combinatorics. These
graphs have sub-exponential neighborhood growth, which implies that temporal mixing is equivalent
to spatial mixing on them [11]. Therefore our sampler runs in linear time as long as the standard
Glauber dynamics has 𝑂 (𝑛 log𝑛) mixing time. This is a direct strengthening of aforementioned re-
sults [33, 11, 19] from approximate to perfect sampling, with an improved running time.

Corollary 1.2 (informal). For spin systems on graphs with sub-exponential neighborhood growth, if the
Gibbs sampler has 𝑂 (𝑛 log𝑛) mixing time, where 𝑛 is the number of vertices, or the system shows strong
spatial mixing, then there exists a perfect sampler with running time 𝑂 (𝑛) in expectation.

It is worth noting that many traditional perfect sampling algorithms, especially those rely on CFTP
[37, 27, 5], suffer from “non-interruptibility”. That is, early termination of the algorithm induces a bias
on the sample. In contrast, our algorithm is interruptible in the following sense: conditioned on its
termination at any particular step, the algorithm guarantees to return a correct sample. Therefore, had
the algorithm been running for too long, one can simply stop it and restart. One can also run many
independent copies in parallel and output the earliest returned sample without biasing the sample.

In addition, our algorithm can be used to solve the recently introduced dynamic sampling prob-
lem [14, 13], where the Gibbs distribution itself changes dynamically and the algorithm needs to effi-
ciently maintain a sample from the current Gibbs distribution. The detail of this part is given in Sec-
tion 7. Our perfect sampler also generalizes straightforwardly to Gibbs distributions with multi-body
interactions (namely spin systems on hypergraphs / constraint satisfaction problems), and similar effi-
ciency can be achieved when some appropriate variant of spatial mixing holds.

1.1. Algorithm overview. We give an overview of our main new idea. We briefly review the Gibbs
sampler, which is a Markov chain on the state space [𝑞]𝑉 . At each step, a vertex 𝑢 ∈ 𝑉 is picked
uniformly at random and the current configuration 𝑿 ∈ [𝑞]𝑉 is updated by the simple rule:

• the spin 𝑋𝑢 is redrawn according to the marginal distribution 𝜇
𝑋Γ (𝑢)
𝑢 ;

where Γ(𝑢) ≜ {𝑣 ∈ 𝑉 | {𝑢, 𝑣} ∈ 𝐸} denotes the neighborhood of 𝑢, and 𝜇
𝑋Γ (𝑢)
𝑢 denotes the marginal

distribution induced at vertex 𝑢 by the Gibbs distribution 𝜇, conditioned on the current spins of the
neighborhood Γ(𝑢). It is a basic fact that this chain converges to the Gibbs distribution 𝜇.

Our perfect sampler makes use of the same update rule. To expose our main idea, we first consider
the single-site version of our perfect sampler, which works for systems with soft constraints (where all
𝐴𝑒 and 𝑏𝑣 are positive). The sampling algorithm is quite simple, described in Algorithm 1.

The algorithm starts from an arbitrary initial configuration 𝑿 ∈ [𝑞]𝑉 , and gradually “repairs” 𝑿 to
a perfect sample of the Gibbs distribution 𝜇. We maintain a set R ⊆ 𝑉 of vertices that are currently
“incorrect”, initially set as R = 𝑉 . At each step, a random vertex 𝑢 is picked from R, and we try to
remove𝑢 from R while maintaining the following invariant, denoted by the conditional Gibbs property:

𝑋R always follows the law 𝜇𝑋R
R
,

which is the marginal distribution induced by 𝜇 on R ≜ 𝑉 \ R conditioned on 𝑋R .
(★)

1We remark that our algorithm remains in polynomial-time (but not in linear time) for graphs with unbounded degrees,
as long as the degree does not grow too quickly. This requirement on the degree comes from the cost of updating a block
of certain radius, similar to the cost of block dynamics, and the exact upper bound needed varies from problem to problem.
See Theorem 2.6 and the discussion thereafter. For the most part, we state our results for bounded degree cases to keep the
statements clean.
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Algorithm 1: Perfect Gibbs sampler (single-site version)
1 Start from an arbitrary initial configuration 𝑿 ∈ [𝑞]𝑉 and R ← 𝑉 ;
2 while R ≠ ∅ do
3 pick a 𝑢 ∈ R uniformly at random;
4 let 𝜇min be the minimum value of 𝜇𝜎𝑢 (𝑋𝑢) over all 𝜎 ∈ [𝑞]Γ (𝑢) that 𝜎R∩Γ (𝑢) = 𝑋R∩Γ (𝑢) ;
5 with probability 𝜇min/𝜇

𝑋Γ (𝑢)
𝑢 (𝑋𝑢) do ⊲ Bayes filter

6 update 𝑿 by redrawing 𝑋𝑢 ∼ 𝜇
𝑋Γ (𝑢)
𝑢 ; ⊲ Gibbs sampler update

7 R ← R \ {𝑢};
8 else
9 R ← R ∪ Γ(𝑢);

10 return 𝑿 ;

This property ensures that the configuration on R follows the correct distribution conditioned on the
configuration on R. In particular, when R = ∅, R = 𝑉 , 𝜇𝑋R

R
= 𝜇, and the sample 𝑿 follows precisely

the distribution 𝜇. This is the goal of our algorithm: reduce R to the empty set.
One first attempt would be to simply update the spin𝑋𝑢 according to its marginal distribution 𝜇

𝑋Γ (𝑢)
𝑢

as in the Gibbs sampler and then remove𝑢 from R. This gives the transition (𝑿 ,R) → (𝑿 ′,R ′), where
R ′ = R \ {𝑢}, and 𝑿 = 𝑿 ′ except at vertex 𝑢, where 𝑋 ′𝑢 ∼ 𝜇

𝑋Γ (𝑢)
𝑢 .

Ideally, if one had 𝑋R ∼ 𝜇
𝑋R′

R
, then after the spin of 𝑢 being redrawn as 𝑋 ′𝑢 ∼ 𝜇

𝑋Γ (𝑢)
𝑢 , the 𝑋R would

be extended to a 𝑋 ′
R′
∼ 𝜇

𝑋R′

R′
≡ 𝜇

𝑋 ′R′

R′
as 𝑋R′ = 𝑋 ′R′ , satisfying the invariant (★) on the new pair (𝑿 ′,R ′).

However, the invariant (★) on the current (𝑿 ,R) only guarantees 𝑋R ∼ 𝜇𝑋R
R

rather than 𝑋R ∼ 𝜇
𝑋R′

R
.

To remedy this, we construct a filter F = F (𝑢,𝑿 ) that corrects 𝜇𝑋R
R

to 𝜇
𝑋R′

R
. We call F the Bayes filter.

Specifically, F is determined by a biased coin depending on only part of 𝑿 so that

Pr[ F succeeds ] ∝
𝜇
𝑋R′

R
(𝑋R)

𝜇𝑋R
R
(𝑋R)

=
𝜇
𝑋R′
𝑢 (𝑋𝑢)

𝜇
𝑋Γ (𝑢)
𝑢 (𝑋𝑢)

,(2)

where ∝ is taken over all 𝑋R and the equality is due to Bayes’ theorem:

𝜇𝑋R
R
(𝑋R) = 𝜇

𝑋R′∧𝑋𝑢

R
(𝑋R) = 𝜇

𝑋R′∧𝑋R
𝑢 (𝑋𝑢) · 𝜇𝑋R′R (𝑋R)/𝜇

𝑋R′
𝑢 (𝑋𝑢),

together with the fact that 𝜇𝑋R′∧𝑋R𝑢 (𝑋𝑢) = 𝜇
𝑋Γ (𝑢)
𝑢 (𝑋𝑢), guaranteed by the conditional independence

property (formally, Property 4.3) of the Gibbs distribution.
We observe that despite that the exact value of the marginal probability 𝜇

𝑋R′
𝑢 (𝑋𝑢) in (2) is hard to

compute, it does not depend on 𝑋R . Therefore, 𝜇𝑋R′𝑢 (𝑋𝑢) can be treated as a constant and (2) holds as
long as Pr[ F succeeds ] ∝ 1/𝜇𝑋Γ (𝑢)

𝑢 (𝑋𝑢), which is satisfied precisely by our Bayes filter in Algorithm 1.
Now by (2), conditioned on the success of the filter F , the new (𝑿 ′,R ′) satisfies the invariant (★).

Meanwhile, since the filter only reveals the neighborhood spins 𝑋Γ (𝑢) , upon the failure of F , the in-
variant (★) remains to hold as long as the revealed sites Γ(𝑢) are added into R and 𝑿 is unchanged.

This sampler is valid for general Gibbs distributions, since the only property we require is condi-
tional independence. However for efficiency purposes, our general algorithm, Algorithm 2, uses block
updates. A suitable block radius (chosen according to spatial mixing) is the key to efficiency in our
analysis. Moreover, to make sure that marginal distributions are well-defined, we restrict our attention
to permissive systems, which contain all soft constraint systems as well as all hard constraint systems
of interest. The details are given in Section 2 and 3.

The algorithm is efficient as long as the size of R shrinks in expectation in every step. For the more
general Algorithm 2, this holds true when the correlation decays faster than the neighborhood growth.
The details are in Section 5.

3



1.2. Related work. The conditional Gibbs property has been used implicitly or explicitly in previous
works such as partial rejection sampling [24, 23, 22, 21, 20], dynamic sampling [14], and randomness
recycler [16]. Furthermore, the invariance of the conditional Gibbs property ensures that the sampling
algorithm is correct even when the input spin system is dynamically changing over time [14].

Before our work, all previous resampling algorithms [16, 24, 23, 22, 21, 20, 14] fall into the paradigm
of rejection sampling: a new sample is generated, usually from modifying the old sample, and (part of)
the new sample is rejected independently with some probability determined by the new sample. In our
algorithm, the filtration is executed before the generation of the new sample, with a bias independent
of the new sample.

Spatial mixing properties were known to imply rapid mixing of the Gibbs sampler for some par-
ticular systems. See for example [36]. For anti-ferromagnetic 2-spin systems, weak spatial mixing
corresponds to the optimal threshold for efficient samplability [7, 3, 12, 17, 39, 38, 31, 45]. It remains an
interesting open problem whether spatial mixing implies the existence of efficient samplers in general,
and whether these samplers can be perfect.

2. OuR Results

2.1. Model and definitions. Let 𝐺 = (𝑉 , 𝐸) be an undirected graph, and [𝑞] = {1, 2, . . . , 𝑞} a finite
domain of 𝑞 ≥ 2 spins. An instance of 𝑞-state spin system is specified by a tuple I = (𝐺, [𝑞], 𝒃,𝑨),
where 𝒃 = (𝑏𝑣)𝑣∈𝑉 assigns every vertex 𝑣 ∈ 𝑉 a vector 𝑏𝑣 ∈ R𝑞≥0 and 𝑨 = (𝐴𝑒)𝑒∈𝐸 assigns every edge
𝑒 ∈ 𝐸 a symmetric matrix 𝐴𝑒 ∈ R𝑞×𝑞≥0 . The Gibbs distribution 𝜇I over [𝑞]𝑉 is defined as

∀𝜎 ∈ [𝑞]𝑉 : 𝜇I (𝜎) ≜
𝑤I (𝜎)
𝑍I

=
1
𝑍I

∏
𝑣∈𝑉

𝑏𝑣 (𝜎𝑣)
∏

𝑒={𝑢,𝑣 }∈𝐸
𝐴𝑒 (𝜎𝑢, 𝜎𝑣),(3)

where𝑤I (𝜎) is the weight defined in (1) and 𝑍I ≜
∑

𝜎 ∈[𝑞 ]𝑉 𝑤I (𝜎) is the partition function.
We restrict our attention to the so-called “permissive” spin systems, where themarginal distributions

are always well-defined. Let I = (𝐺, [𝑞], 𝒃,𝑨) be an instance of spin system. A configuration on 𝑉 is
called feasible if its weight is positive, and a partial configuration is feasible if it can be extended to a
feasible configuration. For any (possibly empty) subset Λ ⊆ 𝑉 and any (not necessarily feasible) partial
configuration 𝜎 ∈ [𝑞]Λ, we use𝑤𝜎

I (𝜏) to denote the weight of 𝜏 ∈ [𝑞]𝑉 \Λ conditional on 𝜎 :

𝑤𝜎
I (𝜏) =

∏
𝑣∈𝑉 \Λ

𝑏𝑣 (𝜏𝑣)
∏

𝑒={𝑢,𝑣 }∈𝐸
𝑢,𝑣∈𝑉 \Λ

𝐴𝑒 (𝜏𝑢, 𝜏𝑣)
∏

𝑒={𝑢,𝑣 }∈𝐸
𝑢∈Λ,𝑣∈𝑉 \Λ

𝐴𝑒 (𝜎𝑢, 𝜏𝑣) .(4)

Define the partition function 𝑍𝜎
I conditional on 𝜎 as 𝑍𝜎

I ≜
∑

𝜏 ∈[𝑞 ]𝑉 \Λ 𝑤
𝜎
I (𝜏).

Definition 2.1 (permissive). A spin system I = (𝐺, [𝑞], 𝒃,𝑨), where 𝐺 = (𝑉 , 𝐸), is called permissive
if 𝑍𝜎
I > 0 for any partial configuration 𝜎 ∈ [𝑞]Λ specified on any subset Λ ⊆ 𝑉 .

Permissive systems are very common, including, for examples, uniform proper 𝑞-coloring when
𝑞 ≥ Δ+1, where Δ is the maximum degree, and spin systems with soft constraints, e.g. the Ising model,
or with a “permissive” state that is compatible with all other states, e.g. the hardcore model.

For permissive systems, a feasible configuration is always easy to construct by greedy algorithm.
More importantly, with permissiveness, marginal probabilities are always well defined, which is crucial
for Gibbs sampler and spatial mixing property.

Formally, we use 𝜇𝜎I to denote the conditional distribution over [𝑞]𝑉 \Λ given 𝜎 ∈ [𝑞]Λ, that is,

∀𝜏 ∈ [𝑞]𝑉 \Λ, 𝜇𝜎I (𝜏) ≜
𝑤𝜎
I (𝜏)
𝑍𝜎
I

.(5)

And for any 𝑣 ∈ 𝑉 \ Λ, we use 𝜇𝜎
𝑣,I to denote the marginal distribution at 𝑣 projected from 𝜇𝜎I .

For any 𝑢, 𝑣 ∈ 𝑉 , we use dist𝐺 (𝑢, 𝑣) to denote the shortest-path distance between 𝑣 and 𝑢 in 𝐺 .

Definition 2.2 (strong spatial mixing [45, 44]). Let 𝛿 : N→ R+. A class ℑ of permissive spin systems
is said to exhibit strong spatial mixing with rate 𝛿 (·) if for every instance I = (𝐺, [𝑞], 𝒃,𝑨) ∈ ℑ, where
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𝐺 = (𝑉 , 𝐸), for every 𝑣 ∈ 𝑉 , Λ ⊆ 𝑉 , and any two partial configurations 𝜎, 𝜏 ∈ [𝑞]Λ,

𝑑TV
(
𝜇𝜎𝑣,I, 𝜇

𝜏
𝑣,I

)
≤ 𝛿 (ℓ),(6)

where ℓ = min{dist𝐺 (𝑣,𝑢) | 𝑢 ∈ Λ, 𝜎𝑢 ≠ 𝜏𝑢}, and 𝑑TV
(
𝜇𝜎
𝑣,I, 𝜇

𝜏
𝑣,I

)
≜ 1

2

∑
𝑎∈[𝑞 ]

���𝜇𝜎𝑣,I (𝑎) − 𝜇𝜏𝑣,I (𝑎)���
denotes the total variation distance between 𝜇𝜎

𝑣,I and 𝜇𝜏
𝑣,I . In particular, ℑ exhibits strong spatial

mixing with exponential decay if (6) is satisfied for 𝛿 (ℓ) = 𝛼 exp(−𝛽ℓ) for some constants 𝛼, 𝛽 > 0.

