
AN FPRAS FOR TWO TERMINAL RELIABILITY IN DIRECTED ACYCLIC GRAPHS

WEIMING FENG AND HENG GUO

AbstRact. We give a fully polynomial-time randomized approximation scheme (FPRAS) for two terminal
reliability in directed acyclic graphs (DAGs). In contrast, we also show the complementing problem of ap-
proximating two terminal unreliability in DAGs is #BIS-hard.

1. IntRoduction

Network reliability is one of the first problems studied in counting complexity. Indeed, s − t reliabil-
ity is listed as one of the first thirteen complete problems when Valiant [Val79] introduced the counting
complexity class #P. The general setting is that given a (directed or undirected) graph G, each edge e

of G fails independently with probability qe. The problem of s − t reliability is then asking the prob-
ability that in the remaining graph, the source vertex s can reach the sink t. There are also other vari-
ants, where one may ask the probability of various kinds of connectivity properties of the remaining
graph. These problems have been extensively studied, and apparently most variants are #P-complete
[Bal80, Jer81, BP83, PB83, Bal86, Col87].

While the exact complexity of reliability problems is quite well understood, their approximation com-
plexity is not. Indeed, the approximation complexity of the first studied s− t reliability is still open in ei-
ther directed or undirected graphs. One main exception is the all-terminal version (where one is interested
in the remaining graph being connected or disconnected). A famous result by Karger [Kar99] gives the
first fully polynomial-time randomized approximation scheme (FPRAS) for all-terminal unreliability, while
about two decades later, Guo and Jerrum [GJ19] give the first FPRAS for all-terminal reliability. The latter
algorithm is under the partial rejection sampling framework [GJL19], and the Markov chain Monte Carlo
(MCMC) method is also shown to be efficient shortly after [ALOV19, CGM21]. See [HS18, Kar20, CHLP23],
[GH20], and [ALO+21, CGZZ23] for more recent results and improved running times along the three lines
above for the all-terminal version respectively.

The success of these methods implies that the solution space of all-terminal reliability is well-connected
via local moves. However, this is not the case for the two-terminal version (namely the s − t version).
Instead, the natural local-move Markov chain for s − t reliability is torpidly mixing. Here the solution
space consists of all spanning subgraphs (namely a subset of edges) in which s can reach t. Consider a
(directed or undirected) graph composed of two paths of equal length connecting s and t. Suppose we start
from one path and leave the other path empty. Then before the other path is all included in the current
state, we cannot remove any edge of the initial path. This creates an exponential bottleneck for local-move
Markov chains, and it suggests that a different approach is required.

In this paper, we give an FPRAS for the s − t reliability in directed acyclic graphs. Note that the exact
version of this problem is #P-complete [PB83, Sec 3], even restricted to planar DAGs where the vertex
degrees are at most 3 [Pro86, Theorem 3]. Our result positively resolves an open problem by Zenklusen
and Laumanns [ZL11]. Without loss of generality, in the theorem below we assume that any vertex other
than s has at least one incoming edge, and thus |E| ⩾ |V |− 1 for the input G = (V,E).

(Weiming Feng) Institute foR TheoRetical Studies, ETH ZÜRich, ClausiusstRasse 47, 8092 ZÜRich, SwitzeRland.
(Heng Guo) School of InfoRmatics, UniveRsity of EdinbuRgh, InfoRmatics FoRum, EdinbuRgh, EH8 9AB, United

Kingdom.
E-mail address: weiming.feng@eth-its.ethz.ch, hguo@inf.ed.ac.uk.

1

Theorem 1. Let G = (V,E) be a directed acyclic graph (DAG), failure probabilities q = (qe)e∈E ∈
[0, 1]E, two vertices s, t ∈ V , and ε > 0. There is a randomized algorithm that takes (G, q, s, t, ε) as
inputs and outputs a (1 ± ε)-approximation to the s − t reliability with probability at least 3/4 in time
Õ(n6m4 max{m4, ε−4}) where n = |V |, m = |E|, and Õ hides polylog(n/ϵ) factors.

The running time of Theorem 1 is Õ(n6m8) when ε > 1/m, and is Õ(n6m4/ε4) when ε < 1/m. The
reason behind this running time is that our algorithm always outputs at least a (1± 1/m)-approximation.
Thus, when ε > 1/m, it does not matter what ε actually is for the running time. This high level of precision
is required for the correctness of the algorithm.

As hinted earlier, our method is a significant departure from the techniques for the all-terminal versions.
Indeed, a classical result by Karp and Luby [KL83, KLM89] has shown how to efficiently estimate the size
of a union of sets. A direct application of this method to s− t reliability is efficient only for certain special
cases [KL85, ZL11]. Our main observation is to use the Karp-Luby method as a subroutine in dynamic
programming using the structure of DAGs. Let s = v1, . . . , vn = t be a topological ordering of the DAGG.
(Note that we can ignore vertices before s and after t.) Let Ru be the u− t reliability so that our goal is to
estimate Rs. We inductively estimate Rvi

from i = n to i = 1. For each vertex u, our algorithm maintains
an estimator of Ru and a set Su of samples of subgraphs in which u can reach t. In the induction step, we
use the Karp-Luby method to generate the next estimator, and use a self-reduction similar to the Jerrum-
Valiant-Vazirani sampling to counting reduction [JVV86] to generate samples. Both tasks can be done
efficiently using only what have been computed for previous vertices. Moreover, a naive implementation
of this outline would require exponentially many samples. To avoid this, we reuse generated samples and
carefully analyze the impact of doing so on the overall error bound. A more detailed overview is given in
Section 1.1.

Our technique is inspired by an FPRAS for the number of accepting strings of non-deterministic fi-
nite automata (#NFA), found by Arenas, Croquevielle, Jayaram, and Riveros [ACJR21], which in turn
used some techniques from a quasi-polynomial-time algorithm for sampling words from context-free lan-
guages by Gore, Jerrum, Kannan, Sweedyk, and Mahaney [GJK+97]. Their #NFA algorithm runs in time
O
((

nℓ
ε

)17
)
,1 where n is the number of states and ℓ is the string length. More recently, Meel, Chakraborty,

and Mathur claim an improved running algorithm which runs in time Õ(n
4ℓ11

ε4) [MCM23, Theorem 3].
These algorithms first normalize the NFA into a particular layered structure. Applying similar methods
on the s − t reliability problem can simplify the analysis, but would greatly slow down the algorithm. In
contrast, our method works directly on the DAG. This makes our estimation and sampling subroutines
interlock in an intricate way. To analyze the algorithm, we have to carefully separate out various sources
of randomness. This leads to a considerably more sophisticated analysis, with a reward of a much better
(albeit still high) running time.

Independently and simultaneously, Amarilli, van Bremen, and Meel [AvBM23] also found an FPRAS
for s − t reliability in DAGs. Their method is to reduce the problem to #NFA via a sequence of reduc-
tions, and then invoke the algorithm in [ACJR21]. Indeed, as Marcelo Arenas subsequently pointed out
to us, counting the number of subgraphs of a DAG in which s can reach t belongs to a complexity class
SpanL [ÀJ93], where #NFA is SpanL-complete under polynomial-time parsimonious reductions. In par-
ticular, every problem in SpanL admits an FPRAS because #NFA admits one [ACJR21], which implies that
s − t reliability in DAGs admits an FPRAS if qe = 1/2 for all edges. The method of [AvBM23] reduces
a reliability instance of n vertices and m edges, where qe = 1/2 for all edges, to estimating length m

accepting strings of an NFA with O(m2) states.2 As a consequence, their algorithm (even using the faster
1The running time of the algorithm in [ACJR21] is not explicitly given. This bound is obtained by going through their proof.
2In fact, [AvBM23] first reduces the reliability instance to an nOBDD (non-deterministic ordered binary decision diagram)

of size O(m), which can be further reduced to an NFA of size O(m2). As they are working with a more general context, no
explicit reduction is given for the s − t reliability problem in DAGs. We provide a direct (and essentially the same) reduction in
Appendix B.

2

algorithm for #NFA [MCM23]) has a running time ofO
(
m19ε−4). When qe ̸= 1/2, their reduction needs

to expand the instance further to reduce to the qe = 1/2 case, slowing down the algorithm even more. In
contrast, our algorithm deals with all possible probabilities 0 ⩽ qe < 1 in a unified way. In any case, an
algorithm via reductions is much slower than the direct algorithm in Theorem 1.

As both all-terminal reliability and unreliability in undirected graphs have FPRASes [Kar99, GJ19], one
may wonder if FPRAS exists for s− t unreliability in DAGs. Here s− t unreliability is the probability that
s cannot reach t in the random subgraph. In contrast to Theorem 1, we show that this problem is #BIS-
hard, where #BIS is the problem of counting independent sets in bipartite graphs, whose approximation
complexity is still open. This is a central problem in the complexity of approximate counting [DGGJ04],
and is conjectured to have no FPRAS.
Theorem 2. There is no FPRAS to estimate s − t unreliability in DAGs unless there is an FPRAS for #BIS.
This is still true even if all edges fail with the same probability.

Theorem 2 is proved in Section 5. The hardness of s − t unreliability does not contradict Theorem 1.
This is because a good relative approximation of x does not necessarily provide a good approximation of
1 − x, especially when x is close to 1.

The complexity of estimating s − t reliability in general directed or undirected graphs remains open.
We hope that our work sheds some new light on these decades old problems. Another open problem is to
reduce the running time of Theorem 1, as currently the exponent of the polynomial is still high.

1.1. Algorithmoverview. Herewe give an overview of our algorithm. For simplicity, we assume thatqe =
1/2 for all edges. The general case of 0 ⩽ qe < 1 can be solved with very small tweaks.

Let s = v1 ≺ · · · ≺ vn = t be a topological ordering of the DAG G. (Note that we can ignore vertices
before s and after t.) Let Ru be the u − t reliability so that our goal is to estimate Rs. Note that Rvi

depends only on the subgraph induced by the vertex set {vi, vi+1, . . . , vn}. We denote this subgraph by
Gvi

= (Vvi
,Evi

). As we assumed qe = 1/2, estimating Rvi
is equivalent to estimating the number of

(spanning) subgraphs of Gvi
in which vi can reach t. Denote the latter quantity by Zvi

so that Rvi
=

Zvi
/2|Evi

|. For each vertex vi, our algorithm maintains an estimator and a multi-set of random samples:
• Z̃vi

:3 an estimator that approximates Zvi
with high probability;

• Svi
: a multi-set of random subgraphs, where eachH ∈ Svi

is an approximate sample from πvi
and

πvi
is the uniform distribution over all spanning subgraphs of Gvi

in which vi can reach t.
Our algorithm computes Z̃vi

and Svi
for i fromn to 1 by dynamic programming. The base case vn = t is

trivial. In the induction step, suppose the vertex vi has d out-neighbors u1,u2, . . . ,ud. Note that each uj

for j ∈ [d] comes after vi in the topological ordering. Let us further assume vi ≺ u1 ≺, . . . ,≺ ud. For
any subgraph H of Gvi

, if vi can reach t in H, then there exists a neighbor uj such that vi can reach uj

and uj can reach t in H. We can write Zvi
as the size of the union Ω := ∪dj=1Ω

(j), where Ω(j) contains
all subgraph of Gvi

where vi can reach t through the neighbor uj. Note that it is straightforward to
estimate the size of Ω(j) given Z̃uj

, and to generate uniform random subgraphs from Ω(j) using samples
in Suj

. Given the size and samples from Ω(j), a classical algorithm by Karp and Luby [KL83, KLM89] can
be applied to efficiently estimate the size of the union of sets, namely to compute Z̃vi

.
The more complicated task is to generate the samples of Svi

. We use a sampling to counting self-
reduction á la Jerrum-Valiant-Vazirani [JVV86]. To generate a sampleH, we go through each edge e inGvi

,
deciding if e is added into H according to its conditional marginal probability. The first edge to consider
is (vi,u1). Its marginal probability depends on how many subgraphs in Ω contain it. This quantity is the
same as the number of subgraphs in which Λ can reach t, where Λ is a new vertex after contracting vi
and u1. To estimate this number, denoted by ZΛ, we use the Karp-Luby algorithm again. Note that the

3Our algorithm actually directly maintains an estimate R̃vi to the reliability Rvi . In this overview, we use Z̃vi instead for
simplicity.

3

Karp-Luby algorithm requires estimates and samples from all out-neighbours of Λ, which have been com-
puted already as these vertices are larger in the topological ordering than vi. Having estimated ZΛ, we
estimate the marginal probability of (vi,u1) and decide if it is included in H. The process then continues
to consider the next edge. In each step, we contract all vertices that can be reached from vi into Λ, and
keep estimating newZΛ using the Karp-Luby algorithm to compute the conditional marginal probabilities,
until all edges are considered to generate H.

A naive implementation of the process above is to generate fresh samples every time Su is used, which
would lead to an exponential number of samples required. To maintain efficiency, the key property of
our algorithm is to reuse random samples. For any vertex u, the algorithm generates the multi-set of
samples Su only once. Whenever the algorithm needs to use random samples for u, it always picks one
sample from the same set Su. Hence, one sample may be used multiple times during the whole algorithm.
Reusing samples introduces very complicated correlation among all (Z̃u,Su)’s, which is a challenge to
proving the correctness of the algorithm. Essentially, our analysis shows that as long as the estimates
(Z̃u’s) and the samples are accurate enough, the overall error can be controlled. Accurate estimates ofZu’s
allow us to bound the total variation (TV) distance between our samples and perfect samples. In turn, the
small TV distance implies that there is a coupling between them, which helps us bound the errors of the
estimates. This way, we circumvent the effect of correlation on the analysis and achieve the desired overall
error bound.

