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AbstRact. We present two randomised approximate counting algorithms with Õ(n2−c/ε2) running time
for some constant c > 0 and accuracy ε:
(1) for the hard-core model with fugacity λ on graphs with maximum degree ∆ when λ = O(∆−1.5−c1)

where c1 = c/(2 − 2c);
(2) for spin systems with strong spatial mixing (SSM) on planar graphs with quadratic growth, such as Z2.
For the hard-core model, Weitz’s algorithm (STOC, 2006) achieves sub-quadratic running time when cor-

relation decays faster than the neighbourhood growth, namely when λ = o(∆−2). Our first algorithm does
not require this property and extends the range where sub-quadratic algorithms exist.

Our second algorithm appears to be the first to achieve sub-quadratic running time up to the SSM threshold,
albeit on a restricted family of graphs. It also extends to (not necessarily planar) graphs with polynomial
growth, such as Zd, but with a running time of the form Õ

(
n2ε−2/2c(logn)1/d

)
where d is the exponent of

the polynomial growth and c > 0 is some constant.

1. IntRoduction

The study of counting complexity was initiated by Valiant [Val79] with the introduction of the complex-
ity class #P. An intriguing phenomenon emerging in counting complexity is that many #P-complete
problems admit fully polynomial-time randomised approximation schemes (FPRAS), which output an ε-
approximation in time polynomial in n and 1/εwith n being the input size. This is most commonly found
for the so-called partition function of spin systems, as demonstrated by the pioneering work of Jerrum and
Sinclair [JS89, JS93]. Spin systems are physics models for nearest neighbour interactions, and the partition
functions are the normalizing factors for their Gibbs distributions. This quantity can express the count of
combinatorial objects such as the number of matchings, independent sets, or colourings in a graph, and is
much more expressible by allowing real parameters of the system.

In this paper we are most interested in the fine-grained aspects of the complexity of estimating par-
tition functions. While for most spin systems, exact counting is #P-hard [CC17], many of them admit
efficient approximation schemes when strong spatial mixing (SSM) holds. Roughly speaking, SSM states
that correlation or influence between vertices decays quickly as their distance increases (detailed defini-
tions are given in Section 2 and Definition 6). When SSM fails, the partition function is usually NP-hard
to approximate [SS14, GŠV16, GŠV15].

Efficient approximate counting was first enabled by the work of Jerrum, Valiant, and Vazirani [JVV86]
who gave self-reductions from approximate counting to sampling for a large class of problems. The sam-
pling task is then most commonly solved via Markov chains. The efficiency of a Markov chain is measured
by its mixing time (i.e. how long it takes to get close to the target distribution). For spin systems with
SSM, in many situations, the standard chain, namely the Glauber dynamics, mixes in O(n logn) time
[CLV21, AJK+22, CFYZ22, CE22].
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Another later technique, simulated annealing, provides a more efficient counting to sampling reduc-
tion [ŠVV09, Hub15, Kol18]. Together with the O(n logn) mixing time mentioned above, this leads to
Õ((n/ε)2)1 approximate counting algorithms. These Markov chain Monte Carlo (MCMC) algorithms are
the fastest for estimating partition functions in general, but Ω(n2) appears to be a natural barrier to this
approach. This is because generating a sample would take at least linear time (and there are Ω(n logn)
lower bounds for the mixing time of Markov chains [HS07] for many spin systems), and, restricted to the
standard way of using the samples, the number of samples required for simulated annealing is at least
Ω(n/ε2) [Kol18, Theorem 10].

On the other hand, when we relax the parameters, Ω(n2) is no longer a barrier to algorithms. Let us
take the hard-core gas model as an example. Here the Gibbs distribution µ is over the set I of independent
sets of a graph G. For an independent set I, µ(I) := λ|I|/Z(G), where λ is a parameter of the system (so-
called fugacity), and Z(G) :=

∑
I∈I λ

|I| is the partition function. For graphs with degree bound ∆, SSM
holds when λ < λc(∆) :=

(∆−1)∆−1

(∆−2)∆ ≈ e
∆
. The aforementioned MCMC results [CLV21, CFYZ22, CE22]

imply FPRASes running in time Õ((n/ε)2) as long as λ < λc(∆). Yet much earlier, Weitz [Wei06] gave
the first fully polynomial-time approximation scheme (FPTAS, the deterministic counterpart to FPRAS)
for the partition function of the hard-core model when λ < λc(∆), which is not based on Markov chains.
While Weitz’s algorithm has a running time nO(log∆) in general, it has an interesting feature that it gets
faster as λ decreases. Roughly speaking, for k > 0 and λ = O((1/∆)1+k), Weitz’s FPTAS runs in time
O(n1+1/k/ε2). In particular, if λ = o(∆−2), Weitz’s algorithm passes the Ω(n2) barrier, whereas the
aforementioned MCMC method still takesΩ(n2) time. This leads to an intriguing question:

When can we achieve sub-quadratic running time for approximate counting?(1)

In this paper we make some progress towards this question. For hard-core models, Weitz’s algorithm
uses the self-reduction [JVV86] to reduce approximate counting to estimating marginal probabilities. We
provide a quadratic speedup for the marginal estimation step for λ well below λc(∆), albeit with the
introduction of randomness. The result is summarized as follows.

Theorem 1. Fix a constant k > 0. Let ∆ ⩾ 2 be an integer and λ < 1
∆k(∆−1) . For graphs with maximum

degree ∆, there exists an FPRAS for the partition function of the hard-core model with parameter λ in time
Õ(n1+ 1

2k /ε2), where n is the number of vertices.

Remark (Decay rate vs. neighbourhood growth). For a constant ε, the running time of Theorem 1 is sub-
quadratic if λ = o(∆−1.5), and Õ(n1.5) if λ = O(∆−2). In contrast, to achieve sub-quadratic running-time,
Weitz’s algorithm requires λ = o(∆−2), which is also the thresholdwhen correlation decays faster than the
growth of the neighbourhood. This threshold has algorithmic significance in other contexts [FGY22, AJ22],
but Theorem 1 implies that it is not essential to achieve sub-quadratic approximate counting.

Figure 1 is a sketch comparing the running times of MCMC,2 Weitz’s algorithm, and Theorem 1.3 For
the limiting case of k = 0, our algorithm works when λ < 1

∆−1 and still presents a quadratic speedup com-
paring to Weitz’s algorithm. However in this case the running time is

(
n
ε

)O(log∆) and thus our speedup
is hidden in the big-O notation and is less significant. The parameter constraint 1

∆−1 is imposed by the
running-time tail bound of a subroutine we used, namely the recursive marginal sampler of Anand and
Jerrum [AJ22].

1The notation Õ(·) hides logarithmic factors.
2The running time of MCMC usually also depends on the parameter λ, but changing λ does not change the exponent of n.

