
COUNTING SOLUTIONS TO RANDOM CNF FORMULAS

ANDREAS GALANIS, LESLIE ANN GOLDBERG, HENG GUO, AND KUAN YANG

Abstract. We give the first efficient algorithm to approximately count the number of solutions
in the random k-SAT model when the density of the formula scales exponentially with k.
The best previous counting algorithm for the permissive version of the model was due to
Montanari and Shah and was based on the correlation decay method, which works up to
densities (1+ok(1))

2 log k
k

, the Gibbs uniqueness threshold for the model. Instead, our algorithm
harnesses a recent technique by Moitra to work for random formulas with much higher densities.
The main challenge in our setting is to account for the presence of high-degree variables whose
marginal distributions are hard to control and which cause significant correlations within the
formula.

1. Introduction

Let Φ = Φ(k, n,m) be a k-CNF formula on n Boolean variables with m clauses chosen
uniformly at random where each clause has size k ≥ 3. The random formula Φ shows an
interesting threshold behaviour, where the asymptotic probability that Φ is satisfiable drops
dramatically from 1 to 0 when the density α := m/n crosses a certain threshold α⋆. There has
been tremendous progress on establishing this phase transition and pinpointing the threshold
α⋆ [30, 23, 4, 5, 15, 18] guided by elaborate but non-rigorous methods in physics [33, 32]. The
exact value of the threshold α⋆ is established in [18] for sufficiently large k; it is known that
α⋆ = 2k ln 2− 1

2(1 + ln 2) + ok(1) as k →∞.
In contrast, the “average case” computational complexity of random k-CNF formulas remains

elusive. It is a notoriously hard problem to design algorithms that succeed in finding a satisfying
assignment when the density of the formula Φ is close to (but smaller than) the satisfiability
threshold α⋆. The best polynomial-time algorithm to find a satisfying assignment of Φ is due
to Coja-Oghlan [10], which succeeds if α < (1 − ok(1)) · 2k ln k/k. It is known that beyond
this density bound 2k ln k/k the solution space of the formula undergoes a phase transition and
becomes severely more complicated [2], so local algorithms are bound to fail to find a satisfying
assignment in polynomial time (see for example [28, 11, 13]).

It is also a natural question to determine the number of satisfying assignments to Φ, denoted
by Z(Φ), when the density is below the satisfying threshold. It has been shown that 1

n logZ(Φ)

is concentrated around its expectation [1, 16] for α < (1 − ok(1)) · 2k ln k/k. However, for
the random k-SAT model, there is no known formula for the expectation E 1

n logZ(Φ) (though
see [3] and [40, 17] for progress along these lines for the case k = 2 and for more symmetric
models of random formulas, respectively). Regarding the algorithmic question, Montanari and
Shah [36] have given an efficient algorithm to approximate a closely related (permissive) version1
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1More precisely, for the relevant densities α, [36] gives, for all reals β > 0, a PTAS for the partition function
1
n
logZβ(Φ) of a weighted model on all Boolean assignments σ, where the weight of an assignment σ is e−βH(σ)

and H(σ) is the number of unsatisfied clauses under σ. The number of satisfying assignments Z(Φ) corresponds
to Zβ(Φ) when β → ∞. Technically, the algorithm of [36] does not yield an algorithm for β = ∞, even though
it applies to arbitrarily large β (in fact, even for β ≤ nδ for some small constant δ > 0).
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of 1
n logZ(Φ) if α ≤ 2 log k

k (1+ok(1)), based on the correlation decay method and the uniqueness
threshold of the Gibbs distribution. Note that the threshold for the density α is exponentially
lower than the satisfiability threshold, and no efficient algorithm was known to give a more
precise approximation to Z(Φ) (rather than the log-partition function).

In this paper, we address the algorithmic counting problem by giving the first fully polynomial-
time approximation scheme (FPTAS) for the number of satisfying assignments to random k-CNF
formulas, if the density α is less than 2rk, for sufficiently large k and some constant r > 0. Our
bound is exponential in k and goes well beyond the uniqueness threshold of 2 log k

k (1 + ok(1))
which is required by the correlation decay method.

Our result is related to other algorithmic counting results on random graphs such as counting
colourings, independent sets, and other structures in random graphs, see for example [38, 19,
42, 20, 31, 8]. However, previous methods, such as Markov Chain Monte Carlo and Barvinok’s
method, appear to be difficult to apply to random formulas. Instead, our algorithm is the
first adaptation of Moitra’s method [35] to the random instance setting. We give a high level
overview of the techniques in Section 1.3.

1.1. The model and the main result. For k ≥ 3, let Φ = Φ(k, n,m) denote a k-SAT
formula chosen uniformly at random from the set of all k-SAT formulas with n variables and
m clauses. Specifically, Φ has n variables v1, v2, . . . , vn and m clauses c1, c2, . . . , cm. Each
clause ci has k literals ℓi,1, ℓi,2, . . . , ℓi,k and each literal ℓi,j is chosen uniformly at random
from 2n literals {v1, v2, . . . , vn,¬v1,¬v2, . . . ,¬vn}. Note that each clause has exactly k literals
(repetitions allowed), so there are (2n)km possible formulas; we use Pr(·) to denote the uniform
distribution on the set of all such formulas. Throughout, we will assume that m = ⌊nα⌋, where
α > 0 is the density of the formula. We say that an event E holds w.h.p. if Pr(E) = 1− o(1) as
n→∞.

For a k-SAT formula Φ, we let Ω = Ω(Φ) denote the set of satisfying assignments of Φ. If Ω
is non-empty, we let πΦ denote the uniform distribution on Ω.

Theorem 1. There is a polynomial-time algorithm A and there are two constants r > 0 and
k0 ≥ 3 such that, for all k ≥ k0 and all α < 2rk, the following holds w.h.p. over the choice of the
random k-SAT formula Φ = Φ(k, n, ⌊αn⌋). The algorithm A, given as input the formula Φ and a
rational ε > 0, outputs in time poly(n, 1/ε) a number Z that satisfies e−ε|Ω(Φ)| ≤ Z ≤ eε|Ω(Φ)|.

Throughout this paper, we will assume that k ≥ k0 where k0 is a sufficiently large constant.
We will also assume that the density α of the formula Φ satisfies α < 2k/300/k3, so r can be
taken to be 1/301 in Theorem 1. The constant 300 here is not optimised, but we do not expect
to be able to use the current techniques to improve it substantially. Our main point is that for
a density which is exponential in k, an FPTAS exists for random k-CNF formulas. Finally, we
assume that k2α ≥ 1, otherwise it is well-known (see, e.g., Theorem 3.6 in [39]) that w.h.p. every
connected component of Φ, viewed as a hypergraph where variables correspond to vertices and
clauses correspond to hyperedges, is of size O(log n). In this case we can count the number of
satisfying assignments by brute force.

1.2. New developments. After this paper was written, Coja-Oghlan, Müller, and Raveloman-
ana [14] have given a conditional formula for the permissive version (analogously to [36], cf. Foot-
note 1) of the log-partition function E 1

n logZ(Φ). Their condition captures a non-reconstruction
property of the Gibbs distribution that is believed to hold up to densities (1 − ok(1))2k ln k/k
(though this is not known). As mentioned earlier, our algorithmic result applies to the non-
permissive version and gives unconditional approximation guarantees for the partition function
Z(Φ) with arbitrarily small relative error. For future work, it would be interesting to see
whether the probabilistic approach of [14] can be combined with the algorithmic perspective of
this paper.

1.3. Algorithm overview. We give a high-level overview of our algorithm here before giving
the details. Approximately counting the satisfying assignments of a k-CNF formula has been
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a challenging problem using traditional algorithmic techniques, since the solution space (the
set of satisfying assignments) is complicated and it is not connected, using the transitions of
commonly-studied Markov chains. Recently some new approaches were introduced [35, 24].
Most notably, the breakthrough work of Moitra [35] gives the first (and so far the only) efficient
deterministic algorithm that can approximately count the satisfying assignments of k-CNF
formulas in which each variable appears in at most d clauses, if, roughly speaking, d ≲ 2k/60.
Inspired by this, Feng et al. [22] have also given a MCMC algorithm which applies when d ≲
2k/20. Subsequent to this paper, Jain et al. [29] improved this bound even further, showing how
to approximately count when d ≲ 2k/5.741.

As our goal is to count satisfying assignments of sparse random k-CNF formulas, where
these degree bounds do not hold, but average degrees are small, it is natural to also choose
Moitra’s method in the random instance setting. However, the first difficulty is that Moitra’s
method relies on the fact that the marginal probability of each variable (the probability that
the variable is true in a uniformly-chosen satisfying assignment) is nearly 1/2. This is necessary
because Moitra’s method involves solving a certain linear program (LP) and the size of this LP
is polynomially-bounded only if a certain process couples quickly. The proof that the process
couples quickly relies on the fact that the marginals are nearly 1/2 (and certainly on the fact
that they are bounded away from 0 and 1). In contrast, for a random k-CNF formula, although
the average degree of variables is low, with high probability there are variables with degrees as
high as Ω(log n/log log n). In the presence of these high-degree variables, it is no longer true
that the marginal probabilities of the variables are nearly 1/2. In fact, they can be arbitrarily
near 0 or 1.

Our solution to this issue is to separate out high-degree variables, as well as those that are
heavily influenced by high-degree variables. To do this, we define a process to recursively label
“bad” variables. At the start, all high-degree variables are bad. Then, all clauses containing
more than k/10 bad variables are labelled bad, as are all variables that they contain. We run
this process until no more bad clauses are found. We call the remaining variables and clauses
of the formula “good”. A key property is that all good variables have an upper bound on their
degree and all good clauses contain at least 9k/10 good variables; this allows us to show that
the marginal probabilities of good variables are close to 1/2.

The next step is to attempt to apply Moitra’s method. The goal of Moitra’s method is
to compute more precise estimates for the marginal probabilities of variables; given accurate
estimates on the marginal probabilities it is then relatively easy to approximate the number of
satisfying assignments using refined self-reducibility techniques.

Of course, we need to modify the method to deal with the bad variables, which still appear
in the formula. We first explain Moitra’s method and then proceed with our modifications.
The first step is to mark variables, so that every clause contains a good fraction of marked
variables and a good fraction of unmarked variables. Then, for a particular marked variable
v, we set up an LP. As noted earlier, the variables of the LP correspond to the states of a
certain coupling process which couples two distributions on satisfying assignments using the
marked variables — the first distribution over satisfying assignments in which v is true, and the
second distribution over satisfying assignments in which v is false. Solving the LP recovers the
transition probabilities of the coupling process and yields enough information to approximate
the marginal probability of v.

In order to guarantee that the size of the LP is bounded by a polynomial in the size of the
original CNF formula, we have to restrict the coupling process. The process can be viewed as
a tree and it suffices to truncate this tree at a suitable level.

Thus, a crucial part of the proof (both in Moitra’s case and in ours) is to show that the error
caused by the truncation is sufficiently small. The reason that the error caused by the truncation
is small is that, with high probability, branches of the coupling tree “die out” before reaching
a large level. The reason for this is that the marginals of marked variables stay near 1/2, even
when conditioning on partial assignments.
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In our case where Φ is a random formula, the marginals are not all near 1/2, even without
any conditioning. But the good variables do have marginals near 1/2. So we only mark/unmark
good variables and we “give up” on bad variables. Given that we don’t have any control over the
bad variables, we have to modify the coupling process. Thus, whenever we meet a bad variable
in the coupling process, we have to assume the worst case and treat this variable and all bad
variables connected to it as if they all have failed the coupling, meaning that the disagreement
spreads quickly over bad components.

The most important part of our analysis is to upper bound the size of connected bad compon-
ents and how often we encounter them during the coupling process. Given these upper bounds,
we are able to show that the coupling still dies out sufficiently quickly, so the error caused by
the truncation is not too large.

Solving the LP then allows us to estimate the marginals of the good variables. Given that
the bad components have small size, this turns out to be enough information to allow us to
estimate the number of satisfying assignments of the original formula (containing both good
and bad clauses).

We conclude this summary by discussing the prospects for improving our work. Although
we have given an efficient algorithm which works for densities that are exponentially large in
k, the densities that we can handle are still small compared to the satisfiability threshold or
to the threshold under which efficient search algorithms exist. Perhaps a modest start towards
obtaining comparable thresholds for approximate counting algorithms would be to consider
models whose state spaces are connected. For example, for monotone k-CNF formulas where
each variable appears in at most d clauses, Hermon et al. [27] showed that efficient randomised
algorithms exist if d ≤ c2k/2 for some constant c > 0, which is optimal up to the constant c due
to complementing hardness results [7]. They also showed that the same algorithm works for
random regular monotone k-CNF formulas, if the degree d ≤ c2k/k for some c > 0. It remains
open whether an average case bound of the same order can be achieved for random monotone
k-CNF formulas.

2. Notation

To help keep track of the notation defined in this paper, the reader is referred to the table in
Appendix (Section A).

3. High-degree and bad variables

We will apply the method of Moitra [35], which was introduced to approximately count the
satisfying assignments of k-CNF formulas in which each literal appears a bounded number of
times. The main difference between the formulas studied by Moitra and the random formulas
that we study is that, in our formulas, some variables will occur many more times than the
average.

Definition 2. Let Φ be a k-SAT formula. We say that a variable v of Φ is high-degree if Φ
contains at least ∆ := 2k/300 occurrences of literals involving the variable v.

In our algorithm, we will not be able to control these high degree variables or other variables
that are affected by them. These variables contribute to the “bad” part of the formula Φ.
Formally, denote the set of clauses of Φ by C and the set of variables by V. For each c ∈ C, let
var(c) denote the set of variables in c. For each subset C of C, let var(C) := ∪c∈Cvar(c). The
bad variables and bad clauses of Φ are identified by running the following process:

(1) V0 (the initial bad variables) ← the set of high-degree variables;
(2) C0 ← the set of clauses with at least k/10 variables in V0;
(3) i← 0;
(4) Do the following until Vi = Vi−1:

• i← i+ 1;
• Vi ← Vi−1 ∪ var(Ci−1);
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• Ci ← {c ∈ C | var(c) ∩ Vi ≥ k/10};
(5) Cbad ← Ci and Vbad ← Vi;
(6) Cgood ← C \ Ci and Vgood ← V \ Vi.

The method that we have used to define good variables and clauses is inspired by [15].

Observation 3. For any c ∈ Cgood, |var(c) ∩ Vbad| < k/10. For any c ∈ Cbad,
∣∣var(c) ∩ Vgood

∣∣ =
0.

The formula Φ naturally corresponds to a bipartite “factor graph” where one side is vari-
ables and the other clauses. We will use the following two graphs GΦ and HΦ which are the
dependency graph induced by the factor graph on clauses and variables, respectively.

Definition 4. Let GΦ be the graph with vertex set C in which two clauses c and c′ are adjacent
if and only if var(c)∩ var(c′) ̸= ∅. We say that a set C ⊆ C of clauses is connected if the induced
subgraph GΦ[C] is connected. Let GΦ,good be the graph with vertex set Cgood in which two clauses
c and c′ are adjacent if and only if var(c)∩var(c′)∩Vgood ̸= ∅, i.e., c and c′ share a good variable.

Since each v ∈ Vgood has at most ∆ literal occurrences, the maximum degree in GΦ,good is at
most k(∆− 1).

