AN FPRAS FOR TWO TERMINAL RELIABILITY IN DIRECTED ACYCLIC GRAPHS

WEIMING FENG AND HENG GUO

Abstract

We give a fully polynomial-time randomized approximation scheme (FPRAS) for two terminal reliability in directed acyclic graphs (DAGs). In contrast, we also show the complementing problem of approximating two terminal unreliability in DAGs is \#BIS-hard.

1. Introduction

Network reliability is one of the first problems studied in counting complexity. Indeed, $s-t$ reliability is listed as one of the first thirteen complete problems when Valiant [Val79] introduced the counting complexity class \#P. The general setting is that given a (directed or undirected) graph G, each edge e of G fails independently with probability q_{e}. The problem of $s-t$ reliability is then asking the probability that in the remaining graph, the source vertex s can reach the sink t. There are also other variants, where one may ask the probability of various kinds of connectivity properties of the remaining graph. These problems have been extensively studied, and apparently most variants are \#P-complete [Bal80, Jer81, BP83, PB83, Bal86, Col87].

While the exact complexity of reliability problems is quite well understood, their approximation complexity is not. Indeed, the approximation complexity of the first studied $s-t$ reliability is still open in either directed or undirected graphs. One main exception is the all-terminal version (where one is interested in the remaining graph being connected or disconnected). A famous result by Karger [Kar99] gives the first fully polynomial-time randomized approximation scheme (FPRAS) for all-terminal unreliability, while about two decades later, Guo and Jerrum [GJ19] give the first FPRAS for all-terminal reliability. The latter algorithm is under the partial rejection sampling framework [GJL19], and the Markov chain Monte Carlo (MCMC) method is also shown to be efficient shortly after [ALOV19, CGM21]. See [HS18, Kar20, CHLP23], [GH20], and [$\mathrm{ALO}^{+} 21, \mathrm{CGZZ23]}$ for more recent results and improved running times along the three lines above for the all-terminal version respectively.

The success of these methods implies that the solution space of all-terminal reliability is well-connected via local moves. However, this is not the case for the two-terminal version (namely the $s-t$ version). Instead, the natural local-move Markov chain for $s-t$ reliability is torpidly mixing. Here the solution space consists of all spanning subgraphs (namely a subset of edges) in which s can reach t. Consider a (directed or undirected) graph composed of two paths of equal length connecting s and t. Suppose we start from one path and leave the other path empty. Then before the other path is all included in the current state, we cannot remove any edge of the initial path. This creates an exponential bottleneck for local-move Markov chains, and it suggests that a different approach is required.

In this paper, we give an FPRAS for the $s-t$ reliability in directed acyclic graphs. Note that the exact version of this problem is \#P-complete [PB83, Sec 3], even restricted to planar DAGs where the vertex degrees are at most 3 [Pro86, Theorem 3]. Our result positively resolves an open problem by Zenklusen and Laumanns [ZL11]. Without loss of generality, in the theorem below we assume that any vertex other than s has at least one incoming edge, and thus $|\mathrm{E}| \geqslant|\mathrm{V}|-1$ for the input $\mathrm{G}=(\mathrm{V}, \mathrm{E})$.

[^0]Theorem 1. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a directed acyclic graph (DAG), failure probabilities $\mathbf{q}=\left(\mathrm{q}_{\mathrm{e}}\right)_{e \in \mathrm{E}} \in$ $[0,1]^{\mathrm{E}}$, two vertices $\mathrm{s}, \mathrm{t} \in \mathrm{V}$, and $\varepsilon>0$. There is a randomized algorithm that takes $(\mathrm{G}, \mathbf{q}, \mathrm{s}, \mathrm{t}, \varepsilon)$ as inputs and outputs a $(1 \pm \varepsilon)$-approximation to the $s-\mathrm{t}$ reliability with probability at least $3 / 4$ in time $\widetilde{\mathrm{O}}\left(\mathrm{n}^{6} \mathrm{~m}^{4} \max \left\{\mathrm{~m}^{4}, \varepsilon^{-4}\right\}\right)$ where $\mathrm{n}=|\mathrm{V}|, \mathrm{m}=|\mathrm{E}|$, and $\widetilde{\mathrm{O}}$ hides polylog (n / ϵ) factors.

The running time of Theorem 1 is $\widetilde{O}\left(n^{6} \mathfrak{m}^{8}\right)$ when $\varepsilon>1 / \mathfrak{m}$, and is $\widetilde{O}\left(n^{6} \mathfrak{m}^{4} / \varepsilon^{4}\right)$ when $\varepsilon<1 / \mathfrak{m}$. The reason behind this running time is that our algorithm always outputs at least a $(1 \pm 1 / \mathrm{m})$-approximation. Thus, when $\varepsilon>1 / \mathrm{m}$, it does not matter what ε actually is for the running time. This high level of precision is required for the correctness of the algorithm.

As hinted earlier, our method is a significant departure from the techniques for the all-terminal versions. Indeed, a classical result by Karp and Luby [KL83, KLM89] has shown how to efficiently estimate the size of a union of sets. A direct application of this method to $s-t$ reliability is efficient only for certain special cases [KL85, ZL11]. Our main observation is to use the Karp-Luby method as a subroutine in dynamic programming using the structure of DAGs. Let $s=v_{1}, \ldots, v_{n}=t$ be a topological ordering of the DAG G. (Note that we can ignore vertices before s and after t.) Let R_{u} be the $u-t$ reliability so that our goal is to estimate R_{s}. We inductively estimate $R_{v_{i}}$ from $\mathfrak{i}=n$ to $i=1$. For each vertex u, our algorithm maintains an estimator of R_{u} and a set $S_{\mathfrak{u}}$ of samples of subgraphs in which u can reach t. In the induction step, we use the Karp-Luby method to generate the next estimator, and use a self-reduction similar to the Jerrum-Valiant-Vazirani sampling to counting reduction [JVV86] to generate samples. Both tasks can be done efficiently using only what have been computed for previous vertices. Moreover, a naive implementation of this outline would require exponentially many samples. To avoid this, we reuse generated samples and carefully analyze the impact of doing so on the overall error bound. A more detailed overview is given in Section 1.1.

Our technique is inspired by an FPRAS for the number of accepting strings of non-deterministic finite automata (\#NFA), found by Arenas, Croquevielle, Jayaram, and Riveros [ACJR21], which in turn used some techniques from a quasi-polynomial-time algorithm for sampling words from context-free languages by Gore, Jerrum, Kannan, Sweedyk, and Mahaney [GJK $\left.{ }^{+} 97\right]$. Their \#NFA algorithm runs in time $\mathrm{O}\left(\left(\frac{n \ell}{\varepsilon}\right)^{17}\right),{ }^{1}$ where n is the number of states and ℓ is the string length. More recently, Meel, Chakraborty, and Mathur claim an improved running algorithm which runs in time $\widetilde{O}\left(\frac{n^{4} \ell^{11}}{\varepsilon^{4}}\right)$ [MCM23, Theorem 3]. These algorithms first normalize the NFA into a particular layered structure. Applying similar methods on the $s-t$ reliability problem can simplify the analysis, but would greatly slow down the algorithm. In contrast, our method works directly on the DAG. This makes our estimation and sampling subroutines interlock in an intricate way. To analyze the algorithm, we have to carefully separate out various sources of randomness. This leads to a considerably more sophisticated analysis, with a reward of a much better (albeit still high) running time.

Independently and simultaneously, Amarilli, van Bremen, and Meel [AvBM23] also found an FPRAS for $s-t$ reliability in DAGs. Their method is to reduce the problem to \#NFA via a sequence of reductions, and then invoke the algorithm in [ACJR21]. Indeed, as Marcelo Arenas subsequently pointed out to us, counting the number of subgraphs of a DAG in which s can reach t belongs to a complexity class SpanL [ÀJ93], where \#NFA is SpanL-complete under polynomial-time parsimonious reductions. In particular, every problem in SpanL admits an FPRAS because \#NFA admits one [ACJR21], which implies that $s-t$ reliability in DAGs admits an FPRAS if $q_{e}=1 / 2$ for all edges. The method of [AvBM23] reduces a reliability instance of n vertices and m edges, where $q_{e}=1 / 2$ for all edges, to estimating length m accepting strings of an NFA with $\mathrm{O}\left(\mathrm{m}^{2}\right)$ states. ${ }^{2}$ As a consequence, their algorithm (even using the faster

[^1]algorithm for \#NFA [MCM23]) has a running time of $\mathrm{O}\left(\mathrm{m}^{19} \varepsilon^{-4}\right)$. When $\mathrm{q}_{\boldsymbol{e}} \neq 1 / 2$, their reduction needs to expand the instance further to reduce to the $\mathrm{q}_{e}=1 / 2$ case, slowing down the algorithm even more. In contrast, our algorithm deals with all possible probabilities $0 \leqslant \mathrm{q}_{e}<1$ in a unified way. In any case, an algorithm via reductions is much slower than the direct algorithm in Theorem 1.

As both all-terminal reliability and unreliability in undirected graphs have FPRASes [Kar99, GJ19], one may wonder if FPRAS exists for $s-t$ unreliability in DAGs. Here $s-t$ unreliability is the probability that s cannot reach t in the random subgraph. In contrast to Theorem 1, we show that this problem is \#BIShard, where \#BIS is the problem of counting independent sets in bipartite graphs, whose approximation complexity is still open. This is a central problem in the complexity of approximate counting [DGGJ04], and is conjectured to have no FPRAS.
Theorem 2. There is no FPRAS to estimate $s-\mathrm{t}$ unreliability in DAGs unless there is an FPRAS for \#BIS. This is still true even if all edges fail with the same probability.

Theorem 2 is proved in Section 5. The hardness of $s-t$ unreliability does not contradict Theorem 1. This is because a good relative approximation of x does not necessarily provide a good approximation of $1-x$, especially when x is close to 1 .

The complexity of estimating $s-t$ reliability in general directed or undirected graphs remains open. We hope that our work sheds some new light on these decades old problems. Another open problem is to reduce the running time of Theorem 1, as currently the exponent of the polynomial is still high.
1.1. Algorithm overview. Here we give an overview of our algorithm. For simplicity, we assume that $\mathrm{q}_{e}=$ $1 / 2$ for all edges. The general case of $0 \leqslant q_{e}<1$ can be solved with very small tweaks.

Let $s=v_{1} \prec \cdots \prec v_{\mathrm{n}}=\mathrm{t}$ be a topological ordering of the DAG G. (Note that we can ignore vertices before s and after t.) Let R_{u} be the $u-t$ reliability so that our goal is to estimate R_{s}. Note that $R_{v_{i}}$ depends only on the subgraph induced by the vertex set $\left\{v_{i}, \nu_{i+1}, \ldots, v_{n}\right\}$. We denote this subgraph by $\mathrm{G}_{v_{i}}=\left(\mathrm{V}_{v_{i}}, \mathrm{E}_{v_{i}}\right)$. As we assumed $\mathrm{q}_{e}=1 / 2$, estimating $R_{v_{i}}$ is equivalent to estimating the number of (spanning) subgraphs of $G_{v_{i}}$ in which v_{i} can reach t. Denote the latter quantity by $Z_{v_{i}}$ so that $R_{\nu_{i}}=$ $Z_{v_{i}} / 2^{\left|\mathrm{E}_{v_{i}}\right|}$. For each vertex v_{i}, our algorithm maintains an estimator and a multi-set of random samples:

- $\widetilde{Z}_{v_{i}}{ }^{3}$ an estimator that approximates $Z_{v_{i}}$ with high probability;
- $S_{v_{i}}$: a multi-set of random subgraphs, where each $H \in S_{v_{i}}$ is an approximate sample from $\pi_{v_{i}}$ and $\pi_{v_{i}}$ is the uniform distribution over all spanning subgraphs of $G_{v_{i}}$ in which v_{i} can reach t.
Our algorithm computes $\widetilde{Z}_{v_{i}}$ and $S_{v_{i}}$ for i from n to 1 by dynamic programming. The base case $v_{n}=\mathrm{t}$ is trivial. In the induction step, suppose the vertex v_{i} has d out-neighbors $u_{1}, u_{2}, \ldots, u_{d}$. Note that each u_{j} for $\mathfrak{j} \in$ [d] comes after v_{i} in the topological ordering. Let us further assume $v_{i} \prec u_{1} \prec, \ldots, \prec u_{d}$. For any subgraph H of $G_{v_{i}}$, if v_{i} can reach t in H, then there exists a neighbor u_{j} such that v_{i} can reach u_{j} and $\mathfrak{u}_{\mathfrak{j}}$ can reach t in H. We can write $Z_{v_{i}}$ as the size of the union $\Omega:=\cup_{j=1}^{d} \Omega^{(j)}$, where $\Omega^{(j)}$ contains all subgraph of $G_{v_{i}}$ where v_{i} can reach t through the neighbor \mathfrak{u}_{j}. Note that it is straightforward to estimate the size of $\Omega^{(\mathfrak{j})}$ given $\widetilde{Z}_{\mathfrak{u}_{\mathfrak{j}}}$, and to generate uniform random subgraphs from $\Omega^{(j)}$ using samples in $S_{\mathfrak{u}_{j}}$. Given the size and samples from $\Omega^{(j)}$, a classical algorithm by Karp and Luby [KL83, KLM89] can be applied to efficiently estimate the size of the union of sets, namely to compute $\widetilde{Z}_{\nu_{i}}$.

The more complicated task is to generate the samples of $S_{v_{i}}$. We use a sampling to counting selfreduction á la Jerrum-Valiant-Vazirani [JVV86]. To generate a sample H, we go through each edge e in $G_{v_{\mathrm{i}}}$, deciding if e is added into H according to its conditional marginal probability. The first edge to consider is (v_{i}, \mathfrak{u}_{1}). Its marginal probability depends on how many subgraphs in Ω contain it. This quantity is the same as the number of subgraphs in which Λ can reach t, where Λ is a new vertex after contracting v_{i} and \mathfrak{u}_{1}. To estimate this number, denoted by Z_{Λ}, we use the Karp-Luby algorithm again. Note that the

[^2]Karp-Luby algorithm requires estimates and samples from all out-neighbours of Λ, which have been computed already as these vertices are larger in the topological ordering than ν_{i}. Having estimated Z_{Λ}, we estimate the marginal probability of $\left(v_{i}, u_{1}\right)$ and decide if it is included in H . The process then continues to consider the next edge. In each step, we contract all vertices that can be reached from v_{i} into Λ, and keep estimating new Z_{Λ} using the Karp-Luby algorithm to compute the conditional marginal probabilities, until all edges are considered to generate H.

A naive implementation of the process above is to generate fresh samples every time $S_{\mathfrak{u}}$ is used, which would lead to an exponential number of samples required. To maintain efficiency, the key property of our algorithm is to reuse random samples. For any vertex u, the algorithm generates the multi-set of samples S_{u} only once. Whenever the algorithm needs to use random samples for u, it always picks one sample from the same set S_{u}. Hence, one sample may be used multiple times during the whole algorithm. Reusing samples introduces very complicated correlation among all $\left(\widetilde{Z}_{u}, S_{u}\right)$'s, which is a challenge to proving the correctness of the algorithm. Essentially, our analysis shows that as long as the estimates (\widetilde{Z}_{u} 's) and the samples are accurate enough, the overall error can be controlled. Accurate estimates of Z_{u} 's allow us to bound the total variation (TV) distance between our samples and perfect samples. In turn, the small TV distance implies that there is a coupling between them, which helps us bound the errors of the estimates. This way, we circumvent the effect of correlation on the analysis and achieve the desired overall error bound.

For the overall running time, there are two tasks for each vertex, namely the estimation step (based on Karp-Luby) and the sample generation step. As we also need to perform estimation steps as subroutines when generating samples, the running time is dominated by the time for the sampling step. Let ℓ be the number of samples required per vertex, so that the total number of samples generated is $n \ell$. Roughly speaking, because we can only use the union bound due to various correlation, and because errors accumulate throughout dynamic programming, we set the error to be $\delta:=n^{-1} \min \left\{m^{-1}, \varepsilon\right\}$ for the estimation step. Each estimation has two stages, first getting a constant approximation and then using the crude estimation to tune the parameters and obtain a $1 \pm \delta$ approximation. This succeeds with constant probability using $\mathrm{O}\left(\mathrm{n} \delta^{-2}\right)$ samples. The estimator itself requires $\mathrm{O}(\mathrm{m})$ time to compute, and thus the total running time for each estimation step with constant success probability is $\widetilde{\mathrm{O}}\left(\mathrm{mn} \delta^{-2}\right)$. However, as samples are reused, we need to apply a union bound to control the error over all possible values of the samples, which are exponentially many. This requires us to amplify the success probability of the estimation step to $\exp (-\Omega(m))$, which means we need to repeat the algorithm $O(m)$ times and take the median. Each estimation step thus takes $\widetilde{O}\left(m^{2} n \delta^{-2}\right)$ time and $O\left(m n \delta^{-2}\right)$ samples. Instead of maintaining $O\left(m n \delta^{-2}\right)$ samples for every vertex, the aforementioned two-stage estimation allows us to spread the cost and maintain $\ell:=\frac{O\left(m n \delta^{-2}\right)}{n}=O\left(n^{2} m \max \left\{m^{2}, \varepsilon^{-2}\right\}\right)$ samples per vertex, which we show suffice with high probability. As we may do up to $\mathrm{O}(\mathrm{m})$ estimation steps during each sampling step, the overall running time is then bounded by $\widetilde{O}\left(n \ell \cdot m \cdot m^{2} n \delta^{-2}\right)=\widetilde{O}\left(n^{6} m^{4} \max \left\{m^{4}, \varepsilon^{-4}\right\}\right)$.

2. Preliminaries

2.1. Problem definitions. Let $G=(V, E)$ be a directed acyclic graph (DAG). Each directed edge (or arc) $e=(u, v)$ is associated with a failure probability $0 \leqslant q_{e}<1$. (Any edge with $q_{e}=1$ can be simply removed.) We also assume graph G is simple because parallel edges with failure probabilities $q_{e_{1}}, q_{e_{2}}, \ldots, q_{e_{k}}$ can be replace with one edge with failure probability $q_{e}=\prod_{i=1}^{m} q_{e_{i}}$. Given two vertices $s, t \in V$, the $s-t$ reliability problem asks the probability that s can reach t if each edge $e \in E$ fails (namely gets removed) independently with probability q_{e}. Formally, let $q=\left(q_{e}\right)_{e \in E}$. The $s-t$ reliability problem is to compute

$$
\begin{equation*}
R_{G, q}(s, t):=\operatorname{Pr}_{\mathcal{G}}[\text { there is a path from } s \text { to } t \text { in } \mathcal{G}] \tag{1}
\end{equation*}
$$

where $\mathcal{G}=(\mathrm{V}, \mathcal{E})$ is a random subgraph of $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ such that each $e \in \mathrm{E}$ is added independently to \mathcal{E} with probability $1-q_{e}$.

Closely connected to estimating $s-t$ reliability is a sampling problem, which we call the $s-t$ subgraph sampling problem. Here the goal is to sample a random (spanning) subgraph G^{\prime} conditional on that there is at least one path from s to t in G^{\prime}. Formally, let $\Omega_{G, s, t}$ be the set of all subgraphs $H=\left(V, E_{H}\right)$ of G such that $E_{H} \subseteq E$ and s can reach t in H. The algorithm needs to draw samples from the distribution $\pi_{G, s, t, q}$ whose support is $\Omega_{G, s, t}$ and for any $H=\left(V, E_{H}\right) \in \Omega_{G, s, t}$,

$$
\begin{equation*}
\pi_{\mathrm{G}, \mathrm{~s}, \mathrm{t}, \mathbf{q}}(\mathrm{H})=\frac{1}{\mathrm{R}_{\mathrm{G}, \mathbf{q}}(\mathrm{~s}, \mathrm{t})} \cdot \prod_{e \in \mathrm{E}_{\mathrm{H}}}\left(1-\mathrm{q}_{e}\right) \prod_{\mathrm{f} \in \mathrm{E} \backslash \mathrm{E}_{\mathrm{H}}} \mathrm{q}_{\mathrm{f}} . \tag{2}
\end{equation*}
$$

2.2. More notations. Fix a DAG $G=(\mathrm{V}, \mathrm{E})$. For any two vertices u and v, we use $u \rightsquigarrow_{G} v$ to denote that u can reach v in the graph G and use $u \not \psi_{\mathrm{G}} v$ to denote that u cannot reach v in the graph G. It always holds that $u \rightsquigarrow_{G} u$. Fix two vertices s and t, where s is the source and t is the sink. The failure probabilities \mathbf{q}, s, and t will be the same throughout the paper, and thus we omit them from the subscripts. For any vertex $u \in V$, we use $G_{u}=G\left[V_{u}\right]$ to denote the subgraph of G induced by the vertex set

$$
\begin{equation*}
V_{u}:=\left\{w \in \mathrm{~V} \mid u \rightsquigarrow_{\mathrm{G}} w \wedge w \rightsquigarrow_{\mathrm{G}} \mathrm{t}\right\} . \tag{3}
\end{equation*}
$$

Without loss of generality, we assume $G_{s}=G$. This means that all vertices except s have at least one in-neighbour, and thus $m \geqslant n-1$. If $G_{s} \neq G$, then all vertices and edges in $G-G_{s}$ have no effect on $s-t$ reliability and we can simply ignore them. For the sampling problem, we can first solve it on the graph G_{s} and then independently add each edge e in $G-G_{s}$ with probability $1-q_{e}$.

Our algorithm actually solves the $u-t$ reliability and $u-t$ subgraph sampling problems in G_{u} for all $u \in V$. Let $G_{u}=\left(V_{u}, E_{u}\right)$. For any subgraph $H=\left(V_{u}, E_{\mathcal{H}}\right)$ of G_{u}, define the weight function

$$
w_{\mathfrak{u}}(\mathrm{H}):= \begin{cases}\prod_{e \in \mathrm{E}_{\mathrm{H}}}\left(1-\mathrm{q}_{\mathrm{e}}\right) \prod_{\mathrm{f} \in \mathrm{E}_{\mathfrak{u}} \backslash \mathrm{E}_{\mathrm{H}}} \mathrm{q}_{\mathrm{f}} & \text { if } \mathfrak{u} \rightsquigarrow_{\boldsymbol{H}} \mathrm{t} \tag{4}\\ 0 & \text { if } \mathfrak{u \not \varkappa _ { \mathrm { H } }} \mathrm{t} .\end{cases}
$$

Define the distribution $\pi_{\mathfrak{u}}$ by

$$
\pi_{\mathfrak{u}}(\mathrm{H}):=\frac{w_{\mathfrak{u}}(\mathrm{H})}{\mathrm{R}_{\mathfrak{u}}},
$$

where the partition function (the normalizing factor)

$$
\mathrm{R}_{\mathfrak{u}}:=\sum_{\mathrm{H}: \text { subgraph of } \mathrm{G}_{\mathfrak{u}}} w_{\mathfrak{u}}(\mathrm{H})
$$

is exactly the $u-t$ reliability in the graph G_{u}. Finally, let

$$
\begin{equation*}
\Omega_{\mathfrak{u}}:=\left\{\mathrm{H}=\left(\mathrm{V}_{\mathrm{u}}, \mathrm{E}_{\mathrm{H}}\right) \mid \mathrm{E}_{\mathrm{H}} \subseteq \mathrm{E}_{\mathfrak{u}} \wedge \mathfrak{u} \mathfrak{m}_{\mathrm{H}} \mathrm{t}\right\} \tag{5}
\end{equation*}
$$

be the support of π_{u}. Also note that R_{s} and π_{s} are the probability $R_{G, q}(s, t)$ and the distribution $\pi_{G, s, t, q}$ defined in (1) and (2), respectively. The set Ω_{s} is the set $\Omega_{G, s, t}$ in Section 2.1.
2.3. The total variation distance and coupling. Let μ and v be two discrete distributions over Ω. The total variation distance between μ and v is defined by

$$
\mathrm{d}_{\mathrm{TV}}(\mu, v):=\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-v(x)| .
$$

If $X \sim \mu$ and $Y \sim \nu$ are two random variables, we also abuse the notation and write $d_{T V}(X, Y):=$ $\mathrm{d}_{\mathrm{TV}}(\mu, \nu)$.