For the overall running time, there are two tasks for each vertex, namely the estimation step (based
on Karp-Luby) and the sample generation step. As we also need to perform estimation steps as subrou-
tines when generating samples, the running time is dominated by the time for the sampling step. Let ℓ be
the number of samples required per vertex, so that the total number of samples generated is nℓ. Roughly
speaking, because we can only use the union bound due to various correlation, and because errors accumu-
late throughout dynamic programming, we set the error to be δ := n−1 min{m−1, ε} for the estimation
step. Each estimation has two stages, first getting a constant approximation and then using the crude
estimation to tune the parameters and obtain a 1 ± δ approximation. This succeeds with constant prob-
ability using O(nδ−2) samples. The estimator itself requires O(m) time to compute, and thus the total
running time for each estimation step with constant success probability is Õ(mnδ−2). However, as sam-
ples are reused, we need to apply a union bound to control the error over all possible values of the samples,
which are exponentially many. This requires us to amplify the success probability of the estimation step
to exp(−Ω(m)), which means we need to repeat the algorithm O(m) times and take the median. Each
estimation step thus takes Õ(m2nδ−2) time andO(mnδ−2) samples. Instead of maintainingO(mnδ−2)
samples for every vertex, the aforementioned two-stage estimation allows us to spread the cost and main-
tain ℓ :=

O(mnδ−2)
n

= O(n2mmax{m2, ε−2}) samples per vertex, which we show suffice with high
probability. As we may do up to O(m) estimation steps during each sampling step, the overall running
time is then bounded by Õ(nℓ ·m ·m2nδ−2) = Õ

(
n6m4 max{m4, ε−4}

)
.

2. PReliminaRies

2.1. Problem definitions. Let G = (V,E) be a directed acyclic graph (DAG). Each directed edge (or
arc) e = (u, v) is associated with a failure probability 0 ⩽ qe < 1. (Any edge with qe = 1 can be
simply removed.) We also assume graph G is simple because parallel edges with failure probabilities
qe1 ,qe2 , . . . ,qek

can be replacewith one edgewith failure probabilityqe =
∏m

i=1 qei
. Given two vertices

s, t ∈ V , the s−t reliability problem asks the probability that s can reach t if each edge e ∈ E fails (namely
gets removed) independently with probability qe. Formally, let q = (qe)e∈E. The s−t reliability problem
is to compute

RG,q(s, t) := PrG[there is a path from s to t in G],(1)
4

where G = (V,E) is a random subgraph of G = (V,E) such that each e ∈ E is added independently to E

with probability 1 − qe.
Closely connected to estimating s− t reliability is a sampling problem, which we call the s− t subgraph

sampling problem. Here the goal is to sample a random (spanning) subgraph G ′ conditional on that there
is at least one path from s to t in G ′. Formally, let ΩG,s,t be the set of all subgraphs H = (V,EH) of G
such that EH ⊆ E and s can reach t in H. The algorithm needs to draw samples from the distribution
πG,s,t,q whose support is ΩG,s,t and for any H = (V,EH) ∈ ΩG,s,t,

πG,s,t,q(H) =
1

RG,q(s, t)
·
∏
e∈EH

(1 − qe)
∏

f∈E\EH

qf.(2)

2.2. More notations. Fix a DAG G = (V,E). For any two vertices u and v, we use u ⇝
G
v to denote

that u can reach v in the graph G and use u ̸⇝
G

v to denote that u cannot reach v in the graph G. It
always holds that u ⇝

G
u. Fix two vertices s and t, where s is the source and t is the sink. The failure

probabilities q, s, and t will be the same throughout the paper, and thus we omit them from the subscripts.
For any vertex u ∈ V , we use Gu = G[Vu] to denote the subgraph of G induced by the vertex set

Vu := {w ∈ V | u⇝
G
w ∧ w⇝

G
t}.(3)

Without loss of generality, we assume Gs = G. This means that all vertices except s have at least one
in-neighbour, and thus m ⩾ n − 1. If Gs ̸= G, then all vertices and edges in G − Gs have no effect on
s − t reliability and we can simply ignore them. For the sampling problem, we can first solve it on the
graph Gs and then independently add each edge e in G−Gs with probability 1 − qe.

Our algorithm actually solves the u− t reliability and u− t subgraph sampling problems in Gu for all
u ∈ V . Let Gu = (Vu,Eu). For any subgraph H = (Vu,EH) of Gu, define the weight function

wu(H) :=

{∏
e∈EH

(1 − qe)
∏

f∈Eu\EH
qf if u⇝

H
t;

0 if u ̸⇝
H
t.

(4)

Define the distribution πu by

πu(H) :=
wu(H)

Ru
,

where the partition function (the normalizing factor)

Ru :=
∑

H: subgraph of Gu

wu(H)

is exactly the u− t reliability in the graph Gu. Finally, let
Ωu := {H = (Vu,EH) | EH ⊆ Eu ∧ u⇝

H
t}(5)

be the support of πu. Also note that Rs and πs are the probability RG,q(s, t) and the distribution πG,s,t,q
defined in (1) and (2), respectively. The set Ωs is the set ΩG,s,t in Section 2.1.

2.3. The total variation distance and coupling. Let µ and ν be two discrete distributions over Ω. The
total variation distance between µ and ν is defined by

dTV (µ,ν) := 1
2
∑
x∈Ω

|µ(x) − ν(x)| .

If X ∼ µ and Y ∼ ν are two random variables, we also abuse the notation and write dTV (X, Y) :=
dTV (µ,ν).

A coupling between µ and ν is a joint distribution (X, Y) such that X ∼ µ and Y ∼ ν. The following
coupling inequality is well-known.

5

Lemma 3. For any coupling C between two random variables X ∼ µ and Y ∼ ν, it holds that

PrC[X ̸= Y] ⩾ dTV (µ,ν) .
Moreover, there exists an optimal coupling that achieves equality.

3. The algoRithm

In this section we give our algorithm. We also give intuitions behind various design choices, and give
some basic properties of the algorithm along the way. The main analysis is in Section 4.

3.1. The framework of the algorithm. As G = Gs is a DAG, there is a topological ordering of all
vertices. There may exist many topological orderings. We pick an arbitrary one, say, v1, . . . , vn. It must
hold that v1 = s and vn = t. The topological ordering guarantees that if (u, v) is an edge, u must come
before v in the ordering, denoted u ≺ v.

On a high level, our algorithm is to inductively compute an estimator R̃u of Ru, from u = vn to u = v1.
In addition to R̃u, we also maintain a multi-set Su of samples from πu over Ωu. For any vertex u ∈ V ,
let Γout(u) := {w | (u,w) ∈ E} denote the set of out-neighbours of u. Let

ℓ := (60n+ 150m)(400n+ 500
⌈
104n2 max{m2, ε−2}

⌉
) = O((n+m)n2 max{m2, ϵ−2})(6)

be the size of Sv for all v ∈ Vu, where n is the number of vertices inG andm is the number of edges inG.
The choice of this parameter is explained in the last paragraph of Section 1.1. Our algorithm is outlined in
Algorithm 1. Note that Gt is an isolated vertex. For consistency, we let St contain ℓ copies of ∅.

Algorithm 1: An FPRAS for s− t reliabilities in DAGs
Input: a DAG G = (V,E), a vector q = (qe)e∈E, the source s, the sink t, and an error bound

0 < ε < 1, where G = Gs and V = {v1, v2, . . . , vn} is topologically ordered with v1 = s

and vn = t

Output: an estimator R̃s of Rs

1 let R̃t = 1 and St be a multi set of ℓ ∅’s;
2 for k from n− 1 to 1 do
3 R̃vk

← ApproxCount
(
Vvk

,Evk
, vk, (R̃w,Sw)w∈Γout(vk)

)
;

4 Svk
← ∅;

5 for j from 1 to ℓ do
6 Svk

← Svk
∪ Sample

(
vk, (R̃w,Sw)w∈{vk+1,vk+2,...,vn}, R̃vk

)
;

7 return R̃s.

The base case (Line 1) of vn = t is trivial. The subroutine Sample(·) uses (R̃vi
,Svi

) for all i > k and
R̃vk

to generate samples in Svk
. The subroutine ApproxCount(V,E,u, (R̃w,Sw)Γout(u)) takes a graph

G = (V,E), a vertex u, and (R̃w,Sw) for all w ∈ Γout(u) as the input, and it outputs an approximation of
the u− t reliability in the graphG. We describe Sample in Section 3.2 and (a slightly more general version
of) ApproxCount in Section 3.3.

3.2. Generate samples. Let u = vk where k < n. Recall that Gu = (Vu,Eu) is the graph defined in (3).
The sampling algorithm aims to output a random spanning subgraphH = (Vu,E) from the distributionπu.
The algorithm is based on the sampling-to-counting reduction in [JVV86]. It scans each edge e in Eu and
decides whether to put e into the set E or not. The algorithm maintains two edge sets:

• E1 ⊆ Eu: the set of edges that have been scanned by the algorithm;
• E ⊆ E1: the current set of edges sampled by the algorithm.

6

Also, let E2 := Eu \ E1 be the set of edges that have not been scanned yet by the algorithm. Given any E,
we can uniquely define the following subset of vertices

Λ = ΛE := rch(u,Vu,E) = {w ∈ Vu | u can reach w through edges in E}.(7)
In other words, let G ′ = (Vu,E) and Λ is the set of vertices that u can reach in G ′. Note that u ∈ Λ

for any E. We will keep updating Λ as E expands. When calculating the marginal probability of the next
edge, the path to t can start from any vertex in Λ. Thus we need to estimate the reliability from Λ to
t. Instead of having a single source, as called in Algorithm 1, we use a slightly more general version of
ApproxCount, described in Section 3.3, to allow a set Λ of sources. This subroutine ApproxCount takes
input (V,E,Λ, (R̃w,Sw)w∈∂Λ) and approximates the Λ− t reliability in (V,E), which is the probability
that there exists at least one vertex in Λ being able to reach t if each edge e ∈ E fails independently with
probability qe. An equivalent way of seeing it is to contract all vertices in Λ into a single vertex u first,
and then calculate the u − t reliability in the resulting graph. Sample is described in Algorithm 2, and
some illustration is given in Figure 1.

Algorithm 2: Sample
(
u, (R̃w,Sw)w∈{vk+1,vk+2,...,vn}, R̃vk

)
Input: a vertex u = vk, all (R̃w,Sw) for w ∈ {vk+1, vk+2, . . . , vn}, and R̃vk

= R̃u

Output: a random subgraph H = (Vu,E)
1 T ← ⌈1000 log n

ε
⌉ and F← 0;

2 p0 ← R̃u;
3 repeat
4 let p← 1;
5 let E1 ← ∅, E2 ← Eu \ E1 and Λ = {u};
6 while t /∈ Λ do
7 let ∂Λ← {w /∈ Λ | ∃w ′ ∈ Λ s.t. (w ′,w) ∈ E2}; let w∗ ∈ ∂Λ be the smallest vertex in the

topological ordering; pick an arbitrary edge e = (w ′,w∗) ∈ E2 such that w ′ ∈ Λ;
8 let Λ1 ← rch(u,Vu,E ∪ {e});
9 E1 ← E1 ∪ {e} and E2 ← E2 \ {e};

10 ∂Λ1 ← {w /∈ Λ1 | ∃w ′ ∈ Λ1 s.t. (w ′,w) ∈ E2} and
∂Λ← {w /∈ Λ | ∃w ′ ∈ Λ s.t. (w ′,w) ∈ E2};

11 c0 ← ApproxCount(Vu,E2,Λ, (R̃w,Sw)w∈∂Λ);
12 c1 ← ApproxCount(Vu,E2,Λ1, (R̃w,Sw)w∈∂Λ1);
13 let c← 1 with probability (1−qe)c1

qec0+(1−qe)c1
; otherwise c← 0 ;

14 if c = 1, then let E← E ∪ {e}, Λ← Λ1, p← p
(1−qe)c1

qec0+(1−qe)c1
;

15 if c = 0, then let p← p
(

1 −
(1−qe)c1

qec0+(1−qe)c1

)
;

16 for all edges e ∈ E2 do
17 let c← 1 with probability 1 − qe; otherwise c← 0;
18 if c = 1, then let E← E ∪ {e} and p← p(1 − qe);
19 if c = 0, then let p← pqe;

20 let F← 1 with probability wu(H)
4pp0

, where H = (Vu,E);
21 T ← T − 1;
22 until T < 0 or F = 1;
23 if F = 1 then return H = (Vu,E); else return ⊥;

7

Gu

u

t

Λ1

w1

w2

...

wd

(a) At the start, we consider the first edge (u,w1).
To compute its marginal, we estimate two reliability,
where the source is either Λ1 = {u,w1} (shown in
picture) or just u, respectively.

Gu

u

t

Λ

(b) As Algorithm 2 progresses, there are chosen
edges E (blue), not chosen edges E1 \ E (green), and
the boundary edges (red). The set Λ contains ver-
tices reachable from u using only E.

FiguRe 1. An illustration of sampling from πu

Remark 4 (Crash of Sample). The subroutine Sample (Algorithm 2) may crash in following cases: (1) in
Line 7, ∂Λ = ∅; (2) in Line 13, qec0 + (1 − qe)c1 = 0; (3) in Line 20, wu(H)

4p0p
> 1; (4) in Line 23, F = 0. If

it crashes, we stop Algorithm 1 immediately and output R̃s = 0.

The algorithm needs c0 and c1 in order to compute the marginal probability of e in Line 13. The quan-
tity c0 is an estimate to the reliability conditional on e not selected and all choices made so far (namely
EH ∩ E1 = E). Similarly, c1 is an estimate to the reliability conditional on e selected and EH ∩ E1 = E.
Thus, if ApproxCount returns exact values of c0 and c1, then

PrH=(Vu,EH)∼πu
[e ∈ EH | EH ∩ E1 = E] =

(1 − qe)c1
qec0 + (1 − qe)c1

.

However, ApproxCount can only approximate the reliabilities c0 and c1. To handle the error from Approx-
Count, our algorithm maintains a number p, which is the probability of selecting the edges in E and not
selecting those in E1 \ E. By the time we reach Line 20, p becomes the probability that H is generated by
the algorithm. Then the algorithm uses a filter (with filter probability wu(H)

4p0p
) to correct the distribution

ofH. Conditional on passing the filter, H is a perfect sample from πu. The detailed analysis of the error is
given in Lemma 11 and in Section 4.3.

Before we go to the ApproxCount algorithm, we state one important property of Algorithm 2. The
topological ordering in Line 7 is the ordering s = v1, v2, . . . , vn = t in G. For any two vertices v, v ′, we
write v ≺ v ′ if v = vi, v ′ = vj and i < j.