The effect of λ is usually a small polynomial factor hidden in the Õ(·) notation, and the sketch in Figure 1 ignores this effect.
3Another notable FPTAS is via zeros of polynomials [Bar16, PR17]. It can achieve similar subquadratic running time when

λ = o(∆−2), but it is apparently no faster than Weitz’s correlation decay algorithm.
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FiguRe 1. Running time comparison among MCMC, Weitz’s algorithm, and Theorem 1

The key to our method is to find a new estimator of the marginal probability that simultaneously has
low variance and can be evaluated very fast. Our technique combines Weitz’s self-avoiding walk (SAW)
tree construction and the Õ(1) marginal sampler of Anand and Jerrum [AJ22]. The marginal of the root
of the SAW tree preserves the desired marginal probability, and can be evaluated in time linear in the size
of the tree via standard recursion. We use the marginal sampler to draw a random boundary condition
at a suitable depth on the SAW tree, and compute the marginal of the root using recursion under this
boundary condition. Both steps can be computed in time near-linear in the size of the sub-tree. The
depth of our boundary condition is roughly half of where Weitz truncates the SAW tree, and yet we show
that our estimator has O(1/n) variance under SSM, which is essential to get an FPRAS. This leads to our
quadratic improvement on the marginal estimation over Weitz’s algorithm. This method also extends to
other anti-ferromagnetic 2-spin systems.

Our second contribution is about graphs with polynomial growth. In particular, for planar graphs with
quadratic growth, we provide Õ(n2−c/ε2) algorithms for some constant c > 0. An informal statement is
as follows. (The detailed statement is Theorem 12.)

Theorem 2. Let G be a family of planar graphs with quadratic growth. For a spin system exhibiting SSM on
G, there exists an FPRAS for the partition function ofG ∈ G with n vertices. The run-time is Õ(n2−c/ε2) for
some constant c > 0.

We note that one of the most important graph in statistical physics, the 2D integer grid Z2, indeed has
quadratic growth. More generally, any planar graph with a bounded radius circle packing has quadratic
growth. Thus Theorem 2 covers many important families of planar graphs, including most lattices. (A
non-example would be the Cayley tree.) Specialized to the hard-core model, Theorem 2 works up to the
critical threshold, which is at least λc(∆),4 when the graph satisfies the condition in the theorem and has
maximum degree ∆.

The key toTheorem 2 is once again a suitable estimator formarginal probabilities. We choose a distance ℓ
boundary around a vertex v inGwith a carefully chosen ℓ, and our estimator is the marginal under random
boundary conditions. This boundary condition is yet again sampled using the algorithm of Anand and
Jerrum [AJ22]. Our main observation is that due to quadratic growth, the number of possible boundary
conditions do not grow very fast. It turns out to be more efficient to create a look-up table by enumerating

4For a given graph family, such as subgraphs of Z2, the critical threshold may be well above λc(∆).
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all boundary conditions first, and instead of computing the marginal for each sample, we simply find it in
this table. Since planar graphs have linear local tree-width, the table can be created efficiently. This last
step is inspired by the work of Yin and Zhang [YZ13].

This method extends to any (not necessarily planar) graph families with polynomial growth. Without
planarity, we use brute-force enumeration instead to create the table. This makes our gain on the running
time smaller. Again an informal statement is as follows, with the full version in Theorem 20.

Theorem 3. Let G be a family of graphs with polynomial growth. For a spin system exhibiting SSM on G,
there exists an FPRAS for the partition function of G ∈ G with n vertices. The run-time is Õ

(
n2

ε22c(logn)1/d

)
where c > 0 is some constant and d is the exponent of the polynomial growth.

An example of such graphs would be the d-dimensional integer latticeZd. Note thatTheorem 2 is better
than Theorem 3 for d = 2 but requires the extra assumption of planarity. The speedup factor 2c(logn)1/d

in Theorem 3 is slower than any polynomial in n but faster than any polynomial in logn.
We note an interesting related work by Chu, Gao, Peng, Sachdeva, Sawlani, and Wang [CGP+18], who

give an approximate counting algorithm with running time Õ(m1+o(1)+n1.875+o(1)/ε1.75) for spanning
trees of graphs, where m is the number of edges and n is the number of vertices. Notice that the input
size here isO(m) andm = Ω(n). Thus their running time is also sub-quadratic. However, there are some
key differences between this work and ours. Aside from not being a spin system, spanning trees can be
counted exactly in polynomial time, thanks to Kirchhof’s matrix-tree theorem. This allows them to use
various efficient exact counting subroutines, whereas the problems we consider are #P-hard in general
and no such subroutine is likely to exist.

Another more recent related result is the sub-quadratic all-terminal unreliability estimation algorithm
by Cen, He, Li, and Panigrahi [CHLP23], which runs in sub-quadratic time m1+o(1)ε−3 + Õ(n1.5ε−2).
This problem, while #P-hard, is not a spin system either. Their method features a recursive Monte Carlo
estimator that is very different from ours, and not applicable to spin systems.

A crucial ingredient of our algorithm is the recursivemarginal sampler of Anand and Jerrum [AJ22]. This
type of local / marginal samplers allows us partial access to a large random object with substantially less
information than traditional samplers. It has found applications in local computation algorithms [BRY20],
and in derandomising Markov chains [FGW+23]. Our results offer yet another application, namely to
accelerate computation of the global partition function.

We hope that our results are just the first step towards answering the question (1). In particular, it is not
clear whether anO(n2−c/ε2) algorithm exists for the hard-core model when λ = Θ(1/∆) on graphs with
maximum degree ∆, or if more efficient algorithms exist for graphs with polynomial or sub-exponential
growth. We leave these questions as open problems.

2. PReliminaRies

We are interested in spin systems which exhibit strong spatial mixing.

Definition 4. A q state spin system (or q-spin system for short) is given by a graphG = (V,E), a q-by-q
interaction matrix A, and a field b : [q] → R. A configuration of G is an assignment of states to vertices,
σ : V → [q]. The weight of a configuration σ is determined by the assignments to the vertices and the
interactions between them,

w(σ) :=
∏

(u,v)∈E

Aσ(u),σ(v)
∏
v∈V

bσ(v).

TheGibbs distribution µ is one where the probability of each configuration is proportional to its weight,
namely, µ(σ) := w(σ)

Z(G) , where the partition function Z(G) =
∑

σw(σ) is a normalizing factor.

In this paper, we consider the following permissive spin system, which says any locally feasible config-
uration can be extended to a globally feasible configuration.
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Definition 5. A q-spin system on G = (V,E) is permissive if for any Λ ⊆ V , any σ ∈ [q]Λ, if bσ(v) > 0
for all v ∈ Λ and Aσ(u),σ(v) > 0 for all u, v ∈ Λ satisfying (u, v) ∈ E, then σ can be extended to a full
configuration σ ′ ∈ [q]V such that w(σ ′) > 0.

Many natural spin systems are permissive. Examples include the hard-coremodel, the graphq-colouring
with q ⩾ ∆ + 1, where ∆ is the maximum degree of the graph, and all spin systems with soft constraints
(e.g. the Ising model and the Potts model).

We call the problem of evaluating Z the counting problem for the q-spin system. The standard algorith-
mic aim here is a fully-polynomial randomised approximation scheme (FPRAS), where given the spin system
and an accuracy ε > 0, the algorithm outputs Z̃ such that 1 − ε ⩽ Z̃

Z
⩽ 1 + ε with probability at least

3/4, and runs in time polynomial in the size of the system and 1/ε. To understand the requirement of an
FPRAS, note that the probability 3/4 can be boosted arbitrarily close to 1 via standard means. The accuracy
can also be boosted by taking many disjoint copies of the system. In fact, any polynomial accuracy can be
boosted to an arbitrarily small ε in polynomial-time.