Our first result holds for spin systems on graphs with bounded neighborhood growth.

Definition 2.3 (sub-exponential neighborhood growth). A class 𝔊 of graphs is said to have sub-
exponential neighborhood growth if there is a function 𝑠 : N → N such that 𝑠 (ℓ) = exp(𝑜 (ℓ)) and
for every graph 𝐺 = (𝑉 , 𝐸) ∈𝔊,

∀𝑣 ∈ 𝑉 ,∀ℓ ≥ 0, |𝑆ℓ (𝑣) | ≤ 𝑠 (ℓ),

where 𝑆ℓ (𝑣) ≜ {𝑢 ∈ 𝑉 | dist𝐺 (𝑣,𝑢) = ℓ} denotes the sphere of radius ℓ centered at 𝑣 in 𝐺 .

Note that graphs with sub-exponential neighborhood growth necessarily have bounded maximum
degree because we can set ℓ = 1 and get 𝑠 (1) = 𝑂 (1).

2.2. Main results. Our first result shows that for spin systems on graphs with sub-exponential neigh-
borhood growth, strong spatial mixing implies the existence of linear-time perfect sampler.

Theorem 2.4 (main theorem: bounded-growth graphs). Let 𝑞 > 1 be a finite integer and ℑ a class
of permissive 𝑞-state spin systems on graphs with sub-exponential neighborhood growth. If ℑ exhibits
strong spatial mixing with exponential decay, then there exists an algorithm such that given any instance
I = (𝐺, [𝑞], 𝒃,𝑨) ∈ ℑ, the algorithm outputs a perfect sample from 𝜇I within 𝑂 (𝑛) time in expectation,
where 𝑛 is the number of vertices in 𝐺 .

The factor in𝑂 (·) is𝑞𝑂 (Δℓ0 ) , which is the cost for an update in (ℓ0-block) Gibbs sampler, where ℓ0 = 𝑂 (1)
is the radius at which the decay catches up with neighborhood growth, as formally given in (33).

It is already known that for spin systems on sub-exponential neighborhood growth graphs, the
strong spatial mixing with exponential decay implies 𝑂 (𝑛 log𝑛) mixing time for block Gibbs sampler
[11], which only generates approximate samples. We give a perfect sampler with 𝑂 (𝑛) expected run-
ning time under the same condition. The notion of sub-exponential neighborhood growth is related
to, but should be distinguished from neighborhood-amenability (see e.g. [19]), which says that in an
infinite graph, for any constant real 𝑐 > 0, there is an ℓ such that |𝑆ℓ+1 (𝑣) ||𝐵ℓ (𝑣) | ≤ 𝑐 holds everywhere.

Our main result on general graphs assumes the following strong spatial mixing condition.

Condition 2.5. Let I = (𝐺, [𝑞], 𝒃,𝑨) be a permissive spin system where 𝐺 = (𝑉 , 𝐸). There is an integer
ℓ = ℓ (𝑞) ≥ 2 such that the following holds: for every 𝑣 ∈ 𝑉 , Λ ⊆ 𝑉 , for any two partial configurations
𝜎, 𝜏 ∈ [𝑞]Λ satisfying min {dist𝐺 (𝑣,𝑢) | 𝑢 ∈ Λ, 𝜎 (𝑢) ≠ 𝜏 (𝑢)} = ℓ ,

𝑑TV
(
𝜇𝜎𝑣,I, 𝜇

𝜏
𝑣,I

)
≤ 𝛾

5|𝑆ℓ (𝑣) |
,(7)

where 𝑆ℓ (𝑣) denotes the sphere of radius ℓ centered at 𝑣 in 𝐺 , and

𝛾 = 𝛾 (𝑣,Λ) ≜ min
{
𝜇
𝜌
𝑣,I (𝑎) | 𝜌 ∈ [𝑞]

Λ, 𝑎 ∈ [𝑞] that 𝜇𝜌
𝑣,I (𝑎) > 0

}
(8)

denotes the lower bound of positive marginal probabilities at 𝑣 .

The above condition basically says that the spin systems exhibit strong spatial mixing with a decay
rate faster than that of neighborhood growth, given that the marginal probabilities are appropriately
lower bounded (which holds with 𝛾 = Ω(1) when entries of 𝑨 and 𝒃 are of finite precision and the
maximum degree Δ is finitely bounded). Our result on general graphs is stated as the following theo-
rem.
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Theorem 2.6 (main theorem: general graphs). Let ℑ be a class of permissive spin systems satisfying
Condition 2.5. There exists an algorithm which given any instance I = (𝐺, [𝑞], 𝒃,𝑨) ∈ ℑ, outputs a
perfect sample from 𝜇I within 𝑛 · 𝑞𝑂 (Δ

ℓ ) time in expectation, where 𝑛 is the number of vertices in𝐺 , Δ is
the maximum degree of 𝐺 , and ℓ = ℓ (𝑞) is determined by Condition 2.5.

The𝑞𝑂 (Δℓ ) factor in the time cost is contributed by the block Gibbs sampler update on ℓ-radius blocks.
This extra cost could remain polynomial if 𝑞 = 𝜔 (1), but the upper bound on 𝑞 for that will vary from
problem to problem. See e.g. the discussion after Theorem 2.9. The conditions of both Theorem 2.4 and
Theorem 2.6 are special cases of a more technical condition (Condition 5.1), formally stated in Section 5.

2.3. Applications on specific systems. Our results can be applied on various spin systems. We
consider two important examples:

• Uniform list coloring: A list coloring instance is specified by I = (𝐺, [𝑞],L), where L ≜
{𝐿𝑣 ⊆ [𝑞] | 𝑣 ∈ 𝑉 } assigns each vertex 𝑣 ∈ 𝑉 a list of colors 𝐿𝑣 ⊆ [𝑞]. A proper list coloring of
instance I is a 𝜎 ∈ [𝑞]𝑉 that 𝜎𝑣 ∈ 𝐿𝑣 for all 𝑣 ∈ 𝑉 and 𝜎𝑢 ≠ 𝜎𝑣 for all {𝑢, 𝑣} ∈ 𝐸. Let 𝜇I denote
the uniform distribution over all proper list colorings of I.
• The monomer-dimer model: The monomer-dimer model defines a distribution over graph

matchings. An instance is specified by I = (𝐺, 𝜆), where𝐺 = (𝑉 , 𝐸) is a graph and 𝜆 > 0. Each
matching 𝑀 ⊆ 𝐸 in 𝐺 is assigned a weight 𝑤I (𝑀) = 𝜆 |𝑀 | . Let 𝜇I be the distribution over all
matchings in 𝐺 such that 𝜇I (𝑀) ∝ 𝑤I (𝑀).

We use deg𝐺 (𝑣) to denote the degree of 𝑣 in 𝐺 and Δ = max𝑣∈𝑉 deg𝐺 (𝑣) the maximum degree.
First, for the list coloring problem, we define the following two conditions for instanceI = (𝐺, [𝑞],L).

Let deg𝐺 (𝑣) denote the degree of 𝑣 ∈ 𝑉 in graph 𝐺 , and Δ ≜ max𝑣∈𝑉 deg𝐺 (𝑣) the maximum degree.

Condition 2.7. For every 𝑣 ∈ 𝑉 , |𝐿(𝑣) | ≥ 𝛼 deg𝐺 (𝑣) + 𝛽 , where either one of the followings holds:
• 𝛼 = 2 and 𝛽 = 0;
• 𝐺 is triangle-free, 𝛼 > 𝛼∗ where 𝛼∗ = 1.763 · · · is the positive root of 𝑥𝑥 = e, and 𝛽 ≥

√
2√

2−1
satisfies (1 − 1/𝛽)𝛼e 1

𝛼 (1−1/𝛽) > 1.

Condition 2.8. For every 𝑣 ∈ 𝑉 , |𝐿(𝑣) | ≥ Δ2 − Δ + 2.

Our perfect sampler for list coloring runs in linear time in either above condition.

Theorem 2.9. Let 𝔏 be a class of list coloring instances with at most 𝑞 colors for a finite 𝑞 > 0. If either
of the two followings holds for all instances I = (𝐺, [𝑞],L) ∈ 𝔏:

• Condition 2.7 and 𝐺 has sub-exponential neighborhood growth; or
• Condition 2.8,

then there exists a perfect sampler for 𝜇I that runs in expected 𝑂 (𝑛) time, where 𝑛 is the number of
vertices.

The constant factor in 𝑂 (·), can be determined in the same way as in Theorem 2.4 in the case of Con-
dition 2.7, but is much higher in the case of Condition 2.8 due to the arbitrary neighborhood growth.
Nevertheless, even in this costly case, ℓ = 𝑂 (𝑞2 log𝑞) and the overall overhead can by upper bounded
by a rough estimate exp(exp(poly(𝑞))).

Sampling proper 𝑞-colorings (where the lists are identical for all vertices) has been extensively stud-
ied, especially using Markov chains. Approximate sampling received considerable attention [28, 9, 26,
35, 10]. The current best result [43, 6] is the 𝑂 (𝑛 log𝑛) mixing time of the flip chain if 𝑞 ≥ ( 116 − 𝜖0)Δ
for some constant 𝜖0 > 0. For perfect sampling 𝑞-colorings, Huber introduced a bounding chain [27]
based on CFTP [46], which terminates within 𝑂 (𝑛 log𝑛) steps in expectation if 𝑞 ≥ Δ2 + 2Δ. In a
very recent breakthrough, Bhandari and Chakraborty [5] introduced a novel bounding chain that has
expected running time 𝑂 (𝑛 log2 𝑛) in a substantially broader regime 𝑞 > 3Δ. Another way to obtain
perfect samplers is to use standard reductions between counting and sampling [30]. Using this tech-
nique, any FPTAS for the number of colorings can be turned into a polynomial-time perfect sampler.
(It is important that the approximate counting algorithm is deterministic, or at least with errors that
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can be detected.) Currently, the FPTAS with the best regime for general graphs is due to Liu et al. [32],
which requires 𝑞 ≥ 2Δ, and it runs in time 𝑛EXP(Δ) .

Comparing to the results above, our algorithm draws perfect samples and achieves the 𝑂 (𝑛) ex-
pected running time. In case of sub-exponential growth graphs such as Z𝑑 , it improves the result of
[5] by requiring only 𝑞 > 𝛼Δ +𝑂 (1), where 𝛼 > 𝛼∗ = 1.763 · · · .

Next we consider the monomer-dimer model. It was proved in [4, 40] that instances I = (𝐺, 𝜆)
on graphs 𝐺 with maximum degree Δ exhibits strong spatial mixing with rate (1 − Ω(1/

√
1 + 𝜆Δ))−ℓ .

Applying our algorithm yields the following perfect sampling result.

Theorem2.10. Let𝔐 be a class ofmonomer-dimer instancesI = (𝐺, 𝜆) on graphs𝐺 with sub-exponential
neighborhood growth and constant 𝜆. There exists an algorithm which given any instance I = (𝐺, 𝜆) ∈ 𝔐,
outputs a perfect sample from 𝜇I within expected 𝑂 (𝑛) time.

Previously, Markov chains were the most successful techniques for sampling weighted matchings.
The Jerrum-Sinclair chain [29] on a monomer-dimer model I = (𝐺, 𝜆), generates approximate samples
from 𝜇I within 𝑂 (𝑛2𝑚) steps, where 𝑚 = |𝐸 |. This chain also mixes in 𝑂 (𝑛 log2 𝑛) time for finite
subgraphs of the 2D lattice Z2 [42].

It is difficult to convert the Jerrum-Sinclair chain to perfect samplers. Before our work, the only
perfect sampler for the monomer-dimer model we are aware of is the one obtained via standard re-
ductions from sampling to counting [30] (similar to the case of colorings), together with deterministic
approximate counting algorithms [4]. This is a perfect sampler with running time 𝑛Poly(Δ,𝜆) .

Our algorithm is the first linear-time perfect sampler for the monomer-dimer model on graphs with
sub-exponential neighborhood growth, such as finite subgraphs of lattices Z𝑑 for any constant 𝑑 and
constant weight 𝜆.

3. The AlgoRithm

We now describe our general perfect Gibbs sampler. It generalizes the single-site version (Algo-
rithm 1) by allowing block updates. This generalization allows us to bypass some pathological situa-
tions, and to greatly improve the efficiency of the algorithm. The pseudocode is given in Algorithm 2.

Let I = (𝐺, [𝑞], 𝒃,𝑨) be a permissive spin system instance and 𝐺 = (𝑉 , 𝐸). For any 𝑢 ∈ 𝑉 and
integer ℓ ≥ 0, recall that 𝐵ℓ (𝑢) ≜ {𝑣 ∈ 𝑉 | dist𝐺 (𝑢, 𝑣) ≤ ℓ} denotes the ℓ-ball centered at 𝑢 in 𝐺 . And
for any 𝐵 ⊆ 𝑉 , we use 𝜕𝐵 ≜ {𝑣 ∈ 𝑉 \ 𝐵 | ∃𝑤 ∈ 𝐵, {𝑣,𝑤} ∈ 𝐸} to denote the vertex boundary of 𝐵 in 𝐺 .

Algorithm 2: Perfect Gibbs sampler (general version)
Parameter :an integer ℓ ≥ 0;

1 Start from an arbitrary feasible configuration 𝑿 ∈ [𝑞]𝑉 , i.e.𝑤I (𝑿 ) > 0;
2 R ← 𝑉 ;
3 while R ≠ ∅ do
4 pick a 𝑢 ∈ R uniformly at random and let 𝐵 ← (𝐵ℓ (𝑢) \ R) ∪ {𝑢};
5 let 𝜇min be the minimum value of 𝜇𝜎𝑢 (𝑋𝑢) over all 𝜎 ∈ [𝑞]𝜕𝐵 that 𝜎R∩𝜕𝐵 = 𝑋R∩𝜕𝐵 ;
6 with probability 𝜇min

𝜇
𝑋𝜕𝐵
𝑢 (𝑋𝑢 )

do
⊲ Bayes filter

7 update 𝑿 by redrawing 𝑋𝐵 ∼ 𝜇𝑋𝜕𝐵
𝐵 ; ⊲ block Gibbs sampler update

8 R ← R \ {𝑢};
9 else
10 R ← R ∪ 𝜕𝐵;

11 return 𝑿 ;

The algorithm is parameterized by an integer ℓ ≥ 1, which is set rigorously in Section 5.
The initial 𝑿 ∈ [𝑞]𝑉 is an arbitrary feasible configuration, which is easy to construct by greedy

algorithm since I is permissive (Definition 2.1). After each iteration of the while loop, either 𝑿 is
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unchanged or 𝑋𝐵 is redrawn from 𝜇𝑋𝜕𝐵
𝐵 , which is the marginal distribution of 𝜇 = 𝜇I , conditioned on

the current 𝑿𝐵 . Thus, we have the following observation.
Observation 3.1. In Algorithm 2, the configuration 𝑿 is always feasible, i.e. 𝑤I (𝑿 ) > 0.

Theobservation implies that 𝜇𝑋𝜕𝐵
𝑢 (𝑋𝑢) > 0 all along. The Bayes filter in Line 5 is always well-defined. If

the filer succeeds,𝑋𝐵 is resampled according to the correct marginal distribution 𝜇𝑋𝜕𝐵
𝐵 and𝑢 is removed

from R (that is, 𝑢 has been successfully “fixed”); otherwise, 𝑿 is unchanged and R is enlarged by 𝜕𝐵
(because variables in 𝜕𝐵 are revealed and no longer random).

The key to the correctness of Algorithm 2 is the conditional Gibbs property (★): the law of 𝑿 over
𝑅 ≜ 𝑉 \ R is always the conditional distribution 𝜇𝑋R = 𝜇𝑋RI . By similar argument as in Section 1.1,
just redrawing 𝑋𝐵 from 𝜇𝑋𝜕𝐵

𝐵 will introduce a bias ∝ 𝜇𝑋𝜕𝐵
𝑢 (𝑋𝑢) to the sample 𝑿 , relative to its target

distribution 𝜇𝑋R\{𝑢} = 𝜇
𝑋R\{𝑢}
I . In the algorithm, we use the Bayes filter that succeeds with probability

∝ 1/𝜇𝑋𝜕𝐵
𝑢 (𝑋𝑢) to cancel this bias, with the risk of enlarging R by 𝜕𝐵 upon failure. Balancing the success

probability and the size of 𝜕𝐵 is the key to getting an efficient algorithm, and this depends on choosing
an appropriate ℓ according to the spatial mixing rate.