Fact 5. For any path u1,u2, . . . ,uℓ in G, it holds that u1 ≺ u2 ≺ . . . ≺ uℓ.

Lemma6. In Algorithm 2, the following property holds: at the beginning of every while-loop, for anyw ∈ ∂Λ,
E1 ∩ Ew = ∅, where Ew is the edge set of the graph Gw = (Vw,Ew) defined in (3).

Proof. For any i, we use we use X(i) to denote some (vertex or edge) set X at the beginning of the i-th loop,
where X can beΛ,∂Λ,E,E1,E2. We prove the lemma by contradiction. Suppose at the beginning of k-th
loop, there exists w ∈ ∂Λ(k) such that E(k)

1 ∩ Ew ̸= ∅. We pick an arbitrary edge (v, v ′) ∈ E
(k)
1 ∩ Ew.

Since (v, v ′) ∈ E
(k)
1 , there must exist j < k such that (v, v ′) /∈ E

(j)
1 but (v, v ′) ∈ E

(j+1)
1 , which means

that the algorithm picks the edge (v, v ′) in the j-th loop. We will prove that such j cannot exist, which is
a contradiction.

Since w ∈ ∂Λ(k), there must exist w ′ ∈ Λ(k) such that (w ′,w) ∈ E
(k)
2 ⊆ E, where E is the set of

edges in the input graph G. By the definition of Λ(k), there exists a path w0,w1, . . . ,wt−1 such that
• w0 = u and wt−1 = w ′;
• for all 1 ⩽ i ⩽ t− 1, (wi−1,wi) ∈ E(k).

8

Hence, {w0,w1, . . . ,wt−1,wt}, where wt = w, is a path in G. Note that (v, v ′) is an edge in the graph
Gw. By the definition of Gw, w ≺ v ′ (the vertex v may be w). By Fact 5, we have

w0 ≺ w1 ≺ . . . ≺ wt ≺ v ′.(8)

Note that w0 = u ∈ Λ(j) for all j ⩾ 1. Also, since wt = w /∈ Λ(k), wt /∈ Λ(j) for all j < k. Hence, for
any 1 ⩽ j < k, there is an index i∗ ∈ {1, 2 . . . , t} such that wi∗−1 ∈ Λ(j) and wi∗ /∈ Λ(j). We claim that
(wi∗−1,wi∗) ∈ E

(j)
2 .

• If i∗ = t, then (wt−1,wt) ∈ E
(k)
2 . Since E(k)

2 ⊆ E
(j)
2 , (wt−1,wt) ∈ E

(j)
2 ;

• If i∗ ⩽ t − 1, then (wi∗−1,wi∗) ∈ E(k). Suppose (wi∗−1,wi∗) /∈ E
(j)
2 . Then (wi∗−1,wi∗) has

been scanned before the j-th loop, namely (wi∗−1,wi∗) ∈ E
(j)
1 . However, wi∗ /∈ Λ(j), namely

that wi∗ cannot be reached using E(j). It implies that (wi∗−1,wi∗) /∈ E(j) as otherwise wi∗ can
be reached because wi∗−1 ∈ Λ(j). This means that (wi∗−1,wi∗) has been scanned, but not added
into E, which implies that (wi∗−1,wi∗) /∈ E(k). A contradiction. Hence, (wi∗−1,wi∗) ∈ E

(j)
2 .

Thus the claim holds. It implies that wi∗ ∈ ∂Λ(j). On the other hand, by (8), wi∗ ≺ v ′. The way the next
edge is chosen in Line 7 implies that in the j-th loop, the algorithm may only choose an edge (s, s ′) such
that s ′ ∈ ∂Λ(j) and s ′ ≼ wi∗ . In particular, the vertex s ′ cannot be v ′ and the edge (v, v ′) cannot be
chosen. As this argument holds for all j < k, it proves the lemma. □

Corollary 7. In Algorithm 2, in every while-loop, Λ1 = Λ ∪ {w∗}.

Proof. Clearly Λ∪ {w∗} ⊆ Λ1. Suppose there exists w0 ̸= w∗ such that w0 ∈ Λ1 \Λ. Then w0 ∈ Vu can
be reached from w∗ through edges in E. The vertex w0 must be in Gw∗ , which implies E ∩ Ew∗ ̸= ∅, and
thus E1 ∩ Ew∗ ̸= ∅. A contradiction to Lemma 6. □

3.3. Approximate counting. Our ApproxCount subroutine is used in both Algorithm 1 and Algorithm 2.
To suit Algorithm 2, ApproxCount takes input (V,E,Λ, (R̃w,Sw)w∈∂Λ) and approximates the Λ − t

reliability RΛ := PrG
[
Λ⇝

G
t
]
, where G is a random spanning subgraph ofG obtained by removing each

edge e independently with probability qe, andΛ⇝G
t denotes the event that ∃w ∈ Λ s.t.w⇝

G
t. When

called by Algorithm 1, Λ is a single vertex, and when called by Algorithm 2, Λ is the set defined in (7).
Moreover, the input satisfies:

• G = (V,E) is a DAG containing the sink t and each edge has a failure probability qe (for simplicity,
we do not write t and all qe explicitly in the input as they do not change throughout Algorithm 1
and Algorithm 2);
• Λ ⊆ V is a subset of vertices that act as sources and ∂Λ := {w ∈ V\Λ | ∃w ′ ∈ Λ s.t. (w ′,w) ∈ E};
• for any w ∈ ∂Λ, R̃w is an approximation of the w − t reliability in Gw and Sw is a set of ℓ

approximate random samples from the distribution πw, where Gw is defined in (3).
All points above hold when Algorithm 3 is evoked by Algorithm 1 or Algorithm 2. The first two points are
easy to verify and the last one is verified in Section 4.

The algorithm first rules out the following two trivial cases:
• if t ∈ Λ, the algorithm returns 1;
• if Λ cannot reach t in graph G, the algorithm returns 0.4

Aswe are dealing with the more general set-to-vertex reliability, we need somemore definitions. Define

ΩΛ := {H = (V,EH) | EH ⊆ E∧Λ⇝
H
t}.(9)

4Since all qe < 1, RΛ > 0 if and only if Λ⇝
G

t.
9

For any subgraph H = (V,EH) of G = (V,E), define the weight function

wΛ(H) :=

{∏
e∈EH

(1 − qe)
∏

f∈E\EH
qf if Λ⇝

H
t;

0 if Λ ̸⇝
H
t.

(10)

Define the distribution πΛ, whose support is ΩΛ, by

πΛ(H) :=
wΛ(H)

RΛ

, where RΛ :=
∑

H∈ΩΛ

wΛ(H).(11)

Let ∂Λ be listed as {u1, . . . ,ud} for some d ∈ [n]. Note that d ⩾ 1 because RΛ > 0 and t /∈ Λ. To
estimate RΛ, we first write ΩΛ in (9) as a union of d sets. For each 1 ⩽ i ⩽ d, define

Ω
(i)
Λ := {H = (V,EH) | (EH ⊆ E) ∧ (∃u ∈ Λ, s.t. (u,ui) ∈ E) ∧ (ui ⇝H

t)} .

Lemma 8. If t /∈ Λ, ΩΛ = ∪di=1Ω
(i)
Λ .

Proof. We first show ∪di=1Ω
(i)
Λ ⊆ ΩΛ. Fix any H ∈ ∪di=1Ω

(i)
Λ , say H ∈ Ω

(i∗)
Λ (i∗ ∈ [d] may not be

unique, in which case we pick an arbitrary one). ThenΛ can reach t inH, because we can first move from
Λ to ui∗ and then move from ui∗ to t. This implies H ∈ ΩΛ. We next show ΩΛ ⊆ ∪di=1Ω

(i)
Λ . Fix any

H ∈ ΩΛ. There is a path from Λ to t in H. Say the path is w1,w2, . . . ,wp = t. Then w1 ∈ Λ (hence
w1 ̸= t) and w2 = ui∗ for some i∗ ∈ [d]. Hence, H contains the edge (w1,ui∗) and ui∗ ⇝H

t. This
implies H ∈ ∪di=1Ω

(i)
Λ . □

Similar to (11), we define π(i),5 whose support is Ω(i)
Λ , by

π
(i)
Λ (H) :=

wΛ(H)

R
(i)
Λ

, where R(i)
Λ :=

∑
H∈Ω

(i)
Λ

wΛ(H).(12)

In order to perform the Karp-Luby style estimation, we need to be able to do the following three things:

(1) compute the value R(i)
Λ for each i ∈ [d];

(2) draw samples from π
(i)
Λ for each i ∈ [d];

(3) given any i ∈ [d] and H ∈ ΩΛ, determine whether H ∈ Ω
(i)
Λ .

Suppose we can do them for now.6 Consider the following estimator ZΛ:

(1) draw an index i ∈ [d] such that i is drawn with probability proportional to R
(i)
Λ ;

(2) draw an sample H from π
(i)
Λ ;

(3) let ZΛ ∈ {0, 1} indicate whether i is the smallest index j ∈ [d] satisfying H ∈ Ω
(j)
Λ .

5One may notice that if Ω(i)
Λ = ∅, then π

(i)
Λ is not well-defined. Remark 17 explains that Ω(i)

Λ = ∅ never happens because of
Lemma 16.

6We will do (1) and (2) approximately rather than exactly. This will incur some error that will be controlled later.
10

It is straightforward to see that

E[ZΛ] =

d∑
i=1

R
(i)
Λ∑d

j=1 R
(j)
Λ

∑
H∈Ω

(i)
Λ

π
(i)
Λ (H) · 1

[
H ∈ Ω

(i)
Λ ∧

(
∀j < i,H /∈ Ω

(j)
Λ

)]

=

∑d
i=1

∑
H∈Ω

(i)
Λ

wΛ(H) · 1
[
H ∈ Ω

(i)
Λ ∧

(
∀j < i,H /∈ Ω

(j)
Λ

)]
∑d

j=1 R
(j)
Λ

(by Lemma 8) =
RΛ∑d

j=1 R
(j)
Λ

⩾ 1
d
⩾ 1

n
,(13)

where the first inequality holds because each H belongs to at most d different sets. Since ZΛ is a 0/1
random variable, Var (ZΛ) ⩽ 1. Hence, we can first estimate the expectation of ZΛ by repeating the
process above and taking the average, and then useE[ZΛ]

∑d
j=1 R

(j)
Λ as the estimator R̃Λ forRΛ. However,

in the input of ApproxCount, we only have estimates R̃ui
and a limited set of samples Sui

for eachui ∈ ∂Λ.
Our algorithm will need to handle these imperfections.

The third step of implementing the estimator ZΛ is straightforward by a BFS. For the first step, R(i)
Λ can

be easily computed given Rui
, and we will use the estimates R̃ui

instead. For the second step, define

δΛ(ui) := {(w,ui) ∈ E | w ∈ Λ}.

To sample from π
(i)
Λ , we shall sample at least one edge in δΛ(ui), sample a subgraphH from πui

, and add
all other edges independently. These are summarized by the next lemma.

Lemma 9. For any i ∈ [d], it holds that R(i)
Λ =

(
1 −

∏
u∈δΛ(ui)

q(u,ui)

)
Rui

and a random sample

H ′ = (V,EH ′) ∼ π
(i)
Λ can be generated by the following procedure:

• sample H = (Vui
,EH) ∼ πui

;
• let EH ′ = EH ∪D, where D ⊆ δΛ(ui) is a random subset with probability proportional to

1[D ̸= ∅] ·
∏

e∈δΛ(ui)∩D

(1 − qe)
∏

f∈δΛ(ui)\D

qf;(14)

• add each e ∈ E \ (Eui
∪ δΛ(ui)) into EH ′ independently with probability 1 − qe.

All three steps above handle mutually exclusive edge sets and thus are mutually independent.

Proof. If each edge e in G is removed independently with probability qe, we have a random spanning
subgraph G = (V,E). By the definition of R(i)

Λ ,

R
(i)
Λ = Pr

[
∃u ∈ Λ, s.t. (u,ui) ∈ E ∧ ui ⇝G

t
]

= Pr [∃u ∈ Λ, s.t. (u,ui) ∈ E] · Pr
[
ui ⇝G

t | ∃u ∈ Λ, s.t. (u,ui) ∈ E
]

.

It is easy to see Pr[∃u ∈ Λ, s.t. (u,ui) ∈ E] = 1 −
∏

u∈δΛ(ui)
q(u,ui). For the second conditional

probability, note that the event ui ⇝G
t depends only on the randomness of edges in graph Gui

. In other
words, for any edges e ∈ E \ Eui

, whether or not e is removed has no effect on the ui − t reachability.
Due to acyclicity, all edges in δΛ(ui) are not in the graph Gui

. We have

R
(i)
Λ =

1 −
∏

u∈δΛ(ui)

q(u,ui)

Rui
.

11

By definition (12), π(i)
Λ is the distribution of G = (V,E) conditional on ∃u ∈ Λ, s.t. (u,ui) ∈ E and

ui ⇝G
t. For any graph H ′ = (V,EH ′) satisfying ∃u ∈ Λ, s.t. (u,ui) ∈ EH ′ and ui ⇝H ′ t, we have

π
(i)
Λ (H ′) = Pr

[
G = H ′ | ∃u ∈ Λ, s.t. (u,ui) ∈ E ∧ ui ⇝G

t
]

=
Pr[G = H ′]

R
(i)
Λ

=
Pr[G = H ′]

(1 −
∏

u∈δΛ(ui)
q(u,ui))Rui

=
∏

e∈EH ′ :e∈E\Eui

(1 − qe)
∏

f/∈EH ′ :f∈E\Eui

qf ·
wui

(H ′[Vui
])

(1 −
∏

u∈δΛ(ui)
q(u,ui))Rui

= πui
(H ′[Vui

]) ·
∏

e∈δΛ(ui)∩EH ′ (1 − qe)
∏

f∈δΛ(ui)\EH ′ qf

1 −
∏

u∈δΛ(ui)
q(u,ui)

·
∏

e∈EH ′ :
e∈E\(Eui

∪δΛ(ui))

(1 − qe)
∏

f/∈EH ′ :
f∈E\(Eui

∪δΛ(ui))

qf.