Definition 5. Let HΦ be the graph with vertex set V in which two variables v and v′ are adjacent
if and only if there exists a clause c ∈ C such that v, v′ ∈ var(c). We say that a set V ⊆ V
of variables is connected if the induced subgraph HΦ[V ] is connected. Let HΦ,bad be the graph
with vertex set Vbad in which two variables v and v′ are adjacent if and only if there exists a
bad clause c ∈ Cbad such that v, v′ ∈ var(c). We say that a set V ⊆ V of variables is a bad
component if V is a connected component in HΦ,bad.

4. The Lovász local lemma

The Lovász local lemma [21] is an important tool for our algorithm. In particular, we will
need the asymmetric version (proved by Lovász and published in [41]). For convenience, we will
specialize the local lemma to the variable setting.

Definition 6. Let Ω∗ be the set of all 2|V| assignments V → {T,F}. Given any subset A ⊆ Ω∗,
let µA be the uniform distribution on A. We say that a subset A ⊆ Ω∗ depends on a variable
v ∈ V if there exist σ ∈ A and σ′ ∈ Ω∗ \A such that σ and σ′ differ only at v. We use var(A) to
denote the set of variables on which A depends. Let Γ(A) = {c ∈ C | var(c) ∩ var(A) ̸= ∅} and
Γgood(A) = {c ∈ C | var(A) ∩ var(c) ∩ Vgood ̸= ∅}. Similarly, for any c ∈ C, let Γ(c) = {c′ ∈ C |
var(c) ∩ var(c′) ̸= ∅} and Γgood(c) = {c′ ∈ C | var(c) ∩ var(c′) ∩ Vgood ̸= ∅}.

When reading the following theorem, it is helpful to think of Ac as being the set of assignments
that fail to satisfy the clause c (though we will also use the theorem in other ways).

Theorem 7 (The local lemma). For each c ∈ C, let Ac be a subset of Ω∗ such that var(Ac) ⊆
var(c). If there exists a function x : C → (0, 1) such that, for all c ∈ C,

PrµΩ∗ (Ac) ≤ x(c)
∏

b∈Γ(Ac)

(
1− x(b)

)
,(1)

then
PrµΩ∗

(∧
c∈C

Ac

)
> 0.

Furthermore, for any A ⊆ Ω∗, PrµΩ∗

(
A |

∧
c∈C Ac

)
≤ PrµΩ∗ (A)

∏
b∈Γ(A)

(
1− x(b)

)−1
.

The second part of Theorem 7 is due to Haeupler et al. [26]. It provides an upper bound
on the probability of an event under the uniform distribution over satisfying assignments. It is
also possible to find an assignment such that

∧
c∈C Ac holds in O(|V|) time by the algorithm of

Moser and Tardos [37].
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In the course of our algorithm it is useful to “mark” some of the variables in Vgood. For
this, we use the approach of Moitra [35]. Formally, a “marking” is an assignment from Vgood to
{marked, unmarked}. All bad variables are unmarked. Using Theorem 7, we have the following
lemma.

Lemma 8. W.h.p. over the choice of Φ, there exists a marking on Vgood such that:
(1) every good clause has at least 3k/10 marked variables and at least k/4 unmarked good

variables;
(2) there is a partial assignment of bad (and thus unmarked) variables that satisfies all bad

clauses.
Furthermore, such a marking can be found in deterministic polynomial time.

Proof. We apply Theorem 7 on Cgood and Vgood. Let Ω∗
good be all possible markings: Vgood →

{marked, unmarked}, so µΩ∗
good

is the distribution in which each good variable is marked in-
dependently and uniformly at random. For c ∈ Cgood, let M be the number of marked good
variables in var(c). Let Ac be the subset of Ω∗

good that M < 3k/10 or M > 3k/5. Since c ∈ Cgood,
c contains at least 9k/10 good variables (see the observation immediately following the process
that defines bad variables and clauses). Thus 9k/20 ≤ EµΩ∗

good
M ≤ k/2, and the number of

unmarked good variables in var(c) is at least 9k/10−M . By a Chernoff bound,
PrµΩ∗

good
(Ac) = PrµΩ∗

good
(M > 3k/5) + PrµΩ∗

good
(M < 3k/10)

≤ e−k/110 + e−k/40 ≤ 2e−k/150.

Let x(c) = 1
k∆ if c ∈ Cgood. Since we only consider assignments of Vgood, so var(Ac) ⊆ var(c) ∩

Vgood and thus Γ(Ac) ⊆ Γgood(c). Note that Γgood(c) is the set of neighbours of c in GΦ,good,
and the maximum degree in GΦ,good is at most k(∆−1), so we can verify (1) as follows, for any
c ∈ Cgood and sufficiently large k,

x(c)
∏

b∈Γ(Ac)

(
1− x(b)

)
≥ x(c)

∏
b∈Γgood(c)

(
1− x(b)

)
≥ 1

k∆

(
1− 1

k∆

)k∆

≥ 1

e2k∆

≥ e−k/300−2/k > 2e−k/150 ≥ PrµΩ∗
good

(Ac).

Thus, there is a marking such that item (1) holds.
W.h.p. over the choice of Φ, item (2) always holds for any marking of Vgood. This is because

our density is well below the critical threshold [18]. Thus there is at least one satisfying assign-
ment to Φ. As var(c) ∩ Vgood = ∅ for any c ∈ Cbad, the restriction of the satisfying assignment
to Vbad satisfies the condition.

The marking can be found using the deterministic algorithm [9] by verifying

PrµΩ∗
good

(Ac) ≤

x(c) ∏
b∈Γgood(c)

(
1− x(b)

)1.01

□

We will assume from now on that the random formula Φ satisfies Lemma 8 and we will stick
to an arbitrary marking given by Lemma 8. We use marked(c) to denote the marked variables
in clause c and Vmarked := ∪c∈Cgoodmarked(c) be the set of all marked variables.

Let Ω be the set of satisfying assignments of Φ. We will be particularly interested in the
uniform distribution µΩ(·). For any partial assignment Λ of some of the good variables of Φ, let
ΦΛ be the formula produced by simplifying Φ under Λ. In other words, we remove all clauses
that are satisfied under Λ and we remove all false literals from all clauses. (Some clauses may
become empty in ΦΛ, in which case ΦΛ cannot be satisfied.) We use CΛ to denote the set of
clauses of ΦΛ, and similarly VΛ. We also define VΛgood = Vgood ∩ VΛ and CΛgood = Cgood ∩ CΛ to
denote the sets of remaining good variables and clauses of Φ simplified under Λ. (Remark: Note
that Λ does not contain bad variables so if we define VΛbad and CΛbad similarly then we will have
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VΛbad = Vbad and CΛbad = Cbad.) Let ΩΛ denote the set of satisfying assignments of ΦΛ, namely,
those satisfying assignments of Φ consistent with Λ.

Let s := 2k/4/(ek∆). Under an arbitrary conditioning of marked variables, we have good
control of events defined by good variables, and the marginal distribution of good variables.

Lemma 9. Let V ⊆ Vmarked. For any partial assignment Λ : V → {T,F} such that ΩΛ ̸= ∅ and
any subset A ⊆ ΩΛ such that var(A) ⊆ Vgood \ V ,

Prµ
ΩΛ (A) ≤ PrµA(A)

(
1− 1

sk∆

)−|Γ(A)|
,

where A is the set of all assignments of var(A). In particular, for v ∈ Vmarked \ V ,(
1− 1

3s

)
1

2
≤ Prµ

ΩΛ (v → T) ≤
(
1 +

1

3s

)
1

2
.

Proof. Let Λbad be an arbitrary assignment on Vbad such that all bad clauses are satisfied. Such
a Λbad exists because of Item (2) of Lemma 8.

We apply Theorem 7 to ΦΛ∪Λbad . The remaining variables are V ′ = Vgood \V and clauses are
C′ := CΛ∪Λbad

good . Let Ω′ be the set of all 2|V ′| assignments V ′ → {T,F}. Let Ac be the subset of
Ω′ that c is not satisfied, for c ∈ C′. Then,

Prµ
ΩΛ

(
· | Λbad

)
= PrµΩ′

(
· |
∧
c∈C′

Ac

)
.(2)

We verify the condition (1) of Theorem 7 and show

PrµΩ′

(
A |

∧
c∈C′

Ac

)
≤ PrµA(A)

(
1− 1

sk∆

)−|Γ(A)|
,(3)

and (
1− 1

3s

)
1

2
≤ PrµΩ′

(
v → T |

∧
c∈C′

Ac

)
≤
(
1 +

1

3s

)
1

2
.(4)

The first part of the lemma follows directly and the second part follows from (2), (4), and the
law of total probabilities over all choices of Λbad.

By Lemma 8, there are at least k/4 unmarked variables in each c ∈ C′. Thus,

PrµΩ′ (Ac) ≤ 2−k/4.

Let x(c) = 1
sk∆ . Since Ω′ is a set of assignments of good variables, we have var(Ac) ⊆ var(c) ∩

Vgood, and thus Γ(Ac) ⊆ Γgood(c). Again, note that Γgood(c) is the set of neighbours of c in
GΦ,good and the maximum degree of GΦ,good is at most k(∆− 1), so we obtain

x(c)
∏

b∈Γ(Ac)

(
1− x(b)

)
≥ x(c)

∏
b∈Γgood(c)

(
1− x(b)

)
≥ 1

sk∆

(
1− 1

sk∆

)k(∆−1)

≥ e−1/s

sk∆
≥ 1

esk∆
= 2−k/4.

The two inequalities above verify condition (1) of Theorem 7. Thus, (3) follows directly since
var(A) ⊆ V ′. Moreover, setting A = v → T, for sufficiently large k,

PrµΩ′

(
v → T |

∧
c∈C′

Ac

)
≤ 1

2

(
1− 1

sk∆

)−∆

≤ 1

2
· e∆/(sk∆−1) ≤ 1

2

(
1 +

1

3s

)
.

We get the same upper bound for the event v → F by the same argument. The bound (4)
follows by combining these two bounds. □

Moreover, we have the following lemma for a partial assignment that we will use to apply
self-reducibility.
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Lemma 10. Let Φ = Φ(k, n,m) and let v1, v2, . . . , vn be the variables of Φ. In each clause,
order the literals in the order induced by the indices of their variables. Then there is a partial
assignment Λ∗ of truth values to some subset of Vmarked with the property that every clause
c ∈ Cgood is satisfied by its first k/20 literals corresponding to marked variables. Moreover, Λ∗

can be found in deterministic polynomial time.

Proof. We replace every c ∈ Cgood by its first k/20 literals corresponding to marked variables.
Call the new clause c′ and the new set C′good. This induces a new formula Φ′ whose clause set
is C′good with no unmarked variables. We apply Theorem 7 to Φ′. Let Ac be the event that c is
not satisfied where c ∈ C′good and set x(c) = 1

k∆ for all c ∈ C′good. Since Φ′ is a smaller formula,
the size of Γgood(c) is still at most k(∆ − 1). It is straightforward to verify that the condition
(1) holds and Theorem 7 applies. Thus, the desired Λ∗ exists.

To find Λ∗, once again we apply the deterministic algorithm for the local lemma [9]. □

Recall ΦΛ, which is Φ simplified under Λ. Under Λ∗, neither bad clauses nor bad variables
will be removed. More importantly, we have the following corollary.

Corollary 11. For any prefix Λ of Λ∗ in Theorem 10, any remaining good clause c in ΦΛ

satisfies marked(c) ≥ k/4.

Proof. Under Λ, for any c ∈ Cgood, either c has at least k/20 marked variables assigned, or c
has at most k/20 marked variables assigned. In the first case, by Lemma 10, c is satisfied and
thus is removed in ΦΛ. In the second case, even if c is not satisfied, by Lemma 8, c has at least
(3/10− 1/20)k = k/4 marked variables unassigned. □

5. The coupling tree

W.h.p. the random formul Φ satisfies Lemma 8 and Lemma 10 and from now on we focus
on Φ for which this is true. We will use the marking from Lemma 8. Conditioned on a prefix
Λ of the partial assignment Λ∗ from Lemma 10, the main subroutine of our algorithm is to
calculate the marginal probability of the next variable in Λ∗, say v∗. Let ΩΛ

1 = ΩΛ∪{v∗→T} and
ΩΛ
2 = ΩΛ∪{v∗→F}. Then our goal is to estimate |ΩΛ

1 |/|ΩΛ
2 |.

We will eventually set up a linear program to approximate |ΩΛ
1 |/|ΩΛ

2 |. Before introducing the
linear program, we will define the so-called coupling tree, which represents a variable-by-variable
greedy coupling process between µΩΛ

1
and µΩΛ

2
. Denote by TΛ the coupling tree. Each node ρ

of TΛ is a tuple ρ = (A1,A2, VI , Vset, Crem,F , R) where
• VI and Vset are subsets of V;
• Crem and F are subsets of C;
• A1 and A2 are functions from Vset to {T,F};
• R is a function from C to the subsets of {bad, disagree, 1, 2}.

We use the notation A1(ρ), A2(ρ), etc. to denote components of ρ. Note that the information
in ρ is redundant, as some components can be deduced from others.

Intuitively, for a node ρ, Vset is the set of variables that we have tried to couple, and VI is the
set of variables that cause discrepancies, or for which we have given up. The set Crem denotes
remaining clauses, and F denotes “failed” clauses. The two partial assignments A1 and A2

assign truth values to the variables in Vset. Finally, the function R(c) gives the reason why c is
in F . The possibilities are: (1) c is a bad clause; (2) A1 and A2 disagree on some variable in
this clause; (3) c is not satisfied by the partial assignment A1 or A2 (or both). These reasons
may not be mutually exclusive. If c ̸∈ F , then R(c) = ∅.

We will only consider a partial assignment Λ that is a prefix of Λ∗ from Lemma 10. Thus,
by Corollary 11, in any c ∈ CΛgood, there are at least k/4 marked variables remaining.

We will (inductively) guarantee that every node ρ = (A1,A2, VI , Vset, Crem,F , R) of the coup-
ling tree satisfies the following properties:

(P1) {v∗} ⊆ Vset ∩ VI .
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(P2) Every clause c ∈ Crem satisfies one of the following: var(c) ⊆ VI , var(c) ⊆ VΛ \ VI , or
marked(c) \ Vset is non-empty.

(P3) For any c ∈ Crem ∩ Cbad, var(c) ⊆ VΛ \ VI .
(P4) For any c ∈ CΛ \ Crem, at least one of the following is true:

• c is satisfied by both of the partial assignments A1 and A2;
• var(c) ⊆ VI ∪ Vset.

(P5) HΦ[VI ] is connected.
(P6) For any u ∈ VI , ∃c ∈ F s.t. u ∈ var(c).
(P7) For any u ∈ Vset \ VI , A1(u) = A2(u).
(P8) R(c) is non-empty if and only if c ∈ F .
(P9)

(P9.1) For any c ∈ F , bad ∈ R(c) only if c is a bad clause;
(P9.2) For any good c ∈ F , disagree ∈ R(c) iff there is a variable v ∈ var(c)∩VI ∩Vset such

that A1(v) ̸= A2(v);
(P9.3) For any c ∈ F and i ∈ {1, 2}, i ∈ R(c) only if the following three conditions hold:

var(c) ⊆ VI ∪ Vset, marked(c) ⊆ Vset, and Ai does not satisfy c.
(P10) For any c ∈ CΛgood, marked(c) ∩ VI ⊆ Vset.