Also note that if G is disconnected, then Z(G) =
∏

i Z(Gi) where G ′is are the connected components
of G. Thus, we always consider connected graphs in the paper.

Similar to µ(σ) for the probability of a configuration, for an S ⊆ V and a partial configuration σS on S,
we use µ(σS) for the marginal probability of σS under µ. We denote the marginal distribution induced by
µ on S by µS. When S = {v}, we also write µv. For the distribution conditioned on a partial configuration
σS, we use µσS or µσS

v .
Strong spatial mixing is a property of the spin system where a partial configuration of G does not

significantly influence the assignment of a distant vertex.
Definition 6 (SSM). A q-spin system is said to have strong spatial mixing with decay rate f(ℓ) for a family
of graphs if for any G = (V,E) in the family, any v ∈ V,S ⊂ V , and two configurations σS, τS,

dTV(µ
σS
v ,µτS

v ) ⩽ f(ℓ),
where dTV denotes the total variation distance, T ⊆ S is the subset where the configurations are different,
and ℓ = dist(v, T) is the minimum distance from v to a vertex in T .

Strong spatial mixing is a very strong form of correlation decay. When f(ℓ) = exp(−Ω(ℓ)) we say we
have strong spatial mixing with exponential decay.

2.1. Two-state spin systems. A spin system is symmetric if Aij = Aji for all i, j. When q = 2 and the
system is symmetric, we have states {0, 1} and can normalize A and b so that the interaction between 0

and 1 and the contribution of 0 are 1, and A =

[
β 1
1 γ

]
and b = (1, λ) for β,γ ⩾ 0, and λ > 0.

Whenβ = γ the system is an Ising model, and forβ = 1,γ = 0 the system is a hard-core gas model. We
call a system anti-ferromagnetic if disagreeing assignments of adjacent vertices are more heavily weighted,
namely βγ < 1.

For a tree T rooted at v and a partial configuration σS we define the marginal ratio

R
σS

T :=
µ
σS
v (1)

µ
σS
v (0)

=
µ
σS
v (1)

1 − µ
σS
v (1)

,

or RσS

T := ∞ if µσS
v (1) = 1. These ratios satisfy a well-known recurrence relation:

R
σS

T = λ

d∏
i=1

γR
σS

Ti
+ 1

R
σS

Ti
+ β

,(2)

where Ti is the ith subtree of T . Similarly, for a graph G we can define R
σS

G,v = µ
σS
v (1)/(1 − µ

σS
v (1)).

While RσS

G,v does not exhibit a simple recursion, the self-avoiding walk (SAW) tree ofG at v as constructed
by Weitz [Wei06] can be used to compute it.
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Theorem 7 (Theorem 3.1 of [Wei06]). For any G = (V,E), a configuration σS on S ⊂ V , and any v ∈ V ,
there exists a tree TSAW = TSAW(G, v) such that

R
σS

G,v = R
σS

TSAW
.

The SAW tree is rooted at v. Each node corresponds to a self-avoiding walk starting from v. The length
of the walk is the same as the distance between the node and the root v. When a walk is closed, the node
is set to unoccupied or occupied according to if the penultimate vertex is before or after the starting vertex
of the cycle in some pre-determined local ordering at the last vertex. For details, see [Wei06].

The SAW tree can have depth up to n, so may be exponential in size. Marginals on the SAW tree
are therefore difficult to compute, but using the recursion in Equation (2) we can approximate them by
truncating the tree. This approximation is accurate when strong spatial mixing holds, and the time to
compute the marginal is linear in the size of the truncated tree. To maintain a polynomial running time,
Weitz [Wei06] choose to truncate it at a suitable logarithmic depth.

3. Fast SSM Regime foR 2-spin systems

In this section we give a quadratic speedup of Weitz’s Algorithm to estimate the marginal of a single
vertex in 2-spin systems, albeit being randomised instead of deterministic. We use the hard-core model as
our running example to illustrate the main ideas. The main result of the section is Theorem 1.

Let the hard-core model be described byA =

[
1 1
1 0

]
and b = (1, λ). The support of the Gibbs distribu-

tion is the set of independent sets of G. Let vertices assigned 0 not be in the independent set (unoccupied)
and vertices assigned 1 be in the independent set (occupied). Our algorithm uses self-reduction [JVV86]
as follows. Since unoccupied vertices contribute 1 to the weight of a configuration, we can consider the
all 0 configuration σ0 where

1
Z(G)

= µ(σ0) = µv1(0)µ
v1←0
V\{v1}

(0) = µv1(0)
1

Z(G \ {v1})
= µG1,v1(0)µG2,v2(0) · · ·µGn,vn

(0),(3)

and where Gi = G \ {v1, . . . , vi−1} for all i ∈ [n]. This reduces the problem of computing Z(G) to
computing µv1 and recursively Z(G \ {v1}). As the Gi’s are subgraphs of G, they have the same degree
bound and still exhibit SSM. The crux of our algorithm is to design a random variable that estimates µv in
time Õ(n1/(2k)).

Another ingredient we need is the lazy single-site sampler by Anand and Jerrum [AJ22], which allows
us to rapidly sample a partial configuration vertex by vertex. The original setting of [AJ22] requires sub-
exponential neighbourhood growth in order to work up to the strong spatial mixing threshold, but in our
parameter regime no sub-exponential growth is required. Moreover, only the expected running time is
studied in [AJ22], while we need a tail bound. A similar analysis is done in [FGW+23, Appendix B]. For
completeness, we provide a proof specialised to our setting in Appendix A.1.

Lemma 8. Let ∆ ⩾ 2 be an integer and λ < 1
∆−1 . Let G = (V,E) be a graph with maximum degree

∆. There exists an algorithm that, for any v ∈ V , draws a sample from µv and halts in time O(log 1
ε
) with

probability at least 1 − ε.

Our algorithm then combines the lazy sampler of Lemma 8 with the SAW tree of [Wei06]. We expand
the SAW tree, and then use Lemma 8 to sample a truncated boundary, from which we use the recursion in
(2) to get our estimate. The depth of the truncation controls the variance of this estimator. In our algorithm,
we only need to bound the variance from above by 1/n. In contrast, Weitz’s algorithm requires the error
of the marginal incurred by the truncation to be bounded from above by O(1/n). As the variance of our
estimator decays twice as fast as the marginal errors, our truncation depth is roughly half of that inWeitz’s
algorithm. Consequently, we achieved a quadratic speedup for estimating each term in (3).
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Lemma 9. For a graph G with maximum degree ∆, if the hard-core model on G has strong spatial mixing
with decay rate C∆−kℓ for some constant C > 0, there exists an algorithm that generates a random sample
p̃v and halts in time O(n1/(2k)(log n

δ
)2) with probability at least 1 − δ

8 . Furthermore, E[p̃v] = µv(0) and
Var (p̃v) ⩽ 1/n.

Proof. Let TSAW be the self-avoiding walk tree forG rooted at v as defined in Theorem 7, and let S = {u ∈
V |dTSAW(v,u) = ℓ} where ℓ is a parameter we will fix later. We have

µTSAW,v(0) =
∑

σ∈{0,1}S
µTSAW(σ)µσ

TSAW,v(0) = Eσ∼µTSAW,S [µ
σ
TSAW,v(0)].