The probability above exactly matches the procedure in the lemma. □

The first sampling step in Lemma 9 can be done by directly using the samples from Sui
. We still need

to show that the second step in Lemma 9 can be done efficiently.

Lemma10. There is an algorithm such that given a setS = {1, 2, . . . ,n} andn numbers 0 ⩽ q1,q2, . . . ,qn <

1, it return a random non-empty subset D ⊆ S with probability proportional to 1[D ̸= ∅]
∏

i∈D(1 −
qi)

∏
j∈S\D qj in time O(n).

Proof. Note that D can be obtained by sampling each i in S independently with probability 1 − qi condi-
tional on the outcome is non-empty. A natural idea is to use rejection sampling, but 1 −

∏n
i=1 qi can be

very small. Here we do this in a more efficient way.
We view any subset D ⊆ S as an n-dimensional vector σ ∈ {0, 1}S. We sample σi for i from 1 to

n one by one. In every step, conditional on σ1 = c1,σ2 = c2, . . . ,σi−1 = ci−1 ∈ {0, 1}, we compute
the marginal of σi and sample from the marginal. The marginal can be computed as follows: for any
ci ∈ {0, 1},

Pr
[
σi = ci | ∀j < i,σj = cj

]
=

Pr[∀j ⩽ i,σj = cj]

Pr[∀j ⩽ i− 1,σj = cj]
.

It suffices to compute Pr[∀j ⩽ i,σj = cj] for any 1 ⩽ i ⩽ n. Let Ω denote the set of all assignments
for {i + 1, i + 2, . . . ,n}. For any τ ∈ Ω, τ is an (n − i)-dimensional vector, where τk ∈ {0, 1} is the
value for k ⩾ i + 1. We use (cj)j⩽i + τ to denote an n-dimensional vector. For any j, let fj(0) = qj and
fj(1) = 1 − qj. Note that

Pr
[
∀j ⩽ i,σj = cj

]
=

∏i
j=1 fj(cj)

∑
τ∈Ω

∏n
k=i+1 fk(τk)1

[
(cj)j⩽i + τ is not zero vector

]
1 −

∏n
j=1 qi

.

Hence, if c1 + c2 + . . . + ci ⩾ 1, then

Pr
[
∀j ⩽ i,σj = cj

]
=

∏i
j=1 fj(cj)

1 −
∏n

j=1 qi

.

If c1 + c2 + . . . + ci = 0, then

Pr
[
∀j ⩽ i,σj = cj

]
=

(1 −
∏n

k=i+1 qk)
∏i

j=1 fj(cj)

1 −
∏n

j=1 qi

.

12

Hence, every conditional marginal can be computed by the formula above in timeO(n). An naive sampling
implementation takes O(n2) time to compute all the marginal probabilities, but it is not hard to see that
a lot of prefix or suffix products can be reused and the total running time of sampling can be reduced
to O(n). □

Now, we are almost ready to describe ApproxCount (Algorithm 3). For any ui, we have an approximate
value R̃ui

of Rui
and we also have a set Sui

of ℓ approximate samples from the distribution πui
. By

Lemma 9 and Lemma 10, we can efficiently approximate R
(i)
Λ and generate approximate samples from

π
(i)
Λ . Hence, we can simulate the process described below Lemma 8 to estimate RΛ.
However, to save the number of samples, there is a further complication. Our algorithm estimates the

expectation ofE[ZΛ] in two rounds and then takes the median of estimators. Recall (6). We further divide ℓ
by introducing the following parameters:

ℓ = Bℓ0, B := 60n+ 150m, ℓ0 := ℓ1 + 500ℓ2, ℓ1 := 400n, ℓ2 := ⌈104n2 max{m2, ϵ−2}⌉.
Then we do the following.

• For any ui ∈ ∂Λ, we divide all ℓ samples in Sui
into B blocks, each containing ℓ0 samples. Denote

the B blocks by S
(1)
ui

,S(2)
ui

, . . . , S(B)
ui

. Each block here is used for one estimatior.
• For each i ∈ [d] and j ∈ [B], we further partition S

(j)
ui

into two multi-sets S(j,1)ui
and S

(j,2)
ui

, where
S
(j,1)
ui

has ℓ1 samples and S
(j,2)
ui

has 500ℓ2 samples. These two sets are used for the two rounds,
respectively.
• For each j ∈ [B], we do the following two round estimation:

(1) use samples in (S
(j,1)
ui

)i∈[d] to obtain a constant-error estimation Ẑ
(j)
Λ of E[ZΛ];

(2) use Ẑ(j)
Λ and samples in (S

(j,2)
ui

)i∈[d] to obtain a more accurate estimation Z̃
(j)
Λ of E[ZΛ];

(3) let Q(j)
Λ ← Z̃

(j)
Λ

∑d
i=1 R̃

(i)
Λ , where R̃(i)

Λ :=
(
1 −

∏
u∈δΛ(ui)

q(u,ui)

)
R̃ui

for each i ∈ [d].
• Return the median number R̃Λ := median

{
Q

(1)
Λ ,Q(2)

Λ , . . . ,Q(B)
Λ

}
.

A detailed description of ApproxCount is given in Algorithm 3. It uses a subroutine Estimate, which
generates the Karp-Luby style estimator and is described in Algorithm 4.

Each time Algorithm 3 finishes, its input (V,E,Λ) and output R̃Λ are stored in the memory. If Algo-
rithm 3 is ever evoked again with the same input parameters (V,E,Λ), we simply return R̃Λ from the
memory.

Algorithm 3 first obtains the constant-error estimation Ẑ
(j)
Λ in Line 7. Next, it puts Ẑ(j)

Λ into the param-
eters and run the subroutine Estimate again to get a more accurate estimation Z̃

(j)
Λ . The benefit of this

two-round estimation is that we can save the number of samples maintained for each vertex. It costs only
a small number of samples to get the crude estiamtion, but the crude estimation carries information of the

ratio
∑

t∈[d] R
(t)
Λ

RΛ
, which allows us to fine tune the number of samples required per vertex for the good esti-

mation. To be more specific, in the second call of the subroutine Estimate, the number of overall samples,
namely the parameter T which depends on Ẑ

(j)
Λ , can still be as large as Ω(ℓ2n) in the worst case, and yet

each S
(j,2)
ui

has only O(ℓ2) samples in the block. In the analysis (Lemma 15), we will show that this many
samples per vertex suffice with high probability and Line 5 of Algorithm 4 (the failure case) is executed
with low probability. The reason is that, roughly speaking, large T means large overlap among Ω

(t)
Λ ’s,

and the chance of hitting each vertex is roughly the same, resulting in the number of samples required
per vertex close to the average. Conversely, small T means little overlap, and some vertex or vertices may
be sampled much more often than other vertices, but in this case the overall number of samples required,
namely T , is small anyways. To summarize, with this two-round procedure, O(ℓ) overall samples per
vertex are enough to obtain an estimation with the desired accuracy and high probability.

13

Algorithm 3: ApproxCount
(
V,E,Λ, (R̃w,Sw)w∈∂Λ

)
Input: a graph G = (V,E), a subset Λ ⊆ V , all (R̃w,Sw) for w ∈ ∂Λ, where

∂Λ = {w ∈ V \Λ | ∃w ′ ∈ Λ s.t. (w ′,w) ∈ E};
Output: an estimator R̃Λ of RΛ

1 if t ∈ Λ, then return 0; if Λ cannot reach t in G, then return 1;
2 for ui ∈ ∂Λ do
3 R̃

(i)
Λ ←

(
1 −

∏
u∈δΛ(ui)

q(u,ui)

)
R̃ui

;
4 partition Sui

(arbitrarily) into B multi-sets, denoted by S
(j)
ui

for j ∈ [B], where
B = 60n+ 150m and each S

(j)
ui

has ℓ0 = ℓ1 + 500ℓ2 samples;
5 for each j ∈ [B], partition S

(j)
ui

further into two multi-sets S(j,1)ui
and S

(j,2)
ui

, where |S(j,1)ui
| = ℓ1

and |S
(j,2)
ui

| = 500ℓ2;
6 for j from 1 to B do
7 Ẑ

(j)
Λ ← Estimate

(
(S

(j,1)
ui

)i∈[d], ℓ1, ℓ1

)
;

8 Z̃
(j)
Λ ← Estimate

(
(S

(j,2)
ui

)i∈[d], 500ℓ2, 25ℓ2 ·min{2/Ẑ(j)
Λ , 4n}

)
;

9 Q
(j)
Λ ← Z̃

(j)
Λ

∑d
i=1 R̃

(i)
Λ ;

10 return R̃Λ := median
{
Q

(1)
Λ ,Q(2)

Λ , . . . ,Q(B)
Λ

}
;

Algorithm 4: Estimate
(
(Sesui

)i∈[d], ℓes, T
)

Input: a set of samples Sesui
for each i ∈ [d], where |Sesui

| = ℓes, a threshold T

Output: an estimator Zes of E[ZΛ]
1 for each i ∈ [d], let ci = 0;
2 for k from 1 to T do
3 draw an index i ∈ [d] such that i is drawn with probability proportional to R̃

(i)
Λ ;

4 ci ← ci + 1;
5 if ci > ℓes then return 0;
6 let H = (Vui

,EH) be the ci-th sample from S
(j)
ui

;
7 do the following transformation on H to get H ′ = (V,EH ′);
8 • let EH ′ ← EH;
9 • draw D ⊆ δΛ(ui) with probability proportional to (14), and let EH ′ ← EH ′ ∪D;

10 • for each e ∈ E \ (Eui
∪ δΛ(ui)), add e into EH ′ independently with probability 1 − qe;

11 let Z(k)
es ∈ {0, 1} indicate whether i is the smallest index t ∈ [d] satisfying H ′ ∈ Ω

(t)
Λ ;

12 return Zes := 1
T

∑T
k=1 Z

(k)
es ;

4. Analysis

In this section we analyze all the algorithms.

4.1. Analysis of Sample. Let G = (V,E) be the input graph of Algorithm 1. Consider the subroutine
Sample

(
vk, (R̃w,Sw)w∈{vk+1,vk+2,...,vn}, R̃vk

)
as being called by Algorithm 1. Let u := vk, and the sub-

routine runs on the graph Gu = (Vu,Eu). In this section we consider a modified version of Sample, and
14

handle the real version in Section 4.3. Let m denote the number of edges in G. Suppose we can access an
oracle P satisfying:

• given u ∈ Vu, P returns p0 such that

1 −
1

10m
⩽ p0

R(Vu,Eu, {u})
⩽ 1 +

1
10m

;(15)

• given any E2 ⊆ Eu andΛ,Λ1 ⊆ V in Line 11 and Line 12 of Algorithm 2, P returns c0(Vu,E2,Λ)
and c1(Vu,E2,Λ1) such that

1 −
1

10m
⩽ c0(Vu,E2,Λ)

R(Vu,E2,Λ)
⩽ 1 +

1
10m

, and(16)

1 −
1

10m
⩽ c1(Vu,E2,Λ1)

R(Vu,E2,Λ1)
⩽ 1 +

1
10m

.(17)

Here, we use the convention 0
0 = 1 and x

0 = ∞ for x > 0. For any V , E and U ⊆ Vu, R(V,E,U) is the
U-t reliability in the graph (V,E). The numbers p0, c0 and c1 returned by P can be random variables, but
we assume that the inequalities above are always satisfied. Abstractly, one can view P as a random vector
XP, where

XP = {p0} ∪ {c0(Vu,E2,Λ), c1(Vu,E2,Λ1) | for all possible Vu,E2,Λ,Λ1}.
The dimension of XP is huge because there may be exponentially many possible Vu,E2,Λ,Λ1 in Line 11
and Line 12. The oracle first draw a sample xP of XP, then answers queries by looking at xP on the
corresponding coordinate. The conditions above are assumed to be satisfied with probability 1. Note that
this XP is only for analysis purposes and is not part of the real implementation.

The modified sampling algorithm replaces Line 2, Line 11 and Line 12 of Algorithm 2 by calling the
oracle P. In that case we do not need the estimates (R̃w,Sw) for w = vk+1, . . . , vn and R̃vk

, and thus
may assume that the input is only u = vk. Recall that n is the number of vertices in the input graph.

Lemma 11. Given any u = vk ∈ V , the with probability at least 1 − (ε/n)200, the modified sampling algo-
rithm does not crash and returns a perfect independent sample from the distribution πu, where the probability
is over the independent randomnessDu inside the Sample subroutine. The running time is Õ(N(|Eu|+ |Vu|)),
where N is the time cost for one oracle call and Õ hides polylog(n/ε) factors.

Proof. Throughout this proof, we fix a sample xP of XP in advance. The oracle P uses xP to answer the
queries. We will prove that the lemma holds for any xP satisfying the three conditions above.

We first describe an ideal sampling algorithm. The algorithm maintains the set E1,E2 and E as in the
Sample algorithm. At each step, we pick an edge e according to Line 7 of Algorithm 2. We compute the
conditional marginal probability of αe = PrG=(Vu,E ′)∼πu

[e ∈ E ′ | E ′ ∩ E1 = E], and add e into E with
probability αe. Then we update E1,E2 and Λ. Once t ∈ Λ, αe = 1 − qe for all e ∈ E2 and we can add all
subsequent edges independently. The ideal sampling algorithm returns an independent perfect sample.

The modified algorithm simulates the ideal process, but uses the oracle P to compute each conditional
marginal distribution αe. By the definition of conditional probability,

αe =
PrG=(Vu,E ′)∼πu

[e ∈ E ′ ∧ E ′ ∩ E1 = E]

PrG=(Vu,E ′)∼πu
[e ∈ E ′ ∧ E ′ ∩ E1 = E] + PrG=(Vu,E ′)∼πu

[e /∈ E ′ ∧ E ′ ∩ E1 = E]
.(18)

Recall E2 = Eu\E1. Let E ′
2 = E2\e. RecallΛ1 is the set of vertices u can reach if E∪{e} is selected. Condi-

tional on that E∪ {e} is selected, the probability that u can reach t is exactly the same as the probabilityΛ1
can reach t in the remaining graph (Vu,E ′

2). Then the numerator of (18) can be written as

(1 − qe)
∏

f∈E1∩E

(1 − qf)
∏

f ′∈E1∩E

qf ′ · R(Vu,E ′
2,Λ1),

15

where R(Vu,E ′
2,Λ1) is theΛ1-t reliability in the graph (Vu,E ′

2). Similarly, the second term of the denom-
inator of (18) can be written as

qe

∏
f∈E1∩E

(1 − qf)
∏

f ′∈E1∩E

qf ′ · R(Vu,E ′
2,Λ).