A coupling between μ and v is a joint distribution (X, Y) such that $X \sim \mu$ and $Y \sim v$. The following coupling inequality is well-known.

Lemma 3. For any coupling \mathcal{C} between two random variables $X \sim \mu$ and $Y \sim \nu$, it holds that

$$
\operatorname{Pr}_{\mathcal{C}}[\mathrm{X} \neq \mathrm{Y}] \geqslant \mathrm{d}_{T V}(\mu, v)
$$

Moreover, there exists an optimal coupling that achieves equality.

3. The algorithm

In this section we give our algorithm. We also give intuitions behind various design choices, and give some basic properties of the algorithm along the way. The main analysis is in Section 4.
3.1. The framework of the algorithm. As $G=G_{s}$ is a DAG, there is a topological ordering of all vertices. There may exist many topological orderings. We pick an arbitrary one, say, v_{1}, \ldots, v_{n}. It must hold that $v_{1}=s$ and $v_{n}=\mathrm{t}$. The topological ordering guarantees that if (u, v) is an edge, u must come before v in the ordering, denoted $u \prec v$.

On a high level, our algorithm is to inductively compute an estimator \widetilde{R}_{u} of R_{u}, from $u=v_{n}$ to $u=v_{1}$. In addition to \widetilde{R}_{u}, we also maintain a multi-set S_{u} of samples from π_{u} over Ω_{u}. For any vertex $u \in V$, let $\Gamma_{\text {out }}(u):=\{w \mid(u, w) \in E\}$ denote the set of out-neighbours of u. Let

$$
\begin{equation*}
\ell:=(60 n+150 m)\left(400 n+500\left\lceil 10^{4} n^{2} \max \left\{m^{2}, \varepsilon^{-2}\right\}\right\rceil\right)=O\left((n+m) n^{2} \max \left\{m^{2}, \epsilon^{-2}\right\}\right) \tag{6}
\end{equation*}
$$

be the size of S_{v} for all $v \in V_{u}$, where n is the number of vertices in G and m is the number of edges in G. The choice of this parameter is explained in the last paragraph of Section 1.1. Our algorithm is outlined in Algorithm 1. Note that G_{t} is an isolated vertex. For consistency, we let S_{t} contain ℓ copies of \emptyset.

```
Algorithm 1: An FPRAS for \(s-t\) reliabilities in DAGs
    Input: a \(D A G G=(V, E)\), a vector \(q=\left(q_{e}\right)_{e \in E}\), the source \(s\), the sink \(t\), and an error bound
            \(0<\varepsilon<1\), where \(G=G_{s}\) and \(V=\left\{v_{1}, \nu_{2}, \ldots, \nu_{n}\right\}\) is topologically ordered with \(\nu_{1}=s\)
            and \(\nu_{\mathrm{n}}=\mathrm{t}\)
    Output: an estimator \(\widetilde{R}_{s}\) of \(R_{s}\)
    let \(\tilde{R}_{t}=1\) and \(S_{t}\) be a multi set of \(\ell \emptyset\) 's;
    for \(k\) from \(n-1\) to 1 do
        \(\widetilde{\mathrm{R}}_{v_{\mathrm{k}}} \leftarrow\) ApproxCount \(\left(\mathrm{V}_{v_{\mathrm{k}}}, \mathrm{E}_{v_{\mathrm{k}}}, v_{\mathrm{k}},\left(\widetilde{\mathrm{R}}_{w}, \mathrm{~S}_{w}\right)_{w \in \Gamma_{\mathrm{out}}\left(v_{\mathrm{k}}\right)}\right)\);
        \(S_{v_{k}} \leftarrow \emptyset ;\)
        for \(\mathfrak{j}\) from 1 to \(\ell\) do
            \(\mathrm{S}_{v_{k}} \leftarrow \mathrm{~S}_{{v_{k}}} \cup\) Sample \(\left(v_{\mathrm{k}},\left(\widetilde{R}_{w}, \mathrm{~S}_{w}\right)_{w \in\left\{v_{\mathrm{k}+1}, v_{\mathrm{k}+2}, \ldots, v_{n}\right\}}, \widetilde{R}_{v_{k}}\right) ;\)
    return \(\widetilde{R}_{s}\).
```

The base case (Line 1) of $v_{n}=t$ is trivial. The subroutine Sample (\cdot) uses ($\widetilde{R}_{v_{i}}, S_{v_{i}}$) for all $i>k$ and $\widetilde{R}_{v_{k}}$ to generate samples in $S_{v_{k}}$. The subroutine $\operatorname{ApproxCount}\left(\mathrm{V}, \mathrm{E}, \mathrm{u},\left(\widetilde{R}_{w}, S_{w}\right)_{\Gamma_{\text {out }}(u)}\right)$ takes a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, a vertex u , and $\left(\widetilde{R}_{w}, S_{w}\right)$ for all $w \in \Gamma_{\text {out }}(u)$ as the input, and it outputs an approximation of the $u-t$ reliability in the graph G. We describe Sample in Section 3.2 and (a slightly more general version of) ApproxCount in Section 3.3.
3.2. Generate samples. Let $\mathfrak{u}=v_{k}$ where $k<n$. Recall that $G_{\mathfrak{u}}=\left(V_{\mathfrak{u}}, E_{\mathfrak{u}}\right)$ is the graph defined in (3). The sampling algorithm aims to output a random spanning subgraph $H=\left(V_{u}, \mathcal{E}\right)$ from the distribution π_{u}. The algorithm is based on the sampling-to-counting reduction in [JVV86]. It scans each edge e in E_{u} and decides whether to put e into the set \mathcal{E} or not. The algorithm maintains two edge sets:

- $\mathrm{E}_{1} \subseteq \mathrm{E}_{\mathrm{u}}$: the set of edges that have been scanned by the algorithm;
- $\mathcal{E} \subseteq \mathrm{E}_{1}$: the current set of edges sampled by the algorithm.

Also, let $E_{2}:=E_{u} \backslash E_{1}$ be the set of edges that have not been scanned yet by the algorithm. Given any \mathcal{E}, we can uniquely define the following subset of vertices

$$
\begin{equation*}
\Lambda=\Lambda_{\mathcal{E}}:=\operatorname{rch}\left(u, \mathrm{~V}_{\mathfrak{u}}, \mathcal{E}\right)=\left\{w \in \mathrm{~V}_{\mathfrak{u}} \mid u \text { can reach } w \text { through edges in } \mathcal{E}\right\} \tag{7}
\end{equation*}
$$

In other words, let $G^{\prime}=\left(V_{u}, \mathcal{E}\right)$ and Λ is the set of vertices that u can reach in G^{\prime}. Note that $u \in \Lambda$ for any \mathcal{E}. We will keep updating Λ as \mathcal{E} expands. When calculating the marginal probability of the next edge, the path to t can start from any vertex in Λ. Thus we need to estimate the reliability from Λ to t. Instead of having a single source, as called in Algorithm 1, we use a slightly more general version of ApproxCount, described in Section 3.3, to allow a set Λ of sources. This subroutine ApproxCount takes input $\left(V, E, \Lambda,\left(\widetilde{R}_{w}, S_{w}\right)_{w \in \partial \Lambda}\right)$ and approximates the $\Lambda-t$ reliability in (V, E), which is the probability that there exists at least one vertex in Λ being able to reach t if each edge $e \in E$ fails independently with probability q_{e}. An equivalent way of seeing it is to contract all vertices in Λ into a single vertex u first, and then calculate the $u-t$ reliability in the resulting graph. Sample is described in Algorithm 2, and some illustration is given in Figure 1.

```
Algorithm 2: Sample \(\left(u,\left(\widetilde{R}_{w}, S_{w}\right)_{w \in\left\{v_{k+1}, v_{k+2}, \ldots, v_{n}\right\}}, \widetilde{R}_{v_{k}}\right)\)
    Input: a vertex \(u=v_{k}\), all \(\left(\widetilde{R}_{w}, S_{w}\right)\) for \(w \in\left\{v_{k+1}, v_{k+2}, \ldots, v_{n}\right\}\), and \(\widetilde{R}_{v_{k}}=\widetilde{R}_{u}\)
    Output: a random subgraph \(\mathrm{H}=\left(\mathrm{V}_{\mathrm{u}}, \mathcal{E}\right)\)
    \(T \leftarrow\left\lceil 1000 \log \frac{n}{\varepsilon}\right\rceil\) and \(F \leftarrow 0\);
    \(\mathrm{p}_{0} \leftarrow \widetilde{\mathrm{R}}_{\mathrm{u}}\);
    repeat
        let \(\mathrm{p} \leftarrow 1\);
        let \(\mathrm{E}_{1} \leftarrow \emptyset, \mathrm{E}_{2} \leftarrow \mathrm{E}_{\mathbf{u}} \backslash \mathrm{E}_{1}\) and \(\Lambda=\{\mathrm{u}\}\);
        while \(\mathrm{t} \notin \Lambda\) do
            let \(\partial \Lambda \leftarrow\left\{w \notin \Lambda \mid \exists w^{\prime} \in \Lambda\right.\) s.t. \(\left.\left(w^{\prime}, w\right) \in \mathrm{E}_{2}\right\}\); let \(w^{*} \in \partial \Lambda\) be the smallest vertex in the
                topological ordering; pick an arbitrary edge \(e=\left(w^{\prime}, w^{*}\right) \in E_{2}\) such that \(w^{\prime} \in \Lambda\);
            let \(\Lambda_{1} \leftarrow \operatorname{rch}\left(u, \mathrm{~V}_{\mathrm{u}}, \mathcal{E} \cup\{e\}\right)\);
            \(\mathrm{E}_{1} \leftarrow \mathrm{E}_{1} \cup\{\mathrm{e}\}\) and \(\mathrm{E}_{2} \leftarrow \mathrm{E}_{2} \backslash\{\mathrm{e}\} ;\)
            \(\partial \Lambda_{1} \leftarrow\left\{w \notin \Lambda_{1} \mid \exists w^{\prime} \in \Lambda_{1}\right.\) s.t. \(\left.\left(w^{\prime}, w\right) \in E_{2}\right\}\) and
                \(\partial \Lambda \leftarrow\left\{w \notin \Lambda \mid \exists w^{\prime} \in \Lambda\right.\) s.t. \(\left.\left(w^{\prime}, w\right) \in \mathrm{E}_{2}\right\} ;\)
            \(\mathrm{c}_{0} \leftarrow \operatorname{ApproxCount}\left(\mathrm{~V}_{\mathfrak{u}}, \mathrm{E}_{2}, \Lambda,\left(\widetilde{\mathrm{R}}_{w}, \mathrm{~S}_{w}\right)_{w \in \partial \Lambda}\right)\);
            \(\mathrm{c}_{1} \leftarrow \operatorname{ApproxCount}\left(\mathrm{~V}_{\mathrm{u}}, \mathrm{E}_{2}, \Lambda_{1},\left(\widetilde{\mathrm{R}}_{w}, \mathrm{~S}_{w}\right)_{w \in \partial \Lambda_{1}}\right)\);
            let \(c \leftarrow 1\) with probability \(\frac{\left(1-q_{e}\right) c_{1}}{q_{e} c_{0}+\left(1-q_{e}\right) c_{1}}\); otherwise \(c \leftarrow 0\);
            if \(c=1\), then let \(\mathcal{E} \leftarrow \mathcal{E} \cup\{e\}, \Lambda \leftarrow \Lambda_{1}, p \leftarrow p \frac{\left(1-q_{e}\right) c_{1}}{q_{e} c_{0}+\left(1-q_{e}\right) c_{1}}\);
            if \(c=0\), then let \(p \leftarrow p\left(1-\frac{\left(1-q_{e}\right) c_{1}}{q_{e} c_{0}+\left(1-q_{e}\right) c_{1}}\right)\);
        for all edges \(e \in E_{2}\) do
            let \(c \leftarrow 1\) with probability \(1-q_{e}\); otherwise \(c \leftarrow 0\);
            if \(\mathrm{c}=1\), then let \(\mathcal{E} \leftarrow \mathcal{E} \cup\{\mathrm{e}\}\) and \(\mathrm{p} \leftarrow \mathrm{p}\left(1-\mathrm{q}_{e}\right)\);
            if \(\mathrm{c}=0\), then let \(\mathrm{p} \leftarrow \mathrm{pq}_{e}\);
        let \(F \leftarrow 1\) with probability \(\frac{w_{u}(H)}{4 p p_{0}}\), where \(H=\left(\mathrm{V}_{\mathfrak{u}}, \mathcal{E}\right)\);
        \(\mathrm{T} \leftarrow \mathrm{T}-1 ;\)
until \(T<0\) or \(F=1\);
if \(F=1\) then return \(H=\left(V_{u}, \mathcal{E}\right)\); else return \(\perp\);
```


(A) At the start, we consider the first edge $\left(u, w_{1}\right)$. To compute its marginal, we estimate two reliability, where the source is either $\Lambda_{1}=\left\{u, w_{1}\right\}$ (shown in picture) or just u, respectively.

(в) As Algorithm 2 progresses, there are chosen edges \mathcal{E} (blue), not chosen edges $\mathrm{E}_{1} \backslash \mathcal{E}$ (green), and the boundary edges (red). The set Λ contains vertices reachable from u using only \mathcal{E}.

Figure 1. An illustration of sampling from π_{u}

Remark 4 (Crash of Sample). The subroutine Sample (Algorithm 2) may crash in following cases: (1) in Line $7, \partial \Lambda=\emptyset$; (2) in Line $13, q_{e} c_{0}+\left(1-q_{e}\right) c_{1}=0$; (3) in Line 20, $\frac{w_{u}(H)}{4 p_{o} p}>1$; (4) in Line $23, F=0$. If it crashes, we stop Algorithm 1 immediately and output $\widetilde{R}_{s}=0$.

The algorithm needs c_{0} and c_{1} in order to compute the marginal probability of e in Line 13. The quantity c_{0} is an estimate to the reliability conditional on e not selected and all choices made so far (namely $\mathrm{E}_{\mathrm{H}} \cap \mathrm{E}_{1}=\mathcal{E}$). Similarly, c_{1} is an estimate to the reliability conditional on e selected and $\mathrm{E}_{\mathrm{H}} \cap \mathrm{E}_{1}=\mathcal{E}$. Thus, if ApproxCount returns exact values of c_{0} and c_{1}, then

$$
\operatorname{Pr}_{H=\left(V_{u}, E_{H}\right) \sim \pi_{u}}\left[e \in \mathcal{E}_{H} \mid E_{H} \cap E_{1}=\mathcal{E}\right]=\frac{\left(1-q_{e}\right) c_{1}}{q_{e} c_{0}+\left(1-q_{e}\right) c_{1}} .
$$

However, ApproxCount can only approximate the reliabilities c_{0} and c_{1}. To handle the error from ApproxCount, our algorithm maintains a number p, which is the probability of selecting the edges in \mathcal{E} and not selecting those in $E_{1} \backslash \mathcal{E}$. By the time we reach Line 20, p becomes the probability that H is generated by the algorithm. Then the algorithm uses a filter (with filter probability $\frac{w_{u}(\mathrm{H})}{4 \mathrm{p}_{0} \mathrm{p}}$) to correct the distribution of H . Conditional on passing the filter, H is a perfect sample from $\pi_{\mathfrak{u}}$. The detailed analysis of the error is given in Lemma 11 and in Section 4.3.

Before we go to the ApproxCount algorithm, we state one important property of Algorithm 2. The topological ordering in Line 7 is the ordering $s=v_{1}, v_{2}, \ldots, v_{n}=\mathrm{t}$ in G . For any two vertices v, v^{\prime}, we write $v \prec v^{\prime}$ if $v=v_{i}, v^{\prime}=v_{j}$ and $i<j$.

Fact 5. For any path $\mathfrak{u}_{1}, \mathfrak{u}_{2}, \ldots, \mathfrak{u}_{\ell}$ in G, it holds that $\mathfrak{u}_{1} \prec \mathfrak{u}_{2} \prec \ldots \prec \mathfrak{u}_{\ell}$.
Lemma 6. In Algorithm 2, the following property holds: at the beginning of every while-loop, for anyw $\in \partial \wedge$, $\mathrm{E}_{1} \cap \mathrm{E}_{w}=\emptyset$, where E_{w} is the edge set of the graph $\mathrm{G}_{w}=\left(\mathrm{V}_{w}, \mathrm{E}_{w}\right)$ defined in (3).
Proof. For any i, we use we use $X^{(i)}$ to denote some (vertex or edge) set X at the beginning of the i-th loop, where X can be $\Lambda, \partial \wedge, \varepsilon, E_{1}, E_{2}$. We prove the lemma by contradiction. Suppose at the beginning of k-th loop, there exists $w \in \partial \Lambda^{(k)}$ such that $\mathrm{E}_{1}^{(\mathrm{k})} \cap \mathrm{E}_{w} \neq \emptyset$. We pick an arbitrary edge $\left(v, \nu^{\prime}\right) \in \mathrm{E}_{1}^{(\mathrm{k})} \cap \mathrm{E}_{w}$. Since $\left(v, v^{\prime}\right) \in \mathrm{E}_{1}^{(\mathrm{k})}$, there must exist $\mathfrak{j}<\mathrm{k}$ such that $\left(v, v^{\prime}\right) \notin \mathrm{E}_{1}^{(\mathfrak{j})}$ but $\left(v, v^{\prime}\right) \in \mathrm{E}_{1}^{(\mathrm{j}+1)}$, which means that the algorithm picks the edge $\left(v, v^{\prime}\right)$ in the j-th loop. We will prove that such j cannot exist, which is a contradiction.

Since $w \in \partial \Lambda^{(k)}$, there must exist $w^{\prime} \in \Lambda^{(k)}$ such that $\left(w^{\prime}, w\right) \in \mathrm{E}_{2}^{(\mathrm{k})} \subseteq \mathrm{E}$, where E is the set of edges in the input graph G. By the definition of $\Lambda^{(k)}$, there exists a path $w_{0}, w_{1}, \ldots, w_{\mathrm{t}-1}$ such that

- $w_{0}=u$ and $w_{t-1}=w^{\prime}$;
- for all $1 \leqslant \mathfrak{i} \leqslant \mathrm{t}-1,\left(w_{\mathfrak{i}-1}, w_{\mathfrak{i}}\right) \in \mathcal{E}^{(k)}$.

Hence, $\left\{w_{0}, w_{1}, \ldots, w_{\mathrm{t}-1}, w_{\mathrm{t}}\right\}$, where $w_{\mathrm{t}}=w$, is a path in G. Note that $\left(v, v^{\prime}\right)$ is an edge in the graph G_{w}. By the definition of $\mathrm{G}_{w}, w \prec v^{\prime}$ (the vertex v may be w). By Fact 5, we have

$$
\begin{equation*}
w_{0} \prec w_{1} \prec \ldots \prec w_{\mathrm{t}} \prec v^{\prime} . \tag{8}
\end{equation*}
$$

Note that $w_{0}=u \in \Lambda^{(j)}$ for all $j \geqslant 1$. Also, since $w_{t}=w \notin \Lambda^{(k)}, w_{t} \notin \Lambda^{(j)}$ for all $j<k$. Hence, for any $1 \leqslant \mathfrak{j}<k$, there is an index $\mathfrak{i}^{*} \in\{1,2 \ldots, t\}$ such that $w_{i^{*}-1} \in \Lambda^{(\mathfrak{j})}$ and $w_{\mathfrak{i}^{*}} \notin \Lambda^{(\mathfrak{j})}$. We claim that $\left(w_{\mathfrak{i}^{*}-1}, w_{\mathfrak{i}^{*}}\right) \in \mathrm{E}_{2}^{(\mathfrak{j})}$.

- If $i^{*}=t$, then $\left(w_{\mathrm{t}-1}, w_{\mathrm{t}}\right) \in \mathrm{E}_{2}^{(\mathrm{k})}$. Since $\mathrm{E}_{2}^{(\mathrm{k})} \subseteq \mathrm{E}_{2}^{(\mathfrak{j})},\left(w_{\mathrm{t}-1}, w_{\mathrm{t}}\right) \in \mathrm{E}_{2}^{(\mathfrak{j})}$;
- If $i^{*} \leqslant t-1$, then $\left(w_{i^{*}-1}, w_{i^{*}}\right) \in \mathcal{E}^{(k)}$. Suppose $\left(w_{i^{*}-1}, w_{i^{*}}\right) \notin E_{2}^{(j)}$. Then $\left(w_{i^{*}-1}, w_{i^{*}}\right)$ has been scanned before the \mathfrak{j}-th loop, namely $\left(w_{i^{*}-1}, w_{i^{*}}\right) \in E_{1}^{(j)}$. However, $w_{i^{*}} \notin \Lambda^{(j)}$, namely that $\mathcal{w}_{i^{*}}$ cannot be reached using $\mathcal{E}^{(j)}$. It implies that $\left(\mathcal{w}_{i^{*}-1}, \mathcal{w}_{\mathfrak{i}^{*}}\right) \notin \mathcal{E}^{(j)}$ as otherwise $\mathcal{w}_{i^{*}}$ can be reached because $\mathcal{w}_{i^{*}-1} \in \Lambda^{(j)}$. This means that $\left(\mathcal{w}_{i^{*}-1}, \mathcal{w}_{i^{*}}\right)$ has been scanned, but not added into \mathcal{E}, which implies that $\left(w_{\mathfrak{i}^{*}-1}, w_{\mathfrak{i}^{*}}\right) \notin \mathcal{E}^{(k)}$. A contradiction. Hence, $\left(w_{\mathfrak{i}^{*}-1}, w_{\mathfrak{i}^{*}}\right) \in \mathrm{E}_{2}^{(\mathfrak{j})}$.
Thus the claim holds. It implies that $\mathcal{w}_{\mathfrak{i}^{*}} \in \partial \Lambda^{(j)}$. On the other hand, by (8), $w_{\mathfrak{i}^{*}} \prec v^{\prime}$. The way the next edge is chosen in Line 7 implies that in the j-th loop, the algorithm may only choose an edge $\left(\mathrm{s}, \mathrm{s}^{\prime}\right)$ such that $s^{\prime} \in \partial \Lambda^{(j)}$ and $s^{\prime} \preccurlyeq w_{i^{*}}$. In particular, the vertex s^{\prime} cannot be v^{\prime} and the edge $\left(v, v^{\prime}\right)$ cannot be chosen. As this argument holds for all $j<k$, it proves the lemma.