The root of the coupling tree is the node ρ∗ with Vset(ρ∗) = VI(ρ
∗) = {v∗}, Crem(ρ∗) = CΛ,

and F(ρ∗) assigned to the set of clauses containing v∗. The assignment A1(ρ
∗) sets v∗ to T and

the assignment A2(ρ
∗) sets v∗ to F. The function R maps every clause in F(ρ∗) to {disagree}

and every other clause to ∅.
It is straightforward to see that ρ∗ satisfies the coupling-tree properties. Property (P3) follows

from the fact that v∗ is good, so it is not in a bad clause (Observation 3). To see Property (P2)
note that each bad clause c has var(c) ⊆ VΛ \ VI and each good clause has at least k/4 > 1
marked variables so marked(c) \ Vset(ρ) is non-empty. The rest are straightforward.

In order to ensure that the size of the coupling tree is bounded from above by a polynomial
in the size of the formula Φ, we will set a truncation depth L := C0(3k

2∆)⌈log(n/ε)⌉ for some
sufficiently large absolute constant C0, where n = |V|.
Definition 12 (leaf, truncating node). A node ρ of the coupling tree is a leaf if |VI(ρ)| ≤ L and
every c ∈ Crem(ρ) has the property that var(c) ⊆ VI(ρ) or var(c) ⊆ VΛ \ VI(ρ). If |VI(ρ)| > L,
then ρ is a truncating node. We denote the set of leaves by L, the set of truncating nodes by T ,
and their union by L∗ := L ∪ T .

Suppose that ρ is not a leaf or a truncating node. Then we define its children as follows. Since
ρ is not a leaf, there is a clause c ∈ Crem(ρ) such that var(c)∩VI(ρ) ̸= ∅ and var(c)∩(VΛ\VI(ρ)) ̸=
∅. By (P3), c must be a good clause. Let c be the first such clause. By (P2), let u be the
first variable in marked(c) \ Vset(ρ). By (P10), u /∈ VI(ρ). Since it is in marked(c), u is a good
variable. We refer to c as the “first clause of ρ” and u as the “first variable of ρ”.

We now define the four children of ρ in the coupling tree. For each of the four pairs (τ1, τ2)
where τ1 and τ2 are assignments from {u} to {T,F}, we create a child ρτ1,τ2 of ρ using Al-
gorithm 1. The following lemma shows that the coupling tree properties are maintained.
Lemma 13. If ρ satisfies the coupling tree properties, then so does ρτ1,τ2.
Proof. Property (P1) holds trivially for all nodes of the coupling tree. Property (P2) holds
because clauses not satisfying the conditions are removed in the while loop of Line 15 which
is repeated after the loop in Line 23 until there are no further changes. Property (P3) holds
because clauses not satisfying the conditions are removed in the while loop of Line 23. For
Property (P4), if a clause is removed from Crem, then it is removed in Line 13, 21, or 27. The
first case satisfies the first condition of (P4), and the other two satisfy the second condition of
(P4). For Property (P5), since HΦ[VI(ρ)] is connected, we just need to verify that when VI
expands, the new vertices are connected with the old VI . The set VI expands in Line 6 and
Line 20 and 25. All cases can be verified straightforwardly. Property (P6) holds because all
variables are added to VI in Line 6 and Line 20 and 25. In all three cases the corresponding
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Algorithm 1 Create the child ρτ1,τ2

1: Vset(ρτ1,τ2)← Vset(ρ) ∪ {u};
2: A1(ρτ1,τ2)← combine A1(ρ) with τ1;
3: A2(ρτ1,τ2)← combine A2(ρ) with τ2;
4: (VI , Crem,F , R)← (VI(ρ), Crem(ρ),F(ρ), R(ρ));
5: if τ1(u) ̸= τ2(u) then
6: VI ← VI ∪ {u};
7: for c′ : u ∈ var(c′) do
8: F ← F ∪ {c′};
9: R(c′)← R(c′) ∪ {disagree};

10: end for
11: end if
12: for c′ ∈ Crem s.t. c′ is satisfied by both A1(ρτ1,τ2) and A2(ρτ1,τ2) do
13: Crem ← Crem \ {c′};
14: end for
15: while ∃c′ ∈ Crem with var(c′)∩VI ̸= ∅, var(c′)∩(VΛ\VI) ̸= ∅, and marked(c′)\Vset(ρτ1,τ2) = ∅

do
16: (* For some i ∈ {1, 2}, c′ is not satisfied by Ai(ρτ1,τ2). Otherwise, c′

17: would have been removed from Crem in the for loop of Line 12. *)
18: F ← F ∪ {c′};
19: R(c′)← R(c′) ∪ {i | c′ is not satisfied by Ai(ρτ1,τ2)};
20: VI ← VI ∪ (var(c′) \ Vset(ρτ1,τ2));
21: Crem ← Crem \ {c′};
22: end while
23: while ∃c′ ∈ Crem ∩ Cbad with var(c′) ∩ VI ̸= ∅ do
24: F ← F ∪ {c′};
25: VI ← VI ∪ (var(c′) \ Vset(ρτ1,τ2));
26: R(c′)← R(c′) ∪ {bad};
27: Crem ← Crem \ {c′};
28: end while
29: if ∃c′ ∈ Crem with var(c′) ∩ VI ̸= ∅, var(c′) ∩ (VΛ \ VI) ̸= ∅, and marked(c′) \ Vset(ρτ1,τ2) = ∅

then Goto Line 15
30: end if
31: (VI(ρτ1,τ2), Crem(ρτ1,τ2),F(ρτ1,τ2), R(ρτ1,τ2))← (VI , Crem,F , R);

clauses are added to F . For Property (P7), Vset is only expanded in Line 1 and the property is
guaranteed by Line 6. Property (P8) follows from the way that R and F are updated by the
algorithm.

Property (P9.1) follows from the fact that the loop in Line 23 only applies to bad clauses. To
see Property (P9.2), assume first that c ∈ F has disagree ∈ R(c). This must happen in Line 9
and the loop guarantees that there is a variable u ∈ var(c)∩ VI ∩ Vset such that A1(u) ̸= A2(u).
For the other direction consider a good clause c′ that is added to F in Step 18. All of the
marked variables in c′ are in Vset(ρτ1,τ2) so if there were a variable v ∈ var(c′)∩ Vset(ρτ1,τ2) such
that A1(ρτ1,τ2) and A2(ρτ1,τ2) disagree on v, then at the time that v was set (either in ρτ1,τ2 or
in a parent) disagree would have been added to R(c′). Property (P9.3) follows by considering
the loop in Line 15.

For Property (P10) note that marked vertices can only be added to VI in Lines 6 and Line 20.
The vertex added in Line 6 is also in Vset. The marked vertices that are added in Line 20 are
also all in Vset. □
5.1. Key property of the coupling tree for a random formula. The following property
will be useful. Its proof is deferred to Section 8.5.
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Lemma 14. W.h.p. over the choice of Φ, for every prefix Λ of Λ∗, every node ρ in TΛ has the
property that |Vset(ρ)| ≤ 3k3αL+ 1.

Remark. The number of nodes in the coupling tree is a polynomial in n since the depth of the
tree does not exceed maxρ∈TΛ |Vset(ρ)| ≤ 3k3αL + 1 = O(log n

ε ) and each node has at most 4
children.

6. The linear program

Before introducing the linear program which we will use to estimate |ΩΛ
1 |/|ΩΛ

2 |, we define
one more piece of notation. In particular, for each node ρ of the coupling tree we define a
quantity r(ρ) as follows.

Let ρ be a node of the coupling tree. Let CI(ρ) be the set of clauses c ∈ CΛ such that
var(c) ⊆ VI(ρ)∪Vset(ρ). For i ∈ {1, 2}, let Ni(ρ) be the number of assignments τ to VI(ρ)\Vset(ρ)
such that every clause in CI(ρ) is satisfied by τ ∪ Ai(ρ).

We will use the following lemma.

Lemma 15. If ρ is a node in the coupling tree, then Ni(ρ) ̸= 0 for any i ∈ {1, 2}.

Proof. Since our coupling tree is based on the marking from Lemma 8, there is a partial assign-
ment of bad variables that satisfies all c ∈ Cbad. Let τbad be such an assignment and let τbad(ρ)
be the restriction of τbad to the set (VI(ρ) \ Vset(ρ)) ∩ VΛbad. Note that Vset(ρ) ⊆ VΛgood, so (by
Observation 3) any bad clause c ∈ CI(ρ) has the property that var(c) ⊆ (VI(ρ) \ Vset(ρ))∩ Vbad,
which implies that τbad(ρ) satisfies all bad clauses in CI(ρ).

Next we claim that there is an partial assignment τgood(ρ) : (VI(ρ)\Vset(ρ))∩VΛgood → {T,F}
such that τgood(ρ) satisfies all good clauses in CI(ρ). Let c be a good clause in CI(ρ). Again by
Lemma 8, c has at least k/4 unmarked good variables. Note that var(c) ⊆ VI(ρ) ∪ Vset(ρ) and
Vset(ρ) consists only of marked variables, so

∣∣∣var(c) ∩ (VI(ρ) \ Vset(ρ)) ∩ VΛgood

∣∣∣ ≥ k/4. Denote by
Ac the set of assignments in Ω∗ for which the restriction on (VI(ρ)\Vset(ρ))∩VΛgood does not satisfy
c. Thus, PrµΩ∗ (Ac) ≤ 2−k/4. Also, by the definition of Ac, we obtain that var(Ac) ⊆ var(c) and
var(Ac) ⊆ VΛgood. So Γ(Ac) ⊆ Γgood(c). Let x(c) = 1

k∆ . Since Γgood(c) is the set of neighbours
of c in GΦ,good, and the maximum degree in GΦ,good is at most k(∆− 1), we conclude our claim
by applying Theorem 7 and verifying

x(c)
∏

b∈Γ(Ac)

(
1− x(b)

)
≥ 1

k∆

(
1− 1

k∆

)k∆

≥ 1

e2k∆
> 2−k/4 ≥ PrµΩ∗ (Ac).

Now let τ = τgood(ρ)∪ τbad(ρ). Then every clause in CI(ρ) is satisfied by τ , which yields that
Ni(ρ) > 0. □

Define r(ρ) := N1(ρ)/N2(ρ). Lemma 15 implies that r(ρ) is always well-defined.

Observation 16. The quantity r(ρ) can be computed in m ·2O(|VI(ρ)\Vset(ρ)|) time by considering
all assignments τ to VI(ρ)\Vset(ρ). If ρ is a leaf then |VI(ρ)| ≤ L, so the time taken is polynomial
in n/ε.

The importance of r(ρ) comes from the following lemma.

Lemma 17. If ρ is a leaf, then r(ρ) = |ΩA1(ρ)∪Λ|/|ΩA2(ρ)∪Λ|.

Proof. Suppose ρ = (A1,A2, VI , Vset, Crem,F , R). Since ρ is a leaf, by Definition 12, for any
c ∈ Crem, either var(c) ⊆ VI ∪ Vset (i.e., c ∈ CI(ρ)), or var(c) ⊆ VΛ \ VI (or both). Denote by
CO(ρ) the set of clauses in Crem \ CI(ρ) such that var(c) ⊆ VΛ \ VI . Denote by Cother(ρ) the set
of clauses in CΛ \ (Crem ∪CI(ρ)). Thus, the clauses in CΛ split into the disjoint sets CI(ρ), CO(ρ)
and Cother(ρ).

By (P4), every clause in Cother(ρ) is satisfied by A1(ρ) and A2(ρ).
11



Let M(ρ) be the number of assignments σ : VΛ \ (VI ∪ Vset)→ {T,F} such that all clauses in
CO are satisfied by σ ∪A1(ρ) or equivalently, by (P7), satisfied by σ ∪A2(ρ). Recall that Ni(ρ)
is the number of assignments τ to VI(ρ) \ Vset(ρ) such that every clause in CI(ρ) is satisfied
by τ ∪ Ai(ρ). Then for i ∈ {1, 2}, |ΩAi(ρ)∪Λ| = M(ρ)Ni(ρ), which implies the lemma, since
r(ρ) = N1(ρ)/N2(ρ). □

We will use a binary search to approximate the quantity
∣∣ΩΛ

1

∣∣ / ∣∣ΩΛ
2

∣∣. Our linear program
relies on two constants rlower and rupper. We will move these closer and closer together by binary
search. For each node ρ of the coupling tree, we introduce two variables P1,ρ and P2,ρ. The idea
is that a solution of the LP should have the property that∣∣ΩΛ

1

∣∣∣∣ΩΛ
2

∣∣ = P1,ρ

P2,ρ
·
∣∣ΩA1(ρ)∪Λ

∣∣∣∣ΩA2(ρ)∪Λ
∣∣ .

We now introduce the constraint sets of the LP.

Constraint Set 0. For every node ρ of the coupling tree and every i ∈ {1, 2} we add the
constraint 0 ≤ Pi,ρ ≤ 1.

Constraint Set 1. If ρ ∈ L then we add the following constraints.

rlower P2,ρ ≤ P1,ρ r(ρ)

P1,ρ r(ρ) ≤ rupper P2,ρ

Remark. The purpose of these constraints is to guarantee

rlower ≤
P1,ρ

P2,ρ
r(ρ) ≤ rupper.

Constraint Set 2. For the root ρ∗ of the coupling tree, we add the constraints

P1,ρ∗ = P2,ρ∗ = 1.

For every node ρ of the coupling tree that is not in L∗, let u be the first variable of ρ. Add
constraints as follows. For each X ∈ {T,F} add the following constraints.

P1,ρ = P1,ρu→X,u→T
+ P1,ρu→X,u→F

P2,ρ = P2,ρu→T,u→X
+ P2,ρu→F,u→X

These constraints imply the following lemma.

Lemma 18. Suppose that the LP variables satisfy all of the constraints in Constraint Set 2.
Then for any i ∈ {1, 2} and any σ ∈ ΩΛ

i , ∑
ρ∈L∗:σ∈ΩAi(ρ)∪Λ

Pi,ρ = 1

Proof. For i ∈ {1, 2}, we will maintain a set Ψi of nodes in the coupling tree with the invariant
that

∑
ρ∈Ψi

Pi,ρ = 1 and every node ρ ∈ Ψi has Ai(ρ) agree with σ. For the base case, we let ρ∗
be the root of the coupling tree and we take Ψi = {ρ∗}. If every node in Ψi is in L∗ then we are
finished. Otherwise, let ρ be some node in Ψi that is not in L∗. Let u be the first variable of ρ.
Let ρ′ and ρ′′ be the two children of ρ such that Ai(ρ

′) and Ai(ρ
′′) both map u to σ(u). Replace

ρ in Ψi with ρ′ and ρ′′. The constraints guarantee that Pi,ρ = Pi,ρ′ + Pi,ρ′′ , so the invariant is
maintained. □

Constraint Set 3. For every node ρ of the coupling tree that is not in L∗, every X ∈ {T,F},
and every i ∈ {1, 2}, let u be the first variable of ρ and add the constraint Pi,ρu→X,u→¬X ≤ 1

s Pi,ρ.
The intuition behind this set of constraints is Lemma 9.
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7. Analysis of the linear program

In Section 7.1, we show that whenever rlower ≤
∣∣ΩΛ

1

∣∣/∣∣ΩΛ
2

∣∣ ≤ rupper, a solution to the LP
exists. We call this “completeness” of the LP. In the remaining subsections of this section, we
show “soundness” — namely, that whenever a solution exists, rlower and rupper are valid bounds
for the quantity

∣∣ΩΛ
1

∣∣/∣∣ΩΛ
2

∣∣, up to small errors.