The efficiency of the algorithm, on the other hand, depends on the success rate for the filter at Line 6:
if its success probability 𝑝 is always close enough to 1, so that (1 − 𝑝) |𝜕𝐵 | < 𝑝 , then set R shrinks in
expectation in the worst case, and the algorithm converges geometrically. Meanwhile, the success
probability 𝑝 = 𝜇min/𝜇𝑋𝜕𝐵

𝑢 (𝑋𝑢) is always close enough to 1 when the values of the marginal probability
𝜇𝜎𝑢 (𝑋𝑢) vary little for all 𝜎 ∈ [𝑞]𝜕𝐵 that 𝜎R∩𝜕𝐵 = 𝑋R∩𝜕𝐵 , which is a decay of correlation property.

The correctness and efficiency of the algorithm are analyzed respectively in next two sections.

4. CoRRectness of the peRfect sampling

In this section, we prove the correctness of Algorithm 2, stated by the following theorem.
Theorem 4.1 (correctness theorem). Given any permissive spin system I = (𝐺, [𝑞], 𝒃,𝑨), Algorithm 2
with any parameter ℓ ≥ 1 terminates with probability 1, and outputs 𝑿 that follows the law of 𝜇I .

The theorem is implied by two key properties of the Gibbs distribution 𝜇I .

4.1. Key properties of Gibbs distributions. Note that the 𝜇min in Algorithm 2 is determined by the
set R, the vertex 𝑢 ∈ R, and the partial feasible configuration 𝑋R . Formally, fixing the parameter ℓ ≥ 0
in Algorithm 2,

𝜇min(R, 𝑢, 𝑋R) ≜ min
{
𝜇𝜎𝑢,I (𝑋𝑢) | 𝜎 ∈ [𝑞]𝜕𝐵 s.t. 𝜎R∩𝜕𝐵 = 𝑋R∩𝜕𝐵, where 𝐵 ≜ (𝐵ℓ (𝑢) \ R) ∪ {𝑢}

}
.

Property 4.2 (positive lower bound of 𝜇min). The lower bound 𝛾I of 𝜇min is positive:

𝛾I ≜ min
{
𝜇min(R, 𝑢, 𝑋R) | R ⊆ 𝑉 ,𝑢 ∈ R, 𝑋R ∈ [𝑞]R s.t. 𝑋R is feasible

}
> 0.(9)

To state the next property, we introduce some notations: For any Λ ⊆ 𝑉 , 𝜎 ∈ [𝑞]Λ and 𝑆 ⊆ 𝑉 \Λ, we
use 𝜇𝜎

𝑆,I (·) to denote the marginal distribution on 𝑆 projected from 𝜇𝜎I . For any disjoint sets Λ,Λ′ ⊆ 𝑉 ,
𝜎 ∈ [𝑞]Λ and 𝜎 ′ ∈ [𝑞]Λ′ , we use 𝜎 ⊎ 𝜎 ′ to denote the configuration on Λ ⊎ Λ′ that is consistent with 𝜎
on Λ and consistent with 𝜎 ′ on Λ′.
Property 4.3 (conditional independence). Suppose𝐴, 𝐵,𝐶 ⊂ 𝑉 are three disjoint non-empty subsets such
that the removal of 𝐶 disconnects 𝐴 and 𝐵 in 𝐺 . For any 𝜎𝐴 ∈ [𝑞]𝐴, 𝜎𝐵 ∈ [𝑞]𝐵 and 𝜎𝐶 ∈ [𝑞]𝐶 ,

𝜇𝜎𝐴⊎𝜎𝐶
𝐵,I (𝜎𝐵) = 𝜇𝜎𝐶

𝐵,I (𝜎𝐵).

Theorem 4.1 is proved for general distribution 𝜇 over [𝑞]𝑉 relying only on these two properties.
Thus, Algorithm 2 is correct for general permissive Gibbs distributions.

In particular, we verify that all permissive spin systems satisfy these two properties. First, the
conditional independence (Property 4.3) holds generally for Gibbs distributions [34]. Next, for the
positive lower bound of 𝜇min (Property 4.2): for spin systems with soft constraints, clearly Property 4.2
holds for all ℓ ≥ 0; and for general permissive spin systems I, we need to verify that Property 4.2 holds
if ℓ ≥ 1. Fix a tuple (R, 𝑢, 𝑋R) in (9). The following fact follows from the definition of set 𝐵.
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Fact 4.4. 𝜕𝐵 ⊆ 𝑆ℓ+1(𝑢) ∪ R, where 𝐵 = (𝐵ℓ (𝑢) \ R) ∪ {𝑢}.

The fact implies 𝜕𝐵 \ R ⊆ 𝑆ℓ+1(𝑢). Since ℓ ≥ 1, 𝑢 is not adjacent to any vertex in 𝜕𝐵 \ R. Since I is
permissive and 𝑋R is feasible, 𝜇𝜎

𝑢,I (𝑋𝑢) > 0 for all 𝜎 ∈ [𝑞]𝜕𝐵 such that 𝜎R∩𝜕𝐵 = 𝑋R∩𝜕𝐵 . This implies
𝜇min(R, 𝑢, 𝑋R) is positive, thus the Property 4.2 holds.

We then prove Theorem 4.1 assuming only Property 4.2 and Property 4.3. More specifically, termi-
nation of the algorithm is guaranteed by Property 4.2, and correctness of the output upon termination
is guaranteed by Property 4.3.

4.2. Termination of the algorithm. Denote by 𝑇 the number of iterations of the while loop in
Algorithm 2. To prove that the algorithm terminates with probability 1, we show that𝑇 is stochastically
dominated by a geometric distribution. We use F to denote the Bayes filter in Algorithm 2. Then,

Pr[F succeeds] = 𝜇min(R, 𝑢, 𝑋R)
𝜇𝑋𝜕𝐵

𝑢,I (𝑋𝑢)
≥ 𝜇min(R, 𝑢, 𝑋R) .

If F succeeds for 𝑛 = |𝑉 | consecutive iterations of the while loop, then the set R must become
empty and the algorithm terminates. By Property 4.2, we have

∀𝑘 ≥ 0, Pr[𝑇 ≥ 𝑘𝑛] ≤ 𝛾𝑘𝑛I .(10)
This implies𝑇 is stochastically dominated by a geometric distribution. Each iteration of thewhile loop
terminates within finite number of steps. Thus, the algorithm terminates with probability 1.

4.3. Correctness upon termination. We show that upon termination, the output follows the correct
distribution. Let (𝑿 ,R) ∈ [𝑞]𝑉 × 2𝑉 be the random pair maintained by the algorithm. The following
condition is the “loop invariant” of the random pair (𝑿 ,R).

Condition 4.5 (conditional Gibbs property). For any 𝑅 ⊆ 𝑉 and 𝜎 ∈ [𝑞]𝑅 , conditioned on R = 𝑅 and
𝑋𝑅 = 𝜎 , the random configuration 𝑋𝑉 \𝑅 follows the law 𝜇𝜎I .

Condition 4.5 is satisfied initially by the initial pair (𝑿 ,R) = (𝑿 ,𝑉 ). Furthermore, consider the
while loop that transforms

(𝑿 ,R) → (𝑿 ′,R ′) .
Then next lemma shows that Condition 4.5 holds inductively assuming Property 4.3.

Lemma 4.6. Suppose that (𝑿 ,R) ∈ [𝑞]𝑉 × 2𝑉 is a random pair such that 𝑿 is feasible and the pair
(𝑿 ,R) satisfies Condition 4.5. Then, the random pair (𝑿 ′,R ′) satisfies Condition 4.5.

By Observation 3.1, the random configuration 𝑿 ∈ [𝑞]𝑉 maintained by algorithm is always feasible.
Lemma 4.6 guarantees that Condition 4.5 holds all along for the random pair (𝑿 ,R) maintained by
Algorithm 2. In particular, when the algorithm terminates, R = ∅ and the output 𝑿 follows the correct
distribution 𝜇I . This proves Theorem 4.1.

Proof of Lemma 4.6. It is sufficient to prove that for any 𝑅 ⊆ 𝑉 , any feasible partial configuration
𝜌 ∈ [𝑞]𝑅 and any vertex 𝑢 ∈ 𝑅, conditioned on R = 𝑅, 𝑋𝑅 = 𝜌 , and the vertex picked in Line 4 being 𝑢,
the new random pair (𝑿 ′,R ′) after one iteration of the while loop satisfies Condition 4.5.

Fix 𝑅 ⊆ 𝑉 and a feasible partial configuration 𝜌 ∈ [𝑞]𝑅 . Let u ∈ 𝑅 denote the uniform random vertex
picked in Line 4. Fix a vertex 𝑢 ∈ 𝑅. Let E denote the event

E : 𝑋𝑅 = 𝜌 ∧ R = 𝑅 ∧ u = 𝑢.

Since (𝑿 ,R) satisfies Condition 4.5 and given the set 𝑅, u is independent from 𝑿 , we have

∀𝜏 ∈ [𝑞]𝑉 \𝑅 : Pr
[
𝑋𝑉 \𝑅 = 𝜏 | E

]
= 𝜇

𝜌
I (𝜏) .(11)

Recall that F is the Bayes filter. Depending on whether F succeeds or not, we have two cases.
The easier case is when F fails. Recall that the set 𝐵 is fixed by 𝑅 and𝑢. In this case, R ′ = 𝑅∪ 𝜕𝐵 and

𝑿 ′ = 𝑿 . Conditioned on E, we know that 𝑋𝑢 = 𝜌𝑢 and 𝑋𝜕𝐵∩𝑅 = 𝜌𝜕𝐵∩𝑅 , the filter F depends only on
the partial configuration 𝑋𝜕𝐵\𝑅 . For any configuration 𝜎 ∈ [𝑞]𝜕𝐵\𝑅 , conditioned on E and 𝑋𝜕𝐵\𝑅 = 𝜎 ,
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the failure of F is independent from 𝑋𝑉 \(𝑅∪𝜕𝐵) = 𝑋𝑉 \R′ . Thus, by (11), conditioned on E, 𝑋𝜕𝐵\𝑅 = 𝜎

and the failure of F , we have that 𝑋 ′
𝑉 \R′ = 𝑋𝑉 \R′ ∼ 𝜇

𝜌⊎𝜎
I , i.e. (𝑿 ′,R ′) satisfies Condition 4.5.

Now we analyze the main case that F succeeds. If this case does occur, we must have

𝜇min(𝑅,𝑢, 𝜌) ≜ min{𝜇𝜎𝑢,I (𝜌𝑢) | 𝜎 ∈ [𝑞]
𝜕𝐵 s.t. 𝜎𝑅∩𝜕𝐵 = 𝜌𝑅∩𝜕𝐵} > 0.(12)

Define 𝑅𝑢 ≜ 𝑅 \ {𝑢}. The fact that F succeeds means R ′ = 𝑅 \ {𝑢} = 𝑅𝑢 and 𝑋 ′𝑅𝑢 = 𝑋𝑅𝑢 = 𝜌𝑅𝑢 .
Hence, we only need to show that

∀𝜏 ∈ [𝑞]𝑉 \𝑅𝑢 : Pr
[
𝑋 ′𝑉 \𝑅𝑢 = 𝜏 | E ∧ F succeeds

]
= 𝜇

𝜌 (𝑅𝑢 )
I (𝜏) .(13)

Recall 𝐵 = (𝐵ℓ (𝑢) \ 𝑅) ∪ {𝑢} = 𝐵ℓ (𝑢) \ 𝑅𝑢 . We define the following set:

𝐻 ≜ 𝑉 \ {𝑅𝑢 ∪ 𝐵} .
Namely, 𝐵 is the set whose configuration is resampled, and 𝐻 is the set whose configuration is un-
touched, i.e. 𝑋 ′𝐻 = 𝑋𝐻 . Note that 𝐵 ⊎ 𝐻 ⊎ 𝑅𝑢 = 𝑉 . By the chain rule:

Pr
[
𝑋 ′𝑉 \𝑅𝑢 = 𝜏 ∧ F succeeds | E

]
= Pr

[
𝑋 ′𝐻 = 𝜏𝐻 ∧ 𝑋 ′𝐵 = 𝜏𝐵 ∧ F succeeds | E

]
(14)

= Pr[𝑋 ′𝐻 = 𝜏𝐻 | E] · Pr[F succeeds | E ∧ 𝑋 ′𝐻 = 𝜏𝐻 ] · Pr[𝑋 ′𝐵 = 𝜏𝐵 | E ∧ 𝑋 ′𝐻 = 𝜏𝐻 ∧ F succeeds] .
As 𝑋 ′𝐻 = 𝑋𝐻 , (11) implies that

Pr[𝑋 ′𝐻 = 𝜏𝐻 | E] = 𝜇
𝜌
𝐻,I (𝜏𝐻 ) .

By Line 7 of Algorithm 2, 𝑋 ′𝐵 is redrawn from the distribution 𝜇𝑋𝜕𝐵

𝐵,I (·). By conditional independence
property (Property 4.3), we have 𝜇𝑋𝜕𝐵

𝐵,I (·) = 𝜇
𝑋𝑉 \𝐵
I (·). Note that 𝑉 \ 𝐵 = 𝑅𝑢 ⊎ 𝐻 . Conditioned on

E ∧ 𝑋 ′𝐻 = 𝜏𝐻 , 𝑋𝑅𝑢 = 𝜌𝑅𝑢 and 𝑋𝐻 = 𝑋 ′𝐻 = 𝜏𝐻 , thus 𝜇𝑋𝜕𝐵

𝐵,I (·) = 𝜇
𝜌 (𝑅𝑢 )⊎𝜏 (𝐻 )
I (·). Hence,

(14) = 𝜇
𝜌
𝐻,I (𝜏𝐻 ) · 𝜇

𝜌 (𝑅𝑢 )⊎𝜏 (𝐻 )
I (𝜏𝐵) · Pr[F succeeds | E ∧ 𝑋 ′𝐻 = 𝜏𝐻 ] .(15)

To finish the proof, we need to calculate Pr[F succeeds | E∧𝑋 ′𝐻 = 𝜏𝐻 ]. This is done by the following
claim, whose proof is deferred to the end of the section.

Claim 4.7. Assume (12). It holds that

𝜇
𝜌
𝐻,I (𝜏𝐻 ) > 0 ⇐⇒ 𝜇

𝜌 (𝑅𝑢 )
𝐻,I (𝜏𝐻 ) > 0.(16)

Furthermore, for 𝜏𝐻 such that Pr[𝑋 ′𝐻 = 𝜏𝐻 | E] = 𝜇
𝜌
𝐻,I (𝜏𝐻 ) > 0,

Pr[F succeeds | E ∧ 𝑋 ′𝐻 = 𝜏𝐻 ] = 𝐶 ·
𝜇
𝜌 (𝑅𝑢 )
𝐻,I (𝜏𝐻 )
𝜇
𝜌
𝐻,I (𝜏𝐻 )

,(17)

where 𝐶 = 𝐶 (𝑅,𝑢, 𝜌) > 0 is a constant depending only on 𝑅,𝑢, 𝜌 but not on 𝜏 .

Combining (15) and Claim 4.7, we have

∀𝜏 ∈ [𝑞]𝑉 \𝑅𝑢 , Pr
[
𝑋 ′𝑉 \𝑅𝑢 = 𝜏 ∧ F succeeds | E

]
= 𝐶 · 𝜇𝜌 (𝑅𝑢 )I (𝜏) .(18)

This equation can be verified in two cases:
• If 𝜇𝜌

𝐻,I (𝜏𝐻 ) = 0, then by (16), 𝜇𝜌 (𝑅𝑢 )
𝐻,I (𝜏𝐻 ) = 0, thus LHS = RHS = 0.