Corollary 7. In Algorithm 2, in every while-loop, $\Lambda_{1}=\Lambda \cup\left\{w^{*}\right\}$.
Proof. Clearly $\Lambda \cup\left\{w^{*}\right\} \subseteq \Lambda_{1}$. Suppose there exists $w_{0} \neq w^{*}$ such that $w_{0} \in \Lambda_{1} \backslash \Lambda$. Then $w_{0} \in V_{u}$ can be reached from w^{*} through edges in \mathcal{E}. The vertex w_{0} must be in $G_{w^{*}}$, which implies $\mathcal{E} \cap \mathrm{E}_{w^{*}} \neq \emptyset$, and thus $E_{1} \cap E_{w^{*}} \neq \emptyset$. A contradiction to Lemma 6.
3.3. Approximate counting. Our ApproxCount subroutine is used in both Algorithm 1 and Algorithm 2. To suit Algorithm 2, ApproxCount takes input (V, $\left.\mathrm{E}, \Lambda,\left(\widetilde{R}_{w}, S_{w}\right)_{w \in \partial \Lambda}\right)$ and approximates the $\Lambda-\mathrm{t}$ reliability $R_{\Lambda}:=\operatorname{Pr}_{\mathcal{G}}\left[\Lambda \rightsquigarrow_{g} t\right]$, where \mathcal{G} is a random spanning subgraph of G obtained by removing each edge e independently with probability q_{e}, and $\Lambda \rightsquigarrow_{g}$ t denotes the event that $\exists w \in \Lambda$ s.t. $w \rightsquigarrow_{g}$ t. When called by Algorithm 1, Λ is a single vertex, and when called by Algorithm 2, Λ is the set defined in (7). Moreover, the input satisfies:

- $G=(V, E)$ is a $D A G$ containing the sink t and each edge has a failure probability q_{e} (for simplicity, we do not write t and all q_{e} explicitly in the input as they do not change throughout Algorithm 1 and Algorithm 2);
- $\Lambda \subseteq V$ is a subset of vertices that act as sources and $\partial \Lambda:=\left\{w \in \mathrm{~V} \backslash \Lambda \mid \exists w^{\prime} \in \Lambda\right.$ s.t. $\left.\left(w^{\prime}, w\right) \in \mathrm{E}\right\}$;
- for any $w \in \partial \Lambda, \widetilde{R}_{w}$ is an approximation of the $w-\mathrm{t}$ reliability in G_{w} and S_{w} is a set of ℓ approximate random samples from the distribution π_{w}, where G_{w} is defined in (3).
All points above hold when Algorithm 3 is evoked by Algorithm 1 or Algorithm 2. The first two points are easy to verify and the last one is verified in Section 4.

The algorithm first rules out the following two trivial cases:

- if $t \in \Lambda$, the algorithm returns 1 ;
- if Λ cannot reach t in graph G, the algorithm returns $0 .^{4}$

As we are dealing with the more general set-to-vertex reliability, we need some more definitions. Define

$$
\begin{equation*}
\Omega_{\Lambda}:=\left\{H=\left(V, E_{H}\right) \mid E_{H} \subseteq E \wedge \wedge \rightsquigarrow_{H} t\right\} . \tag{9}
\end{equation*}
$$

[^3]For any subgraph $H=\left(V, E_{H}\right)$ of $G=(V, E)$, define the weight function

$$
w_{\Lambda}(H):= \begin{cases}\prod_{e \in E_{H}}\left(1-q_{e}\right) \prod_{f \in E \backslash E_{H}} q_{f} & \text { if } \Lambda \rightsquigarrow_{H} t \tag{10}\\ 0 & \text { if } \Lambda \psi_{H} t\end{cases}
$$

Define the distribution π_{Λ}, whose support is Ω_{Λ}, by

$$
\begin{equation*}
\pi_{\Lambda}(\mathrm{H}):=\frac{w_{\Lambda}(\mathrm{H})}{\mathrm{R}_{\Lambda}}, \quad \text { where } \mathrm{R}_{\Lambda}:=\sum_{\mathrm{H} \in \Omega_{\Lambda}} w_{\Lambda}(\mathrm{H}) \tag{11}
\end{equation*}
$$

Let $\partial \Lambda$ be listed as $\left\{u_{1}, \ldots, u_{d}\right\}$ for some $d \in[n]$. Note that $d \geqslant 1$ because $R_{\wedge}>0$ and $t \notin \Lambda$. To estimate R_{Λ}, we first write Ω_{Λ} in (9) as a union of d sets. For each $1 \leqslant i \leqslant d$, define

$$
\Omega_{\Lambda}^{(i)}:=\left\{H=\left(V, E_{H}\right) \mid\left(E_{H} \subseteq E\right) \wedge\left(\exists u \in \Lambda, \text { s.t. }\left(u, u_{i}\right) \in E\right) \wedge\left(u_{i} \rightsquigarrow_{H} t\right)\right\}
$$

Lemma 8. If $\mathrm{t} \notin \Lambda, \Omega_{\Lambda}=\cup_{\mathfrak{i}=1}^{\mathrm{d}} \Omega_{\Lambda}^{(i)}$.
Proof. We first show $\cup_{i=1}^{d} \Omega_{\Lambda}^{(i)} \subseteq \Omega_{\Lambda}$. Fix any $H \in \cup_{i=1}^{d} \Omega_{\Lambda}^{(i)}$, say $H \in \Omega_{\Lambda}^{\left(i^{*}\right)}\left(i^{*} \in[d]\right.$ may not be unique, in which case we pick an arbitrary one). Then Λ can reach t in H, because we can first move from Λ to $u_{i^{*}}$ and then move from $u_{i^{*}}$ to t. This implies $H \in \Omega_{\Lambda}$. We next show $\Omega_{\Lambda} \subseteq \cup_{i=1}^{d} \Omega_{\Lambda}^{(i)}$. Fix any $H \in \Omega_{\Lambda}$. There is a path from Λ to t in H. Say the path is $w_{1}, w_{2}, \ldots, w_{p}=t$. Then $w_{1} \in \Lambda$ (hence $\left.w_{1} \neq \mathrm{t}\right)$ and $w_{2}=u_{i^{*}}$ for some $i^{*} \in[d]$. Hence, H contains the edge $\left(w_{1}, u_{i^{*}}\right)$ and $u_{i^{*}} \mathfrak{m}_{H}$ t. This implies $H \in \cup_{i=1}^{d} \Omega_{\Lambda}^{(i)}$.

Similar to (11), we define $\pi^{(i)},{ }^{5}$ whose support is $\Omega_{\Lambda}^{(i)}$, by

$$
\begin{equation*}
\pi_{\Lambda}^{(\mathrm{i})}(\mathrm{H}):=\frac{w_{\Lambda}(\mathrm{H})}{\mathrm{R}_{\Lambda}^{(\mathrm{i})}}, \quad \text { where } \mathrm{R}_{\Lambda}^{(\mathrm{i})}:=\sum_{\mathrm{H} \in \Omega_{\Lambda}^{(\mathrm{i})}} w_{\Lambda}(\mathrm{H}) \tag{12}
\end{equation*}
$$

In order to perform the Karp-Luby style estimation, we need to be able to do the following three things:
(1) compute the value $R_{\Lambda}^{(i)}$ for each $i \in[d]$;
(2) draw samples from $\pi_{\Lambda}^{(i)}$ for each $i \in[d]$;
(3) given any $i \in[d]$ and $H \in \Omega_{\Lambda}$, determine whether $H \in \Omega_{\Lambda}^{(i)}$.

Suppose we can do them for now. ${ }^{6}$ Consider the following estimator Z_{Λ} :
(1) draw an index $i \in[d]$ such that i is drawn with probability proportional to $R_{\Lambda}^{(i)}$;
(2) draw an sample H from $\pi_{\Lambda}^{(i)}$;
(3) let $Z_{\Lambda} \in\{0,1\}$ indicate whether i is the smallest index $j \in[d]$ satisfying $H \in \Omega_{\Lambda}^{(j)}$.

[^4]It is straightforward to see that

$$
\begin{align*}
\mathbb{E}\left[Z_{\Lambda}\right] & =\sum_{i=1}^{\mathrm{d}} \frac{\mathrm{R}_{\Lambda}^{(i)}}{\sum_{j=1}^{\mathrm{d}} \mathrm{R}_{\Lambda}^{(j)}} \sum_{\mathrm{H} \in \Omega_{\Lambda}^{(i)}} \pi_{\Lambda}^{(i)}(\mathrm{H}) \cdot \mathbf{1}\left[\mathrm{H} \in \Omega_{\Lambda}^{(i)} \wedge\left(\forall j<\mathrm{i}, \mathrm{H} \notin \Omega_{\Lambda}^{(\mathrm{j})}\right)\right] \\
& =\frac{\sum_{\mathrm{i}=1}^{\mathrm{d}} \sum_{\mathrm{H} \in \Omega_{\Lambda}^{(i)}} w_{\Lambda}(\mathrm{H}) \cdot \mathbf{1}\left[\mathrm{H} \in \Omega_{\Lambda}^{(\mathrm{i})} \wedge\left(\forall j<\mathrm{i}, \mathrm{H} \notin \Omega_{\Lambda}^{(\mathrm{j})}\right)\right]}{\sum_{j=1}^{\mathrm{d}} \mathrm{R}_{\Lambda}^{(j)}} \\
\text { (by Lemma 8) } & =\frac{\mathrm{R}_{\Lambda}}{\sum_{j=1}^{\mathrm{d}=R_{\Lambda}^{(j)}} \geqslant \frac{1}{\mathrm{~d}} \geqslant \frac{1}{n},} \tag{13}
\end{align*}
$$

where the first inequality holds because each H belongs to at most d different sets. Since Z_{Λ} is a $0 / 1$ random variable, $\operatorname{Var}\left(Z_{\Lambda}\right) \leqslant 1$. Hence, we can first estimate the expectation of Z_{Λ} by repeating the process above and taking the average, and then use $\mathbb{E}\left[Z_{\Lambda}\right] \sum_{j=1}^{d} R_{\Lambda}^{(j)}$ as the estimator \widetilde{R}_{Λ} for R_{Λ}. However, in the input of ApproxCount, we only have estimates $\widetilde{R}_{\mathfrak{u}_{i}}$ and a limited set of samples $S_{\mathfrak{u}_{i}}$ for each $\mathfrak{u}_{i} \in \partial \wedge$. Our algorithm will need to handle these imperfections.

The third step of implementing the estimator Z_{Λ} is straightforward by a BFS. For the first step, $R_{\Lambda}^{(i)}$ can be easily computed given $R_{u_{i}}$, and we will use the estimates $\widetilde{R}_{\mathfrak{u}_{i}}$ instead. For the second step, define

$$
\delta_{\Lambda}\left(u_{i}\right):=\left\{\left(w, u_{i}\right) \in \mathrm{E} \mid w \in \Lambda\right\} .
$$

To sample from $\pi_{\Lambda}^{(i)}$, we shall sample at least one edge in $\delta_{\Lambda}\left(u_{i}\right)$, sample a subgraph H from $\pi_{u_{i}}$, and add all other edges independently. These are summarized by the next lemma.
Lemma 9. For any $\mathfrak{i} \in[\mathrm{d}]$, it holds that $\mathrm{R}_{\Lambda}^{(\mathfrak{i})}=\left(1-\prod_{\mathfrak{u} \in \delta_{\wedge}\left(\mathfrak{u}_{\mathfrak{i}}\right)} \mathrm{q}_{\left(\mathfrak{u}, \mathfrak{u}_{i}\right)}\right) \mathrm{R}_{\mathfrak{u}_{\mathfrak{i}}}$ and a random sample $\mathrm{H}^{\prime}=\left(\mathrm{V}, \mathrm{E}_{\mathrm{H}^{\prime}}\right) \sim \pi_{\Lambda}^{(i)}$ can be generated by the following procedure:

- sample $\mathrm{H}=\left(\mathrm{V}_{\mathfrak{u}_{\mathrm{i}}}, \mathrm{E}_{\mathrm{H}}\right) \sim \pi_{\mathfrak{u}_{i}}$;
- let $\mathrm{E}_{\mathrm{H}^{\prime}}=\mathrm{E}_{\mathrm{H}} \cup \mathrm{D}$, where $\mathrm{D} \subseteq \delta_{\wedge}\left(\mathrm{u}_{\mathrm{i}}\right)$ is a random subset with probability proportional to

$$
\begin{equation*}
\mathbf{1}[D \neq \emptyset] \cdot \prod_{e \in \delta_{\wedge}\left(u_{i}\right) \cap D}\left(1-q_{e}\right) \prod_{f \in \delta_{\wedge}\left(u_{i}\right) \backslash D} q_{f} ; \tag{14}
\end{equation*}
$$

- add each $e \in E \backslash\left(\mathrm{E}_{\mathfrak{u}_{\mathrm{i}}} \cup \delta_{\Lambda}\left(\mathfrak{u}_{\mathfrak{i}}\right)\right)$ into $\mathrm{E}_{\mathrm{H}^{\prime}}$ independently with probability $1-\mathrm{q}_{\mathrm{e}}$.

All three steps above handle mutually exclusive edge sets and thus are mutually independent.
Proof. If each edge e in G is removed independently with probability q_{e}, we have a random spanning subgraph $\mathcal{G}=(\mathrm{V}, \mathcal{E})$. By the definition of $\mathrm{R}_{\Lambda}^{(i)}$,

$$
\begin{aligned}
& R_{\Lambda}^{(i)}=\operatorname{Pr}\left[\exists u \in \Lambda \text {, s.t. }\left(u, u_{i}\right) \in \mathcal{E} \wedge u_{i} \rightsquigarrow_{g} t\right]
\end{aligned}
$$

It is easy to see $\operatorname{Pr}\left[\exists \mathfrak{u} \in \Lambda\right.$, s.t. $\left.\left(\mathfrak{u}, \mathfrak{u}_{\mathfrak{i}}\right) \in \mathcal{E}\right]=1-\prod_{\mathfrak{u} \in \mathcal{\delta}_{\wedge}\left(\mathfrak{u}_{\mathfrak{i}}\right)} q_{\left(u, u_{i}\right)}$. For the second conditional probability, note that the event ${u_{i}}_{w_{g}} t$ depends only on the randomness of edges in graph $G_{\mathfrak{u}_{i}}$. In other words, for any edges $e \in E \backslash E_{u_{i}}$, whether or not e is removed has no effect on the $u_{i}-t$ reachability. Due to acyclicity, all edges in $\delta_{\Lambda}\left(u_{\mathfrak{i}}\right)$ are not in the graph $G_{\mathfrak{u}_{i}}$. We have

$$
R_{\Lambda}^{(i)}=\left(1-\prod_{u \in \delta_{\Lambda}\left(u_{i}\right)} q_{\left(\mathfrak{u}, \mathfrak{u}_{i}\right)}\right) R_{\mathfrak{u}_{i}} .
$$

By definition (12), $\pi_{\Lambda}^{(i)}$ is the distribution of $\mathcal{G}=(V, \mathcal{E})$ conditional on $\exists \mathfrak{u} \in \Lambda$, s.t. $\left(u, u_{i}\right) \in \mathcal{E}$ and $u_{i} \rightsquigarrow_{g} t$. For any graph $H^{\prime}=\left(V, E_{H^{\prime}}\right)$ satisfying $\exists u \in \Lambda$, s.t. $\left(u, u_{i}\right) \in E_{H^{\prime}}$ and $u_{i} \rightsquigarrow_{H^{\prime}} t$, we have

$$
\begin{aligned}
& \pi_{\Lambda}^{(i)}\left(H^{\prime}\right)=\operatorname{Pr}\left[\mathcal{G}=H^{\prime} \mid \exists u \in \Lambda \text {, s.t. }\left(u, u_{i}\right) \in \mathcal{E} \wedge u_{i} \rightsquigarrow_{g} t\right] \\
& =\frac{\operatorname{Pr}\left[\mathcal{G}=\mathrm{H}^{\prime}\right]}{\mathrm{R}_{\Lambda}^{(\mathfrak{i})}}=\frac{\operatorname{Pr}\left[\mathcal{G}=\mathrm{H}^{\prime}\right]}{\left(1-\prod_{\mathfrak{u} \in \delta_{\Lambda}\left(\mathfrak{u}_{\mathfrak{i}}\right)} \mathrm{q}_{\left(\mathfrak{u}, \mathfrak{u}_{\mathfrak{i}}\right)}\right) \mathrm{R}_{\mathfrak{u}_{\mathfrak{i}}}} \\
& =\prod_{e \in E_{H^{\prime}}: e \in E \backslash E_{u_{i}}}\left(1-q_{e}\right) \prod_{f \notin E_{H^{\prime}}: f \in E \backslash E_{u_{i}}} q_{f} \cdot \frac{w_{u_{i}}\left(H^{\prime}\left[V_{u_{i}}\right]\right)}{\left(1-\prod_{u \in \delta_{\Lambda}\left(u_{i}\right)} q_{\left(u, u_{i}\right)}\right) R_{u_{i}}}
\end{aligned}
$$

$$
\begin{aligned}
& \prod_{\substack{e \in E_{\mathcal{H}^{\prime}}: \\
e \in E \backslash\left(\mathrm{E}_{u_{i}} \cup \delta_{\mathcal{A}}\left(u_{i}\right)\right)}}\left(1-q_{e}\right) \prod_{\substack{f \notin E_{H^{\prime}}^{\prime}: \\
f \in E \backslash\left(E_{u_{i}} \cup \delta_{\mathcal{N}}\left(u_{i}\right)\right)}} q_{f} .
\end{aligned}
$$

The probability above exactly matches the procedure in the lemma.
The first sampling step in Lemma 9 can be done by directly using the samples from $S_{u_{i}}$. We still need to show that the second step in Lemma 9 can be done efficiently.

Lemma 10. There is an algorithm such that given a set $S=\{1,2, \ldots, n\}$ andn numbers $0 \leqslant q_{1}, q_{2}, \ldots, q_{n}<$ 1, it return a random non-empty subset $\mathrm{D} \subseteq \mathrm{S}$ with probability proportional to $1[\mathrm{D} \neq \emptyset] \prod_{\mathrm{i} \in \mathrm{D}}(1-$ $\left.q_{i}\right) \prod_{j \in S \backslash D} q_{j}$ in time $O(n)$.

Proof. Note that D can be obtained by sampling each i in S independently with probability $1-q_{i}$ conditional on the outcome is non-empty. A natural idea is to use rejection sampling, but $1-\prod_{i=1}^{n} q_{i}$ can be very small. Here we do this in a more efficient way.

We view any subset $D \subseteq S$ as an n-dimensional vector $\sigma \in\{0,1\}^{S}$. We sample σ_{i} for i from 1 to n one by one. In every step, conditional on $\sigma_{1}=c_{1}, \sigma_{2}=c_{2}, \ldots, \sigma_{i-1}=c_{i-1} \in\{0,1\}$, we compute the marginal of σ_{i} and sample from the marginal. The marginal can be computed as follows: for any $c_{i} \in\{0,1\}$,

$$
\operatorname{Pr}\left[\sigma_{i}=c_{i} \mid \forall j<i, \sigma_{\mathfrak{j}}=c_{j}\right]=\frac{\operatorname{Pr}\left[\forall j \leqslant i, \sigma_{j}=c_{j}\right]}{\operatorname{Pr}\left[\forall j \leqslant i-1, \sigma_{\mathfrak{j}}=\mathrm{c}_{\mathfrak{j}}\right]}
$$

It suffices to compute $\operatorname{Pr}\left[\forall j \leqslant i, \sigma_{j}=c_{j}\right]$ for any $1 \leqslant i \leqslant n$. Let Ω denote the set of all assignments for $\{i+1, \mathfrak{i}+2, \ldots, n\}$. For any $\tau \in \Omega, \tau$ is an $(n-i)$-dimensional vector, where $\tau_{k} \in\{0,1\}$ is the value for $k \geqslant i+1$. We use $\left(c_{j}\right)_{j \leqslant i}+\tau$ to denote an n-dimensional vector. For any j, let $f_{j}(0)=q_{j}$ and $\mathbf{f}_{\mathfrak{j}}(1)=1-\mathbf{q}_{\mathfrak{j}}$. Note that

$$
\operatorname{Pr}\left[\forall j \leqslant i, \sigma_{j}=c_{j}\right]=\frac{\prod_{j=1}^{i} f_{j}\left(c_{j}\right) \sum_{\tau \in \Omega} \prod_{k=i+1}^{n} f_{k}\left(\tau_{k}\right) \mathbf{1}\left[\left(c_{j}\right)_{j \leqslant i}+\tau \text { is not zero vector }\right]}{1-\prod_{j=1}^{n} q_{i}} .
$$

Hence, if $\mathrm{c}_{1}+\mathrm{c}_{2}+\ldots+\mathrm{c}_{\mathrm{i}} \geqslant 1$, then

$$
\operatorname{Pr}\left[\forall j \leqslant i, \sigma_{j}=c_{j}\right]=\frac{\prod_{j=1}^{i} f_{j}\left(c_{j}\right)}{1-\prod_{j=1}^{n} q_{i}}
$$

If $c_{1}+c_{2}+\ldots+c_{i}=0$, then

$$
\operatorname{Pr}\left[\forall j \leqslant i, \sigma_{j}=c_{j}\right]=\frac{\left(1-\prod_{k=i+1}^{n} q_{k}\right) \prod_{j=1}^{i} f_{j}\left(c_{j}\right)}{1-\prod_{j=1}^{n} q_{i}}
$$

Hence, every conditional marginal can be computed by the formula above in time $O(n)$. An naive sampling implementation takes $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time to compute all the marginal probabilities, but it is not hard to see that a lot of prefix or suffix products can be reused and the total running time of sampling can be reduced to $\mathrm{O}(\mathrm{n})$.

Now, we are almost ready to describe ApproxCount (Algorithm 3). For any u_{i}, we have an approximate value $\widetilde{R}_{\mathfrak{u}_{i}}$ of $R_{\mathfrak{u}_{i}}$ and we also have a set $S_{\mathfrak{u}_{i}}$ of ℓ approximate samples from the distribution $\pi_{\mathfrak{u}_{i}}$. By Lemma 9 and Lemma 10, we can efficiently approximate $R_{\Lambda}^{(i)}$ and generate approximate samples from $\pi_{\Lambda}^{(i)}$. Hence, we can simulate the process described below Lemma 8 to estimate R_{Λ}.