7.1. Completeness. Recall that we use the marking from Lemma 8 and that Λ is a prefix of
the partial assignment Λ∗ from Lemma 10.

We use the following lemma.

Lemma 19. If ρ is a node in the coupling tree then, for any i ∈ {1, 2}, ΩAi(ρ)∪Λ is non-empty.

Proof. Let ρ be a node in the coupling tree and fix i ∈ {1, 2}. Since our coupling tree is based
on the marking from Lemma 8, there is a partial assignment of bad variables that satisfies all
c ∈ Cbad. Let τbad be such an assignment. Note that Ai(ρ)∪Λ is a partial assignment of marked
(good) variables so it does not assign any variables in common with τbad. Let V ′ be the set
of unmarked good variables. It remains to show that there is a partial assignment of variables
in V ′ that satisfies all clauses in Cgood. To do this we apply Theorem 7 to Vgood and Cgood in
the same way as the proof of Lemma 9. □

Let ρ be a node of the coupling tree with first variable u. For X ∈ {T,F}, we use the notation

ψρ,X,1 :=
|ΩA1(ρu→X,u→X)∪Λ|
|ΩA1(ρ)∪Λ|

=
|ΩA1(ρu→X,u→¬X)∪Λ|

|ΩA1(ρ)∪Λ|
.(5)

This is well-defined since A1(ρu→X,u→X) = A1(ρu→X,u→¬X). In other words, ψρ,X,1 is the
probability that u is assigned value X under µΩA1(ρ)∪Λ . Thus, ψρ,X,1 + ψρ,¬X,1 = 1. We
similarly define

ψρ,X,2 :=
|ΩA2(ρu→X,u→X)∪Λ|
|ΩA2(ρ)∪Λ|

=
|ΩA2(ρu→¬X,u→X)∪Λ|

|ΩA2(ρ)∪Λ|
,

noting that ψρ,X,2 + ψρ,¬X,2 = 1.
We will next give an inductive definition of a function Q from nodes of the coupling tree to

real numbers in [0, 1]. The way to think about this is as follows — we will implicitly define a
probability distribution over paths from the root of the coupling tree to L∗. For each node ρ,
Q(ρ) will be the probability that ρ is included in a path drawn from this distribution.

Any such path starts at the root, so we define Q(ρ∗) = 1. Once we have defined Q(ρ) for a
node ρ that is not in L∗ we can define Q(·) on the children of ρ as follows. Let u be the first
variable of ρ and consider the four children ρu→T,u→T, ρu→T,u→F, ρu→F,u→T, ρu→F,u→F. Define
the values of Q as follows.

Q(ρu→T,u→T) := Q(ρ)min{ψρ,T,1, ψρ,T,2}.
Q(ρu→T,u→F) := Q(ρ)(ψρ,T,1 −min{ψρ,T,1, ψρ,T,2}).
Q(ρu→F,u→F) := Q(ρ)min{1− ψρ,T,1, 1− ψρ,T,2}.
Q(ρu→F,u→T) := Q(ρ)((1− ψρ,T,1)−min{1− ψρ,T,1, 1− ψρ,T,2}).

(6)

Observation 20. For any X ∈ {T,F},
Q(ρu→X,u→T) +Q(ρu→X,u→F) = Q(ρ)ψρ,X,1, and

Q(ρu→T,u→X) +Q(ρu→F,u→X) = Q(ρ)ψρ,X,2.

Also,
Q(ρu→T,u→T) +Q(ρu→T,u→F) +Q(ρu→F,u→T) +Q(ρu→F,u→F) = Q(ρ).

This implies that
∑

ρ∈L∗ Q(ρ) = 1.

We use Q to define a feasible solution to the LP. Indeed, this definition explains what the
variables in the LP were meant to represent.
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Definition 21 (The LP variables). For each node ρ of the coupling tree and each i ∈ {1, 2},
define Pi,ρ := Q(ρ)|ΩΛ

i |/|ΩAi(ρ)∪Λ|.

Theorem 19 ensures the values in Definition 21 are well defined. Motivated by Definition 21,
we give the following upper bound for Q(ρ).

Lemma 22. For all nodes ρ in the coupling tree and all i ∈ {1, 2}, Q(ρ) ≤ |ΩAi(ρ)∪Λ|/|ΩΛ
i |.

Proof. The proof is by induction — having established the claim for a node ρ, we then establish
it for the children of ρ using Observation 20. For the base case, Q(ρ∗) = 1 = |ΩAi(ρ

∗)∪Λ|/|ΩΛ
i |.

For the inductive step, consider a node ρ (for which the claim is established) and let u be the
first variable of ρ. Consider any child ρu→X,u→Y of ρ. We show the lemma for i = 1 and the
other case is similar. By Observation 20, Equation (5), and the induction hypothesis,

Q(ρu→X,u→Y ) ≤ Q(ρ) · ψρ,X,1 = Q(ρ) ·
∣∣ΩA1(ρu→X,u→Y )∪Λ∣∣∣∣ΩA1(ρ)∪Λ

∣∣
≤
∣∣ΩA1(ρ)∪Λ

∣∣∣∣ΩΛ
i

∣∣ ·
∣∣ΩA1(ρu→X,u→Y )∪Λ∣∣∣∣ΩA1(ρ)∪Λ

∣∣ =

∣∣ΩA1(ρu→X,u→Y )∪Λ∣∣∣∣ΩΛ
i

∣∣ . □

The next lemma relates the values of the LP variables, as defined by Definition 21.

Lemma 23. Let ρ ̸∈ L∗ be a node in the coupling tree. Let u be the first variable of ρ. For any
X ∈ {T,F} and i ∈ {1, 2}, Pi,ρu→X,u→¬X ≤ Pi,ρ/s.

Proof. We first assume X = T and i = 1. Definition 21 implies that
Pi,ρu→T,u→F

Pi,ρ
=
Q(ρu→T,u→F)

Q(ρ)

∣∣ΩA1(ρ)∪Λ
∣∣∣∣ΩA1(ρu→T,u→F)∪Λ
∣∣ .(7)

From the definition (6) (for the case where ψρ,T,2 ≤ ψρ,T,1) along with Observation 20 (for the
other case), we have that

Q(ρu→T,u→F)

Q(ρ)
≤ |ψρ,T,1 − ψρ,T,2|.

Recall that ψρ,T,i is the probability that u is assigned the value T under µΩAi(ρ)∪Λ . By Lemma 19,
ΩAi(ρ)∪Λ is non empty, so we can apply Lemma 9 to this partial assignment. From the second
part of the lemma, we have

1

2

(
1− 1

3s

)
≤ ψρ,T,i ≤

1

2

(
1 +

1

3s

)
.

Since k is sufficiently large and so is s,

|ψρ,T,1 − ψρ,T,2| ≤
1

s
· ψρ,T,i.

The claim in the lemma follows for X = T and i = 1 since ψρ,T,1 =

∣∣∣ΩA1(ρu→T,u→F)∪Λ
∣∣∣

|ΩA1(ρ)∪Λ| .
For X = F and i = 1, note that

Q(ρu→F,u→T)

Q(ρ)
≤ |(1− ψρ,T,1)− (1− ψρ,T,2)| = |ψρ,T,1 − ψρ,T,2|,

and use ψρ,F,1 =

∣∣∣ΩA1(ρu→F,u→T)∪Λ
∣∣∣

|ΩA1(ρ)∪Λ| in the end.
For i = 2, the proof is similar. □

Now we are ready to show the completeness.

Lemma 24. Suppose rlower ≤ |ΩΛ
1 |/|ΩΛ

2 | ≤ rupper. The variables P = {Pi,ρ} defined in Defini-
tion 21 satisfy all constraints of the LP.
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Proof. Constraint Set 0: The fact that the LP variables satisfy these constraints follows from
the definition of the variables in Definition 21 (which guarantees that they are all non-negative)
and from Lemma 22.

Constraint Set 1: Definition 21 implies that for any node ρ in the coupling tree,
P1,ρ

P2,ρ

|ΩA1(ρ)∪Λ|
|ΩA2(ρ)∪Λ|

=
|ΩΛ

1 |
|ΩΛ

2 |
.(8)

If ρ is a leaf, then by Lemma 17, r(ρ) = |ΩA1(ρ)∪Λ|/|ΩA2(ρ)∪Λ|. Equation (8) implies that
P1,ρ

P2,ρ
r(ρ) =

|ΩΛ
1 |
|ΩΛ

2 |
,

so as long as rlower ≤ |ΩΛ
1 |/|ΩΛ

2 | ≤ rupper, the LP variables satisfy the constraints in Constraint
Set 1, as required.

Constraint Set 2: For the root ρ∗ of the coupling tree, it is easy to see from Definition 21
that Pi,ρ∗ = 1.

Let ρ ̸∈ L∗ be a node in the coupling tree and let u be the first variable of ρ. For X ∈ {T,F}
and i = 1 we wish to establish P1,ρ = P1,ρu→X,u→T

+ P1,ρu→X,u→F
. Plugging in Definition 21 and

dividing by |ΩΛ
1 |, the constraint is equivalent (for any Y ∈ {T,F}) to

Q(ρ)

|ΩA1(ρ)∪Λ|
=

Q(ρu→X,u→T)

|ΩA1(ρu→X,u→T)∪Λ|
+

Q(ρu→X,u→F)

|ΩA1(ρu→X,u→F)∪Λ|
=

Q(ρu→X,u→T)

|ΩA1(ρu→X,u→Y )∪Λ|
+

Q(ρu→X,u→F)

|ΩA1(ρu→X,u→Y )∪Λ|
,

where we used again the fact that A1(ρu→X,u→X) = A1(ρu→X,u→¬X). The equation above
follows from Observation 20 using (5). The other three constraints are similar.

Constraint Set 3: This case directly follows from Lemma 23. □

7.2. ℓ-wrong assignments. There are two kinds of errors which cause solutions of the LP to
differ from the ratio

∣∣ΩΛ
1

∣∣/∣∣ΩΛ
2

∣∣. The first kind of error involves a notion that we call “ℓ-wrong
assignments”. To define them, we need some graph-theoretic notation.

Definition 25. Given a graph G with vertices u and v in V (G), let distG(u, v) be the distance
between u and v in G — that is, the number of edges in a shortest path from u to v. Given a
subset T ⊆ V (G) and a vertex v ∈ V (G), let distG(u, T ) be minv∈T distG(u, v). For any positive
integer k, let Gk be the graph with vertex set V (G) in which vertices u and v are connected if
and only if there is a length-k path from u to v in G. Let G≤k be the graph with vertex set V (G)
in which vertices u and v are connected if and only if there is a path from u to v in G of length
at most k.

The main combinatorial structure that we use is a set D(GΦ), which is based on Alon’s “2,3-
tree” [6]. Similar structures were subsequently used in [35, 25]. The main difference between
our definition and previous ones is that we take into account whether clauses are connected via
good variables.

Definition 26. Given the graph GΦ, let D(GΦ) be the set of subsets T ⊆ V (GΦ) such that the
following hold:

(1) For any c1, c2 ∈ T , var(c1) ∩ var(c2) ∩ Vgood = ∅;
(2) The graph G≤4

Φ [T ], which is the subgraph of G≤4
Φ induced by T , is connected.

The following two lemmas regarding D(GΦ) will be useful. We defer their proofs to Sec-
tion 8.6.

Lemma 27. Let ℓ be an integer which is at least log n. W.h.p. over the choice of Φ, every
clause c ∈ CΛgood has the property that the number of size-ℓ subsets T ∈ D(GΦ) containing c is
at most (18k2α)4ℓ.

Recall that the coupling tree TΛ is defined with respect to a prefix Λ of the partial assignment
Λ∗ from Lemma 10. Let c∗ be the first clause of the root node ρ∗.
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Lemma 28. W.h.p. over the choice of Φ, every node ρ in TΛ with |VI(ρ)| ≥ L has the property
that there is a set T ⊆ F(ρ) containing c∗ such that T ∈ D(GΦ), |T | = C0⌈log(n/ε)⌉ and
|T ∩ Cbad| ≤ |T |/3.

We now define ℓ-wrong assignments.

Definition 29. An assignment σ ∈ ΩΛ
i is ℓ-wrong if there is a size-ℓ set T ∈ D(GΦ) such that

• c∗ ∈ T ,
• |T ∩ CΛgood| ≥ 2 |T | /3, and
• there is a size ⌈ℓ/2⌉ subset S of T ∩ CΛgood such that the restriction of σ to marked

variables in clauses in S does not satisfy any clause in S. (Formally, taking U to be
∪c∈Smarked(c), the condition is that σ[U ] does not satisfy any clauses in S.)

Otherwise σ is ℓ-correct.

The following is similar to [25, Lemma 4.8].

Lemma 30. Fix i ∈ {1, 2}. Let ℓ = L/(3k2∆). Then the fraction of assignments in ΩΛ
i that

are ℓ-wrong is at most (k∆)−9ℓ.

Proof. Assume i = 1, as the other case is similar. We want to show that

Prσ∼µ
ΩΛ
1

(σ is ℓ-wrong) ≤ (k∆)−9ℓ.

If every assignment in µΩΛ
1

is ℓ-correct, then we are finished. Otherwise, consider a size-ℓ set
T = {c1, c2, . . . , cℓ} in D(GΦ) such that cℓ = c∗ and ℓT ≥ 2ℓ/3 where ℓT := |T ∩ CΛgood|.

Let V := VΛ \ {v∗} be the set of unassigned variables in ρ∗, and let Ω′ be the set of all
assignments σ : V → {T,F}. Let UT := V ∩

(
∪ℓi=1marked(ci)

)
be the set of all marked variables

in V that are in clauses in T . Given an assignment σ ∈ Ω′, let ZT (σ) be the number of clauses
in T ∩ CΛgood that are not satisfied by σ[UT ].

Suppose that σ is drawn from µΩ′ . By Corollary 11, every c ∈ CΛgood has at least k/4−1 marked
variables in V . Thus, for every c ∈ T ∩ CΛgood, the probability that c is not satisfied by σ[UT ] is
at most p∗ := 21−k/4. For c ∈ T ∩ CΛgood, let Ac be the event that c is not satisfied by σ[UT ].
Because T ∈ D(GΦ), clauses in T do not share good variables (so they do not share marked
variables). Thus, the events Ac are mutually independent. Since ℓT = |T ∩CΛgood|, we have that
the event ZT (σ) ≥ ⌈ℓ/2⌉ is dominated above by the probability that Ẑ ≥ ⌈ℓ/2⌉ where Ẑ is a sum
of ℓT independent Bernoulli r.v.s with parameter p∗. Setting γ := ℓ/(2p∗ℓT )− 1 ≥ 1/(2p∗)− 1

and applying a Chernoff bound to Ẑ, we obtain that

PrµΩ′ (ZT (σ) ≥ ⌈ℓ/2⌉) = PrµΩ′ (ZT (σ) ≥ ℓ/2) = PrµΩ′ (ZT (σ) ≥ (1 + γ)p∗ℓT )

≤ Pr(Ẑ ≥ (1 + γ)p∗ℓT ) ≤
(

eγ

(1 + γ)1+γ

)p∗ℓT

≤
(
2ep∗

)ℓT /2
≤
(
2ep∗

)ℓ/3
,

where the second-to-last inequality follows by substituting in the lower bound 1/(2p∗) − 1 for
γ.