• If 𝜇𝜌
𝐻,I (𝜏𝐻 ) > 0, by (15) and (17), we have LHS = 𝐶 · 𝜇𝜌 (𝑅𝑢 )

𝐻,I (𝜏𝐻 ) · 𝜇
𝜌 (𝑅𝑢 )⊎𝜏 (𝐻 )
I (𝜏𝐵) = RHS, where

the last equation holds because 𝜏 ∈ [𝑞]𝑉 \𝑅𝑢 and 𝑉 \ 𝑅𝑢 = 𝐻 ⊎ 𝐵.
Thus, the probability that F succeeds is

Pr [F succeeds | E] =
∑

𝜎 ∈[𝑞 ]𝑉 \𝑅𝑢
Pr

[
𝑋 ′𝑉 \𝑅𝑢 = 𝜎 ∧ F succeeds | E

]
=

∑
𝜎 ∈[𝑞 ]𝑉 \𝑅𝑢

𝐶 · 𝜇𝜌 (𝑅𝑢 )I (𝜎) = 𝐶,(19)
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where the last equation holds because
∑

𝜎 ∈[𝑞 ]𝑉 \𝑅𝑢 𝜇
𝜌 (𝑅𝑢 )
I (𝜎) = 1 and 𝐶 = 𝐶 (𝑅,𝑢, 𝜌) > 0 is a constant

depending only on 𝑅,𝑢, 𝜌 . Thus, for any 𝜏 ∈ [𝑞]𝑉 \𝑅𝑢 , combining (18) and (19), we have

Pr
[
𝑋 ′𝑉 \𝑅𝑢 = 𝜏 | F succeeds ∧ E

]
=
Pr

[
𝑋 ′
𝑉 \𝑅𝑢 = 𝜏 ∧ F succeeds | E

]
Pr [F succeeds | E] =

𝐶 · 𝜇𝜌 (𝑅𝑢 )I (𝜏)
𝐶

= 𝜇
𝜌 (𝑅𝑢 )
I (𝜏),

where the last equation holds due to 𝐶 = 𝐶 (𝑅,𝑢, 𝜌) > 0. This proves (13). □

Proof of Claim 4.7. We first introduce the following definitions. Recall that 𝑅𝑢 ⊎𝐵⊎𝐻 = 𝑉 . We further
partition 𝜕𝐵 into two disjoint sets 𝜕𝐵 ∩ 𝑅𝑢 and 𝜕𝐵 \ 𝑅𝑢 . Define

𝑆 ≜ 𝜕𝐵 \ 𝑅𝑢 = 𝜕𝐵 ∩ 𝐻,

Ψ ≜ 𝜕𝐵 ∩ 𝑅𝑢 = 𝜕𝐵 ∩ 𝑅.(20)

We now prove (16). Since 𝜌 = 𝜌 (𝑅𝑢) ⊎ 𝜌 (𝑢), by the Bayes law, we have the following relation
between 𝜇

𝜌 (𝑅𝑢 )
𝐻,I (𝜏𝐻 ) and 𝜇

𝜌
𝐻,I (𝜏𝐻 ):

𝜇
𝜌
𝐻,I (𝜏𝐻 ) = 𝜇

𝜌 (𝑅𝑢 )⊎𝜌 (𝑢)
𝐻,I (𝜏𝐻 ) =

𝜇
𝜌 (𝑅𝑢 )⊎𝜏 (𝐻 )
𝑢,I (𝜌𝑢)

𝜇
𝜌 (𝑅𝑢 )
𝑢,I (𝜌𝑢)

· 𝜇𝜌 (𝑅𝑢 )
𝐻,I (𝜏𝐻 ).(21)

Note that 𝜌 ∈ [𝑞]𝑅 is a feasible configuration, thus 𝜇𝜌 (𝑅𝑢 )
𝑢,I (𝜌𝑢) > 0 and the above ratio is well-defined.

Note that 𝑢 ∈ 𝐵 and 𝑅𝑢 ⊎ 𝐵 ⊎𝐻 = 𝑉 . The set 𝜕𝐵 separates 𝑢 from (𝑅𝑢 ⊎𝐻 ) \ 𝜕𝐵. Note that 𝜕𝐵 = 𝑆 ⊎ Ψ,
where 𝑆 and Ψ is defined in (20). By the conditional independence property (Property 4.3), we have

𝜇
𝜌 (𝑅𝑢 )⊎𝜏 (𝐻 )
𝑢,I (𝜌𝑢) = 𝜇

𝜌 (Ψ)⊎𝜏 (𝑆)
𝑢,I (𝜌𝑢) ≥ 𝜇min(𝑅,𝑢, 𝜌) > 0,(22)

where the first inequality is because 𝜇min(𝑅,𝑢, 𝜌) in (12) can be rewritten asmin𝜂∈[𝑞 ]𝑆 𝜇
𝜌 (Ψ)⊎𝜂
𝑢,I (𝜌𝑢), and

the second inequality is because 𝜇min(𝑅,𝑢, 𝜌) > 0 due to the lower bound in (12).
Next, we prove (17). Suppose 𝜇𝜌

𝐻,I (𝜏𝐻 ) > 0. Combining (21) and (22), it remains to prove that

Pr[F succeeds | E ∧ 𝑋 ′𝐻 = 𝜏𝐻 ] = 𝐶 ·
𝜇
𝜌 (𝑅𝑢 )
𝐻,I (𝜏𝐻 )
𝜇
𝜌
𝐻,I (𝜏𝐻 )

= 𝐶 ·
𝜇
𝜌 (𝑅𝑢 )
𝑢,I (𝜌𝑢)

𝜇
𝜌 (Ψ)⊎𝜏 (𝑆)
𝑢,I (𝜌𝑢)

.(23)

Conditional on E, we have 𝑋Ψ = 𝜌Ψ and 𝑋𝑢 = 𝜌𝑢 . Recall that 𝑋 ′𝐻 = 𝑋𝐻 , 𝑆 ⊆ 𝐻 and 𝑆 ⊎ Ψ = 𝜕𝐵.
Conditional on𝑋 ′𝐻 = 𝜏𝐻 , it holds that𝑋𝑆 = 𝜏𝑆 . By the definition of the filter F in Line 5 of Algorithm 2,
we have that

Pr
[
F succeeds | E ∧ 𝑋 ′𝐻 = 𝜏𝐻

]
=
𝜇min(R, 𝑢, 𝑋R)

𝜇𝑋𝜕𝐵

𝑢,I (𝑋𝑢)
=

𝜇min(𝑅,𝑢, 𝜌)
𝜇
𝜌 (Ψ)⊎𝜏 (𝑆)
𝑢,I (𝜌𝑢)

.(24)

Combining (24) and (23), we can set 𝐶 = 𝐶 (𝑅,𝑢, 𝜌) in (23) as

𝐶 = 𝐶 (𝑅,𝑢, 𝜌) ≜ 𝜇min(𝑅,𝑢, 𝜌)
𝜇
𝜌 (𝑅𝑢 )
𝑢,I (𝜌𝑢)

=
1

𝜇
𝜌 (𝑅𝑢 )
𝑢,I (𝜌𝑢)

· min
𝜂∈[𝑞 ]𝑆

𝜇
𝜌 (Ψ)⊎𝜂
𝑢,I (𝜌𝑢) .(25)

Note that 𝜇𝜌 (𝑅𝑢 )
𝑢,I (𝜌𝑢) > 0 because 𝜌 is feasible, and 𝜇min(𝑅,𝑢, 𝜌) > 0 due to the lower bound in (12).

This implies 𝐶 (𝑅,𝑢, 𝜌) > 0. Remark the sets 𝑆 and Ψ are determined by 𝑅 and 𝑢. This implies that the
𝐶 (𝑅,𝑢, 𝜌) defined as above depends only on 𝑅,𝑢, 𝜌 . This proves (17). □

5. Efficiency undeR stRong spatial mixing

In this section, we prove the following result.
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Condition 5.1. Let I = (𝐺, [𝑞], 𝒃,𝑨) be a permissive spin system where 𝐺 = (𝑉 , 𝐸). There is an integer
ℓ = ℓ (𝑞) ≥ 2 such that the following holds: for every 𝑣 ∈ 𝑉 , Λ ⊆ 𝑉 , and any two partial configurations
𝜎, 𝜏 ∈ [𝑞]Λ satisfying min{dist𝐺 (𝑣,𝑢) | 𝑢 ∈ Λ, 𝜎𝑢 ≠ 𝜏𝑢} = ℓ ,

∀𝑎 ∈ [𝑞] :
�����𝜇𝜎𝑣,I (𝑎)𝜇𝜏

𝑣,I (𝑎)
− 1

����� ≤ 1
5 |𝑆ℓ (𝑣) |

(with the convention 0/0 = 1),(26)

where 𝑆ℓ (𝑣) ≜ {𝑢 ∈ 𝑉 | dist𝐺 (𝑣,𝑢) = ℓ} denotes the sphere of radius ℓ centered at 𝑣 in 𝐺 .

Theorem 5.2. Let ℑ be a class of permissive spin systems satisfying Condition 5.1. Given any instance
I = (𝐺, [𝑞], 𝒃,𝑨) ∈ ℑ, the Algorithm 2 with parameter ℓ = ℓ∗ − 1 outputs a perfect sample from 𝜇I

within𝑂
(
𝑛 · 𝑞2Δℓ∗

)
time in expectation, where 𝑛 is the number of vertices in𝐺 , Δ is the maximum degree

of 𝐺 , ℓ∗ = ℓ∗(𝑞) ≥ 2 is determined by Condition 5.1, and 𝑂 (·) hides only absolute constants.

The correctness part of Theorem 5.2 follows from Theorem 4.1, we focus on the efficiency part. The
proof sketch is that ifℑ satisfies Condition 5.1 with parameter ℓ∗, we set the parameter ℓ in Algorithm 2
as ℓ = ℓ∗ − 1. We prove that after each iteration of the while loop, the size of R decreases by at least
1
5 in expectation. Note that the initial R = 𝑉 , thus the initial size of R is 𝑛. By the optional stopping
theorem, the number of iterations of the while loop is 𝑂 (𝑛) in expectation. One can verify that the
time complexity of the while loop is 𝑂 (𝑞2Δℓ+1) = 𝑂 (𝑞2Δℓ∗ ). This proves the running time result.

To analyze the expected size of R after each iteration of the while loop, we analyze the Bayes
filter F in Line 5. The probability that F fails is 1 − 𝜇min/𝜇𝑋𝜕𝐵

𝑢 (𝑋𝑢). Suppose 𝜎 ∈ [𝑞]𝜕𝐵 achieves
𝜇min = 𝜇𝜎𝑢 (𝑋𝑢). By Fact 4.4, we can verify that 𝜎 and𝑋𝜕𝐵 can be differ only at 𝜕𝐵 \R ⊆ 𝑆ℓ+1(𝑢) = 𝑆ℓ∗ (𝑢).
By Condition 5.1, we know that Pr[F fails] ≤ 1

5 |𝑆ℓ∗ (𝑢) | . In addition, we have
• if F succeeds, the size of R decreases by 1;
• if F fails, the size of R increases by |𝜕𝐵 \ R|, it easy to verify 𝜕𝐵 \ R ⊆ 𝑆ℓ∗ (𝑢) by Fact 4.4, thus,

the size of R increases by at most |𝑆ℓ∗ (𝑢) |.
Thus, after each iteration of the while loop, the size of R decreases by at least 1

5 in expectation.
In the formal proof, we actually prove a stronger result. We first introduce the following condition.

Condition 5.3. Let I = (𝐺, [𝑞], 𝒃,𝑨) be a permissive spin system where 𝐺 = (𝑉 , 𝐸). There is an integer
ℓ = ℓ (𝑞) ≥ 2 such that the following holds: for every 𝑣 ∈ 𝑉 , any two disjoint sets 𝐴, 𝐵 ⊆ 𝑉 with
dist𝐺 (𝑣, 𝐵) = min{dist𝐺 (𝑣,𝑢) | 𝑢 ∈ 𝐵} = ℓ , and any partial configuration 𝜎 ∈ [𝑞]𝐴,

∀𝑎 ∈ [𝑞], 1 −
min𝜏 ∈[𝑞 ]𝐵 𝜇

𝜎⊎𝜏
𝑣,I (𝑎)

𝜇𝜎
𝑣,I (𝑎)

≤ 1
5 |𝑆ℓ (𝑣) |

(with the convention 0/0 = 1),(27)

where 𝑆ℓ (𝑣) ≜ {𝑢 ∈ 𝑉 | dist𝐺 (𝑣,𝑢) = ℓ} denotes the sphere of radius ℓ centered at 𝑣 in 𝐺 .

It is straightforward to verify that Condition 5.1 implies Condition 5.3. In the rest of this section,
we prove that the efficiency result in Theorem 5.2 holds under Condition 5.3.

Let I = (𝐺, [𝑞], 𝒃,𝑨) ∈ ℑ be the input instance satisfying Condition 5.3 with some ℓ∗ ≥ 2. Set the
parameter ℓ in Algorithm 2 as ℓ = ℓ∗ − 1. Denote by 𝑇 the number of iterations of the while loop in
Algorithm 2. To prove the efficiency result in Theorem 5.2, we bound the maximum running time of
the while loop and the expectation of 𝑇 in the following two lemmas.

Lemma 5.4. The running time of each while loop is at most 𝑂 (𝑞2Δℓ+1)= 𝑂 (𝑞2Δℓ∗ ).

Lemma 5.5. E [𝑇 ] ≤ 5𝑛.

Since the input instance I is permissive (Definition 2.1) , the initial feasible configuration can be
constructed by a simple greedy algorithm. The running time of the first two lines in Algorithm 2 is
𝑂 (𝑛Δ). Combining this with Lemma 5.4 and Lemma 5.5 proves the efficiency result in Theorem 5.2.

Proof of Lemma 5.4. We first show that 𝜇𝑋𝜕𝐵

𝑢,I (𝑋𝑢) can be computed in time 𝑂 (𝑞Δℓ+1), where 𝑂 (·) hides
an absolute constant. Let 𝐺 = 𝐺 [𝐵 ∪ 𝜕𝐵] and Ĩ be the instance restricted to 𝐺 . By the conditional
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independence property (Property 4.3), it is straightforward to verify

𝜇𝑋𝜕𝐵

𝑢,I (𝑋𝑢) = 𝜇𝑋𝜕𝐵

𝑢,Ĩ
(𝑋𝑢)(28)

since 𝜕𝐵 separates 𝐵 from𝑉 \ (𝐵 ∪ 𝜕𝐵) and 𝑢 ∈ 𝐵. Since |𝐵 | ≤ |𝐵ℓ (𝑢) | ≤ Δℓ+1−1
Δ−1 ≤ Δℓ+1, it takes at most

𝑂 (𝑞Δℓ+1) to enumerate all possibilities and compute 𝜇𝑋𝜕𝐵

𝑢,I (𝑋𝑢) using (28). By Fact 4.4, 𝜕𝐵 ⊆ 𝑆ℓ+1(𝑢) ∪𝑅.
Since |𝜕𝐵 \ 𝑅 | ≤ |𝑆ℓ+1(𝑢) | ≤ Δℓ+1, we can enumerate all [𝑞]𝜕𝐵\𝑅 to compute 𝜇min in time𝑂 (𝑞2Δℓ+1). The
total running time for the first three lines of the while loop is at most 𝑂 (𝑞2Δℓ+1).