Putting them together implies

αe =
(1 − qe)R(Vu,E ′

2,Λ1)

(1 − qe)R(Vu,E ′
2,Λ1) + qeR(Vu,E ′

2,Λ)
.

If c0 and c1 in Line 11 and Line 12 are exactly R(Vu,E ′
2,Λ) and R(Vu,E ′

2,Λ1), then Line 5 to Line 19
in Algorithm 2 are the same as the ideal algorithm described above. Under this assumption, Algorithm 2
cannot crash in Line 6 or Line 13. Consider the modified algorithm in the lemma. Note that the state
of the algorithm can be uniquely determined by the pair (E2,E). By the assumption of P, we know that
R(Vu,E ′

2,Λ) = 0 if and only if c0 = 0 and R(Vu,E ′
2,Λ1) = 0 if and only if c1 = 0. Hence, any state

(E2,E) appears in the modified algorithm with positive probability if and only if it appears in the ideal
algorithm with positive probability. This implies the modified algorithm cannot crash in Line 6 or Line 13.

By the assumption of the oracle P again, we have

1 −
1

4m
⩽ 10m− 1

10m+ 1
⩽

(1−qe)c1
(1−qe)c1+qec0

αe
⩽ 10m+ 1

10m− 1
⩽ 1 +

1
4m

,

1 −
1

4m
⩽ 10m− 1

10m+ 1
⩽

qec0
(1−qe)c1+qec0

1 − αe
⩽ 10m+ 1

10m− 1
⩽ 1 +

1
4m

.

When the algorithm exits the whole loop, u can reach t and we have the remaining marginals exactly.
Finally, the algorithm gets a random subgraph H and a value p, where p = p(H) is the probability

that the algorithm generates H. Note that there are at most m edges in Eu. Taking the product of all
conditional marginals gives

exp(−1/2) ⩽
(

1 −
1

4m

)m

⩽ p(H)

πu(H)
⩽
(

1 +
1

4m

)m

⩽ exp(1/4).

Recall that

πu(H) =
wu(H)

R(Vu,Eu,u)
.

By the assumption of the oracle P, we have
9
10
⩽ p0

R(Vu,Eu,u)
⩽ 11

10
.

The parameter p0 > 0 because the input of Algorithm 2 must satisfy R(Vu,Eu,u) > 0. The filter proba-
bility f = Pr[F = 1 | H] in Line 20 of Algorithm 2 satisfies

1
16
⩽ f =

wu(H)

4p(H)p0
⩽ 1.

Hence, f is a valid probability and f ⩾ 1
16 . The algorithm cannot crash in Line 20. The algorithm outputs

H if F = 1. By the analysis above, we know that p(H) > 0⇔ πu(H) > 0 and

Pr[Sample outputs H] ∝ p(H)
wu(H)

p(H)p0
=

wu(H)

p0
∝ wu(H),

where the last “proportional to” holds because p0 is a constant (independent from H). Conditional on
F = 1,H is a perfect sample. We repeat the process for T = 1000 log n

ε
times, and each time the algorithm

succeeds with probability at least 1
16 . The overall probability of success is at least 1 − (ε/n)200.

16

The running time is dominated by the oracle calls. We can easily use data structures to maintain ∂Λ, Λ,
E2 and E. The total running time is Õ((|Vu|+ |Eu|)N). □

The above only deals with the modified algorithm. Analysing the real algorithm relies on the analysis
of ApproxCount, and we defer that to Section 4.3.

The Algorithm 2 can only be evoked by Algorithm 1. Fix u = vk. Suppose we use Algorithm 2 to
draw samples from πu. For later analysis, we need to make clear how each random variable depends on
various sources of randomness. We abstract the modified algorithm as follows. The oracle P is determined
by a random vector XP. The algorithm generates the inside independent randomness Du. The algorithm
constructs a random subgraph H = H(XP,Du) and a random indicator variable F = F(XP,Du), where
H and F denote the random variables of the same name in the last line of Algorithm 2. Lemma 11 shows
that conditional on F = 1,H is an independent sample (independent fromXP) that follows πu. We denote
it by

H(XP,Du)|F(XP,Du)=1 ∼ πu.
Here, for any random variable X and event E, we use X|E to denote the random variable X conditional on
E. In fact, a following stronger result can be obtained from the above proof

∀xP ∈ ΩP, H|F(XP,Du)=1∧XP=xP
∼ πu.

where ΩP denotes the support of XP. And it holds that

∀xP ∈ ΩP, Pr[F(XP,Du) = 1 | XP = xP] ⩾ 1 −
1

(n/ε)200 .

Note that the event F(XP,Du) = 1 depends on the input randomvariableXP. In the analysis in Section 4.3,
we need to define a event C such that Pr[C] ⩾ 1−(ε/n)200, C is independent fromXP andH(XP,Du)|C ∼

πu. We actually define this event C in a more refined probability space. The proof below defines this event
explicitly. We also include an alternative, more conceptual, and perhaps simpler proof in Appendix A,
where the event C is defined implicitly.

Consider the following algorithm NewSample. Recall that T = ⌈1000 log n
ε
⌉ is the parameter in Algo-

rithm 2.

Definition 12 (NewSample). The algorithm NewSample is the same as the Sample in Algorithm 2. The
only difference is that before Line 23, NewSample computes the value

pK :=
1 − ϵ200

n200

1 − (1 − Ru

4p0
)T

.(19)

If 0 ⩽ pK ⩽ 1, then independently sample K ∈ {0, 1} such that Pr[K = 1] = pK; otherwise, let K = 0.

We remark that in the above definition, K is sampled using independent randomness. Formally, let Du

be the inside randomness ofNewSample. We partitionDu into two disjoint random stringsD(1)
u andD(2)

u .
We use D(1)

u to simulate all steps in Algorithm 2 and use D(2)
u to sample K.

The value Ru is the exact u-t reliability in graph Gu. Indeed, we cannot compute the exact value of Ru

in polynomial time. We only use the algorithm NewSample in analysis, and do not need to implement this
algorithm. NewSample draws a random variable K but never uses it at all. Its sole purpose is to further
refine the probability space. Thus, the following observation is straightforward to verify.

Observation 13. Given the same input, the outputs of two algorithms NewSample and Sample follow the
same distribution.

A natural question here is that why do we even define NewSample? By Observation 13, we can fo-
cus only on NewSample in later analysis (in particular, the analysis of the correctness of our algorithm).
NewSample has one additional random variable K ∈ {0, 1}, which helps defining the event C below.

17

Similarly, we can defined a modified version of NewSample such that we use the oracle P to compute
p0, c0 and c1. NewSample also generates the same random subgraph H = H(XP,D(1)

u) and the same
random indicator F = F(XP,D(1)

u) as Sample. In addition, it generates a new random variable K =

K(XP,D(2)
u). We define the following event C for NewSample

C : F(XP,D(1)
u) = 1 ∧ K(XP,D(2)

u) = 1.(20)

Lemma 14. Suppose P satisfies the conditions in (15), (16) and (17). Then with probability 1, 0 ⩽ pK ⩽ 1.
Furthermore, it holds that

• C is independent from XP, which implies that C depends only on Du;
• PrDu

[C] = 1 − ε200/n200;
• conditional on C, NewSample does not crash and outputs an independent sample H(XP,D(1)

u) ∼ πu.

Proof. Suppose P satisfies the conditions in (15), (16) and (17). We first fix XP = xP for an arbitrary
xP ∈ ΩP. By the same analysis as in Lemma 11, in each of the repeat-until loop, the probability f of F = 1
is

1
16
⩽ f =

∑
H∈Ωu

p(H) · wu(H)

4p(H)p0
=

Ru

4p0
⩽ 1.

As the repeat-until loop is repeated independently for at most T times until F(XP,Du) = 1, we have

Pr[F(XP,Du) = 1 | XP = xP] = 1 −

(
1 −

Ru

4p0

)T

⩾ 1 −
ε200

n200 .

Hence, 0 ⩽ pK ⩽ 1. Next, note that given XP = xP, the value of pK is fixed and K is sampled inde-
pendently. We have that K(XP,D(2)

u) and F(XP,D(1)
u) are independent conditional on XP = xP. This

implies

Pr[C | XP = xP] = Pr[F(XP,D(1)
u) = 1 | XP = xP]Pr[K(XP,D(2)

u) = 1 | XP = xP]

=

(
1 −

(
1 −

Ru

4p0

)T
)
pK = 1 −

ε200

n200 .

The probability 1 − ε200/n200 is independent from xP. Hence, the event C is independent from XP.
Finally, we analyze the distribution ofH conditional on C. We first condition onXP = xP. If we further

conditional on F(XP,D(1)
u) = 1, the same analysis as in Lemma 11 shows that the algorithm does not crash

andH(XP,D(1)
u) ∼ πu. Note thatK(XP,D(2)

u) is sampled independentlywith a fixed probabilitypK (since
XP = xP has been fixed). Hence, K(XP,D(2)

u) is independent from both F(XP,D(1)
u) and H(XP,D(1)

u)
conditional on XP = xP. We have

H(XP,D(1)
u)|XP=xP∧C ≡ H(XP,D(1)

u)|
XP=xP∧F(XP,D(1)

u)=1 ∼ πu,

where we use X ≡ Y to denote that two random variables X and Y have the same distribution. Note that
the distribution πu on the RHS is independent from xP. Summing over xP ∈ ΩP gives that conditioned
on C, the output H = H(XP,D(1)

u) ∼ πu. □

4.2. Analysis of ApproxCount. Now we turn our attention to ApproxCount(V,E,Λ, (R̃w,Sw)w∈∂Λ),
where G = (V,E) is a DAG and t ̸∈ Λ. Recall that for any w ∈ V , the graph Gw = G[Vw], where
Vw contains all vertices v satisfying w ⇝

G
v and v ⇝

G
t. Let Rw be the w − t reliability in Gw. Let

Sideal
w be a multi-set of ℓ independent and prefect samples from πw. Recall that ℓ0 and B are parameters

in ApproxCount, Algorithm 3, and d = |∂Λ|. In the next lemma, we assume (R̃w)w∈∂Λ is fixed and
18

(Sw)w∈∂Λ is random. WhenApproxCount is called, we useD(V,E,Λ) to denote the internal randomness
in the execution of ApproxCount.

Lemma 15. Suppose the following conditions are satisfied

• for all w ∈ ∂Λ, w⇝
G
t;

• for any w ∈ ∂Λ, 1 − ε0 ⩽ R̃w

Rw
⩽ 1 + ε0 for some ε0 < 1/2;

• dTV
(
(Sw)w∈∂Λ, (Sideal

w)w∈∂Λ

)
⩽ δ0.

Then with probability at least 1 − δ0 − 2−B/30, it holds that

1 − ε0 −
2√
ℓ2
⩽ R̃Λ

RΛ

⩽ 1 + ε0 +
2√
ℓ2

,

where the probability is taken over the input randomness of (Sw)w∈∂Λ and the independent randomness
D(V,E,Λ) inside the ApproxCount algorithm. The running time of ApproxCount is O(nℓ(|V |+ |E|)).

Proof. If t ∈ Λ, then Algorithm 3 returns R̃w = Rw = 1 in Line 1. If t ̸∈ Λ and ∂Λ = ∅, then Algorithm 3
returns R̃w = Rw = 0 in Line 1. In the following, we assume t ̸∈ Λ and ∂Λ ̸= ∅. By the first condition,
we have d ⩾ 1 in Algorithm 3 and all distributions π(i)

Λ for i ∈ [d] are well-defined.
By Lemma 9 and the assumption in this lemma, all R̃(i)

Λ computed in Line 3 satisfy

1 − ε0 ⩽
R̃
(i)
Λ

R
(i)
Λ

⩽ 1 + ε0.(21)

Suppose ApproxCount uses perfect samples from (Sideal
w)w∈∂Λ. Consider the first call on the subroutine

Estimate (Algorithm 4). In the first call, the parameter T = ℓ1 = 400n. Note that ℓes = ℓ1 = 400n.
Hence, the condition in Line 5 of Algorithm 4 cannot be satisfied. By Lemma 9, H ′ obtained in Line 10 of
Algorithm 4 is a perfect sample from π

(i)
Λ . For any k ∈ [T], we have

E[Z(k)
es] =

d∑
i=1

R̃
(i)
Λ∑

t∈[d] R̃
(t)
Λ

·
∑

H ′∈Ω
(i)
Λ

wΛ(H ′)

R
(i)
Λ︸ ︷︷ ︸

=π
(i)
Λ (H ′)

·1
[
H ′ ∈ Ω

(i)
Λ ∧ ∀t < i,H ′ /∈ Ω

(t)
Λ

]

By (21) and a calculation similar to that in (13), we have

(1 − ε0)
RΛ∑d

i=1 R̃
(i)
Λ

⩽ E[Z(k)
es] ⩽ (1 + ε0)

RΛ∑d
i=1 R̃

(i)
Λ

(22)

Using (21), we have

E[Z(k)
es] ⩾ 1 − ε0

1 + ε0
· RΛ∑d

i=1 R̃
(i)
Λ

⩾ 1
4d

.(23)

Also recall that

Zes =
1
T

T∑
k=1

Z(k)
es .(24)

19

Then Var (Zes) =
Var
(
Z

(k)
es
)

T
, and by (23), E[Zes] ⩾ 1

4d . By Chebyshev’s inequality and for any k ∈ [T],

Pr

[
|Zes − E[Zes]| ⩾

10
√
d√
T

E[Zes]

]
⩽ T

100d
· Var (Zes)

(E[Zes])2 =
T

100d
·
Var

(
Z
(k)
es
)
/T(

E[Z(k)
es]
)2

=
1

100d

E
[(

Z
(k)
es
)2
]

(
E[Z(k)

es]
)2 − 1

 =
1

100d

(
E [Zes(k)]

(E[Zes(k)])
2 − 1

)
⩽ 1

25
,

where the last inequality is due to (23). Since T = ℓ1 = 400n ⩾ 100d in the first call on Algorithm 4, the
random variable Ẑ(j)

Λ in Algorithm 3 satisfies

Pr

[
1
2
⩽ Ẑ

(j)
Λ

E[Zes]
⩽ 2

]
⩾ 24

25
.