Let ET be the event that ZT (σ) ≥ ⌈ℓ/2⌉, so var(ET ) = UT . We apply Lemma 9 with the
partial assignment Λ ∪ {v∗ → T} and with the event A from Lemma 9 being ET . A clause
c is in Γ(ET ) if and only if var(c) intersects UT . Since all variables in UT are marked, each
ci ∈ T ∩ CΛgood has at most 3k/4 variables in UT . Moreover, for each v ∈ UT , there are at most
∆ clauses containing v. Thus, |Γ(ET )| ≤ 3kℓ∆/4.

Plugging everything into Lemma 9, we obtain

Prµ
ΩΛ
1

(ET ) ≤ PrµΩ′ (ET )
(
1− 1

sk∆

)−3kℓ∆/4
≤
(
2ep∗

)ℓ/3
eℓ/s,

where the value s (defined just before Lemma 9) is s = 2k/4/(ek∆).
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Note from the definition of L that ℓ = C0⌈log(n/ε)⌉ for a sufficiently large constant C0, so
ℓ ≥ log n. Applying Lemma 27 to the good clause c∗, w.h.p. over the choice of Φ, the number
of size-ℓ sets T ∈ D(GΦ) containing c∗ is at most (18k2α)4ℓ. Hence, by a union bound,

Prµ
ΩΛ
1

(σ is ℓ-wrong) ≤
∑

T∈D(GΦ):|T |=ℓ,c∗∈T,ℓT≥2ℓ/3

Prµ
ΩΛ
1

(ET )

≤ (18k2α)4ℓ
(
2ep∗

)ℓ/3

eℓ/s =
(
184k8α421/3e1/321/32−k/12e1/s

)ℓ
≤ (k∆)−9ℓ,

where in the last inequality we used that α ≤ 2k/100 and ∆ = 2k/300. □

7.3. Errors from truncating nodes. We have already noted that the existence of ℓ-wrong
assignments can be viewed as “errors” which cause solutions of the LP to differ from the ratio∣∣ΩΛ

1

∣∣/∣∣ΩΛ
2

∣∣. However, even if an assignment σ ∈ ΩΛ
i is ℓ-correct, it may still induce some error

in the solution of the LP due to the truncation of the coupling tree. We account for this kind
of error in this section.

Fix an assignment σ ∈ ΩΛ
1 . Given a solution P = {Pi,ρ} to the LP, we consider the following

stochastic process, which is a process (depending on σ) for sampling from L∗. The process is
defined for i = 1 rather than for i = 2. That is it starts with σ ∈ ΩΛ

1 and it uses the LP values
P1,ρ. (We will later require a similar process for i = 2).

Definition 31 (Sampling conditioned on σ ∈ ΩΛ
1 ). Fix σ ∈ ΩΛ

1 . Here is a method for choosing
a node ρ ∈ L∗. Start by setting ρ to be the root ρ∗ of the coupling tree. From every node ρ that
is not in L∗, proceed to a child, as follows. Let u be the first variable of ρ. For each X ∈ {T,F},
go to ρu→σ(u),u→X with probability P1,ρu→σ(u),u→X

/P1,ρ.

This process is well-defined because P satisfies Constraint Set 2. If ρ is a leaf such that
A1(ρ) agrees with σ, then the probability of reaching ρ is P1,ρ. The following definition concerns
the truncating nodes ρ ∈ T where the process can also stop.

Lemma 32. Fix rlower ≤ rupper. Let ℓ = L/(3k2∆). W.h.p. over the choice of Φ, the following
holds. Let σ be any ℓ-correct assignment in ΩΛ

1 . If the LP has a solution using rlower and rupper
then

∑
ρ∈T :σ∈ΩΛ∪A1(ρ) P1,ρ ≤ (k∆)−8ℓ.

Proof. Let πσ be the distribution on nodes in L∗ from the sampling procedure in Definition 31.
Let Υσ = {ρ ∈ T | σ ∈ ΩA1(ρ)∪Λ}. The probability that the sampling procedure reaches any
node ρ ∈ L∗ with σ ∈ ΩA1(ρ)∪Λ is P1,ρ, so the probability that it reaches Υσ is

∑
ρ∈Υσ

P1,ρ,
which is what we want to bound.

From the definition of L, note that ℓ = C0⌈log(n/ε)⌉ for a sufficiently large constant C0.
Suppose that the formula Φ satisfies the condition in Lemma 28 (which it does, w.h.p.). Any
node ρ ∈ Υσ satisfies |VI(ρ)| > L, so by Lemma 28, there is a set T ⊆ F(ρ) containing c∗ such
that T ∈ D(GΦ), |T | = ℓ and |T ∩ Cbad| ≤ |T |/3. This implies that∣∣T ∩ CΛ

good
∣∣ ≥ 2 |T |

3
.(9)

Let W be the set of all size-ℓ sets T ∈ D(GΦ) containing c∗ such that (9) holds. Then the
probability that the sampling procedure reaches Υσ is at most

Prρ∼πσ(∃T ∈W such that T ⊆ F(ρ)).

By a union bound we have ∑
ρ∈Υσ

P1,ρ ≤
∑
T∈W

Prρ∼πσ(T ⊆ F(ρ)),
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so to finish we will show ∑
T∈W

Prρ∼πσ(T ⊆ F(ρ)) ≤ (k∆)−8ℓ .(10)

Consider a set T ∈W and any ρ = (A1,A2, VI , Vset, Crem,F , R) such that ρ is in the support
of πσ and T ⊆ F(ρ). By the definition of πσ, σ ∈ ΩA1(ρ)∪Λ. By (P8), every c ∈ T has R(c)
non-empty.

Let Tgood = T ∩ CΛgood and note that
∣∣Tgood

∣∣ ≥ 2ℓ/3. By (P9.1), every c ∈ Tgood has R(c) ⊆
{disagree, 1, 2}.

Let S = {c ∈ Tgood | 1 ∈ R(c)}. By (P9.3), every c ∈ S has marked(c) ⊆ Vset and A1

does not satisfy c. Since σ is ℓ-correct, |S| < ⌈ℓ/2⌉ so (by integrality) |S| < ℓ/2. Thus,∣∣Tgood \ S
∣∣ ≥ (2/3− 1/2)ℓ = ℓ/6.

We claim that for any c ∈ Tgood \ S, disagree ∈ R(c). We have already seen that R(c) is
non-empty and that it is contained in {disagree, 2}. If 2 ∈ R(c), then by (P9.3), c is satisfied by
Λ ∧ A1 but not Λ ∧ A2, which implies that disagree ∈ R(c) by (P9.2).

Since (Tgood \ S) ⊆ T ∈ D(GΦ), Definition 26 ensures that the clauses in Tgood \ S do not
share good variables. Thus by (P9.2), there is a set V ⊆ VΛ with |V | ≥ ℓ/6 such that for every
u ∈ V , A1(u) ̸= A2(u).

By the definition of the sampling procedure (Definition 31), the probability that such a
disagreement occurs when the first variable u of a node ρ′ is set is at most P1,ρ′u→X,u→¬X

/P1,ρ′

for some X ∈ {T,F}. By Constraint Set 3, this ratio is at most 1/s. Also, these events are
independent for the variables u ∈ V . Thus,

Prρ∼πσ(T ⊆ F(ρ)) ≤ s−ℓ/6.

By the choice of C0, ℓ is at least log n. Lemma 27 implies that w.h.p., over the choice of Φ,
|W | ≤ (18k2α)4ℓ. By a union bound (using the fact that k is sufficiently large and α < 2k/300),∑

T∈W
Prρ∼πσ(T ⊆ F(ρ)) ≤ (18k2α)4ℓs−ℓ/6 =

(
184k8α4s−1/6

)ℓ
≤ (k∆)−8ℓ . □

The following lemma is the same as Lemma 32, except that we take i = 2 rather than
i = 1. The proof is exactly the same as that of Lemma 32 except that the sampling procedure
(analogous to the one from Definition 31) is conditioned on σ ∈ ΩΛ

2 and the transition from ρ
to ρu→X,u→σ(u) is with probability P2,ρu→X,u→σ(u)

/P2,ρ.

Lemma 33. Fix rlower ≤ rupper. Let ℓ = L/(3k2∆). W.h.p. over the choice of Φ, the following
holds. Let σ be any ℓ-correct assignment in ΩΛ

2 . If the LP has a solution using rlower and rupper
then

∑
ρ∈T :σ∈ΩΛ∪A2(ρ) P2,ρ ≤ (k∆)−8ℓ.

7.4. Soundness. In this section we show the “soundness” of the LP, namely, that whenever a
solution to the LP exists, it yields a bound on

∣∣ΩΛ
1

∣∣/∣∣ΩΛ
2

∣∣.
Lemma 34. Fix rlower ≤ rupper. W.h.p. over the choice of Φ, the following holds. If the LP has
a solution P using rlower and rupper, then e−ε/(3n)rlower ≤ |ΩΛ

1 |/|ΩΛ
2 | ≤ eε/(3n)rupper.

Proof. By Lemma 18, the constraints in Constraint Set 2 guarantee that, for any i ∈ {1, 2}
and σ ∈ ΩΛ

i , ∑
ρ∈L∗:σ∈ΩAi(ρ)∪Λ

Pi,ρ = 1.

Thus,
|ΩΛ

i | =
∑
σ∈ΩΛ

i

1 =
∑
σ∈ΩΛ

i

∑
ρ∈L∗:σ∈ΩAi(ρ)∪Λ

Pi,ρ.
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Let ℓ = L/(3k2∆). We start by defining Zi, Z ′
i and Z ′′

i as follows for i ∈ {1, 2}.

Zi =
∑
σ∈ΩΛ

i

∑
ρ∈L:σ∈ΩAi(ρ)∪Λ

Pi,ρ,

Z ′
i =

∑
σ∈ΩΛ

i , σ is ℓ-wrong

∑
ρ∈L∗:σ∈ΩAi(ρ)∪Λ

Pi,ρ,

Z ′′
i =

∑
σ∈ΩΛ

i , σ is ℓ-correct

∑
ρ∈T :σ∈ΩAi(ρ)∪Λ

Pi,ρ.

Thus Zi ≤
∣∣ΩΛ

i

∣∣ ≤ Zi + Z ′
i + Z ′′

i . The proof consists of three parts — as we will see soon, the
statement of the lemma follows directly from Equations (11), (12), and (13).
Part 1: Showing

(11) rlower ≤
Z1

Z2
≤ rupper.

Part 2: Showing, for i ∈ {1, 2},

(12) Z ′
i∣∣ΩΛ
i

∣∣ ≤ 1− e−ε/(3n)

2
.

Part 3: Showing, for i ∈ {1, 2},

(13) Z ′′
i∣∣ΩΛ
i

∣∣ ≤ 1− e−ε/(3n)

2
.

We now present the three parts of the proof.
Part 1. This part is straightforward. Exchanging the order of summation in the definition

of Zi, we have
(14) Zi =

∑
ρ∈L

∑
σ∈ΩΛ

i :σ∈ΩAi(ρ)∪Λ

Pi,ρ =
∑
ρ∈L

Pi,ρ · |ΩAi(ρ)∪Λ|.

Since ρ ∈ L, Lemma 17 guarantees that r(ρ) = |ΩA1(ρ)∪Λ|/|ΩA2(ρ)∪Λ| and Constraint Set 1
guarantees that

rlower ≤
P1,ρ ·

∣∣ΩA1(ρ)∪Λ
∣∣

P2,ρ ·
∣∣ΩA2(ρ)∪Λ

∣∣ = P1,ρ · r(ρ)
P2,ρ·

≤ rupper.

Plugging in (14), we get (11), as required.
Part 2. Note that for any σ,

∑
ρ∈L∗:σ∈ΩAi(ρ)∪Λ Pi,ρ ≤ 1. By Lemma 30, we have that

Z ′
i∣∣ΩΛ
i

∣∣ ≤
∣∣{σ ∈ ΩΛ

i : σ is ℓ-wrong}
∣∣∣∣ΩΛ

i

∣∣ ≤ (k∆)−9ℓ .

Since ℓ = L/(3k2∆) = C0⌈log(n/ε)⌉, we verify that
(k∆)−9ℓ ≤ (n/ε)−9C0 log(k∆) ≤ (1− e−ε/(3n))/2 ,

which implies (12). This finishes Part 2.
Part 3. By Lemmas 32 and 33, W.h.p. over the choice of Φ, for every ℓ-correct σ ∈ ΩΛ

i ,∑
ρ∈T :σ∈ΩAi(ρ)∪Λ Pi,ρ ≤ (k∆)−8ℓ. Hence we have

Z ′′
i∣∣ΩΛ
i

∣∣ ≤ Z ′′
i∣∣{σ ∈ ΩΛ

i : σ is ℓ-correct}
∣∣ ≤ (k∆)−8ℓ .

Again, ℓ = L/(3k2∆) = C0⌈log(n/ε)⌉ implies (13). This finishes Part 3.
Having finished the three parts, we now complete the proof. Combining (12) and (13) with

the fact that Zi ≤
∣∣ΩΛ

i

∣∣ ≤ Zi + Z ′
i + Z ′′

i , we get

e−ε/(3n) ≤ Zi∣∣ΩΛ
i

∣∣ ≤ 1.

19



Plugging in (11) we obtain

e−ε/(3n)rlower ≤
|ΩΛ

1 |
|ΩΛ

2 |
≤ eε/(3n)rupper. □

8. Properties of the random formula

We still need to prove Lemmas 14, 27, and 28. All of these lemmas depend on properties
of the random formula. The main intuition behind the proofs is that individual variables
within the formula might have unbounded degrees, but once we consider sets of logarithmically
many vertices (that form connected sets) they behave analogously to bounded-degree sets. In
Section 8.1, we prove some rather standard facts about the random formula Φ, concerning the
number of high-degree variables and its expansion properties. Then, in Section 8.2, we show
how to bound the number of connected sets of variables in the formula Φ, and formalise the
intuition above by showing Lemma 40, from which Lemma 27 is derived in Section 8.6. Then,
in Section 8.3, we show Lemmas 41 and 42 which bound the number of high-degree variables
in connected sets; in Section 8.4, we extend these to bounds for the number of bad variables in
connected sets using expansion properties of the formula. These are the key ingredients for the
proofs of Lemmas 14 and 28, which are given in Sections 8.5 and 8.6, respectively.

Throughout this section, we use PrΦ(·) to denote the distribution for choosing Φ.

8.1. Bounding the number of high-degree variables. Recall from Section 3 that V0 is the
set of high-degree variables. Based on the average-degree assumption and the randomness of
the formula, it is standard to show the following.

Lemma 35. W.h.p. over the choice of Φ, the size of V0 is at most n/2k10.

Proof. The degrees of the variables in Φ have the same distribution as a balls-and-bins experi-
ment with km balls and n bins. Let D1, . . . , Dn be a set of independent Poisson variables with
parameter kα, denoted Poi(kα). It follows by well-known facts (see, e.g., [34, Chapter 5.4]) that
the degrees of the variables in Φ have the same distribution as {D1, . . . , Dn} conditioned on the
event E that D1 + . . . + Dn = km, and that Pr(E) = O(1/

√
n). Let U = {i ∈ [n] : Di ≥ ∆},

then
E[|U |] = nPr(Poi(kα) ≥ ∆) ≤ ne−∆. ≤ n/2k10+1,

where the first inequality follows from kα ≤ ∆/k2 and using standard bounds for the tails of
the Poisson distribution (see, e.g., [34, Theorem 5.4]). A Chernoff bound therefore yields that
Pr(|U | ≥ n/2k10) = exp (−Ω(n)). It follows that

PrΦ(|V0| ≥ n/2k
10
) = Pr(|U | ≥ n/2k10 | E) ≤ exp (−Ω(n)) . □

We will also need the following expansion properties of the random formula Φ; these bound
the number of clauses that can contain more than b variables from a relatively small set of
variables Y .