We use Lemma 8 to sample σ. Fix an arbitrary order of S = {s1, s2, . . . , s|S|}. We sample first the marginal
of s1 with ε := δ

8|S| . Then, conditioned on the result on s1, we sample s2 with the same ε, and so on and
so forth. Note that whatever the result on s1 is, it always reduces to a hard-core instance of a smaller
graph. Thus, the condition of Lemma 8 is always satisfied until all of S are sampled. This gives a boundary
condition σS in TSAW.

As the full SAW tree may be exponential in size, a little care is required to implement the outline above.
We first expand TSAW up to level ℓ, denoted TSAW,ℓ. The algorithm in Lemma 8 (Algorithm 1 in Appen-
dix A.1) is essentially an exploration process. When we apply it to sample the boundary condition σS, we
expand the SAW tree below TSAW,ℓ on the fly, only creating vertices that are explored by the algorithm.
Note that the construction of the SAW tree imposes a boundary condition whenever a vertex in G is en-
countered again in a self-avoiding walk. We implement this pinning by remembering a list of all ancestors
of a given node in the SAW tree and checking the next vertex to explore against this list. Since Lemma 8
halts in O(log 1

ε
) time with probability at least 1 − ε, this extra check incurs a multiplicative slowdown

factor O(ℓ+ log 1
ε
) = O(ℓ+ log |S|

δ
) with probability at least 1 − ε.

Given σS, we can compute µσS
v (0) = p̃v with the standard dynamic programming approach. By a union

bound, the total running time of sampling the boundary is O(|S| log |S|
δ
(ℓ + log |S|

δ
)) with probability at

least 1 − δ
8 , and the dynamic programming step uses time O(|TSAW,ℓ|).

We choose ℓ :=
⌈

log(n)/2−logC

k log(∆)

⌉
so that C∆−kℓ ⩽ n−0.5 and ∆ℓ ⩽ C ′n1/(2k) for some constant

C ′ > 0. Note that |S| ⩽ (∆ − 1)ℓ and |TSAW,ℓ| ⩽ ∆ℓ. Then the total runtime to draw a sample is
O(n1/(2k)(log n

δ
)2) with probability at least 1 − δ

8 .
Finally, we analyze the variance. Strong spatial mixing implies that for any σS, |µσS

v (0) − µv(0)| ⩽
C∆−kℓ, so

Var (p̃v) = VarσS
(µσS

v (0)) = EσS∼µTSAW,S [|µ
σS
v (0) − µv(0)|2] ⩽

(
C∆−kℓ

)2 ⩽ n−1,(4)

which is what we desire. □

Lemma 10. For a graphG with maximum degree ∆, if λ ⩽ 1
∆k(∆−1) for some constant k > 0, the hard-core

model on G exhibits strong spatial mixing with decay rate C∆−kℓ.

Proof. It is well-known that if λ < λc(∆) =
(∆−1)∆−1

(∆−2)∆ ≈
e
∆
, strong spatial mixing holds with exponential

decay Crℓ for some constant C and r < 1 [Wei06]. Moreover, the decay rate r can be controlled by
a quantity related to the recursion (2) [SST12]. For example, by [Guo15, Lemma 7.20], r is bounded by
r ⩽ |f ′(x̂)|, where f(x) := λ

(1+x)∆−1 is the symmetric version of the recursion in (2) and x̂ is the unique
positive fixed point of f. (Note that when the degree of G is at most ∆, all vertices but the root in TSAW
have branching number ∆− 1.) Then we have∣∣f ′(x)∣∣ = ∣∣∣∣−f(x)(∆− 1)

1 + x

∣∣∣∣ < (∆− 1)f(x).
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As x̂ > 0 and x̂ is a fixed point,
x̂ < x̂(1 + x̂)∆−1 = λ.

Thus, as λ ⩽ 1
∆k(∆−1) ,

r ⩽ |f ′(x̂)| < (∆− 1)f(x̂) = (∆− 1)x̂ <
1
∆k

. □

Now we are ready to prove Theorem 1.

Proof of Theorem 1. We will first give an algorithm whose running time has a tail bound. To have a fixed
running time upper bound, we then truncate this algorithm.

Set N := ⌈8e(1+λ)2
/ε2

0⌉ where ε0 = ε/2. Let X :=
∏n

i=1 p̃Gi,vi
where G1 = G and Gi = Gi−1 \

{vi−1}. By Lemma 10, we can use Lemma 9 to draw N samples of X and take its average, where we set
δ = 1

nN
in Lemma 9. Each p̃Gi,vi

can be computed in time O(n1/(2k)(log n
δ
)2) with probability at least

1 − δ
8 , so computing one sample of X takes time O(n1+1/(2k)(log n

δ
)2) time with probability at least

1 − nδ
8 by a union bound. By a union bound again, the overall running time of taking the average is

O(Nn1+1/(2k)(log n
δ
)2) = O

(
n1+1/(2k)

ε2 (log n
ε
)2
)
with probability at least 1 − δ

8 · nN = 7
8 .

Since {p̃Gi,vi
} are mutually independent, by Lemma 9,

E[X] = E

[
n∏

i=1
p̃Gi,vi

]
=

n∏
i=1

µGi,vi
(0) = 1

Z(G)
.

We bound Var (X) as follows

Var (X)
(E[X])2 =

E[X2]

(E[X])2 − 1 =

∏n
i=1 E[p̃2

Gi,vi
]∏n

i=1 E[p̃Gi,vi
]2

− 1

=

n∏
i=1

(
1 +

Var
(
p̃Gi,vi

)
(E[p̃Gi,vi

])2

)
− 1

⩽
(

1 +
c

n

)n
− 1(by Lemma 9)

< ec,

where c = maxi(1/µGi,vi
(0)2). Note that as µGi,vi

(0) ⩾ 1
1+λ

, c ⩽ (1 + λ)2 and is a constant.
Let X̃ be the average ofN samples ofX. Then Var

(
X̃
)
= Var(X)

N
⩽ ec

N·Z(G)2 . By Chebyshev’s inequality,

Pr
[∣∣∣∣X̃−

1
Z(G)

∣∣∣∣ ⩾ ε0
Z(G)

]
⩽

Var
(
X̃
)

ε2
0

Z(G)2

⩽ ec

N · Z(G)2 ·
Z(G)2

ε2
0

⩽ 1
8

.

Thus, with probability at least 7/8, we have that 1−ε0
Z(G) ⩽ X̃ ⩽ 1+ε0

Z(G) . Finally, we output Z̃ = 1/X̃. To

make sure that the algorithm runs within the desired time bound O
(
n1+1/(2k)

ε2 (log n
ε
)2
)
, we truncate the

algorithm if it runs overtime and output an arbitrary value in that case. This truncated version can be
coupled with the untruncated algorithm with probability at least 7/8, and its output Z̃ satisfies 1 − ε ⩽

Z̃
Z(G) ⩽ 1 + ε with probability at least 7/8 − 1/8 = 3/4. □

Note that, Weitz’s algorithm is faster if the correlation decay is faster, but in that case so is our algorithm.
In Appendix B, Lemma 24 shows that the correlation decay cannot be much faster than the standard
analysis in the parameter regimes of Theorem 1, and our speed-up, comparing to Weitz’s algorithm, is
always at least Õ(n1/2k−o(1/k2)).