Another non-trivial computation is to sample 𝑋 (𝐵) from 𝜇𝑋𝜕𝐵

I . Similar to (28), conditional indepen-
dence implies that this can be done by straightforward enumeration in time𝑂 (𝑞Δℓ+1). The total running
time of the while loop is thus 𝑂 (𝑞2Δℓ+1)= 𝑂 (𝑞2Δℓ∗ ). □

Proof of Lemma 5.5. Define a sequence of random pairs (𝑿0,R0), (𝑿1,R1), . . . , (𝑿𝑇 ,R𝑇 ), where each
(𝑿𝑡 ,R𝑡 ) ∈ [𝑞]𝑉 × 2𝑉 . The initial (𝑿0,R0) is constructed by the first two lines of Algorithm 2. In 𝑡-th
while loop, Algorithm 2 updates (𝑿𝑡−1,R𝑡−1) to (𝑿𝑡 ,R𝑡 ). For any 𝑡 ≥ 0, we use a random variable
𝑌𝑡 ≜ |R𝑡 | to denote the size of R𝑡 . The stopping time 𝑇 is the smallest integer such that 𝑌𝑡 = 0.

Define the execution log of Algorithm 2 up to time 𝑡 as

L𝑡 ≜ (𝑋0(R0),R0), (𝑋1(R1),R1), . . . , (𝑋𝑡 (R𝑡 ),R𝑡 ) .

Note that the algorithm terminates at time 𝑇 if and only if R𝑇 = ∅. In the 𝑡-th iteration of the while
loop, we use F𝑡 to denote the Bayes filter and u𝑡 to denote the random vertex picked in Line 4. We
have the following claim.

Claim 5.6. Given any execution log L𝑡−1 created by Algorithm 2 such that R𝑡−1 ≠ ∅, for any 𝑢 ∈ R𝑡−1,

Pr[F𝑡 succeeds | L𝑡−1, u𝑡 = 𝑢] ≥
{
1 if |𝑆𝑡 | = ∅;
1 − 2

5 |𝑆𝑡 | if |𝑆𝑡 | ≠ ∅,

where 𝑆𝑡 = 𝜕𝐵𝑡 \ R𝑡−1 and 𝐵𝑡 = (𝐵ℓ (𝑢) \ R𝑡−1) ∪ {𝑢} is the set 𝐵 in the 𝑡-th iteration the while loop.

Note that given L𝑡−1, the vertex u𝑡 ∈ R𝑡−1 is sampled uniformly and independently. For any 1 ≤
𝑡 ≤ 𝑇 and any execution log L𝑡−1 created by Algorithm 2, if 𝑆𝑡 = ∅, by Claim 5.6, we have

E [𝑌𝑡 | L𝑡−1, 𝑆𝑡 = ∅] = 𝑌𝑡−1 − 1;

Suppose 𝑆𝑡 ≠ ∅. If F𝑡 fails, then R𝑡 = R𝑡−1 ∪ 𝜕𝐵𝑡 = R𝑡−1 ∪ (𝜕𝐵𝑡 \ R𝑡−1). In other words, |𝑆𝑡 | new
vertices will be added into R𝑡−1 if F𝑡 fails. We have

E [𝑌𝑡 | L𝑡−1, 𝑆𝑡 ≠ ∅] ≤ 𝑌𝑡−1 − Pr[F𝑡 succeeds | L𝑡−1, 𝑆𝑡 ≠ ∅] + Pr[F𝑡 fails | L𝑡−1, 𝑆𝑡 ≠ ∅] · |𝑆𝑡 |

≤ 𝑌𝑡−1 +
2

5|𝑆𝑡 |
− 3
5

(by Claim 5.6)

≤ 𝑌𝑡−1 −
1
5
.

Combining two cases together implies

E [𝑌𝑡 | L𝑡−1] = E [𝑌𝑡 | (𝑋0(R0),R0), (𝑋1(R1),R1), . . . , (𝑋𝑡−1(R𝑡−1),R𝑡−1)] ≤ 𝑌𝑡−1 −
1
5
.

We now define a sequence 𝑌 ′0 , 𝑌
′
1 , . . . , 𝑌

′
𝑇 where each 𝑌 ′𝑡 = 𝑌𝑡 + 𝑡

5 . Thus, 𝑌 ′0 , 𝑌 ′1 , . . . , 𝑌 ′𝑇 is a super-
martingale with respect to (𝑋0(R0),R0), (𝑋1(R1),R1), . . . , (𝑋𝑇 (R𝑇 ),R𝑇 ) and𝑇 is a stopping time. Note
that each |𝑌 ′𝑡 − 𝑌 ′𝑡−1 | ≤ 𝑛 + 1 is bounded and E [𝑇 ] is finite due to (10). Due to the optional stopping
theorem [8, Chapter 5] , we have E

[
𝑌 ′𝑇

]
≤ E

[
𝑌 ′0

]
= E [𝑌0]. Hence

E [𝑇 ] ≤ 5E [𝑌0] = 5𝑛,

where the last eqaution is because E [𝑌0] = E [|R0 |] = 𝑛. □
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Proof of Claim 5.6. Suppose 𝑆𝑡 = 𝜕𝐵𝑡 \ R𝑡−1 = ∅. This implies 𝜕𝐵𝑡 ⊆ R𝑡−1. By the definition of 𝜇min, we
have 𝜇𝑋𝑡−1 (𝜕𝐵𝑡 )

𝑢,I (𝑋𝑡−1(𝑢)) = 𝜇min and Pr[F𝑡 succeeds] = 1. In the following proof, we assume 𝑆𝑡 ≠ ∅.
We need the following property to prove the claim. Fix an execution log 𝐿𝑡 up to time 𝑡 ≥ 0:

𝐿𝑡 = (𝜌0, 𝑅0), (𝜌1, 𝑅1), . . . , (𝜌𝑡 , 𝑅𝑡 ),
where each 𝑅𝑖 ⊆ 𝑉 , each 𝜌𝑖 ∈ [𝑞]𝑅𝑖 . Assume 𝑅𝑡 ≠ ∅ and 𝐿𝑡 is a feasible execution log, i.e. Pr[L𝑡 =
𝐿𝑡 ] > 0. We claim that given the log 𝐿𝑡 , the random 𝑿𝑡 ∈ [𝑞]𝑉 satisfies 𝑋𝑡 (𝑅𝑡 ) = 𝜌𝑡 and

∀𝜏 ∈ [𝑞]𝑉 \𝑅𝑡 , Pr[𝑋𝑡 (𝑉 \ 𝑅𝑡 ) = 𝜏 | L𝑡 = 𝐿𝑡 ] = 𝜇
𝜌𝑡
I (𝜏).(29)

Equation (29) is proved by the induction on 𝑡 . If 𝑡 = 0, we have 𝑅0 = 𝑉 , Equation (29) holds trivially. As-
sume Equation (29) holds for all 𝑡 < 𝑘 . Fix any feasible execution log 𝐿𝑘 = (𝜌0, 𝑅0), (𝜌1, 𝑅1), . . . , (𝜌𝑘 , 𝑅𝑘 )
such that 𝑅𝑘 ≠ ∅. Since 𝐿𝑘 is feasible, we have 𝑅𝑘−1 ≠ ∅. Consider the 𝑘-th iteration of the while loop.
The 𝑘-th iteration exists because 𝑅𝑘−1 ≠ ∅. By induction hypothesis, conditioning on the execution log
L𝑘−1 = (𝜌0, 𝑅0), (𝜌1, 𝑅1), . . . , (𝜌𝑘−1, 𝑅𝑘−1), the random pair (𝑿𝑘−1,R𝑘−1) satisfies the Condition 4.5 and
𝑿𝑘−1 is a feasible configuration (since 𝐿𝑘 is a feasible execution log, thus 𝜌𝑘−1 is feasible). By Lemma 4.6,
conditioning on the execution log L𝑘−1 = (𝜌0, 𝑅0), (𝜌1, 𝑅1), . . . , (𝜌𝑘−1, 𝑅𝑘−1), the random pair (𝑿𝑘 ,R𝑘 )
satisfies the Condition 4.5. By Condition 4.5, assuming the further condition R𝑘 = 𝑅𝑘 and𝑋𝑘 (𝑅𝑘 ) = 𝜌𝑘 ,
Equation (29) holds for 𝑡 = 𝑘 . This proves Equation (29).

Consider a feasible execution log up to time 𝑡 − 1 ≥ 0:
𝐿𝑡−1 = (𝜌0, 𝑅0), (𝜌1, 𝑅1), . . . , (𝜌𝑡−1, 𝑅𝑡−1)

satisfying 𝑅𝑡−1 ≠ ∅, where each 𝑅𝑖 ⊆ 𝑉 and each 𝜌𝑖 ∈ [𝑞]𝑅𝑖 . Given the execution log L𝑡−1 = 𝐿𝑡−1, we
fix a vertex 𝑢 ∈ 𝑅𝑡−1 and assume u𝑡 = 𝑢. We analyze the 𝑡-th iteration of the while loop. To simplify
the notation, we drop the index and denote

𝑿 = 𝑿𝑡−1, 𝑅 = 𝑅𝑡−1, 𝜌 = 𝜌𝑡−1, 𝐵 = 𝐵𝑡 = (𝐵ℓ (𝑢) \ 𝑅) ∪ {𝑢}, 𝑆 = 𝑆𝑡 = 𝜕𝐵 \ 𝑅.
Note that the vertex u𝑡 is sampled from 𝑅 uniformly and independently. By (29), given L𝑡−1 = 𝐿𝑡−1
and u𝑡 = 𝑢, it holds that 𝑋 (𝑅) = 𝜌 and (𝑿 , 𝑅) satisfies Condition 4.5. By Property 4.2, we know
𝜇min(𝑅,𝑢, 𝜌) > 0, thus the lower bound in (12) holds. According to the proof of Lemma 4.6, combin-
ing (19) and (25), we have

Pr[F𝑡 succeeds | L𝑡−1 = 𝐿𝑡−1, u𝑡 = 𝑢] = 1

𝜇
𝜌 (𝑅𝑢 )
𝑢,I (𝜌𝑢)

· min
𝜂∈[𝑞 ]𝑆

𝜇
𝜌 (Ψ)⊎𝜂
𝑢,I (𝜌𝑢),

where 𝑅𝑢 = 𝑅 \ {𝑢}, 𝑆 = 𝜕𝐵 \𝑅 and Ψ = 𝜕𝐵 ∩𝑅. Note that 𝜕𝐵 = 𝑆 ⊎Ψ and 𝑢 ∈ 𝐵, the set 𝜕𝐵 separates 𝑢
from 𝑉 \ (𝐵 ∪ 𝜕𝐵). Since Ψ ⊆ 𝑅𝑢 and two sets 𝑅𝑢 and 𝐵 are disjoint, by the conditional independence
property (Property 4.3), we have 𝜇𝜌 (Ψ)⊎𝜂

𝑢,I (𝜌𝑢) = 𝜇
𝜌 (𝑅𝑢 )⊎𝜂
𝑢,I (𝜌𝑢). This implies

Pr[F𝑡 succeeds | L𝑡−1 = 𝐿𝑡−1, u𝑡 = 𝑢] = 1

𝜇
𝜌 (𝑅𝑢 )
𝑢,I (𝜌𝑢)

· min
𝜂∈[𝑞 ]𝑆

𝜇
𝜌 (𝑅𝑢 )⊎𝜂
𝑢,I (𝜌𝑢) .

By Fact 4.4, we have 𝑆 = 𝜕𝐵 \ 𝑅 ⊆ 𝑆ℓ+1(𝑢). We take 𝐴 = 𝑅𝑢, 𝐵 = 𝑆, 𝑣 = 𝑢, 𝜎 = 𝜌 (𝑅𝑢) and 𝑎 = 𝜌𝑢 in
Condition 5.3, since dist𝐺 (𝑢, 𝑆) = ℓ + 1 = ℓ∗ and |𝑆 | ≤ |𝑆ℓ∗ (𝑢) |, this proves that

Pr[F𝑡 succeeds | L𝑡−1 = 𝐿𝑡−1, u𝑡 = 𝑢] ≥ 1 − 1
5|𝑆ℓ∗ (𝑢) |

≥ 1 − 1
5|𝑆 | ≥ 1 − 2

5|𝑆 | .

□

Remark 5.7. Suppose the input instance from the class ℑ satisfies Condition 5.1 with some ℓ∗ ≥ 2 and
take ℓ = ℓ∗ − 1 in Algorithm 2. We could tweak Algorithm 2 to reduce its running time to 𝑂

(
𝑛 · 𝑞Δℓ∗

)
.

Let Ψ ≜ 𝜕𝐵∩R and 𝑆 ≜ 𝜕𝐵 \R. Note that 𝑆 ⊆ 𝑆ℓ∗ (𝑢) by Fact 4.4. The idea is that instead of calculating
𝜇min, we may simply compute 𝜇𝑋 (Ψ)⊎𝜎

𝑢,I (𝑋𝑢) where 𝜎 = 1 ∈ [𝑞]𝑆 is a one-vector, then use (26) to get a
lower bound 𝜇low of 𝜇min as

𝜇low ≜
(
1 − 1

5 |𝑆ℓ∗ (𝑢) |

)
𝜇𝑋 (Ψ)⊎𝜎
𝑢,I (𝑋𝑢) .
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By Condition 5.1, 𝜇low ≤ 𝜇𝑋 (𝜕𝐵)
𝑢,I (𝑋𝑢). Then we use 𝜇low instead of 𝜇min in the definition of F . It is

straightforward to check that Algorithm 2 is still correct with this tweak, and for each iteration of the
while loop, given any 𝑿 ,R, it holds that

Pr[F succeeds | 𝑿 ,R] = 𝜇low

𝜇𝑋 (𝜕𝐵)
𝑢,I (𝑋𝑢)

=

(
1 − 1

5|𝑆ℓ∗ (𝑣) |

) 𝜇𝑋 (Ψ)⊎𝜎
𝑢,I (𝑋𝑢)

𝜇𝑋 (𝜕𝐵)
𝑢,I (𝑋𝑢)

=

(
1 − 1

5|𝑆ℓ∗ (𝑣) |

) 𝜇𝑋 (Ψ)⊎𝜎
𝑢,I (𝑋𝑢)

𝜇𝑋 (Ψ)⊎𝑋 (𝑆)
𝑢,I (𝑋𝑢)

≥
(
1 − 1

5|𝑆ℓ∗ (𝑣) |

)2
(by 𝑆 ⊆ 𝑆ℓ∗ (𝑢) and Condition 5.1)

≥ 1 − 2
5|𝑆 | .

This proves Claim 5.6. Besides, we do not need to enumerate all configurations in [𝑞]𝑆 to compute
𝜇min, the expected running time of Algorithm 2 can be reduced to 𝑂

(
𝑛 · 𝑞Δℓ∗

)
.

6. Analysis of stRong spatial mixing

In this section, we use Theorem 5.2 to prove other results mentioned in Section 2. We analyze the
strong spatial mixing properties for the classes of spin systems mentioned in Section 2, so that we can
use Theorem 5.2 to prove the existences of perfect samplers.

6.1. Spin systems on sub-exponential neighborhood growth graphs. In this section, we prove
Theorem 2.4 using Theorem 5.2. We need the following proposition, which explains the relation be-
tween the multiplicative form of decay in (26) and the additive form of decay in (6). Similar results
appeared in [1, 15, 41, 2].

Proposition 6.1. Let 𝛿 : N→ N be a non-increasing function. Let ℑ be a class of permissive spin system
instances exhibiting strong spatial mixing with decay rate 𝛿 . For every instance I = (𝐺, [𝑞], 𝒃,𝑨) ∈ ℑ,
where𝐺 = (𝑉 , 𝐸), for every 𝑣 ∈ 𝑉 , Λ ⊆ 𝑉 , and any two partial configurations 𝜎, 𝜏 ∈ [𝑞]Λ with ℓ ≥ 2,

∀𝑎 ∈ [𝑞], min

(�����𝜇𝜎𝑣,I (𝑎)𝜇𝜏
𝑣,I (𝑎)

− 1
����� , 1

)
≤ 10𝑞 · |𝑆 ⌊ℓ/2⌋ (𝑣) | · 𝛿 (⌊ℓ/2⌋) (with the convention 0/0 = 1),(30)

where ℓ ≜ min{dist𝐺 (𝑣,𝑢) | 𝑢 ∈ Λ, 𝜎 (𝑢) ≠ 𝜏 (𝑢)} ≥ 2 and 𝑆 ⌊ℓ/2⌋ (𝑣) ≜ {𝑢 ∈ 𝑉 | dist𝐺 (𝑣,𝑢) = ⌊ℓ/2⌋}
denotes the sphere of radius ⌊ℓ/2⌋ centered at 𝑣 in 𝐺 .