However, to save the number of samples, there is a further complication. Our algorithm estimates the expectation of $\mathbb{E}\left[Z_{\Lambda}\right]$ in two rounds and then takes the median of estimators. Recall (6). We further divide ℓ by introducing the following parameters:

$$
\ell=B \ell_{0}, \quad B:=60 n+150 m, \quad \ell_{0}:=\ell_{1}+500 \ell_{2}, \quad \ell_{1}:=400 n, \quad \ell_{2}:=\left\lceil 10^{4} n^{2} \max \left\{m^{2}, \epsilon^{-2}\right\}\right\rceil
$$

Then we do the following.

- For any $u_{i} \in \partial \wedge$, we divide all ℓ samples in $S_{u_{i}}$ into B blocks, each containing ℓ_{0} samples. Denote the B blocks by $S_{\mathfrak{u}_{i}}^{(1)}, S_{\mathfrak{u}_{\mathfrak{i}}}^{(2)}, \ldots, S_{\mathfrak{u}_{\mathfrak{i}}}^{(B)}$. Each block here is used for one estimatior.
- For each $\mathfrak{i} \in[d]$ and $\mathfrak{j} \in[B]$, we further partition $S_{\mathfrak{u}_{\mathfrak{i}}}^{(\mathfrak{j})}$ into two multi-sets $S_{\mathfrak{u}_{\mathfrak{i}}}^{(\mathfrak{j}, 1)}$ and $S_{\mathfrak{u}_{\mathfrak{i}}}^{(j, 2)}$, where $S_{\mathfrak{u}_{i}}^{(\mathfrak{j}, 1)}$ has ℓ_{1} samples and $S_{\mathfrak{u}_{i}}^{(j, 2)}$ has $500 \ell_{2}$ samples. These two sets are used for the two rounds, respectively.
- For each $j \in[B]$, we do the following two round estimation:
(1) use samples in $\left(S_{\mathfrak{u}_{i}}^{(\mathfrak{j}, 1)}\right)_{\mathfrak{i} \in[\mathrm{d}]}$ to obtain a constant-error estimation $\hat{Z}_{\Lambda}^{(\mathfrak{j})}$ of $\mathbb{E}\left[Z_{\Lambda}\right]$;
(2) use $\widehat{Z}_{\Lambda}^{(j)}$ and samples in $\left(S_{\mathcal{U}_{i}}^{(\mathfrak{j}, 2)}\right)_{i \in[d]}$ to obtain a more accurate estimation $\widetilde{Z}_{\Lambda}^{(j)}$ of $\mathbb{E}\left[Z_{\Lambda}\right]$;
(3) let $Q_{\Lambda}^{(\mathfrak{j})} \leftarrow \widetilde{Z}_{\Lambda}^{(\mathfrak{j})} \sum_{i=1}^{d} \widetilde{R}_{\Lambda}^{(i)}$, where $\widetilde{R}_{\Lambda}^{(i)}:=\left(1-\prod_{u \in \delta_{\Lambda}\left(u_{i}\right)} q_{\left(u, u_{i}\right)}\right) \widetilde{R}_{\mathfrak{u}_{i}}$ for each $\mathfrak{i} \in[d]$.
- Return the median number $\widetilde{R}_{\Lambda}:=\operatorname{median}\left\{Q_{\Lambda}^{(1)}, Q_{\Lambda}^{(2)}, \ldots, Q_{\Lambda}^{(B)}\right\}$.

A detailed description of ApproxCount is given in Algorithm 3. It uses a subroutine Estimate, which generates the Karp-Luby style estimator and is described in Algorithm 4.

Each time Algorithm 3 finishes, its input (V, E, Λ) and output $\widetilde{R}_{\mathcal{\Lambda}}$ are stored in the memory. If Algorithm 3 is ever evoked again with the same input parameters (V, E, Λ), we simply return \widetilde{R}_{Λ} from the memory.

Algorithm 3 first obtains the constant-error estimation $\widehat{Z}_{\Lambda}^{(j)}$ in Line 7. Next, it puts $\widehat{Z}_{\Lambda}^{(j)}$ into the parameters and run the subroutine Estimate again to get a more accurate estimation $\widetilde{Z}_{\Lambda}^{(\mathfrak{j})}$. The benefit of this two-round estimation is that we can save the number of samples maintained for each vertex. It costs only a small number of samples to get the crude estiamtion, but the crude estimation carries information of the ratio $\frac{\sum_{t \in[d]} R_{\Lambda}^{(t)}}{R_{\Lambda}}$, which allows us to fine tune the number of samples required per vertex for the good estimation. To be more specific, in the second call of the subroutine Estimate, the number of overall samples, namely the parameter T which depends on $\widehat{Z}_{\Lambda}^{(j)}$, can still be as large as $\Omega\left(\ell_{2} n\right)$ in the worst case, and yet each $\mathrm{S}_{\mathfrak{u}_{\mathrm{i}}}^{(\mathrm{j}, 2)}$ has only $\mathrm{O}\left(\ell_{2}\right)$ samples in the block. In the analysis (Lemma 15), we will show that this many samples per vertex suffice with high probability and Line 5 of Algorithm 4 (the failure case) is executed with low probability. The reason is that, roughly speaking, large T means large overlap among $\Omega_{\Lambda}^{(t),} s$, and the chance of hitting each vertex is roughly the same, resulting in the number of samples required per vertex close to the average. Conversely, small T means little overlap, and some vertex or vertices may be sampled much more often than other vertices, but in this case the overall number of samples required, namely T, is small anyways. To summarize, with this two-round procedure, $\mathrm{O}(\ell)$ overall samples per vertex are enough to obtain an estimation with the desired accuracy and high probability.

```
Algorithm 3: ApproxCount \(\left(\mathrm{V}, \mathrm{E}, \wedge,\left(\widetilde{\mathrm{R}}_{w}, \mathrm{~S}_{w}\right)_{w \in \partial \Lambda}\right)\)
    Input: a graph \(G=(V, E)\), a subset \(\Lambda \subseteq V\), all \(\left(\widetilde{R}_{w}, S_{w}\right)\) for \(w \in \partial \Lambda\), where
        \(\partial \Lambda=\left\{w \in \vee \backslash \Lambda \mid \exists w^{\prime} \in \Lambda\right.\) s.t. \(\left.\left(w^{\prime}, w\right) \in E\right\} ;\)
    Output: an estimator \(\widetilde{R}_{\mathcal{A}}\) of \(R_{\wedge}\)
    if \(t \in \Lambda\), then return 0 ; if \(\Lambda\) cannot reach \(t\) in \(G\), then return 1 ;
    for \(u_{i} \in \partial \wedge\) do
        \(\widetilde{R}_{\Lambda}^{(i)} \leftarrow\left(1-\prod_{u \in \delta_{\Lambda}\left(u_{i}\right)} q_{\left(\mathfrak{u}, u_{i}\right)}\right) \widetilde{R}_{u_{i}} ;\)
        partition \(S_{\mathfrak{u}_{\mathfrak{i}}}\) (arbitrarily) into B multi-sets, denoted by \(S_{\mathfrak{u}_{\mathfrak{i}}}^{(j)}\) for \(\mathfrak{j} \in[B]\), where
        \(B=60 n+150 m\) and each \(S_{\mathfrak{u}_{i}}^{(j)}\) has \(\ell_{0}=\ell_{1}+500 \ell_{2}\) samples;
        for each \(\mathfrak{j} \in[\mathrm{B}]\), partition \(\mathrm{S}_{\mathfrak{u}_{i}}^{(\mathfrak{j})}\) further into two multi-sets \(\mathrm{S}_{\mathfrak{u}_{i}}^{(j, 1)}\) and \(S_{\mathfrak{u}_{i}}^{(\mathfrak{j}, 2)}\), where \(\left|S_{\mathfrak{u}_{i}}^{(\mathfrak{j}, 1)}\right|=\ell_{1}\)
        and \(\left|\mathbf{S}_{\mathbf{u}_{i}}^{(j, 2)}\right|=500 \ell_{2} ;\)
    for \(\mathfrak{j}\) from 1 to B do
    \(\widehat{\mathbf{Z}}_{\Lambda}^{(\mathfrak{j})} \leftarrow \operatorname{Estimate}\left(\left(\mathrm{S}_{\mathbf{u}_{\mathfrak{i}}}^{(\mathrm{j}, 1)}\right)_{\mathfrak{i} \in[\mathrm{d}]}, \ell_{1}, \ell_{1}\right) ;\)
        \(\widetilde{Z}_{\Lambda}^{(j)} \leftarrow \operatorname{Estimate}\left(\left(S_{\mathbf{u}_{\mathfrak{i}}}^{(\mathfrak{j}, 2)}\right)_{\mathfrak{i} \in[\mathrm{d}]}, 500 \ell_{2}, 25 \ell_{2} \cdot \min \left\{2 / \widehat{\mathbf{Z}}_{\mathcal{\Lambda}}^{(j)}, 4 \mathfrak{n}\right\}\right) ;\)
        \(\mathrm{Q}_{\Lambda}^{(j)} \leftarrow \widetilde{Z}_{\Lambda}^{(j)} \sum_{i=1}^{\mathrm{d}} \widetilde{\mathrm{R}}_{\Lambda}^{(\mathfrak{i})} ;\)
    return \(\widetilde{R}_{\Lambda}:=\) median \(\left\{Q_{\Lambda}^{(1)}, Q_{\Lambda}^{(2)}, \ldots, Q_{\Lambda}^{(B)}\right\}\);
```

```
Algorithm 4: Estimate \(\left(\left(S_{\mathfrak{u}_{\mathfrak{i}}}^{e s}\right)_{i \in[d]}, \ell_{e s}, T\right)\)
    Input: a set of samples \(S_{\mathfrak{u}_{i}}^{e s}\) for each \(i \in[d]\), where \(\left|S_{\mathfrak{u}_{i}}^{e s}\right|=\ell_{e s}\), a threshold T
    Output: an estimator \(Z_{\text {es }}\) of \(\mathbb{E}\left[Z_{\Lambda}\right]\)
    for each \(i \in[d]\), let \(c_{i}=0\);
    for k from 1 to T do
        draw an index \(i \in[d]\) such that \(i\) is drawn with probability proportional to \(\widetilde{R}_{\Lambda}^{(i)}\);
        \(c_{i} \leftarrow \boldsymbol{c}_{\mathrm{i}}+1\);
        if \(c_{i}>\ell_{e s}\) then return 0 ;
        let \(H=\left(V_{\mathfrak{u}_{i}}, E_{H}\right)\) be the \(c_{i}\)-th sample from \(S_{\mathcal{u}_{i}}^{(j)}\);
        do the following transformation on H to get \(\mathrm{H}^{\prime}=\left(\mathrm{V}, \mathrm{E}_{\mathrm{H}^{\prime}}\right)\);
        - let \(\mathrm{E}_{\mathrm{H}^{\prime}} \leftarrow \mathrm{E}_{\mathrm{H}}\);
        - draw \(\mathrm{D} \subseteq \delta_{\Lambda}\left(u_{i}\right)\) with probability proportional to (14), and let \(\mathrm{E}_{\mathrm{H}^{\prime}} \leftarrow \mathrm{E}_{\mathrm{H}^{\prime}} \cup \mathrm{D}\);
        - for each \(e \in E \backslash\left(\mathrm{E}_{\mathfrak{u}_{\mathrm{i}}} \cup \delta_{\Lambda}\left(u_{i}\right)\right)\), add \(e\) into \(\mathrm{E}_{\mathrm{H}^{\prime}}\) independently with probability \(1-\mathrm{q}_{\mathrm{e}}\);
        let \(Z_{e s}^{(k)} \in\{0,1\}\) indicate whether \(i\) is the smallest index \(t \in[d]\) satisfying \(H^{\prime} \in \Omega_{\Lambda}^{(t)}\);
    return \(Z_{e s}:=\frac{1}{T} \sum_{k=1}^{T} Z_{e s}^{(k)}\);
```


4. Analysis

In this section we analyze all the algorithms.
4.1. Analysis of Sample. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be the input graph of Algorithm 1. Consider the subroutine Sample $\left(v_{\mathrm{k}},\left(\widetilde{R}_{w}, S_{w}\right)_{w \in\left\{v_{k+1}, v_{k+2}, \ldots, v_{n}\right\}}, \widetilde{R}_{v_{k}}\right)$ as being called by Algorithm 1. Let $u:=v_{k}$, and the subroutine runs on the graph $G_{\mathfrak{u}}=\left(V_{\mathfrak{u}}, E_{\mathfrak{u}}\right)$. In this section we consider a modified version of Sample, and
handle the real version in Section 4.3. Let m denote the number of edges in G. Suppose we can access an oracle \mathcal{P} satisfying:

- given $u \in V_{u}$, \mathcal{P} returns p_{0} such that

$$
\begin{equation*}
1-\frac{1}{10 m} \leqslant \frac{p_{0}}{R\left(V_{\mathfrak{u}}, E_{\mathfrak{u}},\{u\}\right)} \leqslant 1+\frac{1}{10 m} ; \tag{15}
\end{equation*}
$$

- given any $\mathrm{E}_{2} \subseteq \mathrm{E}_{\mathfrak{u}}$ and $\Lambda, \Lambda_{1} \subseteq \mathrm{~V}$ in Line 11 and Line 12 of Algorithm 2, \mathcal{P} returns $\mathrm{c}_{0}\left(\mathrm{~V}_{\mathfrak{u}}, \mathrm{E}_{2}, \Lambda\right)$ and $c_{1}\left(V_{u}, E_{2}, \Lambda_{1}\right)$ such that

$$
\begin{align*}
& 1-\frac{1}{10 m} \leqslant \frac{c_{0}\left(V_{u}, E_{2}, \Lambda\right)}{R\left(V_{\mathfrak{u}}, E_{2}, \Lambda\right)} \leqslant 1+\frac{1}{10 m}, \text { and } \tag{16}\\
& 1-\frac{1}{10 m} \leqslant \frac{c_{1}\left(V_{u}, E_{2}, \Lambda_{1}\right)}{R\left(V_{u}, E_{2}, \Lambda_{1}\right)} \leqslant 1+\frac{1}{10 m} . \tag{17}
\end{align*}
$$

Here, we use the convention $\frac{0}{0}=1$ and $\frac{x}{0}=\infty$ for $x>0$. For any V, E and $U \subseteq V_{u}, R(V, E, U)$ is the U-t reliability in the graph (V,E). The numbers p_{0}, c_{0} and c_{1} returned by \mathcal{P} can be random variables, but we assume that the inequalities above are always satisfied. Abstractly, one can view \mathcal{P} as a random vector $x_{\mathcal{P}}$, where

$$
X_{\mathcal{P}}=\left\{p_{0}\right\} \cup\left\{c_{0}\left(\mathrm{~V}_{\mathrm{u}}, \mathrm{E}_{2}, \Lambda\right), \mathrm{c}_{1}\left(\mathrm{~V}_{\mathrm{u}}, \mathrm{E}_{2}, \Lambda_{1}\right) \mid \text { for all possible } \mathrm{V}_{\mathrm{u}}, \mathrm{E}_{2}, \Lambda, \Lambda_{1}\right\} .
$$

The dimension of $X_{\mathcal{P}}$ is huge because there may be exponentially many possible $V_{\mathcal{u}}, \mathrm{E}_{2}, \Lambda, \Lambda_{1}$ in Line 11 and Line 12. The oracle first draw a sample $\chi_{\mathcal{P}}$ of $X_{\mathcal{P}}$, then answers queries by looking at $\chi_{\mathcal{P}}$ on the corresponding coordinate. The conditions above are assumed to be satisfied with probability 1 . Note that this $X_{\mathcal{P}}$ is only for analysis purposes and is not part of the real implementation.

The modified sampling algorithm replaces Line 2, Line 11 and Line 12 of Algorithm 2 by calling the oracle \mathcal{P}. In that case we do not need the estimates $\left(\widetilde{\mathrm{R}}_{w}, \mathrm{~S}_{w}\right)$ for $w=v_{k+1}, \ldots, v_{n}$ and $\widetilde{\mathrm{R}}_{v_{k}}$, and thus may assume that the input is only $u=v_{k}$. Recall that \mathfrak{n} is the number of vertices in the input graph.

Lemma 11. Given any $u=v_{k} \in V$, the with probability at least $1-(\varepsilon / n)^{200}$, the modified sampling algorithm does not crash and returns a perfect independent sample from the distribution π_{u}, where the probability is over the independent randomness $\mathcal{D}_{\mathfrak{u}}$ inside the Sample subroutine. The running time is $\widetilde{\mathrm{O}}\left(\mathrm{N}\left(\left|\mathrm{E}_{\mathfrak{u}}\right|+\left|\mathrm{V}_{\mathfrak{u}}\right|\right)\right)$, where N is the time cost for one oracle call and $\widetilde{\mathrm{O}}$ hides $\operatorname{poly} \log (\mathrm{n} / \varepsilon)$ factors.

Proof. Throughout this proof, we fix a sample $\chi_{\mathcal{P}}$ of $\mathcal{X}_{\mathcal{P}}$ in advance. The oracle \mathcal{P} uses $\chi_{\mathcal{P}}$ to answer the queries. We will prove that the lemma holds for any $\chi_{\mathcal{P}}$ satisfying the three conditions above.

We first describe an ideal sampling algorithm. The algorithm maintains the set $\mathrm{E}_{1}, \mathrm{E}_{2}$ and \mathcal{E} as in the Sample algorithm. At each step, we pick an edge e according to Line 7 of Algorithm 2. We compute the conditional marginal probability of $\alpha_{e}=\operatorname{Pr}_{\mathcal{G}=\left(V_{u}, E^{\prime}\right) \sim \pi_{u}}\left[e \in E^{\prime} \mid E^{\prime} \cap E_{1}=\mathcal{E}\right]$, and add e into \mathcal{E} with probability α_{e}. Then we update E_{1}, E_{2} and Λ. Once $t \in \Lambda, \alpha_{e}=1-q_{e}$ for all $e \in E_{2}$ and we can add all subsequent edges independently. The ideal sampling algorithm returns an independent perfect sample.

The modified algorithm simulates the ideal process, but uses the oracle \mathcal{P} to compute each conditional marginal distribution α_{e}. By the definition of conditional probability,

$$
\begin{equation*}
\alpha_{e}=\frac{\operatorname{Pr}_{\mathcal{G}=\left(V_{u}, E^{\prime}\right) \sim \pi_{u}}\left[e \in E^{\prime} \wedge E^{\prime} \cap E_{1}=\varepsilon\right]}{\operatorname{Pr}_{\mathcal{G}=\left(V_{u}, E^{\prime}\right) \sim \pi_{u}}\left[e \in \mathrm{E}^{\prime} \wedge \mathrm{E}^{\prime} \cap \mathrm{E}_{1}=\mathcal{E}\right]+\operatorname{Pr}_{\mathcal{G}=\left(V_{u}, E^{\prime}\right) \sim \pi_{u}}\left[e \notin \mathrm{E}^{\prime} \wedge \mathrm{E}^{\prime} \cap \mathrm{E}_{1}=\varepsilon\right]} . \tag{18}
\end{equation*}
$$

Recall $E_{2}=E_{u} \backslash E_{1}$. Let $E_{2}^{\prime}=E_{2} \backslash e$. Recall Λ_{1} is the set of vertices u can reach if $\mathcal{E} \cup\{e\}$ is selected. Conditional on that $\mathcal{E} \cup\{e\}$ is selected, the probability that u can reach t is exactly the same as the probability Λ_{1} can reach t in the remaining graph $\left(\mathrm{V}_{\mathfrak{u}}, \mathrm{E}_{2}^{\prime}\right)$. Then the numerator of (18) can be written as

$$
\left(1-q_{e}\right) \prod_{f \in E_{1} \cap \varepsilon}\left(1-q_{f}\right) \prod_{f^{\prime} \in E_{1} \cap \varepsilon} q_{f^{\prime}} \cdot R\left(V_{u}, E_{2}^{\prime}, \Lambda_{1}\right),
$$

where $R\left(V_{u}, E_{2}^{\prime}, \Lambda_{1}\right)$ is the $\Lambda_{1}-t$ reliability in the graph $\left(V_{u}, E_{2}^{\prime}\right)$. Similarly, the second term of the denominator of (18) can be written as

$$
q_{e} \prod_{f \in E_{1} \cap \varepsilon}\left(1-q_{f}\right) \prod_{f^{\prime} \in E_{1} \cap \varepsilon} q_{f^{\prime}} \cdot R\left(V_{u}, E_{2}^{\prime}, \Lambda\right) .
$$

Putting them together implies

$$
\alpha_{e}=\frac{\left(1-q_{e}\right) R\left(V_{u}, E_{2}^{\prime}, \Lambda_{1}\right)}{\left(1-q_{e}\right) R\left(V_{u}, E_{2}^{\prime}, \Lambda_{1}\right)+q_{e} R\left(V_{u}, E_{2}^{\prime}, \Lambda\right)} .
$$

If c_{0} and c_{1} in Line 11 and Line 12 are exactly $R\left(V_{\mathfrak{u}}, E_{2}^{\prime}, \Lambda\right)$ and $R\left(V_{\mathfrak{u}}, E_{2}^{\prime}, \Lambda_{1}\right)$, then Line 5 to Line 19 in Algorithm 2 are the same as the ideal algorithm described above. Under this assumption, Algorithm 2 cannot crash in Line 6 or Line 13. Consider the modified algorithm in the lemma. Note that the state of the algorithm can be uniquely determined by the pair $\left(\mathrm{E}_{2}, \mathcal{E}\right)$. By the assumption of \mathcal{P}, we know that $R\left(V_{u}, E_{2}^{\prime}, \Lambda\right)=0$ if and only if $c_{0}=0$ and $R\left(V_{u}, E_{2}^{\prime}, \Lambda_{1}\right)=0$ if and only if $c_{1}=0$. Hence, any state $\left(\mathrm{E}_{2}, \mathcal{E}\right)$ appears in the modified algorithm with positive probability if and only if it appears in the ideal algorithm with positive probability. This implies the modified algorithm cannot crash in Line 6 or Line 13.