Next, we analyse the second call on Algorithm 4 conditional on 1
2 ⩽

Ẑ
(j)
Λ

E[Zes]
⩽ 2. By (23), E[Zes] ⩾

1
4d ⩾

1
4n . In this case, the parameter T in Algorithm 4 satisfies

25ℓ2
E[Zes]

⩽ T = 25ℓ2 min{2/Ẑ(j)
Λ , 4n} ⩽ min

{
100ℓ2
E[Zes]

, 100ℓ2n

}
.(25)

Consider the second call of Algorithm 4. Note that ℓes = 500ℓ2 in the second round. Let us first assume that
ℓes = ∞, which means each Ses

ui
contains infinitely many perfect samples. We first analyse the algorithm

in this ideal situation and then compare the real algorithm (where ℓes = 500ℓ2) with this ideal algorithm.
Note that if ℓes = ∞, then the condition in Line 5 of Algorithm 4 cannot be triggered. By a similar analysis,

Pr
[
|Zes − E[Zes]| ⩾

1√
ℓ2

E[Zes]

]
⩽ ℓ2 ·

Var (Zes)

(E[Zes])2 =
ℓ2
T
·
Var

(
Z
(k)
es
)

(
E[Z(k)

es]
)2

⩽ 1
25
·
Var

(
Z
(k)
es
)

E[Z(k)
es]

⩽ 1
25
·
E
[(

Z
(k)
es
)2
]

E[Z(k)
es]

=
1
25

.

We then show that the following result holds at the end of this ideal algorithm (ℓes = ∞)

Pr [∃i ∈ [d], s.t. ci > 500ℓ2] ⩽
1
25

.

Fix an index i ∈ [d]. Algorithm 4 has T iterations in total. For any k ∈ [T], let Xk ∈ {0, 1} indicate whether
i is picked in Line 6. Note that all Xk’s are independent random variables. Let X =

∑T
k=1 Xk. Then

E[X] = T
R̃
(i)
Λ∑

t∈[d] R̃
(t)
Λ

⩽ 100ℓ2
E[Zes]

R̃
(i)
Λ∑

t∈[d] R̃
(t)
Λ

,

where the inequality holds by the upper bound in (25). Since E[Zes] = E[Z(k)
es], we can use the lower

bound in (22) and the upper bound in (21) to obtain

E[X] ⩽ 100ℓ2
1 − ϵ0

·
R̃
(i)
Λ

RΛ

⩽ 100ℓ2 ·
1 + ϵ0
1 − ϵ0

·
R
(i)
Λ

RΛ

(∗)
⩽ 100ℓ2 ·

1 + ϵ0
1 − ϵ0

⩽ 300ℓ2,

20

where inequality (∗) uses the factR(i)
Λ ⩽ RΛ. This is becauseR(i)

Λ =
∑

H∈Ω
(i)
Λ

wΛ(H), RΛ =
∑

H∈ΩΛ
wΛ(H)

and Ω
(i)
Λ ⊆ ΩΛ (by Lemma 8). Note that T ⩽ 100ℓ2n and ℓ2 ⩾ 104n2 max{m2, ϵ−2}. Using Hoeffding

inequality on X yields

Pr[X > 500ℓ2] ⩽ Pr[X > E[X] + 200ℓ2] ⩽ exp
(
−

2002ℓ2
2

T

)
⩽ 1

25n
.

By a union bound over all i ∈ [d], we have

Pr [∃i ∈ [d], s.t. ci > 500ℓ2] ⩽
1
25

.

We can couple the ideal algorithm (ℓes = ∞) with the real algorithm (ℓes = 500ℓ2) such that if the above
bad event does not occur, the two algorithms output the same value. Hence, the random variable Z̃(j)

Λ in
Algorithm 3 satisfies

Pr

[
1 −

1√
ℓ2
⩽ Z̃

(j)
Λ

E[Zes]
⩽ 1 +

1√
ℓ2

]

⩾ Pr

[
1
2
⩽ Ẑ

(j)
Λ

E[Zes]
⩽ 2

]
Pr

[
1 −

1√
ℓ2
⩽ Z̃

(j)
Λ

E[Zes]
⩽ 1 +

1√
ℓ2

∣∣∣∣∣ 1
2
⩽ Ẑ

(j)
Λ

E[Zes]
⩽ 2

]

⩾ 24
25

(
1 −

1
25

−
1
25

)
⩾ 3

4
.

Combining (22) with the above inequality, we know that with probability at least 3/4, the random variable
Q

(j)
Λ in Algorithm 3 satisfies

1 − ε0 −
2√
ℓ2
⩽
(

1 −
1√
ℓ2

)
(1 − ε0) ⩽

Q
(j)
Λ

RΛ

⩽
(

1 +
1√
ℓ2

)
(1 + ε0) ⩽ 1 + ε0 +

2√
ℓ2

.

Since R̃Λ is the median of B valuesQ(j)
Λ , the success probability is boosted from 3/4 to 1− 2−B/30 by the

Chernoff bound.
Finally, the algorithm actually uses the samples from (Sw)w∈∂Λ. Consider an optimal coupling between

the real algorithm with the algorithm using ideal samples from (Sideal
w)w∈∂Λ. Due to the assumption that

dTV
(
(Sw)w∈∂Λ, (Sideal

w)w∈∂Λ

)
⩽ δ0 and Lemma 3, the two algorithms output the same answer with

probability at least 1−δ0. Hence, 1−ε0−
2√
ℓ2
⩽ R̃Λ

RΛ
⩽ 1+ε0+

2√
ℓ2

with probability at least 1−δ0−2−B/30.
The running time of Algorithm 3 is dominated by the second call on Estimate with parameter T =

O(ℓ2n). In Algorithm 4, the running time is dominated by the time spent on Line 11. We can find all the
vertices that can reach t in graph H ′ in time O(|E|+ |V |) (first inverse the direction of all edges and then
run a BFS starting from t). We can then compute Z(k)

es in time O(|V |). The total running time is
O(BT(|V |+ |E|)) = O(Bℓ2n(|V |+ |E|)) = O(nℓ(|V |+ |E|)). □

Lemma 15 treats ApproxCount as a standalone algorithm. However, in our main algorithm, we use Ap-
proxCount as a subroutine. We need to make sure that the inpputs are consistent every time ApproxCount
is called. Recall that G = (V,E) denotes the input graph of Algorithm 1. Every time when ApproxCount
is evoked, its input includes a subset of vertices V0 ⊆ V , a subset of edges E0 ⊆ E, a subset of vertices Λ0
and (R̃w,Sw)w∈∂Λ0 . Recall that ∂Λ0 = {w ∈ V0 \ Λ0 | ∃w ∈ Λ0 s.t. (w ′,w) ∈ E0}. The properties we
need are the following.

Lemma 16. If ApproxCount is evoked with input V0 ⊆ V , E0 ⊆ E, Λ0 ⊆ V0 and (R̃w,Sw)w∈∂Λ0 , then
• for all w ∈ ∂Λ0, Ew ⊆ E0, where Ew is the edge set of Gw;

21

• for all w ∈ ∂Λ0, (R̃w,Sw) has already been computed.

Remark 17. Lemma 16 guarantees that for any input (V0,E0,Λ0) of Algorithm 3, for any w ∈ ∂Λ0,
G0

w = Gw, where G0 = (V0,E0). This implies that w⇝
G0 t and all distributions in (12) are well-defined.

Proof of Lemma 16. Note that ApproxCount can be evoked either in Line 3 of Algorithm 1 or in Line 11
and Line 12 in Algorithm 2.

If ApproxCount is evoked by Algorithm 1, then V0 = Vvk
, E0 = Evk

and Λ0 = {vk}. For any w ∈
Vvk

\ {vk}, Gw is a subgraph of Gvk
= (V0,E0) and the first property holds. The second property holds

because vk ≺ w for all w ∈ Vvk
\ {vk}.

Suppose next that ApproxCount is evoked by Algorithm 2. For the first property, by Lemma 6, at the
beginning of every while-loop, for anyw ∈ ∂Λ, E1∩Ew = ∅, which implies Ew ⊆ E2. In other words, the
property holds at the beginning of the loop with V0 = Vu, E0 = E2, and Λ0 = Λ. Now consider Line 11
and Line 12 separately.

• Suppose ApproxCount is called in Line 11. In this case, comparing to the beginning of the loop,
∂Λ can only be smaller, and the edge (w ′,w∗) is removed from E2, wherew ′ ∈ Λ. If the property
does not hold, then there is some w ′′ ∈ ∂Λ such that Ew ′′ is not contained in the current E2. This
means that (w ′,w∗) ∈ Ew ′′ , which implies that w ′′ ≺ w∗. This contradicts how w∗ is chosen.
• Next consider Line 12. By Corollary 7, Λ1 = Λ ∪ {w∗}. Note that ∂Λ1 = ∂Λ ∪ Γout(w

∗) \ {w∗},
where Γout(w

∗) = {v ∈ Vu \ Λ | (w∗, v) ∈ E2}. The property holds for all vertices in ∂Λ \ {w∗}
by the previous case. For w ′′ ∈ Γout(w

∗) \ ∂Λ, the removal of the edge (w ′,w∗) does not affect
Gw ′′ . Thus the property also holds.

The second property holds because u ≺ w for all w ∈ Vu \ {u}. □

In Algorithm 1, each (R̃w,Sw) is computed with respect to Gw. Lemma 16 together with Lemma 15
shows that for every instance ofApproxCount evoked byAlgorithm 1, we can reuse all (R̃w,Sw) computed
before.

We still need to take care of the case when Algorithm 3 is called by Algorithm 2. This requires a gen-
eralised version of Lemma 15. Again, let G = (V,E) be the input of Algorithm 1 and v1, v2, . . . , vn ∈ V ,
where v1 = s and vn = t, be the topological ordering in Algorithm 1. For i from n to 1, Algorithm 1 com-
pute R̃vi

and a multi-set Svi
of ℓ random samples step by step. For any fixed i, we view each (R̃vj

,Svj
)j>i

as a random variable following a joint distribution.
Every time when ApproxCount (described in Algorithm 3) is evoked by Algorithm 1 or Algorithm 2, its

input includes a subset of vertices V0 ⊆ V with t ∈ V0, a subset of edges E0 ⊆ E, a subset of vertices
Λ0 ⊆ V0 and (R̃w,Sw)w∈∂Λ0 , where ∂Λ0 = {w ∈ V0 \ Λ0 | ∃w ′ ∈ Λ0 s.t. (w ′,w) ∈ E0}. For any i,
define Φi as a set of tuples (V0,E0,Λ0) such that

• (V0,E0,Λ0) ∈ 2V × 2E × 2V0 ;
• for all w ∈ ∂Λ0, Ew ⊆ E0, where Ew is the edge set of Gw;
• ∂Λ0 ⊆ {vi+1, . . . , vn}.

By Lemma 16 and the way Algorithm 1 works, Φi contains all possible inputs of ApproxCount when
we compute R̃vi

and Svi
(including the recursive calls). For any (V0,E0,Λ0) ∈ Φi, let R(V0,E0,Λ0)

denote the Λ0 − t reliability in the graph G0 = (V0,E0), where every edge e ∈ E0 fails independently
with probability qe. Suppose the random tuples (R̃vj

,Svj
)j>i have been generated by Algorithm 1. If we

run ApproxCount on (V0,E0,Λ0) and (R̃w,Sw)w∈∂Λ0 (note that ∂Λ0 ⊆ {vi+1, . . . , vn}), it will return a
random number R̃(V0,E0,Λ0), where the randomness comes from the input randomness of (R̃vj

,Svj
)j>i

and the independent randomness D(V0,E0,Λ0) inside ApproxCount. Our implementation makes sure
that any ApproxCount is evoked for every (V0,E0,Λ0) at most once. Hence, there is a unique random
variable R̃(V0,E0,Λ0) for each (V0,E0,Λ0).

22

We have the following generalised version of Lemma 15. Recall that Sideal
w is a set of ℓ independent

perfect samples from the distribution πw.

Lemma 18. Given the random tuples (R̃vj
,Svj

)j>i such that the following two conditions are satisfied

• for all j > i, 1 − ε0 ⩽
R̃vj

Rvj

⩽ 1 + ε0 for some ε0 < 1/2;

• dTV

(
(Svj

)j>i, (Sideal
vj

)j>i

)
⩽ δ0.

Let Φ ⊆ Φi. Then with probability at least 1 − δ0 − |Φ|2−B/30, it holds that

∀(V0,E0,Λ0) ∈ Φ, 1 − ε0 −
2√
ℓ2
⩽ R̃(V0,E0,Λ0)

R(V0,E0,Λ0)
⩽ 1 − ε0 −

2√
ℓ2

,(26)

where the probability is taken over the randomness of (R̃vj
,Svj

)j>i and the independent randomness of
D(V0,E0,Λ0) for (V0,E0,Λ0) ∈ Φ.

Proof of Lemma 18. Strictly speaking, all (R̃vj
)j>i are random variables, and the first condition means that

the event for (R̃vj
)j>i holdswith probability 1. Wewill actually prove a stronger result. Namely, the lemma

holds with probability at least 1 − δ0 − |Φ|2−B/30, where the probability is taken over the randomness of
(Svj

)j>i and the independent randomness of D(V0,E0,Λ0) for (V0,E0,Λ0) ∈ Φ, for any fixed values of
R̃vj

as long as the first condition is met.
Note that for any (V0,E0,Λ0) ∈ Φ, for all w ∈ ∂Λ0, Ew ⊆ E0, where Ew is the edge set of Gw, and

∂Λ0 = {w ∈ V0 \ Λ0 | ∃w ∈ Λ0 s.t. (w ′,w) ∈ E0}, which also implies that w can reach t in the graph
(V0,E0). The assumption in this lemma implies the assumption in Lemma 15, and the proof of this lemma
is similar to the proof of Lemma 15.