8



We also remark that Theorem 1 generalises to antiferromagnetic 2-spin systems. This is because all the
key ingredients, namely correlation decay, Weitz’s SAW tree, and the marginal sampler of Anand and Jer-
rum all generalise, except that the Anand-Jerrum algorithm would require the neighbourhood growth rate
smaller than the decay rate (see Theorem 23). This is also the parameter regime where Weitz’s algorithm
is faster than O(n2). Thus, our speedup is still in the sub-quadratic regime. The self-reduction in (3) also
generalises (as we will see in (5) in the next section). One needs to redo the calculations in Lemma 10 to
get a precise statement, which we will omit here.

4. Speed-up on planaR gRaphs

In this section we mainly consider (not necessarily two-state) spin systems on planar graphs. We show
that for any planar graph with quadratic neighbourhood growth, when SSM holds with exponential decay,
approximate counting can be done in sub-quadratic time. For example, this includes all subgraphs of the
2D lattice Z2. The circle-packing theorem asserts that any planar graph is the tangent graph of some circle
packing. All planar graphs with bounded-radius circle packings have quadratic neighbourhood growth.
Thus this is a substantial family of planar graphs. Moreover, in Section 4.2 we extend the result to (not
necessarily planar) graphs with polynomial growth, but the speed up factor there is sub-polynomial yet
faster than (logn)k for any k.

Definition 11. A graph family G has quadratic growth, if there is a constant C0 such that for any G =
(V,E) ∈ G, v ∈ V , and any integer ℓ > 0, |Bv(ℓ)| ⩽ C0ℓ

2.

Subgraphs of the 2D lattice Z2 satisfies Definition 11 with C0 = 5. Note that by taking ℓ = 1, Defini-
tion 11 implies that the maximum degree is no larger than C0.

Theorem 12. Let G be a family of planar graphs with quadratic growth (assume the rate is C0ℓ
2). Let A

and b specify a q-state spin system, which exhibits SSM with decay rate Cr−ℓ on G. Then there is a constant
c > 0 such that there exists an FPRAS for the partition function of G ∈ G with n vertices with run-time
Õ(n2−c/ε2). The constant c depends on C0, q, and r.

Theorem 12 is the detailed version of Theorem 2.
Essentially the idea is still to find an estimator for the marginal of an arbitrary vertex that can be evalu-

ated very quickly. Let us first consider a
√
n-by-

√
n grid. For any vertex v, we consider the sphere Sv(ℓ)

of radius ℓ = O(logn) centered at v, and a random configuration τ on Sv(ℓ). LetBv(ℓ) be the ball of radius
ℓ centered at v. Since any planar graph has linear local tree-width [DH04, Epp00], Bv(ℓ) has tree-width
O(ℓ). Thus, given a configuration τ on S, the law of µτ

v can be computed in time 2O(ℓ)poly(ℓ) for a fixed
τ (see, e.g. [YZ13]5). This step can be very efficient with a carefully chosen ℓ.

For a general bounded degree planar graph, |Sv(ℓ)| can be a polynomial in n, which makes the number
of possible τ’s exponential in n. However, for a

√
n-by-

√
n grid, |Sv(ℓ)| ⩽ 4ℓ = O(logn), and the number

of possible τ’s is much smaller and is a small polynomial in n. Thus, it would be more efficient to first
create a table to list all possibilities of τ, and then, instead of computing µτ

v each time, simply look up the
answer from this table. We can do the same for any subgraph of Z2 by choosing a boundary based on
distance in the original grid.

For a generalG ∈ G, we no longer have a linear bound on the size of the boundary. See Appendix C for
a subgraph of Z2 where the distance ℓ boundary has size Ω(ℓ2). However, since G has quadratic growth,
we know that Bv(ℓ) ⩽ C0ℓ

2 for some constant C0 > 0. It implies that
ℓ∑

i=ℓ/2

|Sv(ℓ)| ⩽ |Bv(ℓ)| ⩽ C0ℓ
2.

5The algorithm in [YZ13] uses the separator decomposition. Another possibility is to first find a constant approximation of
the tree decomposition first [KT16], and then apply Courcelle’s theorem.
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Thus, there must exist an ℓ ′ ∈ [ℓ/2, ℓ] such that |Sv(ℓ ′)| ⩽ 2C0ℓ. We will find this ℓ ′ and use Sv(ℓ ′) instead.
Once again, we use a self-reduction similar to (3). For q-spin systems, given a feasible configuration σ,

we have the decomposition,
w(σ)

ZG

= µ(σ) = µv1(σv1)µ
σv1
v2 (σv2)µ

σv1 ,σv2
v3 (σv3) . . .µσv1 ,...,σvn−1

vn
(σvn

).(5)

When computing our table, we will have to condition on the already pinned vertices.

Lemma 13. Let A, b, q and G be as in Theorem 12. For v ∈ V , a partial configuration σ, and an integer ℓ,
we can find an ℓ ′ such that ℓ ′ ∈ [ℓ/2, ℓ], and then construct a table of µσ,τ

v , indexed by every boundary
configuration τ on unpinned vertices of Sv(ℓ ′). The total run-time is 2C1ℓ, where C1 is a constant depending
on C0 and q.

Proof. As discussed earlier, due to the quadratic growth of G, there must exist an ℓ such that ℓ ′ ∈ [ℓ/2, ℓ]
and |Sv(ℓ

′)| ⩽ 2C0ℓ. To find this ℓ, we do a breadth-first-search to check Sv(i) from i = ℓ/2 to ℓ. The
running time is at most O(Bv(ℓ)) = O(ℓ2).

Once ℓ ′ is found, |Sσv (ℓ ′)| ⩽ |Sv(ℓ
′)| ⩽ 2C0ℓ, and there are at most q2C0ℓ configurations τ in our table.

As G is a planar graph, the tree-width of the ball tw(Bv(ℓ
′)) = O(ℓ ′) = O(ℓ). Thus, using for example

the algorithm of [YZ13], each entry of the table can be computed in time 2O(ℓ) poly(ℓ). The total amount
of time required is O(ℓ2) + q2C0ℓ2O(ℓ) poly(ℓ) ⩽ 2C1ℓ, for some sufficiently large constant C1. □

While we may construct this table very quickly, it is not clear how to compute or estimate the marginals
of the boundary condition τ’s rapidly. Instead, we sample a random one using the marginal sampler [AJ22]
that terminates in almost linear time with high probability. See Theorem 23.

Lemma 14. Let A, b, q and G ∈ G be as in Theorem 12. Let σ be a partial configuration. For any v ∈ V

not pinned under σ and any k ∈ [q], there exists an algorithm that generates a random variable Z̃ such that
E[Z̃] = µσ

v (k) and Var
(
Z̃
)
⩽ 1/n. Moreover, its running time is Õ(n1−c) with high probability where c

depends on C0, q, and r.