By the assumption of the oracle \mathcal{P} again, we have

$$
\begin{aligned}
& 1-\frac{1}{4 m} \leqslant \frac{10 m-1}{10 m+1} \leqslant \frac{\frac{\left(1-q_{e}\right) c_{1}}{\left(1-q_{e}\right) c_{1}+q_{e} c_{0}}}{\alpha_{e}} \leqslant \frac{10 m+1}{10 m-1} \leqslant 1+\frac{1}{4 m}, \\
& 1-\frac{1}{4 m} \leqslant \frac{10 m-1}{10 m+1} \leqslant \frac{\frac{q_{e} c_{0}}{\left(1-q_{e} e c_{1}+q_{e} c_{0}\right.}}{1-\alpha_{e}} \leqslant \frac{10 m+1}{10 m-1} \leqslant 1+\frac{1}{4 m} .
\end{aligned}
$$

When the algorithm exits the whole loop, u can reach t and we have the remaining marginals exactly.
Finally, the algorithm gets a random subgraph H and a value p, where $p=p(H)$ is the probability that the algorithm generates H. Note that there are at most m edges in E_{u}. Taking the product of all conditional marginals gives

$$
\exp (-1 / 2) \leqslant\left(1-\frac{1}{4 m}\right)^{m} \leqslant \frac{p(H)}{\pi_{\mathfrak{u}}(\mathrm{H})} \leqslant\left(1+\frac{1}{4 \mathrm{~m}}\right)^{m} \leqslant \exp (1 / 4)
$$

Recall that

$$
\pi_{\mathfrak{u}}(\mathrm{H})=\frac{w_{\mathfrak{u}}(\mathrm{H})}{\mathrm{R}\left(\mathrm{~V}_{\mathfrak{u}}, \mathrm{E}_{\mathfrak{u}}, \mathfrak{u}\right)} .
$$

By the assumption of the oracle \mathcal{P}, we have

$$
\frac{9}{10} \leqslant \frac{p_{0}}{R\left(V_{u}, E_{u}, u\right)} \leqslant \frac{11}{10} .
$$

The parameter $p_{0}>0$ because the input of Algorithm 2 must satisfy $R\left(V_{u}, E_{u}, u\right)>0$. The filter probability $f=\operatorname{Pr}[F=1 \mid H]$ in Line 20 of Algorithm 2 satisfies

$$
\frac{1}{16} \leqslant \mathrm{f}=\frac{w_{u}(\mathrm{H})}{4 p(\mathrm{H}) p_{0}} \leqslant 1 .
$$

Hence, f is a valid probability and $\mathrm{f} \geqslant \frac{1}{16}$. The algorithm cannot crash in Line 20. The algorithm outputs H if $F=1$. By the analysis above, we know that $p(H)>0 \Leftrightarrow \pi_{u}(H)>0$ and

$$
\operatorname{Pr}[\text { Sample outputs } \mathrm{H}] \propto p(H) \frac{w_{\mathfrak{u}}(\mathrm{H})}{p(\mathrm{H}) p_{0}}=\frac{w_{\mathfrak{u}}(\mathrm{H})}{p_{0}} \propto w_{\mathfrak{u}}(\mathrm{H}),
$$

where the last "proportional to" holds because p_{0} is a constant (independent from H). Conditional on $F=1, H$ is a perfect sample. We repeat the process for $T=1000 \log \frac{n}{\varepsilon}$ times, and each time the algorithm succeeds with probability at least $\frac{1}{16}$. The overall probability of success is at least $1-(\varepsilon / n)^{200}$.

The running time is dominated by the oracle calls. We can easily use data structures to maintain $\partial \Lambda, \Lambda$, E_{2} and \mathcal{E}. The total running time is $\tilde{O}\left(\left(\left|V_{u}\right|+\left|E_{u}\right|\right) N\right)$.

The above only deals with the modified algorithm. Analysing the real algorithm relies on the analysis of ApproxCount, and we defer that to Section 4.3.

The Algorithm 2 can only be evoked by Algorithm 1. Fix $u=v_{k}$. Suppose we use Algorithm 2 to draw samples from π_{u}. For later analysis, we need to make clear how each random variable depends on various sources of randomness. We abstract the modified algorithm as follows. The oracle \mathcal{P} is determined by a random vector $X_{\mathcal{P}}$. The algorithm generates the inside independent randomness $\mathcal{D}_{\mathcal{u}}$. The algorithm constructs a random subgraph $\mathrm{H}=\mathrm{H}\left(\mathcal{X}_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}\right)$ and a random indicator variable $\mathrm{F}=\mathrm{F}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}\right)$, where H and F denote the random variables of the same name in the last line of Algorithm 2. Lemma 11 shows that conditional on $F=1, \mathrm{H}$ is an independent sample (independent from $X_{\mathcal{P}}$) that follows π_{u}. We denote it by

$$
\left.\mathrm{H}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}\right)\right|_{\mathrm{F}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}\right)=1} \sim \pi_{\mathfrak{u}}
$$

Here, for any random variable X and event E, we use $\left.X\right|_{E}$ to denote the random variable X conditional on E. In fact, a following stronger result can be obtained from the above proof

$$
\forall \mathrm{x}_{\mathcal{P}} \in \Omega_{\mathcal{P}},\left.\quad \mathrm{H}\right|_{\mathrm{F}\left(x_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}\right)=1 \wedge x_{\mathcal{P}}=\mathrm{x}_{\mathcal{P}}} \sim \pi_{\mathrm{u}}
$$

where $\Omega_{\mathcal{P}}$ denotes the support of $X_{\mathcal{P}}$. And it holds that

$$
\forall \mathrm{x}_{\mathcal{P}} \in \Omega_{\mathcal{P}}, \quad \operatorname{Pr}\left[\mathrm{F}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}\right)=1 \mid X_{\mathcal{P}}=\mathrm{x}_{\mathcal{P}}\right] \geqslant 1-\frac{1}{(\mathrm{n} / \varepsilon)^{200}}
$$

Note that the event $F\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}\right)=1$ depends on the input random variable $X_{\mathcal{P}}$. In the analysis in Section 4.3, we need to define a event \mathcal{C} such that $\operatorname{Pr}[\mathcal{C}] \geqslant 1-(\varepsilon / n)^{200}$, \mathcal{C} is independent from $X_{\mathcal{P}}$ and $\left.H\left(X_{\mathcal{P}}, \mathcal{D}_{\mathcal{U}}\right)\right|_{\mathcal{C}} \sim$ π_{u}. We actually define this event \mathcal{C} in a more refined probability space. The proof below defines this event explicitly. We also include an alternative, more conceptual, and perhaps simpler proof in Appendix A, where the event \mathcal{C} is defined implicitly.

Consider the following algorithm NewSample. Recall that $T=\left\lceil 1000 \log \frac{n}{\varepsilon}\right\rceil$ is the parameter in Algorithm 2.

Definition 12 (NewSample). The algorithm NewSample is the same as the Sample in Algorithm 2. The only difference is that before Line 23, NewSample computes the value

$$
\begin{equation*}
p_{K}:=\frac{1-\frac{\epsilon^{200}}{n^{200}}}{1-\left(1-\frac{\mathrm{R}_{u}}{4 \mathbf{p}_{0}}\right)^{\top}} \tag{19}
\end{equation*}
$$

If $0 \leqslant p_{K} \leqslant 1$, then independently sample $K \in\{0,1\}$ such that $\operatorname{Pr}[K=1]=p_{K}$; otherwise, let $K=0$.
We remark that in the above definition, K is sampled using independent randomness. Formally, let $\mathcal{D}_{\mathfrak{u}}$ be the inside randomness of NewSample. We partition $\mathcal{D}_{\mathfrak{u}}$ into two disjoint random strings $\mathcal{D}_{\mathfrak{u}}^{(1)}$ and $\mathcal{D}_{\mathfrak{u}}^{(2)}$. We use $\mathcal{D}_{\mathfrak{u}}^{(1)}$ to simulate all steps in Algorithm 2 and use $\mathcal{D}_{\mathfrak{u}}^{(2)}$ to sample K.

The value R_{u} is the exact u-t reliability in graph G_{u}. Indeed, we cannot compute the exact value of R_{u} in polynomial time. We only use the algorithm NewSample in analysis, and do not need to implement this algorithm. NewSample draws a random variable K but never uses it at all. Its sole purpose is to further refine the probability space. Thus, the following observation is straightforward to verify.
Observation 13. Given the same input, the outputs of two algorithms NewSample and Sample follow the same distribution.

A natural question here is that why do we even define NewSample? By Observation 13, we can focus only on NewSample in later analysis (in particular, the analysis of the correctness of our algorithm). NewSample has one additional random variable $K \in\{0,1\}$, which helps defining the event \mathcal{C} below.

Similarly, we can defined a modified version of NewSample such that we use the oracle \mathcal{P} to compute p_{0}, c_{0} and c_{1}. NewSample also generates the same random subgraph $H=H\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right)$ and the same random indicator $\mathrm{F}=\mathrm{F}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right)$ as Sample. In addition, it generates a new random variable $\mathrm{K}=$ $K\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(2)}\right)$. We define the following event \mathcal{C} for NewSample

$$
\begin{equation*}
\mathcal{e}: \quad F\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right)=1 \wedge K\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(2)}\right)=1 . \tag{20}
\end{equation*}
$$

Lemma 14. Suppose \mathcal{P} satisfies the conditions in (15), (16) and (17). Then with probability $1,0 \leqslant p_{\mathrm{K}} \leqslant 1$. Furthermore, it holds that

- \mathcal{C} is independent from $\mathcal{X}_{\mathcal{P}}$, which implies that \mathcal{C} depends only on $\mathcal{D}_{\mathfrak{u}}$;
- $\operatorname{Pr}_{\mathcal{D}_{u}}[\mathcal{C}]=1-\varepsilon^{200} / n^{200}$;
- conditional on \mathfrak{C}, NewSample does not crash and outputs an independent sample $\mathrm{H}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right) \sim \pi_{\mathfrak{u}}$.

Proof. Suppose \mathcal{P} satisfies the conditions in (15), (16) and (17). We first fix $X_{\mathcal{P}}=\chi_{\mathcal{P}}$ for an arbitrary $x_{\mathcal{P}} \in \Omega_{\mathcal{P}}$. By the same analysis as in Lemma 11, in each of the repeat-until loop, the probability f of $F=1$ is

$$
\frac{1}{16} \leqslant f=\sum_{H \in \Omega_{u}} p(H) \cdot \frac{w_{u}(H)}{4 p(H) p_{0}}=\frac{R_{u}}{4 p_{0}} \leqslant 1
$$

As the repeat-until loop is repeated independently for at most T times until $F\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{U}}\right)=1$, we have

$$
\operatorname{Pr}\left[F\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}\right)=1 \mid X_{\mathcal{P}}=x_{\mathcal{P}}\right]=1-\left(1-\frac{\mathrm{R}_{\mathfrak{u}}}{4 \mathrm{p}_{0}}\right)^{\top} \geqslant 1-\frac{\varepsilon^{200}}{\mathrm{n}^{200}}
$$

Hence, $0 \leqslant p_{K} \leqslant 1$. Next, note that given $X_{\mathcal{P}}=x_{\mathcal{P}}$, the value of p_{K} is fixed and K is sampled independently. We have that $\mathrm{K}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(2)}\right)$ and $\mathrm{F}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right)$ are independent conditional on $X_{\mathcal{P}}=\chi_{\mathcal{P}}$. This implies

$$
\begin{aligned}
\operatorname{Pr}\left[\mathcal{C} \mid X_{\mathcal{P}}=x_{\mathcal{P}}\right] & =\operatorname{Pr}\left[F\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right)=1 \mid X_{\mathcal{P}}=x_{\mathcal{P}}\right] \operatorname{Pr}\left[\mathrm{K}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(2)}\right)=1 \mid X_{\mathcal{P}}=x_{\mathcal{P}}\right] \\
& =\left(1-\left(1-\frac{\mathrm{R}_{\mathfrak{u}}}{4 \mathbf{p}_{0}}\right)^{\top}\right) p_{\mathfrak{K}}=1-\frac{\varepsilon^{200}}{\mathrm{n}^{200}} .
\end{aligned}
$$

The probability $1-\varepsilon^{200} / \mathfrak{n}^{200}$ is independent from $\chi_{\mathcal{P}}$. Hence, the event \mathcal{C} is independent from $X_{\mathcal{P}}$.
Finally, we analyze the distribution of H conditional on \mathcal{C}. We first condition on $X_{\mathcal{P}}=\chi_{\mathcal{P}}$. If we further conditional on $\mathcal{F}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right)=1$, the same analysis as in Lemma 11 shows that the algorithm does not crash and $\mathrm{H}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right) \sim \pi_{\mathfrak{u}}$. Note that $\mathrm{K}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(2)}\right)$ is sampled independently with a fixed probability p_{K} (since $X_{\mathcal{P}}=x_{\mathcal{P}}$ has been fixed). Hence, $\mathrm{K}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(2)}\right)$ is independent from both $\mathrm{F}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right)$ and $\mathrm{H}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right)$ conditional on $X_{\mathcal{P}}=\chi_{\mathcal{P}}$. We have

$$
\mathrm{H}\left(x_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right)\left|x_{\mathfrak{P}=x_{\mathcal{P}} \wedge \mathfrak{e}} \equiv \mathrm{H}\left(x_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right)\right|_{x_{\mathcal{P}}=x_{\mathcal{P}} \wedge \mathrm{F}\left(x_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right)=1} \sim \pi_{\mathfrak{u}},
$$

where we use $X \equiv Y$ to denote that two random variables X and Y have the same distribution. Note that the distribution $\pi_{\mathfrak{u}}$ on the RHS is independent from $\chi_{\mathcal{P}}$. Summing over $\chi_{\mathcal{P}} \in \Omega_{\mathcal{P}}$ gives that conditioned on \mathcal{C}, the output $\mathrm{H}=\mathrm{H}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}^{(1)}\right) \sim \pi_{\mathfrak{u}}$.
4.2. Analysis of ApproxCount. Now we turn our attention to ApproxCount $\left(\mathrm{V}, \mathrm{E}, \Lambda,\left(\widetilde{R}_{w}, \mathrm{~S}_{w}\right)_{w \in \partial \Lambda}\right)$, where $G=(V, E)$ is a DAG and $t \notin \Lambda$. Recall that for any $w \in V$, the graph $\mathrm{G}_{w}=\mathrm{G}\left[\mathrm{V}_{w}\right]$, where V_{w} contains all vertices v satisfying $w \rightsquigarrow_{G} v$ and $v \rightsquigarrow_{G} \mathrm{t}$. Let R_{w} be the $w-\mathrm{t}$ reliability in G_{w}. Let $S_{w}^{\text {ideal }}$ be a multi-set of ℓ independent and prefect samples from π_{w}. Recall that ℓ_{0} and B are parameters in ApproxCount, Algorithm 3, and $d=|\partial \Lambda|$. In the next lemma, we assume $\left(\widetilde{R}_{w}\right)_{w \in \partial \Lambda}$ is fixed and
$\left(S_{w}\right)_{w \in \partial \wedge}$ is random. When ApproxCount is called, we use $\mathcal{D}(\mathrm{V}, \mathrm{E}, \Lambda)$ to denote the internal randomness in the execution of ApproxCount.

Lemma 15. Suppose the following conditions are satisfied

- for all $w \in \partial \Lambda, w \rightsquigarrow_{G} t$;
- for any $w \in \partial \wedge, 1-\varepsilon_{0} \leqslant \frac{\widetilde{R}_{w}}{R_{w}} \leqslant 1+\varepsilon_{0}$ for some $\varepsilon_{0}<1 / 2$;
- $\mathrm{d}_{T V}\left(\left(\mathrm{~S}_{w}\right)_{w \in \partial \wedge},\left(\mathrm{~S}_{w}^{\text {ideal }}\right)_{w \in \partial \wedge}\right) \leqslant \delta_{0}$.

Then with probability at least $1-\delta_{0}-2^{-B / 30}$, it holds that

$$
1-\varepsilon_{0}-\frac{2}{\sqrt{\ell_{2}}} \leqslant \frac{\widetilde{R}_{\Lambda}}{R_{\Lambda}} \leqslant 1+\varepsilon_{0}+\frac{2}{\sqrt{\ell_{2}}},
$$

where the probability is taken over the input randomness of $\left(S_{w}\right)_{w \in \mathcal{~}}$ and the independent randomness $\mathcal{D}(\mathrm{V}, \mathrm{E}, \wedge)$ inside the ApproxCount algorithm. The running time of ApproxCount is $\mathrm{O}(\mathrm{n} \ell(|\mathrm{V}|+|\mathrm{E}|))$.

Proof. If $t \in \Lambda$, then Algorithm 3 returns $\widetilde{R}_{w}=R_{w}=1$ in Line 1. If $t \notin \Lambda$ and $\partial \Lambda=\emptyset$, then Algorithm 3 returns $\widetilde{R}_{w}=R_{w}=0$ in Line 1 . In the following, we assume $t \notin \Lambda$ and $\partial \Lambda \neq \emptyset$. By the first condition, we have $d \geqslant 1$ in Algorithm 3 and all distributions $\pi_{\Lambda}^{(i)}$ for $i \in[d]$ are well-defined.

By Lemma 9 and the assumption in this lemma, all $\widetilde{R}_{\Lambda}^{(i)}$ computed in Line 3 satisfy

$$
\begin{equation*}
1-\varepsilon_{0} \leqslant \frac{\widetilde{\mathrm{R}}_{\Lambda}^{(i)}}{\mathrm{R}_{\Lambda}^{(i)}} \leqslant 1+\varepsilon_{0} . \tag{21}
\end{equation*}
$$

Suppose ApproxCount uses perfect samples from $\left(S_{w}^{\text {ideal }}\right)_{w \in \partial \wedge}$. Consider the first call on the subroutine Estimate (Algorithm 4). In the first call, the parameter $T=\ell_{1}=400 \mathrm{n}$. Note that $\ell_{\text {es }}=\ell_{1}=400 \mathrm{n}$. Hence, the condition in Line 5 of Algorithm 4 cannot be satisfied. By Lemma 9, H^{\prime} obtained in Line 10 of Algorithm 4 is a perfect sample from $\pi_{\Lambda}^{(i)}$. For any $k \in[T]$, we have

$$
\mathbb{E}\left[Z_{e s}^{(\mathrm{k})}\right]=\sum_{i=1}^{\mathrm{d}} \frac{\widetilde{\mathrm{R}}_{\Lambda}^{(i)}}{\sum_{\mathrm{t} \in[\mathrm{~d}]} \widetilde{R}_{\Lambda}^{(\mathrm{t})}} \cdot \sum_{\mathrm{H}^{\prime} \in \Omega_{\Lambda}^{(i)}} \underbrace{\mathrm{w}_{\Lambda}\left(\mathrm{H}^{\prime}\right)}_{=\pi_{\Lambda}^{(i)}\left(\mathrm{H}^{\prime}\right)} \mathrm{R}_{\Lambda}^{(\mathrm{i})} . \mathbf{1}\left[H^{\prime} \in \Omega_{\Lambda}^{(\mathrm{i})} \wedge \forall \mathrm{t}<\mathrm{i}, H^{\prime} \notin \Omega_{\Lambda}^{(\mathrm{t})}\right]
$$

By (21) and a calculation similar to that in (13), we have

$$
\begin{equation*}
\left(1-\varepsilon_{0}\right) \frac{\mathrm{R}_{\Lambda}}{\sum_{i=1}^{\mathrm{d}} \widetilde{\mathrm{R}}_{\Lambda}^{(i)}} \leqslant \mathbb{E}\left[Z_{\mathrm{es}}^{(\mathrm{k})}\right] \leqslant\left(1+\varepsilon_{0}\right) \frac{\mathrm{R}_{\Lambda}}{\sum_{i=1}^{\mathrm{d}} \widetilde{\mathrm{R}}_{\Lambda}^{(i)}} \tag{22}
\end{equation*}
$$

Using (21), we have

$$
\begin{equation*}
\mathbb{E}\left[Z_{\mathrm{es}}^{(\mathrm{k})}\right] \geqslant \frac{1-\varepsilon_{0}}{1+\varepsilon_{0}} \cdot \frac{\mathrm{R}_{\Lambda}}{\sum_{i=1}^{\mathrm{d}} \widetilde{\mathrm{R}}_{\Lambda}^{(\mathrm{i})}} \geqslant \frac{1}{4 \mathrm{~d}} . \tag{23}
\end{equation*}
$$

Also recall that

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{es}}=\frac{1}{\mathrm{~T}} \sum_{\mathrm{k}=1}^{\mathrm{T}} \mathrm{Z}_{\mathrm{es}}^{(\mathrm{k})} \tag{24}
\end{equation*}
$$

Then $\operatorname{Var}\left(Z_{\text {es }}\right)=\frac{\operatorname{Var}\left(Z_{\text {es }}^{(k)}\right)}{T}$, and by (23), $\mathbb{E}\left[Z_{\text {es }}\right] \geqslant \frac{1}{4 \mathrm{~d}}$. By Chebyshev's inequality and for any $k \in[T]$,

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|Z_{\mathrm{es}}-\mathbb{E}\left[Z_{\mathrm{es}}\right]\right| \geqslant \frac{10 \sqrt{\mathrm{~d}}}{\sqrt{\mathrm{~T}}} \mathbb{E}\left[Z_{\mathrm{es}}\right]\right] \leqslant \frac{\mathrm{T}}{100 \mathrm{~d}} \cdot \frac{\operatorname{Var}\left(Z_{\mathrm{es}}\right)}{\left(\mathbb{E}\left[Z_{\mathrm{es}}\right]\right)^{2}}=\frac{\mathrm{T}}{100 \mathrm{~d}} \cdot \frac{\operatorname{Var}\left(Z_{\mathrm{es}}^{(\mathrm{k})}\right) / T}{\left(\mathbb{E}\left[Z_{\mathrm{es}}^{(\mathrm{k})}\right]\right)^{2}} \\
= & \frac{1}{100 \mathrm{~d}}\left(\frac{\mathbb{E}\left[\left(Z_{\mathrm{es}}^{(\mathrm{k})}\right)^{2}\right]}{\left(\mathbb{E}\left[Z_{\mathrm{es}}^{(\mathrm{k})}\right]\right)^{2}}-1\right)=\frac{1}{100 \mathrm{~d}}\left(\frac{\mathbb{E}\left[Z_{\text {es }}(\mathrm{k})\right]}{\left(\mathbb{E}\left[Z_{\mathrm{es}}(\mathrm{k})\right]\right)^{2}}-1\right) \leqslant \frac{1}{25},
\end{aligned}
$$

where the last inequality is due to (23). Since $T=\ell_{1}=400 \mathrm{n} \geqslant 100 \mathrm{~d}$ in the first call on Algorithm 4, the random variable $\widehat{\mathbf{Z}}_{\Lambda}^{(\mathfrak{j})}$ in Algorithm 3 satisfies

$$
\operatorname{Pr}\left[\frac{1}{2} \leqslant \frac{\widehat{\mathbf{Z}}_{\Lambda}^{(j)}}{\mathbb{E}\left[Z_{\text {es }}\right]} \leqslant 2\right] \geqslant \frac{24}{25}
$$