Lemma 36. Let 2 ≤ b ≤ k be an integer and t = 2
b−1 . W.h.p. over the choice of Φ, for every set

of variables Y such that 2 ≤ |Y | ≤ n/2k, the number of clauses that contain at least b variables
from Y is at most t|Y |.

Proof. Let y be an integer between b and n/2k. There are
(
n
y

)
ways to choose a set Y of y

variables Y and
(

m
⌈ty⌉
)

ways to choose a set Z of ⌈ty⌉ clauses. The probability that a clause
contains at least b variables from Y is bounded by

(
k
b

) ( y
n

)b ≤ (ky/n)b. By a union bound over
the choices of Y and Z, we therefore obtain that

PrΦ(∃Y, Z) ≤
∑

b≤y≤n/2k

(
n

y

)(
m

⌈ty⌉

)(
ky

n

)b⌈ty⌉
≤

∑
b≤y≤n/2k

(
en

y

)y
(
eαn

ty

(
ky

n

)b
)⌈ty⌉

.

20



Note (by taking k to be its upper bound) that the quantity taken to the ⌈ty⌉ power is at most

(b− 1)eα2k

2

(
k

2k

)b

This is maximised at b = 2, so it is always at most 1 (given that α < 2rk for some r < 1 and
that k is sufficiently large). Thus, the quantity is maximised by removing the ceiling, so

PrΦ(∃Y, Z) ≤
∑

b≤y≤n/2k

(
en

y

(
eαn

ty

)t(ky
n

)bt
)y

=
∑

b≤y≤n/2k

(
e1+tkbtαty

ttn

)y

= o(1).

The last estimate follows from observing the inequalities
(
e1+tkbtαty

ttn

)y
≤ 1/n for 2 ≤ y ≤

log n, and e1+tkbtαty
ttn < 1/10 for log n < y ≤ n/2k, which hold for all sufficiently large n. □

Applying Lemma 36 with b = t = 2 and with b = ⌈k/10⌉, t = 2/(b − 1) < 30/k gives the
following two corollaries, respectively.

Corollary 37. W.h.p. over the choice of Φ, for every set of variables Y such that 2 ≤ |Y | ≤
n/2k, the number of clauses that contain at least 2 variables from Y is at most 2|Y |.

Corollary 38. W.h.p. over the choice of Φ, for every set of variables Y such that 2 ≤ |Y | ≤
n/2k, the number of clauses that contain at least k/10 variables from Y is at most 30

k |Y |.

8.2. Bounding the number of connected sets of clauses. In this section, we bound the
number of connected sets of clauses which we will use in the upcoming sections. Recall that a
set Y of clauses is connected if GΦ[Y ] is connected.

Lemma 39. For any labelled tree T on a subset of clauses in Φ, the probability that T is a
subgraph of GΦ is at most (k2/n)|V (T )|−1.

Proof. For a tree T on a subset of clauses in Φ, we use T ⊆ GΦ to denote that T is a subgraph
of GΦ. We prove our claim by induction on the size of T . If |V (T )| = 1, then T contains only
an isolated clause, so Pr(T ⊆ GΦ) = 1. Now suppose that the claim holds for all trees with size
|V (T )| − 1. Let c be a leaf in T and c′ be its neighbour in T . Then we have

PrΦ(T ⊆ GΦ) = PrΦ
(
(T \ c) ⊆ GΦ

)
PrΦ

(
var(c) ∩ var(c′) ̸= ∅ | (T \ c) ⊆ GΦ

)
.

For any fixed c′, we have that

Pr(var(c) ∩ var(c′) ̸= ∅) ≤
∑

v∈var(c′)

Pr(v ∈ var(c)) ≤ k2

n
.

Note that the events (T \ c) ⊆ GΦ and var(c) ∩ var(c′) ̸= ∅ are independent, so

Pr
(
var(c) ∩ var(c′) ̸= ∅ | (T \ c) ⊆ GΦ

)
≤ k2

n
.

Since T \ c is a tree of size |V (T )| − 1, by the induction hypothesis we have that Pr((T \ c) ⊆
GΦ) ≤ (k2/n)|V (T )|−2. We conclude that Pr(T ⊆ GΦ) ≤ (k2/n)|V (T )|−1. □

Lemma 40. W.h.p. over the choice of Φ, for any clause c, the number of connected sets of
clauses in GΦ with size ℓ ≥ log n containing c is at most (9k2α)ℓ.

Proof. Let c be an arbitrary clause. Let U be a size-ℓ set of clauses containing c and let TU

be the set of all labelled trees on the set U ; note that |TU | = ℓℓ−2. For any tree T ∈ TU , by
Lemma 39, the probability that T ⊆ GΦ is at most (k2/n)ℓ−1. Thus

PrΦ(GΦ[U ] is connected) ≤
∑
T∈TU

PrΦ(T ⊆ GΦ) = ℓℓ−2(k2/n)ℓ−1 .
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Let Zc be the number of connected sets of clauses with size ℓ containing c. Then,

EΦ[Zc] =
∑

U⊆C;c∈U,|U |=ℓ

PrΦ(GΦ[U ] is connected)

≤
(
m− 1

ℓ− 1

)
ℓℓ−2

(k2
n

)ℓ−1
≤
(
e(m− 1)

ℓ− 1

)ℓ−1

ℓℓ−2
(k2
n

)ℓ−1

≤

(
emk2

n
· ℓ

ℓ−2
ℓ−1

ℓ− 1

)ℓ−1

≤ (ek2α)ℓ−1.

As ℓ ≥ log n, by Markov’s inequality, we obtain that PrΦ
(
Zc ≥ (9k2α)ℓ−1

)
≤
(
e
9

)ℓ−1
= o(1/n).

By a union bound over all clauses c (note that there are O(n) for them), we obtain the conclusion
of the lemma. □

8.3. Bounding the number of high-degree variables in connected sets. In this section,
we bound the number of high-degree variables in connected sets of variables.

Recall that V0 is the set of high-degree variables. For every set S of variables, let HD(S) =
V0 ∩ S be the set of high-degree variables in S. With this notation, V0 = HD(V). For a set
Y ⊆ C of clauses, let var(Y ) := ∪c∈Y var(c).

Lemma 41. Let δ0 > 0 and θ0 ≥ min{k2α, 2} be constants such that δ0θ0 log(θ0/k2α) >
logα+ 3 log k. Then, w.h.p. over the choice of Φ, there do not exist sets Y, Z of clauses and a
set U of variables such that:

(1) |Y | ≥ log n, |U | ≥ δ0 |Y |, |Z| ≥ θ0 |U |, and Y ∩ Z = ∅;
(2) GΦ[Y ] is connected, U ⊆ var(Y ), and every clause in Z contains at least one variable

from U .

Proof. Let E the event that there exist sets Y, Z, U satisfying conditions (1) and (2).
Call a tuple (y, δ, θ) feasible if y, δy, θδy are all integers, where y ≥ log n, δ ≥ δ0 and θ ≥ θ0.

Fix a feasible tuple (y, δ, θ) and three sets of indices IY ∈
(
[m]
y

)
, IU ∈

(IY ×[k]
δy

)
, IZ ∈

([m]\IY
θδy

)
.

Define

SY = {ci | i ∈ IY }
SU = {var(ℓi,j) | (i, j) ∈ IU} where var(ℓi,j) is the variable corresponding to the literal ℓi,j ,
SZ = {ci | i ∈ IZ}.

Denote by EU the event that |SU | = δy, by EY the event that GΦ[SY ] is connected and by EZ the
event that every clause in SZ contains at least one variable from SU . For any labelled tree T on
vertex set SY , by Lemma 39, the probability that T is a subgraph of GΦ is at most (k2/n)y−1.
We have yy−2 such trees, so by a union bound

PrΦ(EY ) ≤ yy−2
(k2
n

)y−1
.

Moreover, by the independence of clauses, we have that

PrΦ(EZ | EU ∧ EY ) = PrΦ(EZ | EU ) ≤
(kδy
n

)θδy
.

Note that
PrΦ(EU ∧ EY ∧ EZ) ≤ PrΦ(EY ) PrΦ(EZ | EY ∧ EU ),

so by a union bound over the choice of the tuple (y, δ, θ) and the sets IY , IU , IZ we have that

PrΦ(E) ≤
∑

feasible (y,δ,θ)

∑
IY ∈([m]

y
),IU∈(IY ×[k]

δy
),IZ∈([m]\IY

θδy
)

PrΦ(EY ) PrΦ(EZ | EY ∧ EU ).

22



It follows that

PrΦ(E) ≤
∑

feasible (y,δ,θ)

(
m

y

)(
ky

δy

)(
m

θδy

)
yy−2

(k2
n

)y−1(kδy
n

)θδy
≤ n

∑
feasible (y,δ,θ)

((ek)2+δ+θδαθδ+1

δδθθδ

)y
.(15)

Note that δθ log(θ/k2α) ≥ δ0θ0 log(θ0/k
2α) ≥ logα + 3 log k and hence θδθ ≥ (k2α)δθk3α. It

follows that
(ek)2+δ+θδαθδ+1

δδθθδ
≤ e2+δ+δθkδ

δδkθδ+1
=

e2+δkδ

δδ(k/e)θδk
≤ 2e2+δkδ

k(k/e)2δ
≤ 2e2

k
<

1

e6
,

where the last few inequalities hold for sufficiently large k combined with the fact that δδ ≥ 1/2
for all δ > 0 and our assumption θ ≥ θ0 ≥ 2. Plugging this estimate into (15) and noting
that there are O(n3) feasible tuples (y, δ, θ) and y ≥ log n, we obtain that PrΦ(E) = o(1), as
needed. □

Lemma 42. W.h.p. over the choice of Φ, every connected set U of variables with size at least
21600k log n satisfies that |HD(U)| ≤ |U |

21600 .

Proof. Let δ0 = 1
21600 and θ0 = ∆ − 2(k + 1). Note that δ0θ0 log θ0

k2α
≥ 3 log k + logα for all

sufficiently large k, so w.h.p. we have that Φ satisfies Lemma 41. Moreover, w.h.p. we have that
Φ satisfies Corollary 37 and Lemma 35. We will show the conclusion of the lemma whenever Φ
satisfies these properties.

For the sake of contradiction, suppose that U is a connected set of variables with |U | ≥
(k/δ0) log n such that h > δ0 |U | where h = |HD(U)| is the number of high-degree variables in
U . Recall that the factor graph of Φ is a bipartite graph where one side corresponds to variables
and the other to clauses (whose edges join variables to clauses in the natural way). We next
show that there is a tree T in the factor graph of Φ of size at most 2 |U | such that

(1) every vertex in T is either a variable in U or a clause in Φ, all variables in HD(U) are
vertices in T , and T contains at most |U | clauses;

(2) every edge in T joins a variable and a clause, and for any variable v and clause c, (v, c)
is an edge in T only if c contains v;

(3) TL ⊆ HD(U), where TL is the set of leaves of T ;
(4) if a clause c ∈ T contains any variable from HD(U), then at least one of its neighbours

in T is a variable from HD(U).
Since HΦ[U ] is connected, there is a tree T ′ of size at most 2 |U | that satisfies Items (1) and (2)
(for example, we may take the Steiner tree with terminals HD(U) in the subgraph of the factor
graph induced by U and its adjacent clauses). We now prune T ′ so that it satisfies Items (4)
and (3) as well. For any clause c in T ′ such that c contains at least one variable from HD(U)
but none of its neighbours in T ′ is from HD(U), let v be a variable from var(c) ∩HD(U), and u
be the neighbour of c on the path from c to v. Then we remove the edge (c, u) from T ′ and add
the edge (c, v). Run this process until there is no such clause c. Now T ′ is a tree that satisfies
Items (1), (2), (4). If T ′ has a leaf node which is not in HD(U), remove it from T ′. Run this
process until all leaf nodes are in HD(U) and let T be the remaining tree. Note that removing
leaf nodes that are not in HD(U) does not affect Items (1), (2) and (4). We thus obtain a tree
T satisfying all of these four items.

Let CT be the set of clauses in T . From Item (1), we have h/k ≤ |CT | ≤ |U |. Let t be the
number of clauses in CT that contain at least one variable from HD(U). By Item (4), we have

t ≤
∑

v∈HD(U)

degT (v).
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Let D =
∑

v∈HD(U)\TL
degT (v). Because T is a tree and HD(U) ⊆ T , we obtain that

|TL| = 2 +
∑

v∈T\TL

(degT (v)− 2) ≥ 2 +
∑

v∈HD(U)\TL

(degT (v)− 2) = 2 +D − 2(h− |TL|),

which yields that D + |TL| ≤ 2h. Thus we have t ≤ D + |TL| ≤ 2h.
By our assumption on U , we have that the number of high-degree variables in U satisfies

h > δ0 |U | ≥ k log n and therefore |CT | ≥ log n. Each variable in HD(U) is contained in at least
∆ clauses. Moreover, by Lemma 35 we have |HD(U)| ≤ |V0| ≤ n/2k, so by Corollary 37 the
number of clauses that contain at least 2 variables from HD(U) is at most 2h. It follows that
the number of clauses that contain at least one variable from HD(U) is at least ∆h−2hk. Since
t ≤ 2h, at most 2h of these clauses appear in T . Hence, there must exist a set Z of clauses of
size at least (∆− 2(k+1))h = θ0h such that Z ∩CT = ∅ and each clause in Z contains at least
one variable from HD(U).

Note that |CT | ≥ log n, |HD(U)| ≥ δ0 |CT | and |Z| ≥ θ0 |HD(U)|. Moreover, CT is a connected
set of clauses, HD(U) ⊆ var(CT ) and every clause Z contains at least one variable from HD(U).
This contradicts that Φ satisfies Lemma 41. Therefore, no such set U can exist, proving the
lemma. □

8.4. Bounding the number of bad variables in connected sets. In this section, we bound
the number of bad variables in connected sets. Consider the following process P which we will
use to work with bad components. The process, for every set S of variables, defines a set of
variables BC(S).

(1) Let BC(S) = S.
(2) While there is a clause c such that |var(c) ∩ BC(S)| ≥ k/10 and var(c) \ BC(S) ̸= ∅

BC(S) := BC(S) ∪ var(c)

Note that Vbad = BC(V0), where V0 is the set of high-degree variables. Recall from Section 3
that a bad component is a connected component of variables in HΦ,bad. The following lemma
shows that the process P can be viewed as a “local” process for identifying bad components.

Lemma 43. For every bad component S, we have S = BC(HD(S)).

Proof. We run the process P starting from HD(S). Since HD(S) consists only of high-degree
variables, BC(HD(S)) ⊆ Vbad. By the construction of BC(HD(S)) and the definitions of Cbad
and HΦ,bad, HΦ,bad[BC(HD(S))] is connected. Since S is a connected component in HΦ,bad, we
obtain that BC(HD(S)) ⊆ S.