The proof of Proposition 6.1 is deferred to the end of this section. We first use Proposition 6.1 to
prove Theorem 2.4.

Proof of Theorem 2.4. Let𝑞 be a finite integer. Supposeℑ is a class of𝑞-state spin systems that is defined
on a class of graphs that have sub-exponential neighborhood growth in Definition 2.3 with function
𝑠 : N → N. Suppose ℑ exhibits strong spatial mixing with exponential decay with some constants
𝛼 > 0, 𝛽 > 0. Let 𝛿 be the function 𝛿 (𝑥) = 𝛼 exp(−𝛽𝑥).

Fix a instance I = (𝐺, [𝑞], 𝒃,𝑨) ∈ ℑ, where 𝐺 = (𝑉 , 𝐸). By Proposition 6.1, we have for any
Λ ⊆ 𝑉 , any 𝑣 ∈ 𝑉 , and any two partial configurations 𝜎, 𝜏 ∈ [𝑞]Λ satisfying ℓ ≜ min{dist𝐺 (𝑣,𝑢) | 𝑢 ∈
Λ, 𝜎 (𝑢) ≠ 𝜏 (𝑢)} ≥ 2,

∀𝑎 ∈ [𝑞], min

(�����𝜇𝜎𝑣,I (𝑎)𝜇𝜏
𝑣,I (𝑎)

− 1
����� , 1

)
≤ 10𝑞 · |𝑆 ⌊ℓ/2⌋ (𝑣) | · 𝛿 (⌊ℓ/2⌋)

(by |𝑆𝑟 (𝑣) | ≤ 𝑠 (𝑟 )) ≤ 10𝑞 · 𝑠 (⌊ℓ/2⌋) · 𝛿 (⌊ℓ/2⌋)(31)

Note that 𝛿 (ℓ) = 𝛼 exp(−𝛽ℓ). We take ℓ0 = ℓ0(𝑞, 𝛼, 𝛽, 𝑠) sufficiently large such that ℓ0 ≥ 2 and

10𝛼𝑞 · 𝑠 (⌊ℓ0/2⌋) exp(−𝛽 ⌊ℓ0/2⌋) ≤
1

5𝑠 (ℓ0)
≤ 1

5
��𝑆ℓ0 (𝑣)�� .(32)
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Note that (32) is equivalent to

𝛿 (⌊ℓ0/2⌋) = 𝛼 exp(−𝛽 ⌊ℓ0/2⌋) ≤
1

50𝑞 · 𝑠 (⌊ℓ0/2⌋) · 𝑠 (ℓ0)
.(33)

Such ℓ0 = ℓ0(𝑞, 𝛼, 𝛽, 𝑠) must exist because 𝑠 (𝑟 ) = exp(𝑜 (𝑟 )) for all 𝑟 ≥ 0. Combining (31) and (32)
implies that I satisfies Condition 5.1 with ℓ0 ≥ 2. By Theorem 5.2, if the parameter ℓ in Algorithm 2 is
set so that ℓ = ℓ0 − 1, given I, the expected running time of Algorithm 2 is 𝑛 · 𝑞𝑂 (Δℓ0) . Since ℓ0 = 𝑂 (1),
𝑞 = 𝑂 (1) and Δ ≤ 𝑠 (1) = 𝑂 (1), the expected running time of Algorithm 2 is 𝑂 (𝑛). □

We now prove Proposition 6.1. Similar results are proved in [1, 15, 41, 2].

Proof of Proposition 6.1. Fix a instance I = (𝐺, [𝑞], 𝒃,𝑨) ∈ ℑ, where 𝐺 = (𝑉 , 𝐸). Fix two partial
configurations 𝜎, 𝜏 ∈ [𝑞]Λ with ℓ ≜ min{dist𝐺 (𝑣,𝑢) | 𝑢 ∈ Λ, 𝜎 (𝑢) ≠ 𝜏 (𝑢)}. We use 𝐷 ≜ {𝑣 ∈ Λ |
𝜎 (𝑣) ≠ 𝜏 (𝑣)} to denote the set at which 𝜎 and 𝜏 disagree. Fix a spin 𝑎 ∈ [𝑞]. Since I is permissive
(Definition 2.1), we have

𝜇𝜎𝑣,I (𝑎) = 0 ⇐⇒ 𝑏𝑣 (𝑎)
∏

𝑢∈Γ𝐺 (𝑣)∩Λ
𝐴𝑢𝑣 (𝑎, 𝜎 (𝑣)) = 0,

𝜇𝜏𝑣,I (𝑎) = 0 ⇐⇒ 𝑏𝑣 (𝑎)
∏

𝑢∈Γ𝐺 (𝑣)∩Λ
𝐴𝑢𝑣 (𝑎, 𝜏 (𝑣)) = 0,

where Γ𝐺 (𝑣) is the neighborhood of 𝑣 in 𝐺 . Since ℓ ≥ 2, there is no edge between 𝑣 and 𝐷 , we have
Γ𝐺 (𝑣) ∩ 𝐷 = ∅. This implies 𝜇𝜎

𝑣,I (𝑎) = 0 if and only if 𝜇𝜏
𝑣,I (𝑎) = 0. If 𝜇𝜎

𝑣,I (𝑎) = 𝜇𝜏
𝑣,I (𝑎) = 0, the

proposition holds trivially. We assume

𝜇𝜎𝑣,I (𝑎) > 0 ∧ 𝜇𝜏𝑣,I (𝑎) > 0.(34)

Define the set of vertices 𝐻 ≜ 𝑆 ⌊ℓ/2⌋ (𝑣) \ Λ, where 𝑆 ⌊ℓ/2⌋ (𝑣) = {𝑢 ∈ 𝑉 | dist(𝑢, 𝑣) = ⌊ℓ/2⌋} is the
sphere of radius ⌊ℓ/2⌋ centered at 𝑣 in graph𝐺 . By the definitions, we have 𝐻 ∩𝐷 = ∅. If 𝐻 = ∅, then
𝑆 ⌊ℓ/2⌋ (𝑣) ⊆ Λ, the proposition holds due to the conditional independence property. In the rest of the
proof, we assume 𝐻 ≠ ∅.

For any two disjoint sets 𝑆, 𝑆 ′ ⊆ 𝑉 and any partial configurations 𝜂 ∈ [𝑞]𝑆 , 𝜂 ′ ∈ [𝑞]𝑆′ , we use
𝜇
𝑆←𝜂,𝑆′←𝜂′

I to denote the distribution 𝜇
𝜂⊎𝜂′
I .

For any 𝜌 ∈ [𝑞]𝐻 satisfying 𝜇Λ←𝜎,𝑣←𝑎
𝐻,I (𝜌) > 0 and 𝜇Λ←𝜏,𝑣←𝑎

𝐻,I (𝜌) > 0 we have

𝜇𝜎𝑣,I (𝑎) =
𝜇𝜎
𝐻,I (𝜌) · 𝜇

𝜎⊎𝜌
𝑣,I (𝑎)

𝜇Λ←𝜎,𝑣←𝑎
𝐻,I (𝜌)

, 𝜇𝜏𝑣,I (𝑎) =
𝜇𝜏
𝐻,I (𝜌) · 𝜇

𝜏⊎𝜌
𝑣,I (𝑎)

𝜇Λ←𝜏,𝑣←𝑎
𝐻,I (𝜌)

.

The first equation holds since 𝜇𝜎
𝐻,I (𝜌) · 𝜇

𝜎⊎𝜌
𝑣,I (𝑎) = 𝜇𝜎

𝑣,I (𝑎) · 𝜇
Λ←𝜎,𝑣←𝑎
𝐻,I (𝜌) and 𝜇Λ←𝜎,𝑣←𝑎

𝐻,I (𝜌) > 0; the
second equation holds similarly. Note that 𝜇𝜎

𝑣,I (𝑎) > 0 and 𝜇𝜏
𝑣,I (𝑎) > 0. We have

𝜇𝜎
𝑣,I (𝑎)
𝜇𝜏
𝑣,I (𝑎)

=

(
𝜇
𝜎⊎𝜌
𝑣,I (𝑎)

𝜇
𝜏⊎𝜌
𝑣,I (𝑎)

) (
𝜇𝜎
𝐻,I (𝜌)
𝜇𝜏
𝐻,I (𝜌)

) (
𝜇Λ←𝜏,𝑣←𝑎
𝐻,I (𝜌)

𝜇Λ←𝜎,𝑣←𝑎
𝐻,I (𝜌)

)
.

Note that (Λ \ 𝐷) ∪ 𝐻 separates 𝑣 from 𝐷 in graph 𝐺 , and the two configurations 𝜎 ⊎ 𝜌 and 𝜏 ⊎ 𝜌
disagree only at 𝐷 . By the conditional independence property, we have 𝜇𝜎⊎𝜌

𝑣,I (𝑎) = 𝜇
𝜏⊎𝜌
𝑣,I (𝑎). Hence, we

have
𝜇𝜎
𝑣,I (𝑎)
𝜇𝜏
𝑣,I (𝑎)

=

(
𝜇𝜎
𝐻,I (𝜌)
𝜇𝜏
𝐻,I (𝜌)

) (
𝜇Λ←𝜏,𝑣←𝑎
𝐻,I (𝜌)

𝜇Λ←𝜎,𝑣←𝑎
𝐻,I (𝜌)

)
.(35)

Note that (35) holds for any 𝜌 ∈ [𝑞]𝐻 satisfying 𝜇Λ←𝜎,𝑣←𝑎
𝐻,I (𝜌) > 0 and 𝜇Λ←𝜏,𝑣←𝑎

𝐻,I (𝜌) > 0. Our goal is to
choose a suitable 𝜌 and bound the RHS. Let

𝜖 ≜ 𝛿 (⌊ℓ/2⌋) .
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Without loss of generality, we assume

10𝑞 · |𝑆 ⌊ℓ/2⌋ (𝑣) | · 𝛿 (⌊ℓ/2⌋) = 10𝑞𝜖 · |𝑆 ⌊ℓ/2⌋ (𝑣) | < 1.(36)

If (36) does not hold, then the inequality (30) holds trivially. We have the following claim.

Claim 6.2. Assume (36). There exists a configuration 𝜌 ∈ [𝑞]𝐻 satisfying 𝜇Λ←𝜎,𝑣←𝑎
𝐻,I (𝜌) > 0 and

𝜇Λ←𝜏,𝑣←𝑎
𝐻,I (𝜌) > 0 such that(

1 − 2𝑞𝜖

1 + 𝑞𝜖

)2𝑚
≤

(
𝜇𝜎
𝐻,I (𝜌)
𝜇𝜏
𝐻,I (𝜌)

) (
𝜇Λ←𝜏,𝑣←𝑎
𝐻,I (𝜌)

𝜇Λ←𝜎,𝑣←𝑎
𝐻,I (𝜌)

)
≤

(
1 + 2𝑞𝜖

1 − 𝑞𝜖

)2𝑚
,

where𝑚 ≜ |𝑆 ⌊ℓ/2⌋ (𝑣) | and 𝜖 ≜ 𝛿 (⌊ℓ/2⌋).

The inequality (36) implies that

𝑞𝜖𝑚 ≤ 1
10

.(37)

Combining Claim 6.2 with the above, we have(
𝜇𝜎
𝐻,I (𝜌)
𝜇𝜏
𝐻,I (𝜌)

) (
𝜇Λ←𝜏,𝑣←𝑎
𝐻,I (𝜌)

𝜇Λ←𝜎,𝑣←𝑎
𝐻,I (𝜌)

)
≤ exp

(
4𝑞𝜖𝑚

1 − 𝑞𝜖

)
≤ exp (5𝑞𝜖𝑚)(by (37))
≤ 1 + 10𝑞𝜖𝑚.(by (37))

Similarly, we have (
𝜇𝜎
𝐻,I (𝜌)
𝜇𝜏
𝐻,I (𝜌)

) (
𝜇Λ←𝜏,𝑣←𝑎
𝐻,I (𝜌)

𝜇Λ←𝜎,𝑣←𝑎
𝐻,I (𝜌)

)
≥ (1 − 2𝑞𝜖)2𝑚

≥ exp (−8𝑞𝜖𝑚)(by (37))
≥ 1 − 10𝑞𝜖𝑚.

Recall𝑚 ≜ |𝑆 ⌊ℓ/2⌋ (𝑣) | and 𝜖 ≜ 𝛿 (⌊ℓ/2⌋). This proves the proposition. □

Proof of Claim 6.2. Suppose |𝐻 | = ℎ ≥ 1. Let 𝐻 = {𝑣1, 𝑣2, . . . , 𝑣ℎ}. Define a sequence of subsets
𝐻0, 𝐻1, . . . , 𝐻ℎ as 𝐻𝑖 ≜ {𝑣 𝑗 | 1 ≤ 𝑗 ≤ 𝑖}. Note that 𝐻0 = ∅ and 𝐻ℎ = 𝐻 . We now construct the
configuration 𝜌 ∈ [𝑞]𝐻 by the following ℎ steps.

• initially, 𝜌 = ∅ is an empty configuration;
• in 𝑖-th step, note that 𝜌 ∈ [𝑞]𝐻𝑖−1 , choose 𝑐𝑖 ∈ [𝑞] that maximizes 𝜇Λ←𝜎,𝑣←𝑎,𝐻𝑖−1←𝜌

𝑣𝑖 ,I (𝑐𝑖) (break
tie arbitrarily), extend 𝜌 further at position 𝑣𝑖 and set 𝜌 (𝑣𝑖) = 𝑐𝑖 , thus 𝜌 ∈ [𝑞]𝐻𝑖 after the 𝑖-th
step.

By the construction, we have

∀1 ≤ 𝑖 ≤ ℎ, 𝜇
Λ←𝜎,𝑣←𝑎,𝐻𝑖−1←𝜌 (𝐻𝑖−1)
𝑣𝑖 ,I (𝜌 (𝑣𝑖)) ≥

1
𝑞
> 0.

Recall 𝐻 ≜ 𝑆 ⌊ℓ/2⌋ (𝑣) \ Λ. We have dist𝐺 (𝐻,𝐷) ≥ ℓ − ⌊ℓ/2⌋ ≥ ⌊ℓ/2⌋, where 𝐷 is the set at which 𝜎 and
𝜏 disagree, and dist𝐺 (𝐻,𝐷) ≜ min{dist𝐺 (𝑢1, 𝑢2) | 𝑢1 ∈ 𝐻 ∧ 𝑢2 ∈ 𝐷}. Recall 𝜖 ≜ 𝛿 (⌊ℓ/2⌋) and 𝛿 is a
non-increasing function. By the strong spatial mixing property in Definition 2.2, we have

∀1 ≤ 𝑖 ≤ ℎ, 𝜇
Λ←𝜏,𝑣←𝑎,𝐻𝑖−1←𝜌 (𝐻𝑖−1)
𝑣𝑖 ,I (𝜌 (𝑣𝑖)) ≥

1
𝑞
− 𝜖 > 0,

where 1
𝑞 − 𝜖 > 0 holds due to (36). By the chain rule, we have 𝜇Λ←𝜎,𝑣←𝑎

𝐻,I (𝜌) > 0 and 𝜇Λ←𝜏,𝑣←𝑎
𝐻,I (𝜌) > 0.