Next, we analyse the second call on Algorithm 4 conditional on $\frac{1}{2} \leqslant \frac{\hat{\mathbf{Z}}_{1}^{(j)}}{\mathbb{E}\left[Z_{\text {es }}\right]} \leqslant 2$. By (23), $\mathbb{E}\left[Z_{\text {es }}\right] \geqslant$ $\frac{1}{4 \mathrm{~d}} \geqslant \frac{1}{4 \mathrm{n}}$. In this case, the parameter T in Algorithm 4 satisfies

$$
\begin{equation*}
\frac{25 \ell_{2}}{\mathbb{E}\left[\mathrm{Z}_{\mathrm{es}}\right]} \leqslant \mathrm{T}=25 \ell_{2} \min \left\{2 / \widehat{\mathrm{Z}}_{\mathcal{\prime}}^{(\mathfrak{j})}, 4 \mathrm{n}\right\} \leqslant \min \left\{\frac{100 \ell_{2}}{\mathbb{E}\left[\mathbf{Z}_{\mathrm{es}}\right.}, 100 \ell_{2} n\right\} . \tag{25}
\end{equation*}
$$

Consider the second call of Algorithm 4. Note that $\ell_{\mathrm{es}}=500 \ell_{2}$ in the second round. Let us first assume that $\ell_{\text {es }}=\infty$, which means each $S_{\mathfrak{u}_{i}}^{\text {es }}$ contains infinitely many perfect samples. We first analyse the algorithm in this ideal situation and then compare the real algorithm (where $\ell_{\mathrm{es}}=500 \ell_{2}$) with this ideal algorithm. Note that if $\ell_{\text {es }}=\infty$, then the condition in Line 5 of Algorithm 4 cannot be triggered. By a similar analysis,

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|Z_{\mathrm{es}}-\mathbb{E}\left[Z_{\mathrm{es}}\right]\right| \geqslant \frac{1}{\sqrt{\ell_{2}}} \mathbb{E}\left[Z_{\mathrm{es}}\right]\right] \leqslant \ell_{2} \cdot \frac{\operatorname{Var}\left(Z_{\mathrm{es}}\right)}{\left(\mathbb{E}\left[Z_{\mathrm{es}}\right]\right)^{2}}=\frac{\ell_{2}}{\mathrm{~T}} \cdot \frac{\operatorname{Var}\left(Z_{\mathrm{es}}^{(\mathrm{k})}\right)}{\left(\mathbb{E}\left[Z_{\mathrm{es}}^{(\mathrm{k})}\right]\right)^{2}} \\
\leqslant & \frac{1}{25} \cdot \frac{\operatorname{Var}\left(Z_{\mathrm{es}}^{(\mathrm{k})}\right)}{\mathbb{E}\left[Z_{\mathrm{es}}^{(\mathrm{k})}\right]} \leqslant \frac{1}{25} \cdot \frac{\mathbb{E}\left[\left(Z_{\mathrm{es}}^{(\mathrm{k})}\right)^{2}\right]}{\mathbb{E}\left[Z_{\mathrm{es}}^{(\mathrm{k})}\right]}=\frac{1}{25} .
\end{aligned}
$$

We then show that the following result holds at the end of this ideal algorithm ($\ell_{\text {es }}=\infty$)

$$
\operatorname{Pr}\left[\exists \mathfrak{i} \in[d], \text { s.t. } \mathfrak{c}_{\mathfrak{i}}>500 \ell_{2}\right] \leqslant \frac{1}{25}
$$

Fix an index $\mathfrak{i} \in[d]$. Algorithm 4 has T iterations in total. For any $k \in[T]$, let $X_{k} \in\{0,1\}$ indicate whether i is picked in Line 6. Note that all X_{k} 's are independent random variables. Let $X=\sum_{k=1}^{\top} X_{k}$. Then

$$
\mathbb{E}[\mathrm{X}]=\mathrm{T} \frac{\widetilde{\mathrm{R}}_{\Lambda}^{(i)}}{\sum_{\mathrm{t} \in[\mathrm{~d}]} \widetilde{\mathrm{R}}_{\Lambda}^{(\mathrm{t})}} \leqslant \frac{100 \ell_{2}}{\mathbb{E}\left[\mathrm{Z}_{\mathrm{es}}\right]} \frac{\widetilde{\mathrm{R}}_{\Lambda}^{(\mathrm{i})}}{\sum_{\mathrm{t} \in[\mathrm{~d}]} \widetilde{\mathrm{R}}_{\Lambda}^{(\mathrm{t})}},
$$

where the inequality holds by the upper bound in (25). Since $\mathbb{E}\left[Z_{\text {es }}\right]=\mathbb{E}\left[Z_{\mathrm{es}}^{(\mathrm{k})}\right]$, we can use the lower bound in (22) and the upper bound in (21) to obtain

$$
\mathbb{E}[X] \leqslant \frac{100 \ell_{2}}{1-\epsilon_{0}} \cdot \frac{\widetilde{R}_{\Lambda}^{(i)}}{R_{\Lambda}} \leqslant 100 \ell_{2} \cdot \frac{1+\epsilon_{0}}{1-\epsilon_{0}} \cdot \frac{R_{\Lambda}^{(i)}}{R_{\Lambda}} \stackrel{(*)}{\leqslant} 100 \ell_{2} \cdot \frac{1+\epsilon_{0}}{1-\epsilon_{0}} \leqslant 300 \ell_{2},
$$

where inequality $(*)$ uses the fact $R_{\Lambda}^{(i)} \leqslant R_{\Lambda}$. This is because $R_{\Lambda}^{(i)}=\sum_{H \in \Omega_{\Lambda}^{(i)}} w_{\Lambda}(H), R_{\Lambda}=\sum_{H \in \Omega_{\Lambda}} w_{\Lambda}(H)$ and $\Omega_{\Lambda}^{(i)} \subseteq \Omega_{\Lambda}$ (by Lemma 8). Note that $T \leqslant 100 \ell_{2} n$ and $\ell_{2} \geqslant 10^{4} n^{2} \max \left\{m^{2}, \epsilon^{-2}\right\}$. Using Hoeffding inequality on X yields

$$
\operatorname{Pr}\left[X>500 \ell_{2}\right] \leqslant \operatorname{Pr}\left[X>\mathbb{E}[X]+200 \ell_{2}\right] \leqslant \exp \left(-\frac{200^{2} \ell_{2}^{2}}{T}\right) \leqslant \frac{1}{25 n}
$$

By a union bound over all $i \in[d]$, we have

$$
\operatorname{Pr}\left[\exists \mathfrak{i} \in[d], \text { s.t. } c_{i}>500 \ell_{2}\right] \leqslant \frac{1}{25} .
$$

We can couple the ideal algorithm $\left(\ell_{\mathrm{es}}=\infty\right)$ with the real algorithm $\left(\ell_{\mathrm{es}}=500 \ell_{2}\right)$ such that if the above bad event does not occur, the two algorithms output the same value. Hence, the random variable $\widetilde{Z}_{\Lambda}^{(j)}$ in Algorithm 3 satisfies

$$
\begin{aligned}
& \operatorname{Pr}\left[1-\frac{1}{\sqrt{\ell_{2}}} \leqslant \frac{\widetilde{\mathbf{Z}}_{\Lambda}^{(j)}}{\mathbb{E}\left[\mathbf{Z}_{\mathrm{es}}\right]} \leqslant 1+\frac{1}{\sqrt{\ell_{2}}}\right] \\
\geqslant & \operatorname{Pr}\left[\frac{1}{2} \leqslant \frac{\widehat{\mathbf{Z}}_{\Lambda}^{(j)}}{\mathbb{E}\left[\mathbf{Z}_{\mathrm{es}}\right]} \leqslant 2\right] \operatorname{Pr}\left[\left.1-\frac{1}{\sqrt{\ell_{2}}} \leqslant \frac{\widetilde{\mathbf{Z}}_{\Lambda}^{(j)}}{\mathbb{E}\left[\mathbf{Z}_{\mathrm{es}}\right]} \leqslant 1+\frac{1}{\sqrt{\ell_{2}}} \right\rvert\, \frac{1}{2} \leqslant \frac{\hat{\mathbf{Z}}_{\Lambda}^{(j)}}{\mathbb{E}\left[\mathbf{Z}_{\mathrm{es}}\right]} \leqslant 2\right] \\
\geqslant & \frac{24}{25}\left(1-\frac{1}{25}-\frac{1}{25}\right) \geqslant \frac{3}{4} .
\end{aligned}
$$

Combining (22) with the above inequality, we know that with probability at least $3 / 4$, the random variable $Q_{\Lambda}^{(j)}$ in Algorithm 3 satisfies

$$
1-\varepsilon_{0}-\frac{2}{\sqrt{\ell_{2}}} \leqslant\left(1-\frac{1}{\sqrt{\ell_{2}}}\right)\left(1-\varepsilon_{0}\right) \leqslant \frac{Q_{\Lambda}^{(j)}}{R_{\Lambda}} \leqslant\left(1+\frac{1}{\sqrt{\ell_{2}}}\right)\left(1+\varepsilon_{0}\right) \leqslant 1+\varepsilon_{0}+\frac{2}{\sqrt{\ell_{2}}} .
$$

Since \widetilde{R}_{Λ} is the median of B values $Q_{\Lambda}^{(j)}$, the success probability is boosted from $3 / 4$ to $1-2^{-B / 30}$ by the Chernoff bound.

Finally, the algorithm actually uses the samples from $\left(S_{w}\right)_{w \in \partial \Lambda}$. Consider an optimal coupling between the real algorithm with the algorithm using ideal samples from $\left(S_{w}^{\text {ideal }}\right)_{w \in \partial \wedge}$. Due to the assumption that $\mathrm{d}_{\mathrm{TV}}\left(\left(\mathrm{S}_{w}\right)_{w \in \partial \wedge},\left(S_{w}^{\text {ideal }}\right)_{w \in \partial \wedge}\right) \leqslant \delta_{0}$ and Lemma 3, the two algorithms output the same answer with probability at least $1-\delta_{0}$. Hence, $1-\varepsilon_{0}-\frac{2}{\sqrt{\ell_{2}}} \leqslant \frac{\widetilde{R}_{\Lambda}}{R_{\Lambda}} \leqslant 1+\varepsilon_{0}+\frac{2}{\sqrt{\ell_{2}}}$ with probability at least $1-\delta_{0}-2^{-\mathrm{B} / 30}$.

The running time of Algorithm 3 is dominated by the second call on Estimate with parameter $\mathrm{T}=$ $\mathrm{O}\left(\ell_{2} n\right)$. In Algorithm 4, the running time is dominated by the time spent on Line 11. We can find all the vertices that can reach t in graph H^{\prime} in time $\mathrm{O}(|\mathrm{E}|+|\mathrm{V}|)$ (first inverse the direction of all edges and then run a BFS starting from t). We can then compute $Z_{e s}^{(k)}$ in time $\mathrm{O}(|\mathrm{V}|)$. The total running time is

$$
\mathrm{O}(\mathrm{BT}(|\mathrm{~V}|+|\mathrm{E}|))=\mathrm{O}\left(\mathrm{~B} \ell_{2} \mathrm{n}(|\mathrm{~V}|+|\mathrm{E}|)\right)=\mathrm{O}(\mathfrak{n} \ell(|\mathrm{~V}|+|\mathrm{E}|))
$$

Lemma 15 treats ApproxCount as a standalone algorithm. However, in our main algorithm, we use ApproxCount as a subroutine. We need to make sure that the inpputs are consistent every time ApproxCount is called. Recall that $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ denotes the input graph of Algorithm 1. Every time when ApproxCount is evoked, its input includes a subset of vertices $V_{0} \subseteq \mathrm{~V}$, a subset of edges $\mathrm{E}_{0} \subseteq \mathrm{E}$, a subset of vertices Λ_{0} and $\left(\widetilde{R}_{w}, S_{w}\right)_{w \in \partial \Lambda_{0}}$. Recall that $\partial \Lambda_{0}=\left\{w \in \mathrm{~V}_{0} \backslash \Lambda_{0} \mid \exists w \in \Lambda_{0}\right.$ s.t. $\left.\left(w^{\prime}, w\right) \in \mathrm{E}_{0}\right\}$. The properties we need are the following.

Lemma 16. If ApproxCount is evoked with input $\mathrm{V}_{0} \subseteq \mathrm{~V}, \mathrm{E}_{0} \subseteq \mathrm{E}, \Lambda_{0} \subseteq \mathrm{~V}_{0}$ and $\left(\widetilde{\mathrm{R}}_{w}, \mathrm{~S}_{w}\right)_{w \in \partial \Lambda_{0}}$, then - for all $w \in \partial \Lambda_{0}, \mathrm{E}_{w} \subseteq \mathrm{E}_{0}$, where E_{w} is the edge set of G_{w};

- for all $w \in \partial \Lambda_{0},\left(\widetilde{R}_{w}, S_{w}\right)$ has already been computed.

Remark 17. Lemma 16 guarantees that for any input $\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)$ of Algorithm 3, for any $w \in \partial \Lambda_{0}$, $\mathrm{G}_{w}^{0}=\mathrm{G}_{w}$, where $\mathrm{G}^{0}=\left(\mathrm{V}_{0}, \mathrm{E}_{0}\right)$. This implies that $w \rightsquigarrow{ }_{G^{0}} \mathrm{t}$ and all distributions in (12) are well-defined.
Proof of Lemma 16. Note that ApproxCount can be evoked either in Line 3 of Algorithm 1 or in Line 11 and Line 12 in Algorithm 2.

If ApproxCount is evoked by Algorithm 1, then $V_{0}=V_{v_{k}}, \mathrm{E}_{0}=\mathrm{E}_{v_{\mathrm{k}}}$ and $\Lambda_{0}=\left\{v_{k}\right\}$. For any $w \in$ $V_{v_{k}} \backslash\left\{v_{k}\right\}, G_{w}$ is a subgraph of $\mathrm{G}_{v_{k}}=\left(\mathrm{V}_{0}, \mathrm{E}_{0}\right)$ and the first property holds. The second property holds because $v_{\mathrm{k}} \prec w$ for all $w \in V_{v_{\mathrm{k}}} \backslash\left\{v_{\mathrm{k}}\right\}$.

Suppose next that ApproxCount is evoked by Algorithm 2. For the first property, by Lemma 6, at the beginning of every while-loop, for any $w \in \partial \wedge, \mathrm{E}_{1} \cap \mathrm{E}_{w}=\emptyset$, which implies $\mathrm{E}_{w} \subseteq \mathrm{E}_{2}$. In other words, the property holds at the beginning of the loop with $\mathrm{V}_{0}=\mathrm{V}_{\mathrm{u}}, \mathrm{E}_{0}=\mathrm{E}_{2}$, and $\Lambda_{0}=\Lambda$. Now consider Line 11 and Line 12 separately.

- Suppose ApproxCount is called in Line 11. In this case, comparing to the beginning of the loop, $\partial \wedge$ can only be smaller, and the edge $\left(w^{\prime}, w^{*}\right)$ is removed from E_{2}, where $w^{\prime} \in \Lambda$. If the property does not hold, then there is some $w^{\prime \prime} \in \partial \Lambda$ such that $\mathrm{E}_{w^{\prime \prime}}$ is not contained in the current E_{2}. This means that $\left(w^{\prime}, w^{*}\right) \in \mathrm{E}_{w^{\prime \prime}}$, which implies that $w^{\prime \prime} \prec w^{*}$. This contradicts how w^{*} is chosen.
- Next consider Line 12. By Corollary $7, \Lambda_{1}=\Lambda \cup\left\{w^{*}\right\}$. Note that $\partial \Lambda_{1}=\partial \Lambda \cup \Gamma_{\text {out }}\left(w^{*}\right) \backslash\left\{w^{*}\right\}$, where $\Gamma_{\text {out }}\left(w^{*}\right)=\left\{v \in V_{\mathfrak{u}} \backslash \Lambda \mid\left(w^{*}, v\right) \in \mathrm{E}_{2}\right\}$. The property holds for all vertices in $\partial \Lambda \backslash\left\{w^{*}\right\}$ by the previous case. For $w^{\prime \prime} \in \Gamma_{\text {out }}\left(w^{*}\right) \backslash \partial \Lambda$, the removal of the edge $\left(w^{\prime}, w^{*}\right)$ does not affect $\mathrm{G}_{w^{\prime \prime}}$. Thus the property also holds.
The second property holds because $u \prec w$ for all $w \in V_{u} \backslash\{u\}$.
In Algorithm 1, each $\left(\widetilde{R}_{w}, S_{w}\right)$ is computed with respect to G_{w}. Lemma 16 together with Lemma 15 shows that for every instance of ApproxCount evoked by Algorithm 1, we can reuse all (\widetilde{R}_{w}, S_{w}) computed before.

We still need to take care of the case when Algorithm 3 is called by Algorithm 2. This requires a generalised version of Lemma 15. Again, let $G=(V, E)$ be the input of Algorithm 1 and $v_{1}, v_{2}, \ldots, v_{n} \in V$, where $v_{1}=s$ and $v_{n}=t$, be the topological ordering in Algorithm 1. For i from n to 1, Algorithm 1 compute $\widetilde{R}_{v_{i}}$ and a multi-set $S_{v_{i}}$ of ℓ random samples step by step. For any fixed i, we view each $\left(\widetilde{R}_{v_{j}}, S_{v_{j}}\right)_{j>i}$ as a random variable following a joint distribution.

Every time when ApproxCount (described in Algorithm 3) is evoked by Algorithm 1 or Algorithm 2, its input includes a subset of vertices $V_{0} \subseteq V$ with $t \in V_{0}$, a subset of edges $E_{0} \subseteq E$, a subset of vertices $\Lambda_{0} \subseteq \mathrm{~V}_{0}$ and $\left(\widetilde{R}_{w}, S_{w}\right)_{w \in \partial \Lambda_{0}}$, where $\partial \Lambda_{0}=\left\{w \in V_{0} \backslash \Lambda_{0} \mid \exists w^{\prime} \in \Lambda_{0}\right.$ s.t. $\left.\left(w^{\prime}, w\right) \in \mathrm{E}_{0}\right\}$. For any i, define Φ_{i} as a set of tuples $\left(V_{0}, E_{0}, \Lambda_{0}\right)$ such that

- $\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right) \in 2^{\mathrm{V}} \times 2^{\mathrm{E}} \times 2^{\mathrm{V}_{0}}$;
- for all $w \in \partial \Lambda_{0}, \mathrm{E}_{w} \subseteq \mathrm{E}_{0}$, where E_{w} is the edge set of G_{w};
- $\partial \Lambda_{0} \subseteq\left\{v_{i+1}, \ldots, v_{n}\right\}$.

By Lemma 16 and the way Algorithm 1 works, Φ_{i} contains all possible inputs of ApproxCount when we compute $\widetilde{R}_{v_{i}}$ and $S_{v_{i}}$ (including the recursive calls). For any $\left(V_{0}, E_{0}, \Lambda_{0}\right) \in \Phi_{i}$, let $R\left(V_{0}, E_{0}, \Lambda_{0}\right)$ denote the $\Lambda_{0}-\mathrm{t}$ reliability in the graph $\mathrm{G}_{0}=\left(\mathrm{V}_{0}, \mathrm{E}_{0}\right)$, where every edge $e \in \mathrm{E}_{0}$ fails independently with probability q_{e}. Suppose the random tuples $\left(\widetilde{R}_{v_{j}}, S_{v_{j}}\right)_{j>i}$ have been generated by Algorithm 1 . If we run ApproxCount on $\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)$ and $\left(\widetilde{\mathrm{R}}_{w}, \mathrm{~S}_{w}\right)_{w \in \partial \Lambda_{0}}$ (note that $\left.\partial \Lambda_{0} \subseteq\left\{v_{i+1}, \ldots, \nu_{n}\right\}\right)$, it will return a random number $\widetilde{R}\left(V_{0}, E_{0}, \Lambda_{0}\right)$, where the randomness comes from the input randomness of $\left(\widetilde{R}_{v_{j}}, S_{v_{j}}\right)_{j>i}$ and the independent randomness $\mathcal{D}\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)$ inside ApproxCount. Our implementation makes sure that any ApproxCount is evoked for every $\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)$ at most once. Hence, there is a unique random variable $\widetilde{R}\left(V_{0}, E_{0}, \Lambda_{0}\right)$ for each $\left(V_{0}, E_{0}, \Lambda_{0}\right)$.

We have the following generalised version of Lemma 15. Recall that $S_{w}^{\text {ideal }}$ is a set of ℓ independent perfect samples from the distribution π_{w}.

Lemma 18. Given the random tuples $\left(\widetilde{R}_{v_{j}}, S_{v_{j}}\right)_{j>i}$ such that the following two conditions are satisfied

- for all $\mathfrak{j}>\boldsymbol{i}, 1-\varepsilon_{0} \leqslant \frac{\widetilde{R}_{v_{j}}}{R_{v_{j}}} \leqslant 1+\varepsilon_{0}$ for some $\varepsilon_{0}<1 / 2$;
- $\mathrm{d}_{T V}\left(\left(\mathrm{~S}_{v_{j}}\right)_{\mathrm{j}>\mathrm{i}},\left(\mathrm{S}_{v_{j}}^{\text {ideal }}\right)_{\mathrm{j}>\mathrm{i}}\right) \leqslant \delta_{0}$.

Let $\Phi \subseteq \Phi_{\mathfrak{i}}$. Then with probability at least $1-\delta_{0}-|\Phi| 2^{-\mathrm{B} / 30}$, it holds that

$$
\begin{equation*}
\forall\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right) \in \Phi, \quad 1-\varepsilon_{0}-\frac{2}{\sqrt{\ell_{2}}} \leqslant \frac{\widetilde{\mathrm{R}}\left(\mathrm{~V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)}{\mathrm{R}\left(\mathrm{~V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)} \leqslant 1-\varepsilon_{0}-\frac{2}{\sqrt{\ell_{2}}}, \tag{26}
\end{equation*}
$$

where the probability is taken over the randomness of $\left(\widetilde{R}_{v_{j}}, S_{v_{j}}\right)_{j>i}$ and the independent randomness of $\mathcal{D}\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)$ for $\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right) \in \Phi$.

Proof of Lemma 18. Strictly speaking, all $\left(\widetilde{R}_{v_{j}}\right)_{j>i}$ are random variables, and the first condition means that the event for $\left(\widetilde{R}_{v_{j}}\right)_{j>i}$ holds with probability 1 . We will actually prove a stronger result. Namely, the lemma holds with probability at least $1-\delta_{0}-|\Phi| 2^{-B / 30}$, where the probability is taken over the randomness of $\left(S_{v_{j}}\right)_{j>i}$ and the independent randomness of $\mathcal{D}\left(V_{0}, E_{0}, \Lambda_{0}\right)$ for $\left(V_{0}, E_{0}, \Lambda_{0}\right) \in \Phi$, for any fixed values of $\widetilde{\mathrm{R}}_{v_{j}}$ as long as the first condition is met.

Note that for any $\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right) \in \Phi$, for all $w \in \partial \Lambda_{0}, \mathrm{E}_{w} \subseteq \mathrm{E}_{0}$, where E_{w} is the edge set of G_{w}, and $\partial \Lambda_{0}=\left\{w \in V_{0} \backslash \Lambda_{0} \mid \exists w \in \Lambda_{0}\right.$ s.t. $\left.\left(w^{\prime}, w\right) \in \mathrm{E}_{0}\right\}$, which also implies that w can reach t in the graph $\left(\mathrm{V}_{0}, \mathrm{E}_{0}\right)$. The assumption in this lemma implies the assumption in Lemma 15 , and the proof of this lemma is similar to the proof of Lemma 15.