Now we prove that S ⊆ BC(HD(S)). For the sake of contradiction, suppose that S \
BC(HD(S)) ̸= ∅. Consider the process of identifying bad variables (cf. Section 3). Let i
be the smallest number such that Vi ∩ (S \ BC(HD(S))) ̸= ∅ and let v be any variable from
Vi ∩ (S \ BC(HD(S))). Thus there exists a clause c ∈ Ci−1 that contains v and at least k/10
variables in Vi−1. Let U = var(c) ∩ Vi−1. By Definition 5, variables in U are adjacent to v in
HΦ,bad and thus they are in S (since c becomes a bad clause after step i). Also by the choice
of i, U ∩ (S \ BC(HD(S))) ⊆ Vi−1 ∩ (S \ BC(HD(S))) = ∅, which implies that U ⊆ BC(HD(S)).
Therefore, the clause c contains v and at least k/10 variables from BC(HD(S)), so v should also
be in BC(HD(S)) according to the process P, which yields a contradiction. This finishes the
proof. □

To analyse the number of variables added by the process P, we will use an expansion property
proved by Coja-Oghlan and Frieze [12], adapted for our purposes. First, we show the following
slightly more quantitative version of [12, Lemma 2.4].

Lemma 44 ([12, Lemma 2.4]). There exists a constant k0 > 0 such that for all k ≥ k0 the
following holds. With probability 1− o(1/n) over the choice of the random formula Φ, for ε > 0

and λ > 4 satisfying ε ≤ k−3 and ελ ≤ 1
e (2e)

−4k, Φ has the following property.
24



Let Z ⊂ [m] be any set of size |Z| ≤ εn. Let i1, . . . , iℓ ∈ [m] \ Z be a sequence of pairwise
distinct indices. For s ∈ {1, . . . , ℓ}, define Ns := var(Z) ∪

⋃s−1
j=1 var(cij ). If

|var(cis) ∩Ns| ≥ λ for all s ∈ {1, . . . , ℓ},
then ℓ ≤ εn.
Proof. The proof is almost identical to the proof in [12], though there ε is a constant (inde-
pendent of n), whereas here we allow it to depend on n. [12, Equation (4)] shows that the
probability that Φ does not have the desired property is bounded above by pn := [(2e)2kελ/2]εn.
If εn ≥ 10 log n, then clearly pn = o(1/n) since (2e)2kελ/2 < 1/e1/2 by the assumption
ελ ≤ 1

e (2e)
−4k. If 1 ≤ εn ≤ 10 log n, then (2e)2kελ/2 < n−3/2 for all sufficiently large n

(using λ > 4) and hence pn = o(1/n). Finally, for εn < 1, the lemma follows by the case
εn = 1. □

We will use the following corollary of Lemma 44; note the slightly different conclusion ℓ ≤ |Z|
in the end.
Corollary 45. W.h.p. the random formula Φ has the following property. Let Z ⊂ [m] be any
set of size |Z| ≤ 2n/2k

10. Let i1, . . . , iℓ ∈ [m] \Z be a sequence of pairwise distinct indices. For
s ∈ {1, . . . , ℓ}, define Ns := var(Z) ∪

⋃s−1
j=1 var(cij ). If

|var(cis) ∩Ns| ≥ k/10 for all s ∈ {1, . . . , ℓ},
then ℓ ≤ |Z|.

Proof. For an integer z satisfying 1 ≤ z ≤ 2n/2k
10 , let Ez be the event that there exists a set Z

with |Z| = z that does not satisfy the desired property. By Lemma 44 (applied with ε = z/n
and λ = k/10), we have PrΦ(Ez) = o(1/n). Taking a union bound over the values of z yields
the corollary. □

Corollary 45 allows us to control the number of bad variables.

Lemma 46. W.h.p. over the choice of Φ, |Vbad| ≤ 4kn/2k
10.

Proof. W.h.p. Φ satisfies the properties in Lemma 35 and Corollaries 37, 45. By Lemma 35,
we have that |V0| ≤ n/2k

10 and hence by Corollary 37 (applied to Y = V0), we obtain that
|C0| ≤ 2n/2k

10 . By Lemma 44 (applied to Z = C0), we conclude that |Cbad| ≤ 4n/2k
10 and hence

|Vbad| ≤ 4kn/2k
10 . □

We can in fact use Corollary 45 to prove the following lemma.
Lemma 47. W.h.p. over the choice of Φ, for any bad component S, |S| ≤ 60 |HD(S)|.
Proof. W.h.p. we have that Φ satisfies the properties in Lemma 35 and Corollaries 38 and 45.
We will show the conclusion of the lemma whenever Φ satisfies these three properties.

Let S be a bad component. If S contains only an isolated variable, it must be a high-degree
variable and hence HD(S) = S (so we are finished). Otherwise, since a bad component is
a connected component of variables in HΦ,bad, the definition of HΦ,bad ensures that the bad
component has at least k/10 high-degree variables. Note that |HD(S)| ≤ |V0| ≤ n/2k

10 by
Lemma 35. Applying Corollary 38 with Y = HD(S), we find that there are at most 30

k |HD(S)|
clauses that contain at least k/10 variables from HD(S).

Now, we run the process P starting with HD(S). Take Z to be the set of clauses that contain
at least k/10 variables from HD(S) (so, from above, we have |Z| ≤ 30

k |HD(S)| ≤
30
k

n

2k10
).

Applying Corollary 45, we find that the number of clauses c such that var(c) ⊆ BC(HD(S)) is
at most 2|Z| ≤ 60 |HD(S)| /k. Since S = BC(HD(S)) by Lemma 43 and each variable in S is
contained in some bad clause, we have

|S| ≤
∣∣∣∣ ⋃
c∈Cbad: var(c)∩S ̸=∅

var(c)

∣∣∣∣ ≤ 60 |HD(S)| . □
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Next, we show that there is no large bad component.

Lemma 48. W.h.p. over the choice of Φ, every bad component S has size at most 21600k log n.

Proof. Suppose there is a bad component S with size |S| > 21600k log n. Since S is a connected
component in HΦ,bad, S is also a connected set in HΦ. By Lemma 42, |HD(S)| ≤ |S|

21600 . However
by Lemma 47, we have |S| ≤ 60 |HD(S)|, which gives a contradiction. □

The following lemma shows that every “large” connected set contains few bad variables.

Lemma 49. W.h.p. over the choice of Φ, for every connected set S of variables with size at
least 21600k log n, |S ∩ Vbad| ≤ |S|/360.

Proof. W.h.p. we have that Φ satisfies the properties in Lemmas 42 and 47. We will show the
conclusion of the lemma for all such Φ.

For the sake of contradiction, let S be a connected set of variables with size at least 21600k log n
and |S∩Vbad| > |S|/360 = 60δ0 |S|, where δ0 = 1/21600. Suppose that there are t bad compon-
ents S1, S2, . . . , St intersecting S. Let S′ = S∪S1∪· · ·∪St and let b = |S′ \ S|/|S|. Note that S′

is a connected set of variables. Also, all variables in S′\S are bad, so |S′ ∩ Vbad| > (60δ0+b) |S|.
Thus, by Lemma 47, we have

∣∣HD(S′)
∣∣ = t∑

i=1

|HD(Si)| ≥
t∑

i=1

|Si|
60

=
|S′ ∩ Vbad|

60
>

(
δ0 +

b

60

)
|S| > δ0(1 + b) |S| = δ0

∣∣S′∣∣ ,
which contradicts Lemma 42. □

Lemma 50. W.h.p. over the choice of Φ, for every connected set of clauses Y such that
|var(Y )| ≥ 21600k log n, it holds that |Y ∩ Cbad| ≤ |Y |/12.

Proof. W.h.p. we have that Φ satisfies the properties in Corollary 38 and Lemmas 46 and 49.
We will show the conclusion of the lemma for all such Φ.

Let Y be a connected set of clauses such that |var(Y )| ≥ 21600k log n and let S = var(Y ).
Then |S| ≤ k |Y |. Since Y is connected, so is S. Let Sbad = S ∩ Vbad and note that, by
Lemma 46, |Sbad| ≤ |Vbad| ≤ 4kn/2k

10 . By Lemma 49, we also have that |Sbad| ≤ |S| /360.
Note that every c ∈ Y ∩ Cbad contains at least k/10 variables in Sbad. Applying Corollary 38
(with the “Y ” in the corollary equal to Sbad),

|Y ∩ Cbad| ≤
30 |Sbad|

k
≤ |S|

12k
≤ |Y |

12
. □

8.5. Proofs for the coupling tree. In this section, we prove Lemma 14. For V ⊆ V , let
ΓHΦ

(V ) = ∪v∈V ΓHΦ
(v) be the neighbourhood of V in HΦ. Let Γ+

HΦ
(V ) = V ∪ ΓHΦ

(V ) be the
extended neighbourhood.

Lemma 51. W.h.p. over the choice of Φ, every connected set of variables V ⊆ V satisfies
|Γ+

HΦ
(V )| ≤ 3k3αmax{|V |, k log n}.

Proof. Let δ0 = 1, and θ0 = 2k2α. Since δ0θ0 log(θ0/k2α) > logα+ 3 log k, w.h.p. we have that
Φ satisfies the property in Lemma 41. We will show the conclusion of the lemma for all such Φ.

Let V be a connected set of variables and Y be the set of neighbours of V in the factor graph,
i.e., Y = {c ∈ C | var(c) ∩ V ̸= ∅}. Clearly |Γ+

HΦ
(V )| ≤ k |Y | and hence it suffices to show that

|Y | ≤ 3k2αmax{|V | , k log n}. There are two cases depending on the size of V .
• |V | ≥ k log n. Since V is a connected set of variables, there exists a set Y ′ ⊆ Y such

that |V | /k ≤ |Y ′| ≤ |V | and V ∪ Y ′ is connected in the factor graph of Φ. Hence, Y ′ is
a connected set of clauses and |Y ′| ≥ log n. Let Z := Y \ Y ′. If |Z| ≥ θ0 |V |, then we
obtain a contradiction to Lemma 41 (using the sets U = V, Y ′, Z). Thus, |Z| ≤ θ0 |V |
and |Y | ≤ |Y ′|+ |Z| ≤ 3k2α |V |.
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• Otherwise |V | < k log n. If |Γ+
HΦ

(V )| < ⌈k log n⌉ then we are finished. Otherwise,
consider an arbitrary connected V ′ ⊃ V such that |V ′| = ⌈k log n⌉. By the argument of
the previous case, the set of neighbours of V ′ in the factor graph, denoted Y ′′, satisfies
that |Y ′′| ≤ 3k2α |V ′| ≤ 3k3α log n. Thus, |Y | ≤ |Y ′′| ≤ 3k3α log n.

This completes the proof. □
Now we can show Lemma 14, which we restate here for convenience. Recall that Λ∗ is from

Lemma 10.
Lemma 14. W.h.p. over the choice of Φ, for every prefix Λ of Λ∗, every node ρ in TΛ has the
property that |Vset(ρ)| ≤ 3k3αL+ 1.
Proof. W.h.p. we have that Φ satisfies the property in Lemma 51. We will show the conclusion
of the lemma for all such Φ.

Let Λ be a prefix of Λ∗ and ρ be a node in TΛ. We first claim that Vset(ρ) ⊆ Γ+
HΦ

(VI(ρ)). To
prove the claim, we’ll consider any u ∈ Vset(ρ) \ VI(ρ) and we will show that there is a clause c
containing u and containing a variable in VI(ρ).

We first rule out the case that u = v∗ by noting (via Property (P1)) that v∗ ∈ VI(ρ)∩Vset(ρ).
So consider u ∈ Vset(ρ) \ VI(ρ) and let ρ′ be the ancestor of ρ in the coupling tree such that

u is the first variable of ρ′. The definition of the coupling tree guarantees that ρ′ is uniquely
defined and that it is a proper ancestor of ρ — the definition of “first variable” guarantees that
u /∈ Vset(ρ′), but for all proper descendants ρ′′′ of ρ′, u ∈ Vset(ρ′′′).

Let ρ′′ be the child of ρ′ on the path to ρ. We will show that there is a clause c containing u
and containing a variable in VI(ρ′). The claim will then follow from the fact that VI(ρ) contains
VI(ρ

′). The existence of such a clause c is immediate from the definition of “first variable” —
indeed c is the “first clause” of ρ′. Thus, we have proved the claim.

By (P5), VI(ρ) is a connected set of variables. Thus, by Lemma 51 and the claim,
|Vset(ρ)| ≤ |Γ+

HΦ
(VI(ρ))| ≤ 3k3αmax{|VI(ρ)|, k log n}.

If ρ ̸∈ T , then |VI(ρ)| ≤ L and the lemma holds. Otherwise, apply the above to the parent of
ρ, which finishes the proof. □
8.6. Proofs for D(GΦ). In this section we show Lemma 27 and Lemma 28.
Lemma 52. Let G be a connected graph. For any connected induced subgraph G′ = (V ′, E′)
of G≤4, there exists a connected induced subgraph of G with size at most 4 |V ′| containing all
vertices in V ′.
Proof. We do an induction on ℓ = |V ′|. If ℓ = 1 the claim holds since G′ is also an induced
subgraph of G. If ℓ > 1, assume that the claim holds for all induced subgraphs of G≤4 with at
most ℓ−1 vertices. Let v be a vertex of G′ such that G′[V ′ \{v}] is connected in G≤4. Thus, by
the induction hypothesis, there exists a connected induced subgraph G′′ = (V ′′, E′′) of G such
that (V ′ \ {v}) ⊆ V ′′ and |V ′′| ≤ 4(ℓ − 1). Since G′ is connected in G≤4, there exists a vertex
u ∈ (V ′ \{v}) such that distG(u, v) ≤ 4. Let U = V ′′∪{vertices on the path from u to v in G}.
Then the induced subgraph in G whose vertex set is U is connected and |U | ≤ 4ℓ. Thus the
claim holds for G′. □
Corollary 53. Let G be a connected graph and v ∈ V (G) be a vertex. Let nG,ℓ(v) denote the
number of connected induced subgraphs of G with size ℓ containing v. Then

nG≤4,ℓ(v) ≤ 2ℓ
′
nG,ℓ′(v) where ℓ′ := min{4ℓ, |V (G)|}.

Proof. By Lemma 52, for any connected induced subgraph G′ of G≤4 with size ℓ containing v,
there exists a connected induced subgraph G′′ of G such that V (G′) ⊆ V (G′′) and |V (G′′)| ≤ 4ℓ.
In fact we can further assume that |V (G′′)| = ℓ′ since otherwise we can keep adding vertices
from neighbours of G′′ into G′′ until |V (G′′)| = ℓ′. For any such G′′ the number of size ℓ subsets
containing v (corresponding to potential graphs G′ which would be mapped to G′′ by the above
construction) is at most

(
ℓ′

ℓ−1

)
≤ 2ℓ

′ , giving the desired upper bound. □
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Lemma 27. Let ℓ be an integer which is at least log n. W.h.p. over the choice of Φ, every
clause c ∈ CΛgood has the property that the number of size-ℓ subsets T ∈ D(GΦ) containing c is
at most (18k2α)4ℓ.

Proof. Just combine Corollary 53 with Lemma 40. □

In the remainder of this section, we will focus on showing Lemma 28. We will need the
following ingredients.

Lemma 54. For any set Y ⊆ Cgood of good clauses, the size of a maximum independent set in
GΦ,good[Y ] is at least |Y |/(k∆).