We now prove that 𝜌 satisfies the inequalities in Claim 6.2. For any 1 ≤ 𝑖 ≤ ℎ, define

𝑝𝑖 ≜ 𝜇
Λ←𝜎,𝑣←𝑎,𝐻𝑖−1←𝜌 (𝐻𝑖−1)
𝑣𝑖 ,I (𝜌 (𝑣𝑖)) .(38)
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Recall that dist𝐺 (𝐻, 𝑣) ≥ ⌊ℓ/2⌋ and dist𝐺 (𝐻,𝐷) ≥ ⌊ℓ/2⌋. Recall 𝜖 ≜ 𝛿 (⌊ℓ/2⌋) and 𝛿 is a non-increasing
function. By the strong spatial mixing property in Definition 2.2, we have for any 𝑐 ∈ [𝑞] and any
1 ≤ 𝑖 ≤ ℎ,

0 < 𝑝𝑖 − 𝜖 ≤ 𝜇
Λ←𝜎,𝑣←𝑐,𝐻𝑖−1←𝜌 (𝐻𝑖−1)
𝑣𝑖 ,I (𝜌 (𝑣𝑖)) ≤ 𝑝𝑖 + 𝜖,(39)

0 < 𝑝𝑖 − 𝜖 ≤ 𝜇
Λ←𝜏,𝑣←𝑐,𝐻𝑖−1←𝜌 (𝐻𝑖−1)
𝑣𝑖 ,I (𝜌 (𝑣𝑖)) ≤ 𝑝𝑖 + 𝜖.(40)

Note that 𝑝𝑖 − 𝜖 ≥ 1
𝑞 − 𝜖 > 0 due to (36). Combining (39), (40) and the chain rule implies

∀𝑐, 𝑐 ′ ∈ [𝑞],
ℎ∏
𝑖=1

(
𝑝𝑖 − 𝜖
𝑝𝑖 + 𝜖

)
≤

𝜇Λ←𝜏,𝑣←𝑐
𝐻,I (𝜌)

𝜇Λ←𝜎,𝑣←𝑐′

𝐻,I (𝜌)
≤

ℎ∏
𝑖=1

(
𝑝𝑖 + 𝜖
𝑝𝑖 − 𝜖

)
Note that 𝑝𝑖 ≥ 1

𝑞 for all 1 ≤ 𝑖 ≤ ℎ due the construction of 𝜌 , and 𝑞𝜖 < 1 due to (36). We have

∀𝑐, 𝑐 ′ ∈ [𝑞],
(
1 − 2𝑞𝜖

1 + 𝑞𝜖

)ℎ
≤

𝜇Λ←𝜏,𝑣←𝑐
𝐻,I (𝜌)

𝜇Λ←𝜎,𝑣←𝑐′

𝐻,I (𝜌)
≤

(
1 + 2𝑞𝜖

1 − 𝑞𝜖

)ℎ
,(41)

and

∀𝑐, 𝑐 ′ ∈ [𝑞],
(
1 − 2𝑞𝜖

1 + 𝑞𝜖

)ℎ
≤

𝜇Λ←𝜎,𝑣←𝑐
𝐻,I (𝜌)

𝜇Λ←𝜏,𝑣←𝑐′

𝐻,I (𝜌)
≤

(
1 + 2𝑞𝜖

1 − 𝑞𝜖

)ℎ
.(42)

Note that

𝜇𝜎𝐻,I (𝜌) =
∑
𝑐∈[𝑞 ]

𝜇𝜎𝑣,I (𝑐)𝜇
Λ←𝜎,𝑣←𝑐
𝐻,I (𝜌), 𝜇𝜏𝐻,I (𝜌) =

∑
𝑐∈[𝑞 ]

𝜇𝜏𝑣,I (𝑐)𝜇
Λ←𝜏,𝑣←𝑐
𝐻,I (𝜌) .

𝜇𝜎
𝐻,I (𝜌) is a convex combination of 𝜇Λ←𝜎,𝑣←𝑐

𝐻,I (𝜌), and 𝜇𝜏
𝐻,I (𝜌) is a convex combination of 𝜇Λ←𝜏,𝑣←𝑐

𝐻,I (𝜌).
By (41) and (42), it holds that(

1 − 2𝑞𝜖

1 + 𝑞𝜖

)2ℎ
≤

(
𝜇𝜎
𝐻,I (𝜌)
𝜇𝜏
𝐻,I (𝜌)

) (
𝜇Λ←𝜏,𝑣←𝑎
𝐻,I (𝜌)

𝜇Λ←𝜎,𝑣←𝑎
𝐻,I (𝜌)

)
≤

(
1 + 2𝑞𝜖

1 − 𝑞𝜖

)2ℎ
.

Note that ℎ = |𝐻 | and 𝐻 ⊆ 𝑆 ⌊ℓ/2⌋ (𝑣), then𝑚 = |𝑆 ⌊ℓ/2⌋ (𝑣) | ≥ ℎ. This proves the claim. □

6.2. Spin systems on general graphs. In this section, we prove Theorem 2.6 by showing that Con-
dition 2.5 implies Condition 5.1.

Proof of Theorem 2.6. Fix a instance I = (𝐺, [𝑞],𝑨, 𝒃) ∈ ℑ satisfying Condition 2.5 with parameter
ℓ = ℓ (𝑞) ≥ 2. Fix subset Λ ⊆ 𝑉 and vertex 𝑣 ∈ 𝑉 \ Λ. For any two partial configurations 𝜎, 𝜏 ∈ [𝑞]Λ
satisfying min{dist𝐺 (𝑣,𝑢) | 𝑢 ∈ Λ, 𝜎 (𝑢) ≠ 𝜏 (𝑢)} = ℓ ≥ 2, we claim

∀𝑎 ∈ [𝑞], 𝜇𝜎𝑣,I (𝑎) = 0 ⇐⇒ 𝜇𝜏𝑣,I (𝑎) = 0.(43)

Let 𝐷 ≜ {𝑢 ∈ Λ | 𝜎 (𝑢) ≠ 𝜏 (𝑢)}, 𝐻 ≜ Λ \ 𝐷 and 𝜌 ≜ 𝜎𝐻 = 𝜏𝐻 . Since ℓ ≥ 2, Γ𝐺 (𝑣) ∩ Λ = Γ𝐺 (𝑣) ∩ 𝐻 ,
where Γ𝐺 (𝑣) is the neighborhood of 𝑣 in 𝐺 . Since I is a permissive spin system (Definition 2.1),
𝜇𝜎
𝑣,I (𝑎) = 0 if and only if 𝑏𝑣 (𝑎)

∏
𝑢∈Γ𝐺 (𝑣)∩𝐻 𝐴𝑢𝑣 (𝑎, 𝜌𝑢) = 0; similarly, 𝜇𝜏

𝑣,I (𝑎) = 0 if and only if
𝑏𝑣 (𝑎)

∏
𝑢∈Γ𝐺 (𝑣)∩𝐻 𝐴𝑢𝑣 (𝑎, 𝜌𝑢) = 0. This proves (43).

If 𝜇𝜎
𝑣,I (𝑎) = 𝜇𝜏

𝑣,I (𝑎) = 0, then (26) holds trivially. Otherwise, by Condition 2.5, 𝜇𝜎
𝑣,I (𝑎) ≥ 𝛾 and

𝜇𝜏
𝑣,I (𝑎) ≥ 𝛾 , where 𝛾 = 𝛾 (Λ, 𝑣) > 0 is positive and depends only on Λ and 𝑣 . By (8) and (7), we have�����𝜇𝜎𝑣,I (𝑎)𝜇𝜏

𝑣,I (𝑎)
− 1

����� ≤ 𝛾 + 𝑑TV
(
𝜇𝜎
𝑣,I, 𝜇

𝜏
𝑣,I

)
𝛾

− 1 ≤ 1
5|𝑆ℓ (𝑣) |

.

This implies that any instance I = (𝐺, [𝑞],𝑨, 𝒃) ∈ ℑ satisfies Condition 5.1 with parameter ℓ = ℓ (𝑞) ≥
2. Theorem 2.6 is a corollary of Theorem 5.2. □
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6.3. Uniform list coloring. We now prove Theorem 2.9. Let 𝔏 be a class of list coloring instances
with at most 𝑞 colors for a finite 𝑞 > 0. Let 𝛼∗ ≈ 1.763 . . . be the positive root of the equation 𝑥𝑥 = e.
Suppose there exist 𝛼 > 𝛼∗ and 𝛽 ≥

√
2√

2−1 satisfying (1− 1/𝛽)𝛼e 1
𝛼 (1−1/𝛽) > 1 such that for all I = (𝐺 =

(𝑉 , 𝐸), [𝑞],L) ∈ 𝔏, the graph 𝐺 is triangle-free and
∀𝑣 ∈ 𝑉 , |𝐿(𝑣) | ≥ 𝛼 deg𝐺 (𝑣) + 𝛽.

Gamarnik, Katz, andMisra [18] proved that𝔏 exhibits the strong spatial mixingwith exponential decay.
If 𝔏 is defined on sub-exponential neighborhood growth graphs, then by Theorem 2.4, the linear time
perfect sampler exists for every instance in 𝔏.

There are two remaining cases in Theorem 2.9. We now assume that the class 𝔏 of list coloring
instances satisfies one of the following two conditions.

(I) there is an 𝑠 : N→ N with 𝑠 (ℓ) = exp(𝑜 (ℓ)) such that for any I = (𝐺 = (𝑉 , 𝐸), [𝑞],L) ∈ 𝔏,
∀𝑣 ∈ 𝑉 , ℓ ≥ 0, |𝑆ℓ (𝑣) | ≤ 𝑠 (ℓ),

∀𝑣 ∈ 𝑉 , |𝐿(𝑣) | ≥ 2 deg𝐺 (𝑣);
(II) for any I = (𝐺 = (𝑉 , 𝐸), [𝑞],L) ∈ 𝔏,

∀𝑣 ∈ 𝑉 , |𝐿(𝑣) | ≥ Δ2 − Δ + 2.

Lemma 6.3. Let 𝔏 be a class of list coloring instances with at most 𝑞 colors for a finite 𝑞 > 0. Suppose
𝔏 satisfies (I) or (II). There exist finite 𝐴 > 0 and 𝜃 > 0 such that for every I = (𝐺, [𝑞],L) ∈ 𝔏, where
𝐺 = (𝑉 , 𝐸), for any 𝑣 ∈ 𝑉 , any Λ ⊆ 𝑉 , and any 𝜎, 𝜏 ∈ [𝑞]Λ with ℓ ≜ min{dist𝐺 (𝑣,𝑢) | 𝑢 ∈ Λ, 𝜎 (𝑢) ≠
𝜏 (𝑢)} = Ω(𝑞 log𝑞), it holds that

∀𝑎 ∈ [𝑞] :
�����𝜇𝜎𝑣,I (𝑎)𝜇𝜏

𝑣,I (𝑎)
− 1

����� ≤ 𝐴e−𝜃ℓ

|𝑆ℓ (𝑣) |
(with the convention 0/0 = 1),

where 𝐴 = 𝐴(𝑞, 𝑠) > 0 and 𝜃 = 1
2𝑞 > 0 if 𝔏 satisfies (I) with the function 𝑠 : N→ N; or 𝐴 = poly(𝑞) and

𝜃 = 1
2𝑞2 > 0 if 𝔏 satisfies (II).

Theorem 5.2 together with Lemma 6.3 proves the remaining two cases in Theorem 2.9. We take a
sufficiently large ℓ∗ such that ℓ∗ = Ω(𝑞 log𝑞) and 𝐴e−𝜃ℓ

∗ ≤ 1
5 . By Lemma 6.3, instances of 𝔏 satisfy

Condition 5.1 with this ℓ∗ ≥ 2. Thus the perfect sampler exists due to Theorem 5.2. Note that ℓ∗
depends only on 𝑞 and the function 𝑠 , and for any instance I ∈ 𝔏, the maximum degree Δ ≤ 𝑞. Thus,
the expected running time of our algorithm is 𝑛 · 𝑞𝑂 (𝑞ℓ

∗ ) = 𝑂 (𝑛). Furthermore, if 𝔏 satisfies (II), then
ℓ∗ = Θ(𝑞2 log𝑞), thus the expected running time is 𝑛 · exp(exp(poly(𝑞))).

6.3.1. The multiplicative SSM of list coloring (proof of Lemma 6.3). In [18, Theorem 3], Gamarnik, Katz,
and Misra established the best known strong spatial mixing result for list colorings in bounded degree
graphs. This is almost what we need, except that we want to control the decay rate under conditions (I)
and (II). Going through the proof of [18, Theorem 3] and keeping track of the decay rate, we have the
proposition below. The similar analysis technique are also used in [32].

Proposition 6.4 ([18]). Let I = (𝐺, [𝑞],L) be a list coloring instance, where 𝐺 = (𝑉 , 𝐸). Assume that
I satisfies |𝐿(𝑣) | ≥ deg𝐺 (𝑣) + 1 for all 𝑣 ∈ 𝑉 . Suppose

max
𝑢∈𝑉

deg𝐺 (𝑢) − 1
|𝐿(𝑢) | − deg𝐺 (𝑢)

≤ 𝜒 < 1.

Then for any Λ ⊆ 𝑉 , any vertex 𝑣 ∈ 𝑉 \ Λ, and any two partial colorings 𝜎, 𝜏 ∈ [𝑞]Λ satisfying ℓ ≜
min{dist𝐺 (𝑣,𝑢) | 𝑢 ∈ Λ, 𝜎 (𝑢) ≠ 𝜏 (𝑢)} = Ω( log𝑞

log(1/𝜒) ), it holds that

∀𝑎 ∈ [𝑞] :
�����𝜇𝜎𝑣,I (𝑎)𝜇𝜏

𝑣,I (𝑎)
− 1

����� ≤ 𝐵𝜒 ℓ , (with convention 0/0 = 1)

where 𝐵 = poly(𝑞/𝜒) depends only on 𝑞 and 𝜒 .
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Proof of Lemma 6.3. Fix a instance I = (𝐺, [𝑞],L) ∈ 𝔏, where 𝐺 = (𝑉 , 𝐸). Suppose 𝔏 satisfies Condi-
tion in (I). We have

max
𝑢∈𝑉

deg𝐺 (𝑢) − 1
|𝐿(𝑢) | − deg𝐺 (𝑢)

≤ max
𝑢∈𝑉

deg𝐺 (𝑢) − 1
deg𝐺 (𝑢)

=
Δ − 1
Δ
≤ 𝑞 − 1

𝑞
.

The 𝜒 and 𝐵 in Proposition 6.4 can be set as 𝜒 = 𝑞−1
𝑞 and 𝐵 = poly(𝑞/𝜒) ≤ 𝐵max = poly(𝑞). Then

for any subset Λ ⊆ 𝑉 , any vertex 𝑣 ∈ 𝑉 \ Λ, any two colorings 𝜎, 𝜏 ∈ [𝑞]Λ that disagree on 𝐷 ⊆ Λ

satisfying ℓ ≜ min{dist𝐺 (𝑢, 𝑣) | 𝑢 ∈ 𝐷} = Ω( log𝑞
log 1/𝜒 ) = Ω(𝑞 log𝑞), it holds that

∀𝑎 ∈ [𝑞] :
�����𝜇𝜎𝑣,I (𝑎)𝜇𝜏

𝑣,I (𝑎)
− 1

����� ≤ 𝐵max𝜒
ℓ ≤ 𝐵max ·

|𝑆ℓ (𝑣) |
|𝑆ℓ (𝑣) |

· 𝜒 ℓ .

Since 𝐺 has sub-exponential growth, we have that |𝑆ℓ (𝑣) | ≤ 𝑠 (ℓ) = exp(𝑜 (ℓ)). Thus,

∀𝑎 ∈ [𝑞] :
�����𝜇𝜎𝑣,I (𝑎)𝜇𝜏

𝑣,I (𝑎)
− 1

����� ≤ 𝐵max ·
𝑠 (ℓ)
|𝑆ℓ (𝑣) |

·
(
𝑞 − 1
𝑞

) ℓ
≤ 𝑠 (ℓ)𝐵max

|𝑆ℓ (𝑣) |
· e−ℓ/𝑞 ≤ 𝐴e−𝜃ℓ

|𝑆ℓ (𝑣) |
,

for some 𝐴 = 𝐴(𝑞, 𝑠) > 0 and 𝜃 = 1
2𝑞 > 0.