Again, the cases where $t \in \Lambda_{0}$ and where $\partial \Lambda_{0}=\emptyset$ are trivial. The main case is when $t \notin \Lambda_{0}$ and $\partial \Lambda_{0} \neq \emptyset$. We first use $\left(S_{v_{j}}^{\text {ideal }}\right)_{j>i}$ to run the algorithm. Let use denote the output of the algorithm by $\widetilde{R}^{\text {ideal }}\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)$. By the same argument as the one for Lemma 15 , for any $\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right) \in \Phi$, with probability at least $1-2^{-\mathrm{B} / 30}$,

$$
1-\varepsilon_{0}-\frac{2}{\sqrt{\ell_{2}}} \leqslant \frac{\widetilde{\mathrm{R}}^{\text {ideal }}\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)}{\mathrm{R}\left(\mathrm{~V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)} \leqslant 1+\varepsilon_{0}+\frac{2}{\sqrt{\ell_{2}}} .
$$

By a union bound over all $\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right) \in \Phi$, we have that with probability at least $1-|\Phi| 2^{-\mathrm{B} / 30}$,

$$
\begin{equation*}
\forall\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right) \in \Phi, \quad 1-\varepsilon_{0}-\frac{2}{\sqrt{\ell_{2}}} \leqslant \frac{\widetilde{\mathrm{R}}^{\text {ideal }}\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)}{\mathrm{R}\left(\mathrm{~V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)} \leqslant 1+\varepsilon_{0}+\frac{2}{\sqrt{\ell_{2}}} . \tag{27}
\end{equation*}
$$

Then we show the lemma using an optimal coupling between $\left(S_{v_{j}}\right)_{j>i}$ and $\left(S_{v_{j}}^{\text {ideal }}\right)_{j>i}$. To be more precise, we first sample $\left(S_{v_{j}}\right)_{j>i}$ and $\left(S_{v_{j}}^{\text {ideal }}\right)_{j>i}$ from their optimal coupling, then by Lemma 3 we have

$$
\begin{equation*}
\operatorname{Pr}\left[\forall j>i, S_{v_{j}}=S_{v_{j}}^{\text {ideal }}\right] \geqslant 1-\delta_{0} . \tag{28}
\end{equation*}
$$

Next, we sample all $\mathcal{D}=\left(\mathcal{D}\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)\right)_{\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \wedge\right) \in \Phi}$. When we use $\left(\mathrm{S}_{v_{j}}\right)_{j>i}$ and \mathcal{D} to run ApproxCount on all of $\left(V_{0}, E_{0}, \Lambda\right) \in \Phi$, we obtain an output vector $\widetilde{R}=\left(\widetilde{R}\left(V_{0}, E_{0}, \Lambda_{0}\right)\right)_{\left(V_{0}, E_{0}, \Lambda\right) \in \Phi}$. Similarly, denote by $\widetilde{\mathrm{R}}^{\text {ideal }}=\left(\widetilde{\mathrm{R}}{ }^{\text {ideal }}\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)\right)_{\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda\right) \in \Phi}$ the output vector when we use $\left(S_{\nu_{j}}^{\text {ideal }}\right)_{j>i}$ and \mathcal{D} to run ApproxCount. Define two good events

- $A_{1}: \widetilde{R}^{\text {ideal }}=\widetilde{\mathrm{R}} . \operatorname{By}(28), \operatorname{Pr}\left[\mathcal{A}_{1}\right] \geqslant 1-\delta_{0} ;$
- A_{2} : (27) holds for $\widetilde{R}^{\text {ideal }}$. We know $\operatorname{Pr}\left[\mathcal{A}_{2}\right] \geqslant 1-|\Phi| 2^{-\mathrm{B} / 30}$.

If both A_{1} and A_{2} occur, then (26) holds. The probability is

$$
\operatorname{Pr}\left[\mathcal{A}_{1} \wedge A_{2}\right]=1-\operatorname{Pr}\left[\overline{\mathcal{A}_{1}} \vee \overline{\mathcal{A}_{2}}\right] \geqslant 1-\operatorname{Pr}\left[\overline{\mathcal{A}_{1}}\right]-\operatorname{Pr}\left[\overline{\mathcal{A}_{2}}\right] \geqslant 1-\delta_{0}-|\Phi| 2^{-\mathrm{B} / 30}
$$

Note that Lemma 18 cannot be obtained by simply applying Lemma 15 with a union bound, as that will result in a failure probability of $|\Phi|\left(\delta_{0}+2^{-\mathrm{B} / 30}\right)$ instead of $\delta_{0}+|\Phi| 2^{-\mathrm{B} / 30}$. This is crucial to the efficiency of our algorithm.
4.3. Analyze the main algorithm. Now, we are ready to put everything together and analyze the whole algorithm. Recall that we use n to denote the number of vertices in the input graph and $m \geqslant n-1$ the number of edges.

We will need a simple lemma.
Lemma 19. Let X be a random variable over some finite state space Ω. Let $E \subseteq \Omega$ be an event that occurs with positive probability. Let Y be the random variable X conditional on E . Then,

$$
\mathrm{d}_{T V}(\mathrm{X}, \mathrm{Y}) \leqslant \operatorname{Pr}[\overline{\mathrm{E}}] .
$$

Proof. We couple X and Y as follows: (1) first sample an indicator variable whether the event E occurs; (2) if E occurs, couple X and Y perfectly; and (3) if E does not occur, independently sample X conditional of \bar{E} and sample Y. By Lemma 3,

$$
\mathrm{d}_{\mathrm{TV}}(\mathrm{X}, \mathrm{Y}) \leqslant \operatorname{Pr}[\mathrm{X} \neq \mathrm{Y}] \leqslant \operatorname{Pr}[\overline{\mathrm{E}}] .
$$

The main goal of this section is to prove the following lemma. In the next lemma, we consider a variant of Algorithm 1, where we replace the subroutine Sample with the subroutine NewSample in Definition 12. Observation 13 shows that Sample and NewSample have the same output distribution. Hence, the replacement does not change the distributions of $\widetilde{R}_{v_{i}}, \widetilde{R}\left(V_{0}, E_{0}, \Lambda_{0}\right)$ and $S_{v_{i}}$ for all $1 \leqslant i \leqslant n$ and all $\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right) \in \Phi_{i}$. The only difference is that this variant of Algorithm 1 cannot be implemented in polynomial time. However, we only use the variant algorithm to analyze the approximation error of Algorithm 1. The running time of Algorithm 1 is analyzed separately in the proof of Theorem 1.
Lemma 20. For any $1 \leqslant i \leqslant n$, there exists a good event $\mathcal{A}(i)$ such that $\mathcal{A}(i)$ occurs with probability at least $1-\frac{\mathfrak{n}-\mathfrak{i}}{10 n}$ and conditional on $A(i)$, it holds that

- for any $\mathfrak{j} \geqslant \mathfrak{i}$, let $\boldsymbol{S}_{v_{j}}^{\text {ideal }}$ be a multi-set of ℓ independent perfect samples from $\pi_{v_{j}}$, it holds that

$$
\begin{equation*}
\mathrm{d}_{T V}\left(\left(S_{v_{j}}\right)_{j \geqslant \mathfrak{i}},\left(S_{v_{j}}^{\text {ideal }}\right)_{\mathfrak{j} \geqslant i}\right) \leqslant 2^{-4 \mathfrak{m}}\left(2^{\mathfrak{n}-\mathfrak{i}}-1\right) ; \tag{29}
\end{equation*}
$$

- the following event, denoted by $\mathcal{B}(\mathfrak{i})$, occurs:

$$
\begin{equation*}
\forall\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right) \in \Phi_{i}, \quad 1-\frac{\mathrm{n}-\mathrm{i}}{50 \mathrm{n} \max \left\{\mathrm{~m}, \varepsilon^{-1}\right\}} \leqslant \frac{\widetilde{R}\left(\mathrm{~V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)}{\mathrm{R}\left(\mathrm{~V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)} \leqslant 1+\frac{\mathrm{n}-\mathrm{i}}{50 \mathrm{n} \max \left\{\mathrm{~m}, \varepsilon^{-1}\right\}} . \tag{30}
\end{equation*}
$$

In particular, the event $\mathcal{B}(\mathfrak{i})$ implies that,

$$
\begin{equation*}
1-\frac{n-i}{50 \mathrm{n} \max \left\{\mathrm{~m}, \varepsilon^{-1}\right\}} \leqslant \frac{\widetilde{R}_{v_{i}}}{\mathrm{R}_{v_{i}}} \leqslant 1+\frac{n-i}{50 n \max \left\{\mathfrak{m}, \varepsilon^{-1}\right\}} . \tag{31}
\end{equation*}
$$

Proof. We first show that $\mathcal{B}(i)$ implies (31). If $i=n$, then $\widetilde{R}_{v_{i}}=R_{v_{i}}$ and (31) holds. For $i<n, \widetilde{R}_{v_{i}}$ is computed in Line 3 of Algorithm 1, where the input $\left(V_{0}, E_{0}, \Lambda_{0}\right) \in \Phi_{i}$. Hence, $\mathcal{B}(i)$ implies (31).

Next, we construct the event $\mathcal{A}(\mathfrak{i})$ inductively from $\mathfrak{i}=\mathfrak{n}$ to $\mathfrak{i}=1$ and prove (29) and (30). The base case is $\mathfrak{i}=\mathrm{n}$, where $v_{\mathrm{n}}=\mathrm{t}$. In this case, the only possible sample in $\mathrm{S}_{v_{n}}$ is the empty graph with one vertex t, and thus (29) holds. Also note that if $\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right) \in \Phi_{\mathrm{n}}$, then $\partial \Lambda_{0}=\emptyset$. By Line 1 in Algorithm 3, if $\mathrm{t} \in \Lambda$, the output is exactly 1 , and if $\mathrm{t} \notin \Lambda$, the output is exactly 0 . In either case, (30) holds. Hence, we simply let $\mathcal{A}(\mathrm{n})$ be the empty event, occurring with probability 1.

For $\mathfrak{i}<\mathfrak{n}$, we inductively define

$$
\mathcal{A}(\mathfrak{i}):=\mathcal{A}(\mathfrak{i}+1) \wedge \mathcal{B}(\mathfrak{i}) \wedge \mathcal{C}(\mathfrak{i})
$$

where the event $\mathcal{C}(i)$ is defined next. Recall that Algorithm 1 calls Sample ℓ times to generate a multi-set of ℓ samples in $S_{v_{i}}$. By Observation 13, Sample and NewSample (Definition 12) have the same output distribution. For analysis purposes, suppose we call NewSample instead ℓ times to generate a multi-set of ℓ samples. In (20), we defined an event \mathcal{C} for one instance of NewSample. Since we have ℓ of them, define

$$
\mathcal{C}(\mathfrak{i}) \text { : for all } \ell \text { calls of NewSample, the event } \mathcal{C} \text { occurs. }
$$

Clearly $\mathcal{A}(i)$ implies $\mathcal{B}(i)$ and (31). Before we show that $\mathcal{A}(i)$ implies (29), we first lower bound the probability of $\mathcal{A}(\mathfrak{i})$ by $1-\frac{n-\mathfrak{i}}{10 n}$. By the induction hypothesis, since $\mathcal{A}(i)$ implies $\mathcal{A}(i+1)$, conditional on $\mathcal{A}(i)$, we have

$$
\begin{equation*}
\mathrm{d}_{\mathrm{TV}}\left(\left(S_{v_{\mathrm{j}}}\right)_{\mathfrak{j}>\boldsymbol{i}},\left(S_{v_{j}}^{\text {ideal }}\right)_{\mathfrak{j}>i}\right) \leqslant 2^{-4 \mathrm{~m}}\left(2^{\mathfrak{n}-\mathfrak{i}-1}-1\right) . \tag{32}
\end{equation*}
$$

In fact $\mathcal{A}(\mathfrak{i}+1)$ implies $\mathcal{A}(\mathfrak{j})$ for all $\mathfrak{j} \geqslant \mathfrak{i}+1$. Thus, by (31),

$$
\begin{equation*}
\forall \mathfrak{j} \geqslant \mathfrak{i}+1, \quad 1-\frac{n-\mathfrak{i}-1}{50 \mathrm{n} \max \left\{m, \varepsilon^{-1}\right\}} \leqslant \frac{\widetilde{R}_{v_{j}}}{\mathrm{R}_{v_{j}}} \leqslant 1+\frac{\mathrm{n}-\mathfrak{i}-1}{50 \mathrm{n} \max \left\{m, \varepsilon^{-1}\right\}}, \tag{33}
\end{equation*}
$$

as the worst case of the bound is when $\mathfrak{j}=\mathfrak{i}+1$. Note that $\Phi_{\mathfrak{j}} \subseteq \Phi_{i}$ for all $\mathfrak{j}<\mathfrak{i}$. Conditional on $\mathcal{A}(i+1)$, we know that (30) (with parameter \mathfrak{i}) already holds for all $\left(V_{0}, E_{0}, \Lambda_{0}\right) \in \cup_{j>i} \Phi_{\mathfrak{j}}$. We only need to show (30) holds for all $\widetilde{R}\left(V_{0}, E_{0}, \Lambda_{0}\right)$ with $\left(V_{0}, E_{0}, \Lambda_{0}\right) \in \Phi_{i} \backslash \cup_{j>i} \Phi_{j}$. The event $\mathcal{A}(i+1)$ does not bias the inside independent randomness $\mathcal{D}\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)$ in Algorithm 3 that generates $\widetilde{R}\left(\mathrm{~V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right)$ for $\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right) \in \Phi_{i} \backslash \cup_{j>i} \Phi_{j}$. Combining (32), (33) and Lemma 18, with probability at least $1-$ $2^{-4 \mathfrak{m}}\left(2^{\mathfrak{n}-\mathfrak{i}-1}-1\right)-\left|\Phi_{i}\right| 2^{-\mathrm{B} / 30}$, it holds that $\forall\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right) \in \Phi_{\mathfrak{i}} \backslash \cup_{j>i} \Phi_{\mathfrak{j}}$,

$$
\begin{equation*}
1-\frac{n-i-1}{50 n \max \left\{m, \varepsilon^{-1}\right\}}-\frac{2}{\sqrt{\ell_{2}}} \leqslant \frac{\widetilde{R}\left(V_{0}, E_{0}, \Lambda_{0}\right)}{R\left(V_{0}, E_{0}, \Lambda_{0}\right)} \leqslant 1+\frac{n-i-1}{50 n \max \left\{m, \varepsilon^{-1}\right\}}+\frac{2}{\sqrt{\ell_{2}}} . \tag{34}
\end{equation*}
$$

Also recall that $\ell_{0}=\left\lceil 10^{4} n^{2} \max \left\{\mathrm{~m}^{2}, \varepsilon^{-2}\right\}\right\rceil$ and $B=60 \mathfrak{n}+150 \mathrm{~m}$. We have

$$
\begin{equation*}
\frac{n-i-1}{50 n \max \left\{m, \varepsilon^{-1}\right\}}+\frac{2}{\sqrt{\ell_{2}}} \leqslant \frac{n-i}{50 n \max \left\{m, \varepsilon^{-1}\right\}}, \tag{35}
\end{equation*}
$$

which means that (34) implies $\mathcal{B}(\mathfrak{i})$. By Lemma 18 , we have

$$
\begin{align*}
\operatorname{Pr}[\mathcal{B}(\mathfrak{i}) \mid \mathcal{A}(\mathfrak{i}+1)] & \geqslant 1-\left|\Phi_{i}\right| 2^{-\mathrm{B} / 30}-2^{-4 \mathfrak{m}}\left(2^{\mathfrak{n}-\mathfrak{i}-1}-1\right) \tag{36}\\
& \geqslant 1-2^{-4 \mathfrak{m}}-2^{-4 \mathfrak{m}}\left(2^{\mathfrak{n}-\mathfrak{i}-1}-1\right) \geqslant 1-2^{-\mathfrak{n}}, \tag{37}
\end{align*}
$$

where we used the fact that $\left|\Phi_{i}\right| \leqslant 2^{m+2 n}$.
Given $\mathcal{A}(i+1) \wedge \mathcal{B}(i)$, (31) also holds. The ℓ samples in $S_{v_{i}}$ are generated by NewSample on the graph $\mathrm{G}_{v_{i}}$. In Line 11 and Line 12 of Algorithm 2 (which are also in NewSample), Algorithm 3 is evoked to compute the value of c_{0} and c_{1}. By Lemma 16 , the input $\left(\mathrm{V}_{0}, \mathrm{E}_{0}, \Lambda_{0}\right) \in \Phi_{i}$. Also, by (31), $\widetilde{\mathrm{R}}_{\nu_{i}}$ approximates $\mathrm{R}_{\nu_{i}}$. Hence the subroutine Algorithm 3 behaves like the oracle \mathcal{P} assumed in Lemma 14, satisfying conditions (15), (16), and (17). By the definition of $\mathcal{C}(i)$ and Lemma 14, it is independent from $\mathcal{A}(i+1) \wedge \mathcal{B}(\mathfrak{i})$ because $\mathcal{C}(i)$ depends only on the independent randomness inside NewSample. By a union bound over ℓ calls of NewSample, we have

$$
\begin{equation*}
\operatorname{Pr}[\mathcal{C}(\mathfrak{i}) \mid \mathcal{A}(\mathfrak{i}+1) \wedge \mathcal{B}(\mathfrak{i})] \geqslant 1-\frac{\varepsilon^{200} \ell}{\mathfrak{n}^{200}} \geqslant 1-\frac{1}{10 \mathfrak{n}^{2}} \tag{38}
\end{equation*}
$$

where $\ell=(60 \mathrm{n}+150 \mathrm{~m})\left\lceil 10^{5} \mathrm{n}^{3} \max \left\{\mathrm{~m}^{2}, \varepsilon^{-2}\right\}\right\rceil$. By the induction hypothesis, (37), and (38),

$$
\operatorname{Pr}[\mathcal{A}(\mathfrak{i})]=\operatorname{Pr}[\mathcal{A}(\mathfrak{i}+1) \wedge \mathcal{B}(\mathfrak{i}) \wedge \mathcal{C}(\mathfrak{i})] \geqslant\left(1-\frac{n-\mathfrak{i}-1}{10 n}\right)\left(1-\frac{1}{10 n^{2}}\right)\left(1-2^{-n}\right) \geqslant 1-\frac{n-\mathfrak{i}}{10 n} .
$$

We still need to show that $\mathcal{A}(i)$ implies (29). We use $\left.\left(S_{v_{j}}\right)_{j>i}\right|_{\mathcal{A}(i+1)}$ to the denote the random samples of $\left(S_{v_{j}}\right)_{j>i}$ conditional on $\mathcal{A}(i+1)$. Similarly, we can define $\left.\left(\left(\widetilde{R}_{v_{j}}\right)_{j>i},\left(S_{v_{j}}\right)_{j>i}, \mathcal{D}\right)\right|_{\mathcal{A}(i+1)}$, where $\mathcal{D}=\left(\mathcal{D}\left(V_{0}, E_{0}, \Lambda_{0}\right)\right)_{\left(V_{0}, E_{0}, \Lambda_{0}\right) \in \Phi_{i}}$, and $\left.\left(\left(\widetilde{R}_{v_{j}}\right)_{j \geqslant i},\left(S_{v_{j}}\right)_{j \geqslant i}, \mathcal{D}\right)\right|_{\mathcal{A}(i+1) \wedge \mathcal{B}(i)}$, where we further condition on $\mathcal{B}(\mathfrak{i})$. Note that the event $\mathcal{B}(i)$ is determined by the random variables $\left(\left(\widetilde{R}_{v_{j}}\right)_{j>i},\left(S_{v_{j}}\right)_{j>i}, \mathcal{D}\right)$. By letting E be $\mathcal{B}(\mathfrak{i})$ conditional on $\mathcal{A}(\mathfrak{i}+1)$ in Lemma 19 , we have that

$$
\begin{aligned}
& d_{\mathrm{TV}}\left(\left.\left(\left(\widetilde{R}_{v_{j}}\right)_{j>i},\left(S_{v_{j}}\right)_{j>i}, \mathcal{D}\right)\right|_{\mathcal{A}(i+1) \wedge \mathcal{B}(i)},\left.\left(\left(\widetilde{R}_{v_{j}}\right)_{j>i},\left(S_{v_{j}}\right)_{j>i}, \mathcal{D}\right)\right|_{\mathcal{A}(i+1)}\right) \\
& \leqslant 1-\operatorname{Pr}[\mathcal{B}(\mathfrak{i}) \mid \mathcal{A}(i+1)] \\
& \text { (by (36)) } \leqslant\left|\Phi_{\mathfrak{i}}\right| 2^{-\mathrm{B} / 30}+2^{-4 \mathfrak{m}}\left(2^{\mathfrak{n}-\mathfrak{i}-1}-1\right) \leqslant 2^{-4 \mathfrak{m}}+2^{-4 \mathfrak{m}}\left(2^{\mathfrak{n}-\mathfrak{i}-1}-1\right) \text {. }
\end{aligned}
$$

Projecting to $\left(S_{v_{j}}\right)_{j>i}$ we have

$$
\mathrm{d}_{\mathrm{TV}}\left(\left.\left(\mathrm{~S}_{v_{j}}\right)_{\mathfrak{j}>\boldsymbol{i}}\right|_{\mathcal{A}(i+1) \wedge \mathcal{B}(i)},\left.\left(\mathrm{S}_{v_{j}}\right)_{j>i}\right|_{\mathcal{A}(i+1)}\right) \leqslant 2^{-4 \mathfrak{m}}+2^{-4 \mathfrak{m}}\left(2^{\mathrm{n}-\mathfrak{i}-1}-1\right) .
$$

By the induction hypothesis, it holds that

$$
d_{\mathrm{TV}}\left(\left.\left(S_{v_{j}}\right)_{j>i}\right|_{\mathcal{A}(i+1)},\left(S_{v_{j}}^{\text {ideal }}\right)_{j>i}\right) \leqslant 2^{-4 m}\left(2^{n-i-1}-1\right)
$$

Using the triangle inequality for total variation distances, we have

$$
d_{\mathrm{TV}}\left(\left.\left(S_{v_{\mathfrak{j}}}\right)_{\mathfrak{j}>\boldsymbol{i}}\right|_{\mathcal{A}(\mathfrak{i}+1) \wedge \mathcal{B}(\mathfrak{i})},\left(S_{v_{\mathfrak{j}}}^{\text {ideal }}\right)_{\mathfrak{j}>\boldsymbol{i}}\right) \leqslant 2^{-4 \mathfrak{m}}+2^{-4 m}\left(2^{\mathfrak{n}-\mathfrak{i}-1}-1\right) \times 2=2^{-4 m}\left(2^{\mathfrak{n - i}}-1\right) .
$$

Given $\mathcal{A}(i+1) \wedge \mathcal{B}(\mathfrak{i})$, (31) also holds. The ℓ samples in $S_{v_{i}}$ are generated by NewSample on the graph $\mathrm{G}_{v_{i}}$. By Lemma 14, in that case, if $\mathcal{C}(\mathfrak{i})$ occurs, $S_{v_{i}}$ contains ℓ prefect independent samples. Furthermore, the event $\mathcal{C}(\mathfrak{i})$ is independent from $\left(S_{v_{j}}\right)_{\mathfrak{j}>\boldsymbol{i}}$ (as by Lemma 14, $\mathcal{C}(i)$ depends only on the internal independent randomness of NewSample ${ }^{7}$). Hence,

$$
\begin{aligned}
d_{\mathrm{TV}}\left(\left.\left(S_{v_{j}}\right)_{j \geqslant i}\right|_{\mathcal{A}(i)},\left(S_{v_{j}}^{\text {ideal }}\right)_{j \geqslant i}\right) & =d_{\mathrm{TV}}\left(\left.\left(S_{v_{j}}\right)_{j>i}\right|_{\mathcal{A}(i)},\left(S_{v_{j}}^{\text {ideal }}\right)_{j>i}\right) \\
& =d_{\mathrm{TV}}\left(\left.\left(S_{v_{j}}\right)_{j>i}\right|_{\mathcal{A}(i+1) \wedge \mathcal{B}(i)},\left(S_{v_{j}}^{\text {ideal }}\right)_{j>i}\right) \leqslant 2^{-4 m}\left(2^{n-i}-1\right) .
\end{aligned}
$$

We remark that the set $S_{v_{i}}$ may be used multiple times throughout Algorithm 1. In particular, this means that there may be subtle correlation among \widetilde{R}_{i} 's. These correlations do not affect our approximation guarantee. This is because the conditions of Lemma 15 and Lemma 18 only involve marginals. Namely, as long as the marginals are in the suitable range, the correlation amongst them does not matter.