Proof. Let ℓ be a constant that we will choose later. Let ℓ ′ ∈ [ℓ/2, ℓ] be as in Lemma 13, and let τ be a
boundary condition on the unpinned vertices of Sv(ℓ ′) under σ. Let Zv(τ) = µ

σ,τ
v (k) so that Eτ[Zv(τ)] =

µσ
v (k). Then, let

Z̃ :=
1
m

m∑
j=1

Zv(τj)

be the empirical mean overm random samples τj, where we will choose m later.
Since the spin system exhibits SSMwith decay rateCr−ℓ, similar to (4), we haveVar (Zv(τ)) ⩽ C2r−2ℓ ′ ⩽

C2r−ℓ. Then

Var
(
Z̃
)
= Var

 1
m

m∑
j=1

Zv(τj)

 ⩽ C2

mrℓ
′ .

Thus, we setm = ⌈nC2r−ℓ ′⌉ samples so that Var
(
Z̃
)
⩽ 1/n.

For the running time, we first construct the table as in Lemma 13. Then we take m samples of τ,
each of which can be generated in time almost linear in |Sv(ℓ

′)| with high probability using Theorem 23.
As |Sv(ℓ ′)| ⩽ 2C0ℓ, the runtime in total is at most O(2C1ℓ + nℓr−ℓ ′ logn) with high probability. We
choose ℓ = 1−c

C1
logn for c = log r

log r+2C1
∈ [0, 1], so that ℓ ′ ⩾ ℓ/2 = 1−c

2C1
logn and the total runtime is

O(n1−c + n1−(1−c) log r/(2C1) log2 n) = Õ(n1−c). □

Now we are ready to prove Theorem 12.
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Proof of Theorem 12. We are going to use (5) to do a self-reduction. First we construct the target config-
uration σ adaptively. Given σ on v1, . . . , vi−1, we want to choose σvi

to be k ∈ [q] with the largest
marginal. In other words, σvi

= argmaxk∈[q] µ
σi
vi
(k) for each i, where σi is what has been constructed

so far, namely σv1 , . . . ,σvi−1 . Of course, this step cannot be done exactly. Instead, we may fix a constant
t = t(C, r,q) such that Cr−t ⩽ 1

2q , fix an arbitrary boundary configuration τ on S
σi
vi
(t) and then pick

k ∈ [q] that maximises µσi,τ
vi

(k). SSM guarantees that µσi
vi
(σvi

) ⩾ 1/2q, where σvi
= k. This step takes

constant time as t is a constant.
The rest of the proof is very similar to that of Theorem 1. Set N := ⌈10e4q2

/ε2
0⌉ where ε0 = ε/2. We

compute X =
∏n

i=1 Z̃i where each Z̃i is from Lemma 14 plugging in vi and σi. Due to the decomposition
(5) we have

E[X] = E

[
n∏

i=1
Z̃i

]
=

n∏
i=1

E
[
Z̃i

]
=

n∏
i=1

µσi
vi
(σvi

) = µ(σ).

We also computew(σ)which can be done inO(n) on a planar graph with quadratic growth. By Lemma 14,
the time to generate one X is O(n2−c polylog(n)) with high probability. We bound Var (X) as follows

Var (X)
(E[X])2 =

E[X2]

(E[X])2 − 1 =

∏n
i=1 E[Z̃2

i ]∏n
i=1 E[Z̃i]2

− 1 =

n∏
i=1

1 +
Var

(
Z̃i

)
(E[Z̃i])2

− 1

⩽
(

1 +
4q2

n

)n

− 1 ⩽ e4q2 ,

where we use µσi
vi
(σvi

) ⩾ 1/2q for any i ∈ [n]. Let X̃ be the average ofN samples of X. Then Var
(
X̃
)
=

Var(X)
N

⩽ e4q2

N·Z(G)2 . By Chebyshev’s inequality,

Pr
[∣∣∣∣X̃−

1
Z(G)

∣∣∣∣ ⩾ ε0
Z(G)

]
⩽

Var
(
X̃
)

ε2
0

Z(G)2

⩽ e4q2

N · Z(G)2 ·
Z(G)2

ε2
0

⩽ 1
10

.

Thus, with probability at least 9/10, we have that 1−ε0
Z(G) ⩽ X̃ ⩽ 1+ε0

Z(G) . Finally, we output Z̃ = w(σ)/X̃.
Since Definition 11 implies a constant degree bound, the graph is sparse and w(σ) can be computed in
O(n) time. To make sure that the algorithm runs within the desired time bound O

(
n2−c

ε2

)
, we truncate

the algorithm if it runs overtime and output an arbitrary value in that case. This truncated version can be
coupled with the untruncated algorithm with probability at least 7/8, and its output Z̃ satisfies 1 − ε ⩽

Z̃
Z(G) ⩽ 1 + ε with probability at least 3/4. □

4.1. Bounded-radius circle packing. Here we show that Theorem 12 applies to any planar graph with
bounded-radius circle packings. We begin with the definition of a circle packing.

Definition 15. A circle packing is a collection C of interior-disjoint circles over the 2-dimensional plane.
A tangency graph of a circle packing is a graph having a vertex for each circle, and an edge between two
vertices if and only if the two corresponding circles are tangent.

The Koebe-Andreev-Thurston circle packing theorem states the following.

Theorem 16. For every connected locally finite simple planar graph G, there exists a circle packing whose
tangency graph is (isomorphic to) G.

We are concerned with the radius of the circles used in the packing, especially the ratio between the
smallest and largest ones.

11



(a) (b) (c)

FiguRe 2. Circle packings of some lattices. (a): Z2 grid, R = 1. (b): Kisrhombille tiling,
R = 2 −

√
3. (c): degree-3 Bethe lattice, R = 0.

Definition 17. A locally finite simple planar graph G is said to have an R-bounded-radius circle packing
(R-BRCP) for some constant R > 0, if there exists a circle packing C whose tangency graph is (isomorphic
to) G such that

inf
⊙∈C

r⊙

sup
⊙∈C

r⊙
⩾ R

where r⊙ denotes the radius of a circle ⊙ in the packing.

Three examples are given in Figure 2. TheZ2 grid can be naturally packed by unit disks, leading to R = 1.
Such a graph is called a “penny graph”. The 3, 6-kisrhombille tiling is a tiling of the 2-dimensional plane
by π/6-π/3-π/2 triangles. This lattice can be packed by circles of radii 1, 2

√
3−3, 2−

√
3, so R = 2−

√
3.

The degree-3 Bethe lattice, also known as the infinite 3-regular tree, can be drawn as a planar graph on
the 2-dimensional plane. However, the neighbourhood growth is so fast that R = 0.

Fix the underlying graph G and its R-BRCP C. Without loss of generality, we assume the diameter of
the largest circle in C is 1. Thus, the radius of an arbitrary circle in C is between R/2 and 1/2. Let G be a
finite subgraph ofG. Here we need to distinguish the graph distance inG and the geometric distance (the
Euclidean distance ∥·∥2 between the center of their corresponding disks on the 2-dimensional plane). For
two vertices u and v, we use distG(u, v) to denote their graph distance, and use ∥u− v∥2 to denote their
geometric distance. Note that distG(u, v) ⩾ ∥u− v∥2 and distG(u, v) ⩾ distG(u, v).