Again, the cases where t ∈ Λ0 and where ∂Λ0 = ∅ are trivial. The main case is when t ̸∈ Λ0 and
∂Λ0 ̸= ∅. We first use (Sideal

vj
)j>i to run the algorithm. Let use denote the output of the algorithm

by R̃ideal(V0,E0,Λ0). By the same argument as the one for Lemma 15, for any (V0,E0,Λ0) ∈ Φ, with
probability at least 1 − 2−B/30,

1 − ε0 −
2√
ℓ2
⩽ R̃ideal(V0,E0,Λ0)

R(V0,E0,Λ0)
⩽ 1 + ε0 +

2√
ℓ2

.

By a union bound over all (V0,E0,Λ0) ∈ Φ, we have that with probability at least 1 − |Φ|2−B/30,

∀(V0,E0,Λ0) ∈ Φ, 1 − ε0 −
2√
ℓ2
⩽ R̃ideal(V0,E0,Λ0)

R(V0,E0,Λ0)
⩽ 1 + ε0 +

2√
ℓ2

.(27)

Then we show the lemma using an optimal coupling between (Svj
)j>i and (Sideal

vj
)j>i. To be more

precise, we first sample (Svj
)j>i and (Sideal

vj
)j>i from their optimal coupling, then by Lemma 3 we have

Pr
[
∀j > i,Svj

= Sideal
vj

]
⩾ 1 − δ0.(28)

Next, we sample allD = (D(V0,E0,Λ0))(V0,E0,Λ)∈Φ. When we use (Svj
)j>i andD to run ApproxCount

on all of (V0,E0,Λ) ∈ Φ, we obtain an output vector R̃ = (R̃(V0,E0,Λ0))(V0,E0,Λ)∈Φ. Similarly, denote
by R̃ideal = (R̃ideal(V0,E0,Λ0))(V0,E0,Λ)∈Φ the output vector when we use (Sideal

vj
)j>i and D to run

ApproxCount. Define two good events
• A1: R̃ideal = R̃. By (28), Pr[A1] ⩾ 1 − δ0;
• A2: (27) holds for R̃ideal. We know Pr[A2] ⩾ 1 − |Φ|2−B/30.

23

If both A1 and A2 occur, then (26) holds. The probability is

Pr[A1 ∧A2] = 1 − Pr[A1 ∨A2] ⩾ 1 − Pr[A1] − Pr[A2] ⩾ 1 − δ0 − |Φ|2−B/30. □

Note that Lemma 18 cannot be obtained by simply applying Lemma 15 with a union bound, as that
will result in a failure probability of |Φ|

(
δ0 + 2−B/30) instead of δ0 + |Φ| 2−B/30. This is crucial to the

efficiency of our algorithm.

4.3. Analyze themain algorithm. Now, we are ready to put everything together and analyze the whole
algorithm. Recall that we use n to denote the number of vertices in the input graph and m ⩾ n − 1 the
number of edges.

We will need a simple lemma.

Lemma 19. Let X be a random variable over some finite state space Ω. Let E ⊆ Ω be an event that occurs
with positive probability. Let Y be the random variable X conditional on E. Then,

dTV (X, Y) ⩽ Pr[E].

Proof. We couple X and Y as follows: (1) first sample an indicator variable whether the event E occurs; (2)
if E occurs, couple X and Y perfectly; and (3) if E does not occur, independently sample X conditional of E
and sample Y. By Lemma 3,

dTV (X, Y) ⩽ Pr[X ̸= Y] ⩽ Pr[E]. □

The main goal of this section is to prove the following lemma. In the next lemma, we consider a vari-
ant of Algorithm 1, where we replace the subroutine Sample with the subroutine NewSample in Defini-
tion 12. Observation 13 shows that Sample and NewSample have the same output distribution. Hence,
the replacement does not change the distributions of R̃vi

, R̃(V0,E0,Λ0) and Svi
for all 1 ⩽ i ⩽ n and

all (V0,E0,Λ0) ∈ Φi. The only difference is that this variant of Algorithm 1 cannot be implemented
in polynomial time. However, we only use the variant algorithm to analyze the approximation error of
Algorithm 1. The running time of Algorithm 1 is analyzed separately in the proof of Theorem 1.

Lemma 20. For any 1 ⩽ i ⩽ n, there exists a good eventA(i) such thatA(i) occurs with probability at least
1 − n−i

10n and conditional on A(i), it holds that

• for any j ⩾ i, let Sideal
vj

be a multi-set of ℓ independent perfect samples from πvj
, it holds that

dTV

(
(Svj

)j⩾i, (Sideal
vj

)j⩾i

)
⩽ 2−4m(2n−i − 1);(29)

• the following event, denoted by B(i), occurs:

∀(V0,E0,Λ0) ∈ Φi, 1 −
n− i

50nmax{m, ε−1}
⩽ R̃(V0,E0,Λ0)

R(V0,E0,Λ0)
⩽ 1 +

n− i

50nmax{m, ε−1}
.(30)

In particular, the event B(i) implies that,

1 −
n− i

50nmax{m, ε−1}
⩽ R̃vi

Rvi

⩽ 1 +
n− i

50nmax{m, ε−1}
.(31)

Proof. We first show that B(i) implies (31). If i = n, then R̃vi
= Rvi

and (31) holds. For i < n, R̃vi
is

computed in Line 3 of Algorithm 1, where the input (V0,E0,Λ0) ∈ Φi. Hence, B(i) implies (31).
Next, we construct the event A(i) inductively from i = n to i = 1 and prove (29) and (30). The base

case is i = n, where vn = t. In this case, the only possible sample in Svn
is the empty graph with one

vertex t, and thus (29) holds. Also note that if (V0,E0,Λ0) ∈ Φn, then ∂Λ0 = ∅. By Line 1 in Algorithm 3,
if t ∈ Λ, the output is exactly 1, and if t /∈ Λ, the output is exactly 0. In either case, (30) holds. Hence, we
simply let A(n) be the empty event, occurring with probability 1.

24

For i < n, we inductively define

A(i) := A(i+ 1)∧B(i)∧ C(i),

where the event C(i) is defined next. Recall that Algorithm 1 calls Sample ℓ times to generate a multi-set
of ℓ samples in Svi

. By Observation 13, Sample and NewSample (Definition 12) have the same output
distribution. For analysis purposes, suppose we call NewSample instead ℓ times to generate a multi-set of
ℓ samples. In (20), we defined an event C for one instance of NewSample. Since we have ℓ of them, define

C(i) : for all ℓ calls of NewSample, the event C occurs.

Clearly A(i) implies B(i) and (31). Before we show that A(i) implies (29), we first lower bound the
probability of A(i) by 1 − n−i

10n . By the induction hypothesis, since A(i) implies A(i+ 1), conditional on
A(i), we have

dTV

(
(Svj

)j>i, (Sideal
vj

)j>i

)
⩽ 2−4m(2n−i−1 − 1).(32)

In fact A(i+ 1) implies A(j) for all j ⩾ i+ 1. Thus, by (31),

∀j ⩾ i+ 1, 1 −
n− i− 1

50nmax{m, ε−1}
⩽

R̃vj

Rvj

⩽ 1 +
n− i− 1

50nmax{m, ε−1}
,(33)

as the worst case of the bound is when j = i + 1. Note that Φj ⊆ Φi for all j < i. Conditional on
A(i + 1), we know that (30) (with parameter i) already holds for all (V0,E0,Λ0) ∈ ∪j>iΦj. We only
need to show (30) holds for all R̃(V0,E0,Λ0) with (V0,E0,Λ0) ∈ Φi \ ∪j>iΦj. The event A(i + 1) does
not bias the inside independent randomness D(V0,E0,Λ0) in Algorithm 3 that generates R̃(V0,E0,Λ0)
for (V0,E0,Λ0) ∈ Φi \ ∪j>iΦj. Combining (32), (33) and Lemma 18, with probability at least 1 −

2−4m(2n−i−1 − 1) − |Φi|2−B/30, it holds that ∀(V0,E0,Λ0) ∈ Φi \ ∪j>iΦj,

1 −
n− i− 1

50nmax{m, ε−1}
−

2√
ℓ2
⩽ R̃(V0,E0,Λ0)

R(V0,E0,Λ0)
⩽ 1 +

n− i− 1
50nmax{m, ε−1}

+
2√
ℓ2

.(34)

Also recall that ℓ0 =
⌈
104n2 max{m2, ε−2}

⌉
and B = 60n+ 150m. We have

n− i− 1
50nmax{m, ε−1}

+
2√
ℓ2
⩽ n− i

50nmax{m, ε−1}
,(35)

which means that (34) implies B(i). By Lemma 18, we have

Pr[B(i) | A(i+ 1)] ⩾ 1 − |Φi|2−B/30 − 2−4m(2n−i−1 − 1)(36)
⩾ 1 − 2−4m − 2−4m(2n−i−1 − 1) ⩾ 1 − 2−n,(37)

where we used the fact that |Φi| ⩽ 2m+2n.
Given A(i + 1) ∧ B(i), (31) also holds. The ℓ samples in Svi

are generated by NewSample on the
graphGvi

. In Line 11 and Line 12 of Algorithm 2 (which are also inNewSample), Algorithm 3 is evoked to
compute the value of c0 and c1. By Lemma 16, the input (V0,E0,Λ0) ∈ Φi. Also, by (31), R̃vi

approximates
Rvi

. Hence the subroutine Algorithm 3 behaves like the oracle P assumed in Lemma 14, satisfying condi-
tions (15), (16), and (17). By the definition of C(i) and Lemma 14, it is independent from A(i + 1)∧B(i)
because C(i) depends only on the independent randomness inside NewSample. By a union bound over ℓ
calls of NewSample, we have

Pr[C(i) | A(i+ 1)∧B(i)] ⩾ 1 −
ε200ℓ

n200 ⩾ 1 −
1

10n2 ,(38)

25

where ℓ = (60n+ 150m)
⌈
105n3 max{m2, ε−2}

⌉
. By the induction hypothesis, (37), and (38),

Pr[A(i)] = Pr[A(i+ 1)∧B(i)∧ C(i)] ⩾
(

1 −
n− i− 1

10n

)(
1 −

1
10n2

)(
1 − 2−n

)
⩾ 1 −

n− i

10n
.

We still need to show that A(i) implies (29). We use (Svj
)j>i|A(i+1) to the denote the random sam-

ples of (Svj
)j>i conditional on A(i + 1). Similarly, we can define ((R̃vj

)j>i, (Svj
)j>i,D)|A(i+1), where

D = (D(V0,E0,Λ0))(V0,E0,Λ0)∈Φi
, and ((R̃vj

)j⩾i, (Svj
)j⩾i,D)|A(i+1)∧B(i), where we further condi-

tion on B(i). Note that the event B(i) is determined by the random variables ((R̃vj
)j>i, (Svj

)j>i,D). By
letting E be B(i) conditional on A(i+ 1) in Lemma 19, we have that

dTV

(
((R̃vj

)j>i, (Svj
)j>i,D)|A(i+1)∧B(i), ((R̃vj

)j>i, (Svj
)j>i,D)|A(i+1)

)
⩽ 1 − Pr[B(i) | A(i+ 1)]

(by (36)) ⩽ |Φi|2−B/30 + 2−4m(2n−i−1 − 1) ⩽ 2−4m + 2−4m(2n−i−1 − 1).

Projecting to (Svj
)j>i we have

dTV
(
(Svj

)j>i|A(i+1)∧B(i), (Svj
)j>i|A(i+1)

)
⩽ 2−4m + 2−4m(2n−i−1 − 1).

By the induction hypothesis, it holds that

dTV

(
(Svj

)j>i|A(i+1), (Sideal
vj

)j>i

)
⩽ 2−4m(2n−i−1 − 1).

Using the triangle inequality for total variation distances, we have

dTV

(
(Svj

)j>i|A(i+1)∧B(i), (Sideal
vj

)j>i

)
⩽ 2−4m + 2−4m(2n−i−1 − 1)× 2 = 2−4m(2n−i − 1).

Given A(i + 1) ∧ B(i), (31) also holds. The ℓ samples in Svi
are generated by NewSample on the

graphGvi
. By Lemma 14, in that case, if C(i) occurs, Svi

contains ℓ prefect independent samples. Further-
more, the event C(i) is independent from (Svj

)j>i (as by Lemma 14, C(i) depends only on the internal
independent randomness of NewSample7). Hence,

dTV

(
(Svj

)j⩾i|A(i), (Sideal
vj

)j⩾i

)
= dTV

(
(Svj

)j>i|A(i), (Sideal
vj

)j>i

)
= dTV

(
(Svj

)j>i|A(i+1)∧B(i), (Sideal
vj

)j>i

)
⩽ 2−4m(2n−i − 1). □

We remark that the set Svi
may be used multiple times throughout Algorithm 1. In particular, this

means that there may be subtle correlation among R̃i’s. These correlations do not affect our approximation
guarantee. This is because the conditions of Lemma 15 and Lemma 18 only involve marginals. Namely, as
long as the marginals are in the suitable range, the correlation amongst them does not matter.

By (31) of Lemma 20 with i = 1, note that v1 = s, we have

Pr

[
1 −

1
50 max{m, ε−1}

⩽ R̃s

Rs
⩽ 1 +

1
50 max{m, ε−1}

]
⩾ Pr[A(1)] ⩾ 3

4
.(39)

Note that the eventsA(i) for 1 ⩽ i ⩽ n are defined for the variant of Algorithm 1, where we replace Sam-
ple with NewSample. By Observation 13, the variant and Algorithm 1 have the same output distribution.
Hence, for the original Algorithm 1, (39) still holds.

7In fact, (Svj)j>i is correlated with XP in Lemma 14 but independent from Du.
26

Proof of Theorem 1. The approximation guarantee follows directly from (39). Note that this guarantee is
always at least a (1± 1/m)-approximation and is stronger than a (1± ε)-approximation when ε > 1/m.
We need this because in the analysis for the sampling subroutine we need to apply a union bound for the
errors over the edges.