Proof. Let c be a clause in Y . Note that c contains at most k variables in Vgood and each variable
in Vgood is contained in at most ∆ clauses. So the degree of c in GΦ,good is at most k(∆ − 1).
The result follows since every n-vertex graph of maximum degree d contains an independent set
of size at least n/(d+ 1). □

We will also use the following properties of F(ρ).

Lemma 55. If ρ is a node of the coupling tree, then the following properties hold.
(1) G≤2

Φ [F(ρ)] is connected.
(2) |F(ρ)| ≥ |VI(ρ)|/k.

Proof. We show Item (1) by induction on the size of Vset(ρ). The base case where |Vset(ρ)| = 1 is
trivial since, in this case, ρ = ρ∗ and F(ρ∗) is the set of clauses containing v∗. For the inductive
step, we consider a node ρ′ = ρτ1,τ2 being created as a new child of ρ by Algorithm 1 and we
consider how clauses are added to F(ρ′). We show that each part of the algorithm that adds
clauses to F(ρ′) maintains the property that G≤2

Φ [F(ρ′)] is connected. Before Line 5, this holds
by the inductive hypothesis.

• First, consider the addition of clauses in Line 8. All clauses c′ that are added by this line
contain the first variable u of ρ which is in the first clause c of ρ so to finish it suffices
to show that F(ρ) has a clause which shares a variable with c. Since var(c) ∩ VI(ρ) is
non-empty, it suffices to show that every variable in VI(ρ) is contained in a clause in
F(ρ). This is true by Property (P6).
• Next, consider the addition of clauses in Line 18. It is important to note that, after the

loop containing Line 8, Property (P6) has been re-established. That is, for any u′′ ∈ VI
there is a clause c′′ ∈ F such that u′′ ∈ var(c′′). All clauses c′ added to F in Line 18
have variables in VI so the introduction of c′ leaves G≤2

Φ [F ] connected. Moreover, the
subsequent addition of variables from var(c′) to VI maintains Property (P6).
• Finally, consider the addition of clauses in Line 24. As in the previous case, Prop-

erty (P6) guarantees that the introduction of clauses to F leaves G≤2
Φ [F ] connected.

Moreover, the subsequent addition of variables to VI maintains Property (P6).
Item (2) is a direct consequence of (P6). □

We also need the following expansion property (which is a strengthening of Lemma 36 in the
case that b = k).

Lemma 56 ([12, Lemma 2.3]). For all sufficiently large k, w.h.p. over the choice of Φ, for any
Y ⊆ C such that |Y | ≤ n/k2, |var(Y )| ≥ 0.9k |Y |.

We are now ready to prove Lemma 28, which we restate here.

Lemma 28. W.h.p. over the choice of Φ, every node ρ in TΛ with |VI(ρ)| ≥ L has the property
that there is a set T ⊆ F(ρ) containing c∗ such that T ∈ D(GΦ), |T | = C0⌈log(n/ε)⌉ and
|T ∩ Cbad| ≤ |T |/3.
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Proof. W.h.p. we have that Φ satisfies the properties in Lemmas 50 and 56. We will show the
conclusion of the lemma for all such Φ. Let ρ ∈ T be a node of TΛ with |VI(ρ)| ≥ L. For a
good clause c, let Γ+

good(c) be the set consisting of c and all of its neighbours in GΦ,good. Recall
also from Section 5 that c∗ is a good clause (being the first clause of the root node ρ∗).

Let U = F(ρ) \ (Cbad ∪ Γ+
good(c

∗)) and I be a maximum independent set of GΦ,good[U ]. We
let T = I ∪ {c∗} ∪ (F(ρ) ∩ Cbad). By Lemma 54 we have |I| ≥ |U |/(k∆). By construction T
contains c∗.

Next, we show that T ∈ D(GΦ). Since Γ+
good(c

∗) and U are disjoint, and I is an independent
set of GΦ,good[U ], for any c1, c2 ∈ T we have that var(c1)∩ var(c2)∩Vgood = ∅ (note that clauses
in Cbad only have bad variables). It therefore suffices to show that T is connected in G≤4

Φ .
Suppose for contradiction that T is not connected in G≤4

Φ . Then there exists a partition
(S1, S2) of T such that S1 ∪ S2 = T , S1 ∩ S2 = ∅ and minc1∈S1,c2∈S2 distGΦ

(c1, c2) ≥ 5. Let
S′
i = (∪c∈SiΓ

+
good(c)) ∩ F(ρ) for i = 1, 2. Then we have minc1∈S′

1,c2∈S′
2

distGΦ
(c1, c2) ≥ 3.

Since I is a maximum independent set of GΦ,good[U ], every clause c′ in U has Γ+
good(c

′)∩I ̸= ∅.
So U ⊆ ∪c∈IΓ+

good(c). Thus,

S′
1 ∪ S′

2 ⊇ U ∪ (Cbad ∩ F(ρ)) ∪ (Γ+
good(c

∗) ∩ F(ρ)) = F(ρ).

However, G≤2
Φ [F(ρ)] is connected by Item (1) of Lemma 55, which contradicts

min
c1∈S′

1,c2∈S′
2

distGΦ
(c1, c2) ≥ 3.

Thus, we have finished showing that T ∈ D(GΦ).
Now, observe the following lower bound on the size of T :

|T | = |I|+ |F(ρ) ∩ Cbad|+ 1 ≥ |F(ρ)| − |F(ρ) ∩ Cbad| − k∆
k∆

+ |F(ρ) ∩ Cbad|+ 1

≥ |F(ρ)|
k∆

≥ |VI(ρ)|
k2∆

≥ C0⌈log(n/ε)⌉,

where in the second to last inequality we used Item (2) of Lemma 55. If |T | > C0⌈log(n/ε)⌉, we
make the size of T exactly equal to C0⌈log(n/ε)⌉ by removing some clauses from it. Note that
any subset of T satisfies Item (1) of the definition of D(GΦ) (cf. Definition 26). To maintain
the connectedness of T in G≤4

Φ , consider an arbitrary spanning tree of the subgraph G≤4
Φ [T ];

remove leaf vertices of the tree from T until until |T | = C0⌈log(n/ε)⌉. By construction, the
remaining T is still connected in G≤4

Φ and hence is in D(GΦ).
Finally, we show that |T ∩ Cbad| ≤ |T |

3 . Since T is connected in G≤4
Φ , Lemma 52 implies that

there exists a connected induced set T ′ of vertices of GΦ such that T ⊆ T ′ and |T ′| ≤ 4 |T |.
Lemma 56 implies that |var(T ′)| ≥ 0.9k |T ′| ≥ 0.9k|T | = 0.9kC0⌈log(n/ε)⌉ > 21600k log n. Thus
Lemma 50 implies that |T ′ ∩ Cbad| ≤ |T ′|

12 . We conclude that

|T ∩ Cbad| ≤
∣∣T ′ ∩ Cbad

∣∣ ≤ |T ′|
12
≤ |T |

3
.

This completes the proof. □

9. Proof of Theorem 1

In order to estimate Ω(Φ), we use self-reducibility to calculate the marginal probability of the
partial assignment Λ∗ from Lemma 10. This marginal probability is |ΩΛ∗ |/|Ω|. By Lemma 48,
w.h.p. over the choice of Φ, |ΩΛ∗ | can be computed in polynomial time. This is because Λ∗

satisfies all of the good clauses (by Lemma 10). The remaining clauses are bad, and Lemma 48
guarantees that all bad components have O(log n) size, so their satisfying assignments can be
counted by brute force.

29



Lemma 57. There is a deterministic algorithm that takes as input a k-CNF formula Φ on n
Boolean variables with m clauses, a partial assignment Λ of Φ and an accuracy parameter ε > 0.
It returns a rational value p and runs in time poly(n, 1/ε). If Φ = Φ(k, n,m) then, w.h.p., the
guarantees of all of our lemmas apply. In this case, as long as Λ is a prefix of the partial
assignment Λ∗ from Lemma 10, the output satisfies e−ε/np ≤ |ΩΛ

1 |/|ΩΛ
2 | ≤ eε/np.

Proof. Let v∗ be the first unassigned variable in Λ∗ \ Λ. By Lemma 14, the depth of TΛ is at
most 3k3αL+ 1 = O(log(n/ε)). Thus, the number of nodes of TΛ is bounded by a polynomial
in n/ε.

After constructing TΛ, the algorithm constructs the linear program from Section 6. Lemma 34
guarantees that, given bounds rlower ≤ rupper, if the LP has a solution P using rlower and rupper,
then e−ε/(3n)rlower ≤ |ΩΛ

1 |/|ΩΛ
2 | ≤ eε/(3n)rupper. Thus, the task of the algorithm is to find initial

bounds rlower ≤ rupper for which there is a feasible solution and then (by binary search) to bring
rlower and rupper closer together, to obtain a more accurate estimate. This is done in Algorithm 2.

The algorithm is based on the premise that there is a feasible solution with rlower = (3s −
1)/(3s + 1) and rupper = (3s + 1)/(3s − 1), so we next establish this fact. This follows from
Lemma 9, which guarantees that

1− 1
3s

1 + 1
3s

≤
∣∣ΩΛ

1

∣∣∣∣ΩΛ
2

∣∣ ≤ 1 + 1
3s

1− 1
3s

.

Algorithm 2 Estimate
∣∣ΩΛ

1

∣∣ / ∣∣ΩΛ
2

∣∣
1: plower ← 3s−1

3s+1 ;
2: pupper ← 3s+1

3s−1 ;
3: while pupper > eε/(3n)plower do
4: rlower ← plower;
5: rupper ← (plower + pupper)/2;
6: if the LP described in Section 6 has a feasible solution then
7: pupper ← rupper;
8: else
9: plower ← rupper;

10: end if
11: end while
12: return p← (plower + pupper)/2;

We next explore the accuracy of the output. Applying Lemma 24 and Lemma 34, after each
step of the while loop of Algorithm 2, it holds that e−ε/(3n)plower ≤

∣∣ΩΛ
1

∣∣ / ∣∣ΩΛ
2

∣∣ ≤ eε/(3n)pupper.
Also, pupper ≤ eε/(3n)plower when the algorithm terminates, so the output p satisfies e−ε/np ≤
|ΩΛ

1 |
|ΩΛ

2 |
≤ eε/np.

Finally, we explore the running time of the algorithm. Since each iteration of the while loop
takes polynomial time, the main issue is determining how many times the while loop executes.
Note that in the beginning pupper − plower ≤ 4/(3s− 1), and just before the last iteration,

pupper − plower ≥ (eε/(3n) − 1)plower ≥
ε(3s− 1)

3n(3s+ 1)
.

This difference halves with each iteration. Thus the algorithm solves the LP at most O(log(n/ε))
times. Since the size of LP is bounded by a polynomial in n/ε and the LP can be solved in
polynomial time, the whole of the algorithm runs in polynomial time, as required. □

We now prove Theorem 1.
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Theorem 1. There is a polynomial-time algorithm A and there are two constants r > 0 and
k0 ≥ 3 such that, for all k ≥ k0 and all α < 2rk, the following holds w.h.p. over the choice of the
random k-SAT formula Φ = Φ(k, n, ⌊αn⌋). The algorithm A, given as input the formula Φ and a
rational ε > 0, outputs in time poly(n, 1/ε) a number Z that satisfies e−ε|Ω(Φ)| ≤ Z ≤ eε|Ω(Φ)|.

Proof. Let Φ = Φ(k, n,m) be a random formula and Ω = Ω(Φ). The algorithm first computes
Vgood, Vbad, Cgood and Cbad in time poly(n). Then using Lemma 8 and Lemma 10, it can compute
Vmarked and Λ∗ in polynomial-time. W.h.p. over the choice of Φ, the guarantees of all of our
lemmas apply. Let us suppose that this happens (otherwise, the algorithm fails and outputs an
arbitrary number).

Suppose Λ∗ gives values to the j variables v1, v2, . . . , vj . By Lemma 57, for any i ∈ {1, . . . , j}
and any prefix Λi : {v1, v2, . . . , vi−1} → {T,F} of Λ∗, it takes poly(n, 1/ε) time to compute a
number pi satisfying e−ε/npi ≤ |ΩΛi

1 |/|Ω
Λi
2 | ≤ eε/npi. If Λ∗(vi) = T let qi = pi

1+pi
. Otherwise, let

qi =
1

1+pi
. Let Λj+1 = Λ∗.

Suppose that Λ∗(vi) = T. Then
|ΩΛi |
|ΩΛi+1 |

=
|ΩΛi

1 |+ |Ω
Λi
2 |

|ΩΛi
1 |

= 1 +
|ΩΛi

2 |
|ΩΛi

1 |
≤ 1 +

eε/n

pi
.

Thus,
|ΩΛi+1 |
|ΩΛi |

≥ pi

pi + eε/n
≥ pi

eε/npi + eε/n
= e−ε/nqi.

A similar calculation for the case where Λ∗(vi) = F and a similar calculation for the lower
bound give the following.

e−ε/nqi ≤
|ΩΛi+1 |
|ΩΛi |

≤ eε/nqi,

and thus

e−ε
j∏

i=1

qi ≤
|ΩΛ∗ |
|Ω|

≤ eε
j∏

i=1

qi .

Since all good clauses are satisfied by Λ∗, CΛ∗ consists only of bad clauses. Also, by Lemma 48,
every bad component of variables has size at most 21600k log n, so CΛ∗ can be divided into
disjoint subsets where each subset of clauses contains O(log n) variables. The algorithm can
compute the number of satisfying assignments of each subset by brute force in time poly(n).
Then |ΩΛ∗ | is the product of these numbers.

Combining all of the above, our algorithm outputs Z = |ΩΛ∗ |
∏j

i=1 q
−1
i , which satisfies

e−ε|Ω| ≤ Z ≤ eε|Ω|. □
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Appendix A. Notation reference

Name Description Reference
Formula related
C The clause set of Φ where m = |C| = ⌊nα⌋. Section 3
Cgood,Cbad Good and bad clauses, a partition of C Section 3
V The variable set of Φ where n = |V|. Section 3
Vgood,Vbad Good and bad variables, a partition of V Section 3
∆ The high degree threshold, set to 2k/300. Definition 2
GΦ The dependency graph of C, which contains a subgraph GΦ,good. Definition 4
HΦ The dependency graph of V, which contains a subgraph HΦ,bad. Definition 5
D(GΦ) A set of subsets T ⊆ V (GΦ) satisfying some properties Definition 26
Local lemma
Ω∗ All assignments V → {T,F} Definition 6
µA Uniform distribution over A ⊆ Ω∗ Definition 6
marked(c) Marked variables in clause c ∈ C Section 4
Vmarked All marked variables Section 4
Ω The set of all satisfying assignments Section 4
ΦΛ The formula Φ simplified under Λ Section 4

CΛ
Remaining clauses under Λ. Similar notations include VΛ, CΛgood.
Note that VΛbad = Vbad and CΛbad = Cbad. Section 4

s Local uniformity parameter s := 2k/4/(ek∆). Lemma 9
Λ∗ A particular “nice” partial assignment. Lemma 10
Coupling tree

L
Truncation depth, set to C0(3k

2∆)⌈log(n/ε)⌉, where C0 is a suffi-
ciently large integer (independent of Φ, k and n). Definition 12

L The set of leaves of the coupling tree. Definition 12
T The set of truncating nodes of the coupling tree. Definition 12
L∗ L∗ = L ∪ T . Definition 12
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