For any vertex v and u in the ℓ-ball Bv(ℓ) inG, ∥u−v∥2 ⩽ distG(u, v) ⩽ ℓ. The disk⊙u corresponding
to umust be contained completely in the circle centered at u with radius ℓ+ 1/2. By considering the area
they cover,

|Bv(ℓ)| ⩽
π(ℓ+ 1/2)2

π(R/2)2 = O(ℓ2/R2).

Thus, any family of subgraphs of G has quadratic growth, where the growth constant depends on R. To-
gether with Theorem 12, we have the following corollary.

Corollary 18. Let G be a locally finite simple planar graph, together with an R-BRCP where R > 0 is a
constant. Let G be a family of subgraphs of G, and A,b specify a q-spin system that exhibits SSM with
exponential decay on G. Then there exists an FPRAS that takes a graph G ∈ G as an input and estimates the

12



partition function of the spin system on G in time Õ(n2−c/ε2). Here, n = |V(G)|, and c > 0 is a constant
depending on q, decay rate of SSM, and R.

Remark. The algorithm does not need to know the circle packing, as long as an R-BRCP exists.
On a separate note, although a good approximation of the circle packing of a finite planar graph can

be found in near linear time [DLQ20], its output does not optimise the radius ratio. It is not clear how to
generate a circle packing with a constant approximation of the optimal radius ratio. In the extreme, it is
NP-hard to decide if a given graph G (without geometric positions) is a penny graph, namely admitting a
circle packing using unit circles [EW96], even if G is restricted to be a tree [BDL+15].

4.2. Polynomial-growth graphs. Our method goes beyond planar graphs with quadratic growth rate.
For any graph with a polynomial growth rate, we have a speed-up that is faster than any polylog factors.

Definition 19. A graph family G has polynomial growth, if there are constants C and d such that for any
G = (V,E) ∈ G, v ∈ V , and any integer ℓ > 0, |Bv(ℓ)| ⩽ C0ℓ

d.

Examples of graphs with polynomial growth include finite subgraphs of the d-dimensional integer lat-
tice Zd. Again, by taking ℓ = 1, Definition 19 implies that the maximum degree is no larger than C0.

Theorem 20. Let G be a family of graphs with polynomial growth (assume the rate is C0ℓ
d). Let A and

b specify a q-state spin system, which exhibits SSM with decay rate Cr−ℓ on G. Then there is a constant
c > 0 such that there exists an FPRAS for the partition function of G ∈ G with n vertices with run-time
Õ
(

n2

ε22c(logn)1/d

)
. The constant c depends on C0, q, and r.

Theorem 20 is the detailed version of Theorem 3.
In comparison to Theorem 12, the proof of Theorem 20 needs only a few small tweaks. Let ℓ be a

parameter we will choose later, and our estimator is still set by using a random boundary condition on
Sv(ℓ) to estimate the marginal at v. Note that we no longer need to find ℓ ′ for a smaller boundary. The
main difference is in Lemma 13, where we no longer have linear local tree-width. Instead, we have to create
the table by brute-force enumeration. There are qC0ℓ

d possible boundary conditions, and the overall time
cost for creating the table is O(q2C0ℓ

d
).

We use the same estimator as in Lemma 14. To reduce the variance of our estimator to 1/n, we need
nC2r−2ℓ samples, each of which can be looked up quickly using the table. Let ℓ =

0.99(logn)1/d

2C0 logq
. The

overall time cost is

Õ
( n

ε2

(
q2Cℓd + nr−2ℓ

))
= Õ

(
n

ε2

(
n0.99 +

n

2c(logn)1/d

))
= Õ

(
n2

ε22c(logn)1/d

)
,

where c = 0.99 log r
C0 logq

. This shows Theorem 20. Note that the factor 2c(logn)1/d grows faster than (logn)k
for any k > 0.
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Appendix A. Lazy maRginal sampleRs

A.1. Specialised to hard-core models. Lemma 8 is proved in this subsection. The single-site Anand-
Jerrum algorithm adapts to the hard-core model as in Algorithm 1.

Algorithm 1: HardcoreSampler(G, λ, (Σ,σ), v)
Input: a ∆-degree graph G, fugacity λ, a set of vertices Σ ⊆ V with a configuration σ ∈ ΩΣ, and

vertex to sample v /∈ Σ

Output: the partial configuration passed in with a spin at v: (Σ,σ)⊕ (v, i) for some i ∈ {0, 1}.
1 Decrease the global timer T ← T − 1;
2 if there exists u ∈ Σ ∩N(v) such that σ(u) = 1 then
3 return ((Σ,σ)⊕ (v, 0));
4 Sample random X ∈ {⊥, 0} with Pr[X = ⊥] = λ/(1 + λ) and Pr[X = 0] = 1/(1 + λ);
5 if X = ⊥ then
6 (Σ ′,σ ′)← (Σ,σ);
7 Y ← 1;
8 forall u ∈ N(v)\Σ do
9 (Σ ′,σ ′)← HardcoreSampler(G, λ, (Σ ′,σ ′),u);

10 if σ ′(u) = 1 then Y ← 0;
11 return ((Σ,σ)⊕ (v, Y));
12 else
13 return ((Σ,σ)⊕ (v, 0));

The correctness of the algorithm is summarised by the following theorem, adapted to our setting.

Theorem 21 ([AJ22, Theorem 5.3]). Suppose G is a graph with maximum degree bounded by ∆, and λ <

λc(∆). If the untruncated algorithm HardcoreSampler+∞(G, λ, (Σ,σ), v) terminates with probability 1, then
it generates a spin of v according to the correct marginal distribution upon termination, provided that the
partial configuration (Σ,σ) is feasible.

We remark that the correctness does not rely on the graph’s neighbourhood growth being sub-exponential.
However, the algorithm given here is a special case of that in [AJ22], where they look at an ℓ-distance neigh-
bourhood. Fixing ℓ = 1 as we do here results in the regime of fugacity λ being worse than the critical λc,
as we will see very soon. The saving grace of [AJ22] is that other ℓ’s might be chosen in order to get to the
critical regime, but this is at the cost of limiting the neighbourhood growth. Our main algorithm does not
work up to the critical λc, so only the 1-hop neighbourhood is considered.

In [AJ22], the expected running time is studied and turns out to be a constant depending on the param-
eters of the model. However, we further need an exponential tail bound of the algorithm. This is done
by the same idea of [FGW+23, Section B.3], though we do not truncate this algorithm as is done there.
As soon as an exponential tail bound of running time is established, the algorithm then terminates with
probability 1 and hence is correct.

We treat the algorithm as a branching process. Each time the algorithm recurses into its neighbour-
hood, it creates at most ∆− 1 new copies of the routine HardcoreSampler. Such branching happens with
probability p := λ/(1 + λ). This leads us to study the following Markovian process that stochastically
dominates the actual branching process. Let (Xt)t∈Z⩾0 be a discrete Markov chain where Xt ∈ Z⩾0 with
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initial state X0 = 1. This chain has an absorbing barrier at 0, and for any other Xt > 0, the transition
probability is given by

(6) Xt+1 ←

{
Xt + ∆− 1 with probability p;
Xt − 1 with probability 1 − p.

In the general case, the tail bound of this process is proved in [FGW+23, Lemma B.12], and this requires
λ ⩽ 1

2e∆−1 when specialised to the hard-core model. Here we provide a stronger analysis to remove the
constant.