We analyze the running time next. Recall that n is the number of vertices of the input graph and
m ⩾ n− 1 is number of edges in G. Recall

ℓ = O((n+m)n2 max{m2, ϵ−2}) = O
(
n2mmax{m2, ε−2}

)
.

By Lemma 15, the running time of ApproxCount (Algorithm 3) is at most
Tcount = O(mnℓ) = O

(
n3m2 max{m2, ε−2}

)
.

By Lemma 11, the running time of Sample (Algorithm 2) is at most

Tsample = Õ((n+m)Tcount) = Õ(mTcount) = Õ
(
n3m3 max{m2, ε−2}

)
.

Hence, the running time of Algorithm 1 is

T = O
(
n
(
Tcount + ℓTsample

))
= O

(
nℓTsample

)
= Õ

(
n6m4 max{m4, ε−4}

)
. □

5. #BIS-haRdness foR s− t unReliability

In this section we show Theorem 2. We first reduce #BIS to s− t unreliability where each vertex (other
than s and t) fails with 1/2 probability independently. Note that in this version of the problem no edge
would fail. Given a DAG D = (V ∪ {s, t},A), this is equivalent to counting the number of subsets S ⊆ V

such that in the induced subgraph D[S ∪ {s, t}], s cannot reach t. We call S a s ̸⇝ t set.
Given a bipartite graph G = (V,E), let its two partitions be L and R. We add two special vertices s and

t, and connect, with directed edges, s to all vertices in L and all vertices in R to t. Lastly, for any edge
{u, v} ∈ E, where u ∈ L and v ∈ R, we replace it with a directed edge (u, v). Call the new directed graph
DG. Clearly it is a DAG.

For any independent set I inG, we claim that inDG[I∪ {s, t}], s cannot reach t. This is because for any
e ∈ E, there is at least one vertex unoccupied. Thus s cannot reach t using the directed version of e, and
this holds for any e ∈ E.

In the other direction, let S be a s ̸⇝ t subset of V . This means that for any edge {u, v} ∈ E, either
u ̸∈ S or v ̸∈ S, as otherwise s→ u→ v→ t. This means that S is an independent set of G.

Thus, there is a one-to-one correspondence between independent sets of G and s ̸⇝ t subsets of V .
Namely, s− t unreliability where vertices (other than s and t) fail with 1/2 probability is #BIS-hard.

Next, we reduce s− t unreliability from the vertex version. For this, we can replace each vertex v (other
than s and t) by two vertices v, v ′ and a directed edge v → v ′. All incoming edges of v still goes into v,
and all outgoing edges of v goes out from v ′. Assign to the new edges the failure probabilities of their
corresponding vertices, and assign failure probability 0 to all original edges. Clearly the unreliability is
the same with these changes. To make failure probabilities uniform, we can replace edges with failure
probability 0 by k parallel edges. Effectively, the connection fails only if all the parallel edges fail at the
same time. If the failure probability of each edge is q, the probability of all parallel edges failing is qk. As
this probability approaches 0 exponentially fast, it is easy to set a polynomially bounded k so that the new
unreliability is a sufficiently good approximation of the original.

As a side note, the last reduction also works for reliability. ThusTheorem 1 also works for s−t reliability
in DAGs where vertices rather than edges fail independently.

AcKnowledgement

We thank Kuldeep S. Meel for bringing the problem to our attention, Antoine Amarilli for explaining
their method to us, and Marcelo Arenas for insightful discussions. We also thank Zongchen Chen for
suggesting a better presentation of Theorem 1, and Mark Jerrum for some useful insights. This project

27

has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. 947778). Weiming Feng acknowledges the
support from Dr. Max Rössler, the Walter Haefner Foundation and the ETH Zürich Foundation. This work
was done in part while Weiming Feng was visiting the Simons Institute for the Theory of Computing.

RefeRences
[ACJR21] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. #NFA admits an FPRAS: efficient

enumeration, counting, and uniform generation for logspace classes. J. ACM, 68(6):48:1–48:40, 2021. 2
[ÀJ93] Carme Àlvarez and Birgit Jenner. A very hard log-space counting class. Theor. Comput. Sci., 107(1):3–30, 1993. 2
[ALO+21] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant, and Thuy-Duong Vuong. Log-concave polynomials

IV: approximate exchange, tight mixing times, and near-optimal sampling of forests. In STOC, pages 408–420. ACM,
2021. 1

[ALOV19] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials II: high-dimensional
walks and an FPRAS for counting bases of a matroid. In STOC, pages 1–12. ACM, 2019. 1

[AvBM23] Antoine Amarilli, Timothy van Bremen, and Kuldeep S. Meel. Conjunctive queries on probabilistic graphs: the limits
of approximability. arXiv, abs/2309.13287, 2023. 2, 30

[Bal80] Michael O. Ball. Complexity of network reliability computations. Networks, 10(2):153–165, 1980. 1
[Bal86] Michael O. Ball. Computational complexity of network reliability analysis: An overview. IEEE Trans. Rel., 35(3):230–

239, 1986. 1
[BP83] Michael O. Ball and J. Scott Provan. Calculating bounds on reachability and connectedness in stochastic networks.

Networks, 13(2):253–278, 1983. 1
[CGM21] Mary Cryan, Heng Guo, and Giorgos Mousa. Modified log-Sobolev inequalities for strongly log-concave distributions.

Ann. Probab., 49(1):506–525, 2021. 1
[CGZZ23] Xiaoyu Chen, Heng Guo, Xinyuan Zhang, and Zongrui Zou. Near-linear time samplers for matroid independent sets

with applications. arXiv, abs/2308.09683, 2023. 1
[CHLP23] Ruoxu Cen,WilliamHe, Jason Li, andDebmalya Panigrahi. Beyond the quadratic time barrier for network unreliability.

arXiv, abs/2304.06552, 2023. 1
[Col87] Charles J. Colbourn. The Combinatorics of Network Reliability. Oxford University Press, 1987. 1
[DGGJ04] Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, andMark Jerrum.The relative complexity of approximate

counting problems. Algorithmica, 38(3):471–500, 2004. 3
[GH20] Heng Guo and Kun He. Tight bounds for popping algorithms. Random Struct. Algorithms, 57(2):371–392, 2020. 1
[GJ19] Heng Guo and Mark Jerrum. A polynomial-time approximation algorithm for all-terminal network reliability. SIAM

J. Comput., 48(3):964–978, 2019. 1, 3
[GJK+97] VivekGore, Mark Jerrum, Sampath Kannan, Z. Sweedyk, and Stephen R.Mahaney. A quasi-polynomial-time algorithm

for sampling words from a context-free language. Inf. Comput., 134(1):59–74, 1997. 2
[GJL19] Heng Guo, Mark Jerrum, and Jingcheng Liu. Uniform sampling through the Lovász local lemma. J. ACM, 66(3):18:1–

18:31, 2019. 1
[HS18] David G. Harris and Aravind Srinivasan. Improved bounds and algorithms for graph cuts and network reliability.

Random Struct. Algorithms, 52(1):74–135, 2018. 1
[Jer81] Mark Jerrum. On the complexity of evaluating multivariate polynomials. PhD thesis, The University of Edinburgh, 1981.

1
[JVV86] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial structures from a uniform

distribution. Theor. Comput. Sci., 43:169–188, 1986. 2, 3, 6
[Kar99] David R. Karger. A randomized fully polynomial time approximation scheme for the all-terminal network reliability

problem. SIAM J. Comput., 29(2):492–514, 1999. 1, 3
[Kar20] David R. Karger. A phase transition and a quadratic time unbiased estimator for network reliability. In STOC, pages

485–495. ACM, 2020. 1
[KL83] Richard M. Karp and Michael Luby. Monte-Carlo algorithms for enumeration and reliability problems. In FOCS, pages

56–64. IEEE Computer Society, 1983. 2, 3
[KL85] Richard M. Karp and Michael Luby. Monte-Carlo algorithms for the planar multiterminal network reliability problem.

J. Complex., 1(1):45–64, 1985. 2
[KLM89] Richard M. Karp, Michael Luby, and Neal Madras. Monte-Carlo approximation algorithms for enumeration problems.

J. Algorithms, 10(3):429–448, 1989. 2, 3
[MCM23] Kuldeep S. Meel, Sourav Chakraborty, and Umang Mathur. A faster FPRAS for #NFA. arXiv, abs/2312.13320, 2023. 2, 3
[PB83] J. Scott Provan and Michael O. Ball. The complexity of counting cuts and of computing the probability that a graph is

connected. SIAM J. Comput., 12(4):777–788, 1983. 1
28

[Pro86] J. Scott Provan. The complexity of reliability computations in planar and acyclic graphs. SIAM J. Comput., 15(3):694–
702, 1986. 1

[Val79] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput., 8(3):410–421, 1979. 1
[ZL11] Rico Zenklusen andMarco Laumanns. High-confidence estimation of small s-t reliabilities in directed acyclic networks.

Networks, 57(4):376–388, 2011. 1, 2

Appendix A. An alteRnative way to define the event C

We start from the following abstract setting. Let A ∼ µA and B ∼ µB be two random variables over
some state space Ω. Suppose for any x ∈ Ω, it holds that

µA(x) ⩾ (1 − ε)µB(x),

for some 0 ⩽ ε < 1. Then, the distribution µA can be rewritten as

µA = (1 − ε)µB + εν,

where the distribution ν is defined by

∀x ∈ Ω, ν(x) =
µA(x) − (1 − ε)µB(x)

ε
.

Then, we can draw a sample A ∼ µA using the following procedure.
• Flip a coin with probability of HEADS being 1 − ε;
• If the outcome is HEADS, draw A ∼ µB;
• If the outcome is TAILS, draw A ∼ ν.

In this procedure, we can define an event C as “the outcome of the coin flip is HEADS”. We know that
conditional on C, the distribution of A is µB. Such an event C is defined in an expanded space Ω ×
{HEADS, TAILS}.

Consider the modified version of Sample, where Sample is defined in Algorithm 2. Suppose we use it on
πu, where u = vk. Let XP be the random variable associated with the oracle P. Denote the distribution
of XP by µP. Sample uses independent inside randomness Du to generate H = H(XP,Du) and F =
F(XP,Du). Define

µA : the joint distribution of XP and H,
µB : the product distribution of µP and πu.

For any xP in the support of XP and any h in the support of πu, we have
µA(xP,h)
µB(xP,h)

=
Pr[XP = xP]Pr[H = h | XP = xP]

Pr[XP = xP]πu(h)
=

Pr[H = h | XP = xP]

πu(h)
.

Note that

Pr[H = h | XP = xP] ⩾ Pr[F = 1 | XP = xP]Pr[H = h | F = 1 ∧XP = xP] ⩾ (1 − ε)πu(h),

where ε = 1 − 1/n200. This implies
µA(xP,h)
µB(xP,h)

⩾ 1 − ε.

Using the above abstract result, we can define an equivalent process of Sample and find an event C such
that Pr[C] ⩾ 1−ε and conditional on C, (XP,H) ∼ µB. By the definition of µB, we know that conditional
on C, XP ∼ µP still follows the distribution specified by the oracle P, which means that C is independent
from XP. And also, H is a perfect independent sample from πu. Finally, we remark that in our analysis
(see Observation 13 and Lemma 20), we only need to show that such an equivalent process and the event
C exist. We do not need to implement the process nor certify the event in the algorithm.

29

Appendix B. Reducing counting s− t connected subgRaphs in DAGs to #NFA

Given a graph G = (V,E) with a source s and a sink t, the set of s − t connected subgraphs are
{H = (V,EH) | EH ⊆ E s.t. s⇝

H
t}. Let m := |E|. Counting s− t connected subgraphs is equivalent to

computing the s − t reliability of the same graph with qe = 1/2 for all e ∈ E. In this section, we reduce
counting s− t connected subgraphs in DAGs to #NFA. This reduction is essentially the same as the one in
[AvBM23], where it is not explicitly given.

Given a DAG G, we construct an NFA AG such that the number of its accepting strings is the same
as the number of s − t connected subgraphs in G. The states of AG consists of the starting state s, all
edges, the accepting state t, a failure state, and some auxiliary states. We order all edges inG according to
the head of the edge’s topological order, say e1, . . . , em. In particular, this means that if f1, . . . , fk form
a path, then f1 ≺ f2 · · · ≺ fk. Moreover, we want to connect s and t to their respective adjacent edges,
and two edges if they share an endpoint. However, we want each bit of the input string to correspond
to whether to have an edge or not, which implies that we need to absorb all intermediate inputs. Thus,
instead, to connect ei to ej with i < j, we add auxiliary states f(i,j)k from k = i + 1 to k = j − 1. We
connect ei to f

(i,j)
i+1 , f(i,j)i+1 to f

(i,j)
i+2 , etc., labelled with both 0 and 1. Lastly, we connect f(i,j)j−1 to ej, labelled

with only 1, and we connect f(i,j)j−1 to the failure state, labelled with 0. Once we are in the failure state, it
can only move to itself, namely it has only a self-loop labelled with both 0 and 1. We also do the same as
above by treating s as e0 (whose tail is s and head does not matter) and t as em+1 (whose head is t and
tail does not matter). Note that there are O(m2) states and we are counting accepting strings of length
m+ 1. The last bit of any accepting string has to be 1, and therefore each accepting string is an indicator
vector for a subset of edges. It is easy to verify that the string is accepted if and only if s can reach t in the
corresponding subgraph. This finishes the reduction.

30

	1. Introduction
	1.1. Algorithm overview

	2. Preliminaries
	2.1. Problem definitions
	2.2. More notations
	2.3. The total variation distance and coupling

	3. The algorithm
	3.1. The framework of the algorithm
	3.2. Generate samples
	3.3. Approximate counting

	4. Analysis
	4.1. Analysis of Sample
	4.2. Analysis of ApproxCount
	4.3. Analyze the main algorithm

	5. #BIS-hardness for s-t unreliability
	Acknowledgement
	References
	Appendix A. An alternative way to define the event C
	Appendix B. Reducing counting st connected subgraphs in DAGs to counting NFA