Suppose 𝔏 satisfies (II). Recall that Δ is the maximum degree of graph 𝐺 . we have

max
𝑢∈𝑉

deg𝐺 (𝑢) − 1
|𝐿(𝑢) | − deg𝐺 (𝑢)

≤ Δ − 1
(Δ − 1)2 + 1 .

The 𝜒 and 𝐵 in Proposition 6.4 can be set as 𝜒 = Δ−1
(Δ−1)2+1 and 𝐵 = poly(𝑞/𝜒). Thus 1/𝜒 ≤ Δ2 ≤ 𝑞2. We

have 𝐵 = poly(𝑞/𝜒) ≤ 𝐵max = poly(𝑞). For any subset Λ ⊆ 𝑉 , any vertex 𝑣 ∈ 𝑉 \Λ, any two colorings
𝜎, 𝜏 ∈ [𝑞]Λ that disagree on 𝐷 ⊆ Λ satisfying ℓ ≜ min{dist𝐺 (𝑢, 𝑣) | 𝑢 ∈ 𝐷} = Ω( log𝑞

log 1/𝜒 ) = Ω(log𝑞), it
holds that

∀𝑎 ∈ [𝑞] :
�����𝜇𝜎𝑣,I (𝑎)𝜇𝜏

𝑣,I (𝑎)
− 1

����� ≤ 𝐵max𝜒
ℓ ≤ 𝐵max ·

Δ(Δ − 1)ℓ−1
|𝑆ℓ (𝑣) |

· 𝜒 ℓ ,

where the last inequality due to |𝑆ℓ (𝑣) | ≤ Δ(Δ − 1)ℓ−1. Since 𝜒 = Δ−1
(Δ−1)2+1 , we have

∀𝑎 ∈ [𝑞] :
�����𝜇𝜎𝑣,I (𝑎)𝜇𝜏

𝑣,I (𝑎)
− 1

����� ≤ 𝐵maxΔ

Δ − 1 ·
1

|𝑆ℓ (𝑣) |
·
(
(Δ − 1)2
(Δ − 1)2 + 1

) ℓ
(by Δ ≤ 𝑞) ≤ 2𝐵max

|𝑆ℓ (𝑣) |
·
(
(𝑞 − 1)2
(𝑞 − 1)2 + 1

) ℓ
≤ 2𝐵max

|𝑆ℓ (𝑣) |
· e−

ℓ
2𝑞2 =

𝐴e−𝜃ℓ

|𝑆ℓ (𝑣) |
,

where 𝐴 = 2𝐵max = poly(𝑞) and 𝜃 = 1
2𝑞2 > 0. □

6.4. Themonomer-dimermodel. WenowproveTheorem 2.10. We first present themonomer-dimer
model instance as a spin system instance, then we use Theorem 2.4 to prove Theorem 2.10.

Given a graph𝐺 = (𝑉 , 𝐸), we use𝐺∗ = (𝑉 ∗, 𝐸∗) = Lin(𝐺) to denote the line graph of𝐺 . Each vertex
𝑣𝑒 ∈ 𝑉 ∗ in line graph 𝐺∗ represents an edge 𝑒 ∈ 𝐸 in the original graph 𝐺 , and two vertices 𝑣𝑒 , 𝑣𝑒′ in
𝐺∗ are adjacent if and only if 𝑒 and 𝑒 ′ share a vertex in 𝐺 . We call 𝑆 ⊆ 𝑉 ∗ an independent set in 𝐺∗ if
no two vertices in 𝑆 are adjacent in 𝐺∗. It is easy to verify that there is a one-to-one correspondence
between the matchings in 𝐺 and the independent sets in 𝐺∗.

Given a monomer-dimer model instance I = (𝐺, 𝜆), we define a hardcore model instance I∗ =
(𝐺∗, 𝜆) in the line graph𝐺∗ = Lin(𝐺). Each independent set 𝑆 in𝐺∗ is assigned a weight𝑤I∗ (𝑆) = 𝜆 |𝑆 | .
Let 𝜇I∗ be a distribution over all independent sets in 𝐺∗ such that 𝜇I∗ (𝑆) ∝ 𝑤I∗ (𝑆). Hence, I∗ is a
spin system instance and I∗ is permissive. Besides, if we can sample independent sets from 𝜇I∗ , then
we can sample matchings from 𝜇I .
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Suppose the class of monomer-dimer model instances 𝔐 satisfies the condition in Theorem 2.10.
Then, there exist a constant 𝐶 and a function 𝑠 : N → N with 𝑠 (ℓ) = exp(𝑜 (ℓ)) such that for all I =
(𝐺, 𝜆) ∈ 𝔐, 𝜆 ≤ 𝐶 = 𝑂 (1), |𝑆ℓ (𝑣) | ≤ 𝑠 (ℓ) = exp(𝑜 (ℓ)) for all 𝑣 ∈ 𝑉 and ℓ ≥ 0, and Δ𝐺 ≤ 𝑠 (1) = 𝑂 (1).
Thus, 𝔐 exhibits strong spatial mixing with exponential decay with constants 𝛼 = 𝛼 (𝐶, 𝑠) > 0 and
𝛽 = 𝛽 (𝐶, 𝑠) > 0 [4, 40]. Observe that if 𝑒1, 𝑒2, . . . , 𝑒ℓ is a path of edges in𝐺 , then 𝑣𝑒1, 𝑣𝑒2, . . . , 𝑣𝑒ℓ is a path
of vertices in 𝐺∗, and vice versa. Hence, the following results hold for the class of hardcore instances
ℌ = {I∗ = (𝐺∗, 𝜆) | I ∈ 𝔐}.

• The class of hardcore instances ℌ exhibits strong spatial mixing with exponential decay with
constants 𝛼 ′ = 𝛼 ′(𝐶, 𝑠) > 0 and 𝛽 = 𝛽 (𝐶, 𝑠) > 0.
• for any instance (𝐺∗, 𝜆) ∈ ℌ, the graph𝐺∗ has sub-exponential growth. Suppose𝐺∗ = (𝑉 ∗, 𝐸∗)

is the line graph of 𝐺 = (𝑉 , 𝐸). For all 𝑒 = {𝑢, 𝑣} ∈ 𝐸, ℓ ≥ 1, it holds that |𝑆∗ℓ (𝑣𝑒) | ≤
Δ𝐺 ( |𝑆ℓ−1(𝑢) | + |𝑆ℓ−1(𝑣) |) ≤ 2𝑠 (1)𝑠 (ℓ − 1) = exp(𝑜 (ℓ)), where 𝑣𝑒 ∈ 𝑉 ∗ represents the edge
𝑒 , 𝑆∗ℓ (𝑣𝑒) is the sphere of radius ℓ centered at 𝑣𝑒 in 𝐺∗, 𝑆ℓ−1(𝑣) is the sphere of radius ℓ − 1
centered at 𝑣 in 𝐺 .

Note that the number of vertices in 𝐺∗ is at most 𝑛Δ𝐺 = 𝑂 (𝑛), where 𝑛 is number of vertices in 𝐺 .
Theorem 2.10 is a corollary of Theorem 2.4.

7. Dynamic sampling

In this section, we use our algorithm to solve the dynamic sampling problem [14, 13]. In this problem,
the Gibbs distribution itself changes dynamically and the algorithm needs tomaintain a random sample
efficiently with respect to the current Gibbs distribution.

We first define the update for the spin system instance. Let I = (𝐺, [𝑞], 𝒃,𝑨) be a spin system
instance, where𝐺 = (𝑉 , 𝐸).

• updates for vertices: modifying the vector 𝑏𝑣 of vertex 𝑣 ∈ 𝑉 ;
• updates for edges: modifying the matrix 𝐴𝑒 of edge 𝑒 ∈ 𝐸; or adding new edge 𝑒 ∉ 𝐸.

We use (𝐷𝑉 , 𝐷𝐸, C) to denote the update for instance I, where𝐷𝑉 ⊆ 𝑉 , 𝐷𝐸 ⊆ {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉 ,𝑢 ≠ 𝑣},
and C = (𝑏𝑣)𝑣∈𝐷𝑉 ∪ (𝐴𝑒)𝑒∈𝐷𝐸 . For each 𝑣 ∈ 𝐷𝑉 , we modify its vector to 𝑏𝑣 ∈ C, and for each 𝑒 ∈ 𝐷𝐸 ,
we either add the new edge 𝑒 with matrix 𝐴𝑒 ∈ C (if 𝑒 ∉ 𝐸), or modify its matrix to 𝐴𝑒 ∈ C (if 𝑒 ∈ 𝐸).

Definition 7.1 (dynamic sampling problem). Given a spin system instance I = (𝐺, [𝑞], 𝒃,𝑨) where
𝐺 = (𝑉 , 𝐸), a random sample 𝑿 ∈ [𝑞]𝑉 such that 𝑿 ∼ 𝜇I , and an update (𝐷𝑉 , 𝐷𝐸, C) that modifies the
instance I to an updated instance I ′ = (𝐺 ′, [𝑞], 𝒃 ′,𝑨′) where 𝐺 ′ = (𝑉 , 𝐸 ′), the algorithm updates 𝑿
to a new sample 𝑿 ′ ∈ [𝑞]𝑉 such that 𝑿 ′ ∼ 𝜇I′ .

Theorem 7.2. Let ℑ be a class of permissive spin systems satisfying Condition 5.1. There exists an algo-
rithm such that if the updated instance I ′ = (𝐺 ′, [𝑞], 𝒃 ′,𝑨′) ∈ ℑ, then the algorithm solves the dynamic
sampling problem within Δ( |𝐷𝑉 | + |𝐷𝐸 |)𝑞𝑂 (Δ

ℓ ) time in expectation, where Δ is the maximum degree of
𝐺 ′ and ℓ = ℓ (𝑞) ≥ 2 is determined by Condition 5.1.

Suppose 𝑞,Δ, ℓ = 𝑂 (1). By Theorem 7.2, the running time of our algorithm is linear in the size of
the update. Hence, the efficient dynamic sampling algorithm exists if strong spatial mixing holds with
a rate faster than the neighborhood growth. The relation between the spatial mixing property and the
static sampling is well studied, we extend such relation further to the dynamic setting.

The dynamic sampling algorithm is given in Algorithm 3.
In Algorithm 3, the set D ⊆ 𝑉 contains all the vertices incident to the update. Note that the input

𝑿 can be an infeasible configuration for I ′, i.e.𝑤I′ (𝑿 ) = 0, because the configuration 𝑋D may violate
the new constraints in C. Hence, in Line 2, we modify the configuration 𝑋D so that 𝑤I′ (𝑿 ) > 0.
Given the 𝑋𝜕D , this step can be achieved by a simple greedy algorithm since I ′ is permissive. Then,
we construct the initial R asD ∪ 𝜕D. In Line 5, we call the subroutine Fix on the updated instance I ′.

Note thatR = D∪𝜕D and 𝜕D separatesD from𝑉 \R in both𝐺 and𝐺 ′. In Line 2, we onlymodify the
partial configuration 𝑋D . Such modification only reviews the information of 𝑿 inD∪ 𝜕D. Thus, after
the modification, the 𝑋𝑉 \R follows the distribution 𝜇𝑋RI = 𝜇𝑋𝜕D

𝑉 \R,I due to the conditional independence
property. Since two instancesI andI ′ differ only at the subsetD, due to the conditional independence
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Algorithm 3: Dynamic perfect Gibbs sampler
Input :a spin system instance I = (𝐺 = (𝑉 , 𝐸), [𝑞], 𝒃,𝑨), a random sample 𝑿 ∼ 𝜇I , and an

update (𝐷𝑉 , 𝐷𝐸, C) that modifies I to I ′ = (𝐺 ′ = (𝑉 , 𝐸 ′), [𝑞], 𝒃 ′,𝑨′).
1 D ← 𝐷𝑉 ∪

(⋃
𝑒∈𝐷𝐸

𝑒
)
and 𝜕D ← {𝑣 ∈ 𝑉 \ D | ∃𝑢 ∈ D s.t. {𝑢, 𝑣} ∈ 𝐸 ′};

2 based on 𝑋𝜕D , modify the partial configuration 𝑋D so that𝑤I′ (𝑿 ) > 0;
3 R ← D ∪ 𝜕D ;
4 while R ≠ ∅ do
5 (𝑿 ,R) ← Fix(I ′,𝑿 ,R);
6 return 𝑿 ;

Algorithm 4: Fix(I,𝑿 ,R)
Input :a spin system instance I = (𝐺 = (𝑉 , 𝐸), [𝑞], 𝒃,𝑨), a configuration 𝑿 ∈ [𝑞]𝑉 , a

non-empty subset R ⊆ 𝑉 , and an integer parameter ℓ ≥ 0;
1 pick a 𝑢 ∈ R uniformly at random and let 𝐵 ← (𝐵ℓ (𝑢) \ R) ∪ {𝑢};
2 let 𝜇min be the minimum value of 𝜇𝜎

𝑢,I (𝑋𝑢) over all 𝜎 ∈ [𝑞]𝜕𝐵 that 𝜎R∩𝜕𝐵 = 𝑋R∩𝜕𝐵 ;
3 with probability 𝜇min

𝜇
𝑋𝜕𝐵
𝑢,I (𝑋𝑢 )

do

4 update 𝑿 by redrawing 𝑋𝐵 ∼ 𝜇𝑋𝜕𝐵

𝐵,I ;
5 R ← R \ {𝑢};
6 else
7 R ← R ∪ 𝜕𝐵;
8 return (𝑿 ,R)

property, two distributions 𝜇𝑋RI and 𝜇𝑋RI′ are identical. Thus, the initial𝑿 ,R satisfies Condition 4.5 with
respect to I ′, and 𝑿 is a feasible configuration for I ′. In each iteration of the while loop, we call the
subroutine Fix on I ′. By the identical proof in Section 4, the output 𝑿 ∼ 𝜇I′ .

Let Δ denote the maximum degree of graph𝐺 ′. Note that |D| = 𝑂 (|𝐷𝑉 |+ |𝐷𝐸 |). The time complexity
of the first three lines of Algorithm 3 is 𝑂 (Δ|D|). Note that the size of the initial R is 𝑂 (Δ|D|). The
efficiency result in Theorem 7.2 follows from the identical proof in Section 5.

8. Conclusion and open pRoblems

The connection between efficient algorithms and spatial mixing (decay of correlation) has been a
long-lasting theme in the study of sampling and approximate counting algorithms. In this work, we
introduce a new approach for perfect sampling, that relates efficient perfect sampling to strong spatial
mixing, for Gibbs distributions on graphs with sub-exponential neighborhood growth.

Our perfect sampling approach is generic. It is based on the classic Gibbs sampler, while previous
perfect sampling techniqueswere designed for specific systems or subclasses of systems. It is surprising
to us that the Gibbs sampler, studied for decades as the go-to algorithm for approximate sampling, can
be turned into a perfect sampler by simply adding a filter that accesses only local information.

One key insight in designing our algorithm is to preserve the so called conditional Gibbs property (★),
a strong invariant property that implies interruptible perfect sampling as well as dynamic perfect sam-
pling. An important open problem is to establish the same implication from spatial mixing to efficient
perfect sampling on general graphs. This is interesting even for special systems, e.g. the hardcore or
monomer-dimer models.

We want to point out that our current algorithm preserves the conditional Gibbs invariant (★) in a
quite pessimistic way: the invariant holds for any conditioning of the random configuration of the “in-
correct” variables. We see that even such a straightforward implementation of the invariant is sufficient
to give efficient perfect sampling under spatial mixing on graphs of bounded neighborhood growth. It
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is promising to have cleverer algorithms that exploit the true power of the conditional Gibbs property
by implementing this invariant in a more global fashion, on average over randomness.

In general, do efficient perfect sampling algorithms exist whenever efficient approximate samplers
exist? Our results provide evidence towards a positive answer, especially for spin systems on graphs
with bounded neighborhood growth. However, in general the gap between approximate and perfect
sampling persists (e.g. for sampling proper graph colorings [5]). Designing efficient perfect sampling
algorithms matching their approximate counterparts remains an interesting research direction.
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