By (31) of Lemma 20 with $i=1$, note that $v_{1}=s$, we have

$$
\begin{equation*}
\operatorname{Pr}\left[1-\frac{1}{50 \max \left\{m, \varepsilon^{-1}\right\}} \leqslant \frac{\widetilde{R}_{s}}{\mathrm{R}_{s}} \leqslant 1+\frac{1}{50 \max \left\{\mathrm{~m}, \varepsilon^{-1}\right\}}\right] \geqslant \operatorname{Pr}[\mathcal{A}(1)] \geqslant \frac{3}{4} . \tag{39}
\end{equation*}
$$

Note that the events $\mathcal{A}(\mathfrak{i})$ for $1 \leqslant i \leqslant n$ are defined for the variant of Algorithm 1, where we replace Sample with NewSample. By Observation 13, the variant and Algorithm 1 have the same output distribution. Hence, for the original Algorithm 1, (39) still holds.

[^5]Proof of Theorem 1. The approximation guarantee follows directly from (39). Note that this guarantee is always at least a $(1 \pm 1 / \mathrm{m})$-approximation and is stronger than a $(1 \pm \varepsilon)$-approximation when $\varepsilon>1 / \mathrm{m}$. We need this because in the analysis for the sampling subroutine we need to apply a union bound for the errors over the edges.

We analyze the running time next. Recall that n is the number of vertices of the input graph and $m \geqslant n-1$ is number of edges in G. Recall

$$
\ell=\mathrm{O}\left((\mathrm{n}+\mathrm{m}) \mathrm{n}^{2} \max \left\{\mathfrak{m}^{2}, \epsilon^{-2}\right\}\right)=\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m} \max \left\{\mathrm{~m}^{2}, \varepsilon^{-2}\right\}\right) .
$$

By Lemma 15, the running time of ApproxCount (Algorithm 3) is at most

$$
\mathrm{T}_{\text {count }}=\mathrm{O}(\mathrm{mn} \ell)=\mathrm{O}\left(\mathrm{n}^{3} \mathrm{~m}^{2} \max \left\{\mathrm{~m}^{2}, \varepsilon^{-2}\right\}\right) .
$$

By Lemma 11, the running time of Sample (Algorithm 2) is at most

$$
\mathrm{T}_{\text {sample }}=\widetilde{\mathrm{O}}\left((n+m) \mathrm{T}_{\text {count }}\right)=\widetilde{\mathrm{O}}\left(m T_{\text {count }}\right)=\widetilde{\mathrm{O}}\left(\mathrm{n}^{3} \mathrm{~m}^{3} \max \left\{\mathrm{~m}^{2}, \varepsilon^{-2}\right\}\right) .
$$

Hence, the running time of Algorithm 1 is

$$
\mathrm{T}=\mathrm{O}\left(\mathrm{n}\left(\mathrm{~T}_{\text {count }}+\ell \mathrm{T}_{\text {sample }}\right)\right)=\mathrm{O}\left(\mathrm{n} \mathrm{\ell} \mathrm{~T}_{\text {sample }}\right)=\widetilde{\mathrm{O}}\left(\mathrm{n}^{6} \mathfrak{m}^{4} \max \left\{\mathrm{~m}^{4}, \varepsilon^{-4}\right\}\right) .
$$

5. \#BIS-HARDNESS FOR $s-t$ UNRELIABILITY

In this section we show Theorem 2 . We first reduce \#BIS to $s-t$ unreliability where each vertex (other than s and t) fails with $1 / 2$ probability independently. Note that in this version of the problem no edge would fail. Given a $D A G D=(V \cup\{s, t\}, \mathcal{A})$, this is equivalent to counting the number of subsets $S \subseteq V$ such that in the induced subgraph $D[S \cup\{s, t\}]$, s cannot reach t. We call S a $s \nsim t$ set.

Given a bipartite graph $G=(V, E)$, let its two partitions be L and R. We add two special vertices s and t, and connect, with directed edges, s to all vertices in L and all vertices in R to t. Lastly, for any edge $\{u, v\} \in E$, where $u \in L$ and $v \in R$, we replace it with a directed edge (u, v). Call the new directed graph D_{G}. Clearly it is a DAG.

For any independent set I in G , we claim that in $\mathrm{D}_{\mathrm{G}}[\mathrm{I} \cup\{s, t\}]$, s cannot reach t. This is because for any $e \in E$, there is at least one vertex unoccupied. Thus s cannot reach t using the directed version of e, and this holds for any $e \in E$.

In the other direction, let S be a $s \nLeftarrow t$ subset of V. This means that for any edge $\{u, v\} \in E$, either $u \notin \mathrm{~S}$ or $v \notin \mathrm{~S}$, as otherwise $\mathrm{s} \rightarrow \mathrm{u} \rightarrow v \rightarrow \mathrm{t}$. This means that S is an independent set of G .

Thus, there is a one-to-one correspondence between independent sets of G and $s \not \psi t$ subsets of V. Namely, $s-t$ unreliability where vertices (other than s and t) fail with $1 / 2$ probability is \#BIS-hard.

Next, we reduce $s-t$ unreliability from the vertex version. For this, we can replace each vertex v (other than s and t) by two vertices v, v^{\prime} and a directed edge $v \rightarrow v^{\prime}$. All incoming edges of v still goes into v, and all outgoing edges of v goes out from v^{\prime}. Assign to the new edges the failure probabilities of their corresponding vertices, and assign failure probability 0 to all original edges. Clearly the unreliability is the same with these changes. To make failure probabilities uniform, we can replace edges with failure probability 0 by k parallel edges. Effectively, the connection fails only if all the parallel edges fail at the same time. If the failure probability of each edge is q, the probability of all parallel edges failing is q^{k}. As this probability approaches 0 exponentially fast, it is easy to set a polynomially bounded k so that the new unreliability is a sufficiently good approximation of the original.

As a side note, the last reduction also works for reliability. Thus Theorem 1 also works for $s-t$ reliability in DAGs where vertices rather than edges fail independently.

Acknowledgement

We thank Kuldeep S. Meel for bringing the problem to our attention, Antoine Amarilli for explaining their method to us, and Marcelo Arenas for insightful discussions. We also thank Zongchen Chen for suggesting a better presentation of Theorem 1, and Mark Jerrum for some useful insights. This project
has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 947778). Weiming Feng acknowledges the support from Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zürich Foundation. This work was done in part while Weiming Feng was visiting the Simons Institute for the Theory of Computing.

References

[ACJR21] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. \#NFA admits an FPRAS: efficient enumeration, counting, and uniform generation for logspace classes. 7 . $A C M, 68(6): 48: 1-48: 40,2021.2$
[ÀJ93] Carme Àlvarez and Birgit Jenner. A very hard log-space counting class. Theor. Comput. Sci., 107(1):3-30, 1993. 2
[$\left.\mathrm{ALO}^{+} 21\right]$ Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant, and Thuy-Duong Vuong. Log-concave polynomials IV: approximate exchange, tight mixing times, and near-optimal sampling of forests. In STOC, pages 408-420. ACM, 2021. 1
[ALOV19] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials II: high-dimensional walks and an FPRAS for counting bases of a matroid. In STOC, pages 1-12. ACM, 2019. 1
[AvBM23] Antoine Amarilli, Timothy van Bremen, and Kuldeep S. Meel. Conjunctive queries on probabilistic graphs: the limits of approximability. arXiv, abs/2309.13287, 2023. 2, 30
[Bal80] Michael O. Ball. Complexity of network reliability computations. Networks, 10(2):153-165, 1980. 1
[Bal86] Michael O. Ball. Computational complexity of network reliability analysis: An overview. IEEE Trans. Rel., 35(3):230239, 1986. 1
[BP83] Michael O. Ball and J. Scott Provan. Calculating bounds on reachability and connectedness in stochastic networks. Networks, 13(2):253-278, 1983.1
[CGM21] Mary Cryan, Heng Guo, and Giorgos Mousa. Modified log-Sobolev inequalities for strongly log-concave distributions. Ann. Probab., 49(1):506-525, 2021.1
[CGZZ23] Xiaoyu Chen, Heng Guo, Xinyuan Zhang, and Zongrui Zou. Near-linear time samplers for matroid independent sets with applications. arXiv, abs/2308.09683, 2023. 1
[CHLP23] Ruoxu Cen, William He, Jason Li, and Debmalya Panigrahi. Beyond the quadratic time barrier for network unreliability. arXiv, abs/2304.06552, 2023. 1
[Col87] Charles J. Colbourn. The Combinatorics of Network Reliability. Oxford University Press, 1987. 1
[DGGJ04] Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. The relative complexity of approximate counting problems. Algorithmica, 38(3):471-500, 2004.3
[GH20] Heng Guo and Kun He. Tight bounds for popping algorithms. Random Struct. Algorithms, 57(2):371-392, 2020. 1
[GJ19] Heng Guo and Mark Jerrum. A polynomial-time approximation algorithm for all-terminal network reliability. SIAM 7. Comput., 48(3):964-978, 2019. 1, 3
[GJK ${ }^{+}$97] Vivek Gore, Mark Jerrum, Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney. A quasi-polynomial-time algorithm for sampling words from a context-free language. Inf. Comput., 134(1):59-74, 1997. 2
[GJL19] Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovász local lemma. f. ACM, 66(3):18:118:31, 2019.1
[HS18] David G. Harris and Aravind Srinivasan. Improved bounds and algorithms for graph cuts and network reliability. Random Struct. Algorithms, 52(1):74-135, 2018. 1
[Jer81] Mark Jerrum. On the complexity of evaluating multivariate polynomials. PhD thesis, The University of Edinburgh, 1981. 1
[JVV86] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci., 43:169-188, 1986. 2, 3, 6
[Kar99] David R. Karger. A randomized fully polynomial time approximation scheme for the all-terminal network reliability problem. SIAM 7. Comput., 29(2):492-514, 1999. 1, 3
[Kar20] David R. Karger. A phase transition and a quadratic time unbiased estimator for network reliability. In STOC, pages 485-495. ACM, 2020. 1
[KL83] Richard M. Karp and Michael Luby. Monte-Carlo algorithms for enumeration and reliability problems. In FOCS, pages 56-64. IEEE Computer Society, 1983. 2, 3
[KL85] Richard M. Karp and Michael Luby. Monte-Carlo algorithms for the planar multiterminal network reliability problem. 7. Complex., 1(1):45-64, 1985. 2
[KLM89] Richard M. Karp, Michael Luby, and Neal Madras. Monte-Carlo approximation algorithms for enumeration problems. 7. Algorithms, 10(3):429-448, 1989. 2, 3
[MCM23] Kuldeep S. Meel, Sourav Chakraborty, and Umang Mathur. A faster FPRAS for \#NFA. arXiv, abs/2312.13320, 2023. 2, 3
[PB83] J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the probability that a graph is connected. SIAM 7. Comput., 12(4):777-788, 1983. 1
[Pro86] J. Scott Provan. The complexity of reliability computations in planar and acyclic graphs. SIAM 7. Comput., 15(3):694702, 1986. 1
[Val79] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM 7. Comput., 8(3):410-421, 1979. 1
[ZL11] Rico Zenklusen and Marco Laumanns. High-confidence estimation of small s - t reliabilities in directed acyclic networks. Networks, 57(4):376-388, 2011. 1, 2

Appendix A. An alternative way to define the event \mathcal{C}

We start from the following abstract setting. Let $A \sim \mu_{A}$ and $B \sim \mu_{B}$ be two random variables over some state space Ω. Suppose for any $x \in \Omega$, it holds that

$$
\mu_{A}(x) \geqslant(1-\varepsilon) \mu_{B}(x)
$$

for some $0 \leqslant \varepsilon<1$. Then, the distribution μ_{A} can be rewritten as

$$
\mu_{A}=(1-\varepsilon) \mu_{B}+\varepsilon v,
$$

where the distribution v is defined by

$$
\forall x \in \Omega, \quad v(x)=\frac{\mu_{\mathrm{A}}(x)-(1-\varepsilon) \mu_{\mathrm{B}}(x)}{\varepsilon}
$$

Then, we can draw a sample $A \sim \mu_{A}$ using the following procedure.

- Flip a coin with probability of HEADS being $1-\varepsilon$;
- If the outcome is HEADS, draw $A \sim \mu_{B}$;
- If the outcome is TAILS, draw $A \sim \nu$.

In this procedure, we can define an event \mathcal{C} as "the outcome of the coin flip is HEADS". We know that conditional on \mathcal{C}, the distribution of A is μ_{B}. Such an event \mathcal{C} is defined in an expanded space $\Omega \times$ \{HEADS, TAILS\}.

Consider the modified version of Sample, where Sample is defined in Algorithm 2. Suppose we use it on π_{u}, where $u=v_{\mathrm{k}}$. Let $X_{\mathcal{P}}$ be the random variable associated with the oracle \mathcal{P}. Denote the distribution of $X_{\mathcal{P}}$ by $\mu_{\mathcal{P}}$. Sample uses independent inside randomness $\mathcal{D}_{\mathcal{u}}$ to generate $\mathrm{H}=\mathrm{H}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathcal{u}}\right)$ and $\mathrm{F}=$ $\mathrm{F}\left(X_{\mathcal{P}}, \mathcal{D}_{\mathfrak{u}}\right)$. Define

$$
\begin{array}{ll}
\mu_{\mathrm{A}}: & \text { the joint distribution of } X_{\mathcal{P}} \text { and } \mathrm{H}, \\
\mu_{\mathrm{B}}: & \text { the product distribution of } \mu_{\mathcal{P}} \text { and } \pi_{\mathrm{u}}
\end{array}
$$

For any $\chi_{\mathcal{P}}$ in the support of $X_{\mathcal{P}}$ and any h in the support of π_{u}, we have

$$
\frac{\mu_{\mathcal{A}}\left(\chi_{\mathcal{P}}, h\right)}{\mu_{\mathrm{B}}\left(\mathrm{x}_{\mathcal{P}}, h\right)}=\frac{\operatorname{Pr}\left[X_{\mathcal{P}}=x_{\mathcal{P}}\right] \operatorname{Pr}\left[\mathrm{H}=\mathrm{h} \mid X_{\mathcal{P}}=\chi_{\mathcal{P}}\right]}{\operatorname{Pr}\left[X_{\mathcal{P}}=x_{\mathcal{P}}\right] \pi_{\mathfrak{u}}(h)}=\frac{\operatorname{Pr}\left[\mathrm{H}=\mathrm{h} \mid X_{\mathcal{P}}=\chi_{\mathcal{P}}\right]}{\pi_{\mathrm{u}}(\mathrm{~h})} .
$$

Note that

$$
\operatorname{Pr}\left[\mathrm{H}=\mathrm{h} \mid X_{\mathcal{P}}=\mathrm{x}_{\mathcal{P}}\right] \geqslant \operatorname{Pr}\left[\mathrm{F}=1 \mid X_{\mathcal{P}}=x_{\mathcal{P}}\right] \operatorname{Pr}\left[\mathrm{H}=\mathrm{h} \mid \mathrm{F}=1 \wedge X_{\mathcal{P}}=\mathrm{x}_{\mathcal{P}}\right] \geqslant(1-\varepsilon) \pi_{\mathfrak{u}}(\mathrm{h})
$$

where $\varepsilon=1-1 / n^{200}$. This implies

$$
\frac{\mu_{\mathcal{A}}\left(x_{\mathcal{P}}, h\right)}{\mu_{\mathrm{B}}\left(x_{\mathcal{P}}, h\right)} \geqslant 1-\varepsilon
$$

Using the above abstract result, we can define an equivalent process of Sample and find an event \mathcal{C} such that $\operatorname{Pr}[\mathcal{C}] \geqslant 1-\varepsilon$ and conditional on $\mathcal{C},\left(X_{\mathcal{P}}, \mathrm{H}\right) \sim \mu_{\mathrm{B}}$. By the definition of μ_{B}, we know that conditional on $\mathcal{C}, X_{\mathcal{P}} \sim \mu_{\mathcal{P}}$ still follows the distribution specified by the oracle \mathcal{P}, which means that \mathcal{C} is independent from $X_{\mathcal{P}}$. And also, H is a perfect independent sample from π_{u}. Finally, we remark that in our analysis (see Observation 13 and Lemma 20), we only need to show that such an equivalent process and the event \mathcal{C} exist. We do not need to implement the process nor certify the event in the algorithm.

Appendix B. Reducing counting s-t connected subgraphs in DAGs to \#NFA
Given a graph $G=(\mathrm{V}, \mathrm{E})$ with a source s and a sink t , the set of $s-\mathrm{t}$ connected subgraphs are $\left\{H=\left(V, E_{H}\right) \mid E_{H} \subseteq E s . t . s \rightsquigarrow_{H} t\right\}$. Let $m:=|E|$. Counting $s-t$ connected subgraphs is equivalent to computing the $s-t$ reliability of the same graph with $q_{e}=1 / 2$ for all $e \in E$. In this section, we reduce counting $s-t$ connected subgraphs in DAGs to \#NFA. This reduction is essentially the same as the one in [AvBM23], where it is not explicitly given.

Given a DAG G, we construct an NFA A_{G} such that the number of its accepting strings is the same as the number of $s-t$ connected subgraphs in G. The states of A_{G} consists of the starting state s, all edges, the accepting state t , a failure state, and some auxiliary states. We order all edges in G according to the head of the edge's topological order, say e_{1}, \ldots, e_{m}. In particular, this means that if f_{1}, \ldots, f_{k} form a path, then $f_{1} \prec f_{2} \cdots \prec f_{k}$. Moreover, we want to connect s and t to their respective adjacent edges, and two edges if they share an endpoint. However, we want each bit of the input string to correspond to whether to have an edge or not, which implies that we need to absorb all intermediate inputs. Thus, instead, to connect e_{i} to e_{j} with $\mathfrak{i}<\mathfrak{j}$, we add auxiliary states $\mathfrak{f}_{k}^{(i, j)}$ from $k=\mathfrak{i}+1$ to $k=\mathfrak{j}-1$. We connect e_{i} to $f_{i+1}^{(i, j)}, f_{i+1}^{(i, j)}$ to $f_{i+2}^{(i, j)}$, etc., labelled with both 0 and 1 . Lastly, we connect $f_{j-1}^{(i, j)}$ to e_{j}, labelled with only 1 , and we connect $f_{j-1}^{(i, j)}$ to the failure state, labelled with 0 . Once we are in the failure state, it can only move to itself, namely it has only a self-loop labelled with both 0 and 1 . We also do the same as above by treating s as e_{0} (whose tail is s and head does not matter) and t as e_{m+1} (whose head is t and tail does not matter). Note that there are $\mathrm{O}\left(\mathrm{m}^{2}\right)$ states and we are counting accepting strings of length $m+1$. The last bit of any accepting string has to be 1 , and therefore each accepting string is an indicator vector for a subset of edges. It is easy to verify that the string is accepted if and only if s can reach t in the corresponding subgraph. This finishes the reduction.

[^0]: (Weiming Feng) Institute for Theoretical Studies, ETH Zürich, Clausiusstrasse 47, 8092 Zürich, Switzerland.
 (Heng Guo) School of Informatics, University of Edinburgh, Informatics Forum, Edinburgh, EH8 9AB, United Kingdom.

 E-mail address: weiming.feng@eth-its.ethz.ch, hguo@inf.ed.ac.uk.

[^1]: ${ }^{1}$ The running time of the algorithm in [ACJR21] is not explicitly given. This bound is obtained by going through their proof.
 ${ }^{2}$ In fact, [AvBM23] first reduces the reliability instance to an nOBDD (non-deterministic ordered binary decision diagram) of size $\mathrm{O}(\mathrm{m})$, which can be further reduced to an NFA of size $\mathrm{O}\left(\mathrm{m}^{2}\right)$. As they are working with a more general context, no explicit reduction is given for the $s-t$ reliability problem in DAGs. We provide a direct (and essentially the same) reduction in Appendix B.

[^2]: ${ }^{3}$ Our algorithm actually directly maintains an estimate $\widetilde{R}_{v_{i}}$ to the reliability $R_{v_{i}}$. In this overview, we use $\widetilde{Z}_{v_{i}}$ instead for simplicity.

[^3]: ${ }^{4}$ Since all $q_{e}<1, R_{\Lambda}>0$ if and only if $\Lambda \rightsquigarrow_{G} t$.

[^4]: ${ }^{5}$ One may notice that if $\Omega_{\Lambda}^{(\mathfrak{i})}=\emptyset$, then $\pi_{\Lambda}^{(i)}$ is not well-defined. Remark 17 explains that $\Omega_{\Lambda}^{(\mathfrak{i})}=\emptyset$ never happens because of Lemma 16.
 ${ }^{6}$ We will do (1) and (2) approximately rather than exactly. This will incur some error that will be controlled later.

[^5]: ${ }^{7}$ In fact, $\left(S_{v_{\mathfrak{j}}}\right)_{\mathfrak{j}>\boldsymbol{i}}$ is correlated with $X_{\mathcal{P}}$ in Lemma 14 but independent from $\mathcal{D}_{\mathfrak{u}}$.