Lemma 22. Suppose λ < 1
∆−1 . For any 0 < ε < 1, let T = 2∆2

( λ
1+λ∆−1)

2 log 1
ε
. Then with probability at most

ε, the process (Xt) defined by (6) does not terminate in T rounds.

Proof. Given {Xt}t∈Z⩾0 , define an auxillary process {Yt}t∈Z⩾0 in the following way. Let Y0 = 1, and the
transition probability is given by

(7) Yt+1 ←

{
Yt +

1
1+λ

∆ with probability λ
1+λ

;
Yt −

λ
1+λ

∆ with probability 1
1+λ

.

Then couple Xt with Yt perfectly that, if Xt increases then so does Yt, and vice versa, till Xt reaches the
absorbing barrier. After this point, Yt just performs the above transition independently.

Clearly, {Yt} is a martingale, and if Xt > 0 is not absorbed then Yt = Xt+
(

λ
1+λ

∆− 1
)
t. Also note that

the regime on λ ensures λ
1+λ

∆ − 1 > 0. This allows us to bound the probability of {Xt} not terminating
after T rounds by by applying Azuma–Hoeffding inequality:

Pr[XT > 0] = Pr[XT ⩾ X0] = Pr
[
YT − Y0 ⩾ T ·

(
λ

1 + λ
∆− 1

)]
⩽ exp

{
−
T2 ( λ

1+λ
∆− 1

)2

2∆2T

}
= ε.□

Lemma 8 then follows by exactly the same argument as in [FGW+23, Proof of Lemma B.10], by noticing
that the branching process (Xt) stochastically dominates the number of ‘active’ instances ofHardcoreSampler,
and using Lemma 22.

A.2. Generic sampler. If we want to cover the whole strong spatial mixing regime but only work on
amenable graphs, then we can invoke the original Anand-Jerrum algorithm, allowing us to do recursion
at farther vertices rather than one-hop neighbours. For completeness, we include the algorithm here
(Algorithm 2 and Algorithm 3). Its running time tail bound is shown in [FGW+23, Lemma B.10].

Theorem 23 ([FGW+23, Lemma B.10]). Suppose a q-spin system S = (G, [q],b,A) exhibits strong spatial
mixing with decay rate f(ℓ), and there is a function s(ℓ) such that the neighbourhood growth of G satisfies
|{u | distG(u, v) = ℓ}| ⩽ s(ℓ) for all v. If there is some r ∈ Z⩾1 such that 2eq(1 + s(r))f(r) ⩽ 1, then for
any feasible boundary configuration (Σ,σ), the algorithm LazySampler(S, (Σ,σ), v, r) generates a sample of
v subject to the correct marginal distribution, and halts in time O(s(r) log 1

ε
) with probability at least 1 − ε.

Appendix B. A loweR bound foR Weitz’s algoRithm

In this section, we prove a lower bound for the running time of the standard implementation of Weitz’s
algorithm. Consider the hard-core model on G = (V,E) with parameter λ. Suppose we want to esti-
mate the partition function Z within a constant approximation error. Let V = {v1, . . . , vn} and Gi =
G \ {v1, . . . , vi−1}. Weitz’s algorithm solves this task by estimating each µGi,vi

(0) within an approxima-
tion error O( 1

n
). It first constructs the SAW tree of Gi rooted at vi, then truncates the tree at level ℓ and

applies dynamic programming on the truncated tree to estimate µGi,vi
(0). The standard implementation
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Algorithm 2: LazySampler(S, (Σ,σ), v, r)
Input: a spin system S = (G, [q],b,A), a set of vertices Σ ⊆ V with a configuration σ ∈ ΩΣ, a

vertex to sample v /∈ Σ, and a distance r ∈ N
Output: the partial configuration passed in with a spin at v: (Σ,σ)⊕ (v, i) for some i ∈ [q].

1 for i ∈ [q] do
2 pi

v ← minτ∈ΩSr\Σ
µσ⊕τ(i);

3 p0
v ← 1 −

∑
i∈[q] p

i
v;

4 Sample a random value X ∈ {0, 1, . . . ,q} with Pr[X = i] = pi
v for each 0 ⩽ i ⩽ q;

5 if X = 0 then
6 (ρ1, ρ2, . . . , ρq)← BoundarySplit(S, (Σ,σ), v, r, (p0

v,p1
v,p2

v, . . . ,pq
v ));

7 Sample a random value Y ∈ [q] with Pr[Y = i] = ρi for each 1 ⩽ i ⩽ q;
8 return ((Σ,σ)⊕ (v, Y));
9 else
10 return ((Σ,σ)⊕ (v,X));

Algorithm 3: BoundarySplit(S, (Σ,σ), v, r, (p0
v,p1

v,p2
v, . . . ,pq

v ))

Input: a spin system S = (G, [q],b,A), a set of vertices Σ ⊆ V with a configuration σ ∈ ΩΣ, a
vertex to sample v /∈ Σ, a distance r ∈ N, and a probability distribution
(p0

v,p1
v,p2

v, . . . ,pq
v )

Output: a probability distribution (ρ1, ρ2, . . . , ρq)
1 Let Sr(v)← {u | distG(u, v) = r} Give Sr(v) \ Σ an arbitrary ordering

Sr(v) \ Σ = {w1,w2, . . . ,wm};
2 (Σ ′,σ ′)← (Σ,σ);
3 for 1 ⩽ j ⩽ m do
4 (Σ ′,σ ′)← LazySampler(S, (Σ ′,σ ′),wj, r);
5 for i ∈ [q] do
6 ρi ← (µσ ′

v (i) − pi
v)/p

0
v;

7 return (ρ1, ρ2, . . . , ρq);

of Weitz’s algorithm [Wei06, LLY13] ensures that for any tree with maximum degree ∆, any two configu-
rations σ, τ at level ℓ, dTV(µ

σ
v ,µτ

v) = O( 1
n
). Standard analysis bounds the total running time from above

by TWeitz = Θ(n∆ℓ).
By the same correlation decay analysis as in Lemma 10, when the algorithm in Theorem 1 has running

time Õ(n1+1/2k), we need to choose ℓ so that TWeitz = O(n1+1/k). This analysis only gives an upper
bound on the correlation decay rate. If the decay rate is faster, then Weitz’s algorithm is faster, and so
is the algorithm in Theorem 1. The speedup will depend on how much faster the decay rate becomes.
Nevertheless, the next lemma shows that the analysis in Lemma 10 is almost sharp in the worst case. The
speedup in Theorem 1 is at least Ω̃

(
n

1
2k−O( 1

k2 log∆
)
)
.

Lemma 24. Let the real number k > 0 and the integer ∆ ⩾ 2 be two constants satisfying ∆k ⩾ 4. Let
λ = 2

(∆−1)∆k . Let T be an infinite ∆-regular tree with root v. For any ℓ ⩾ 2, let σ0 and σ1 be all-0 and all-1
configurations at level ℓ of T respectively. The Gibbs distribution µ of the hard-core model on T with parameter
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λ satisfies

dTV(µ
σ0
v ,µσ1

v ) ⩾ 1
2

(
1
∆k

)ℓ

.

Let the parameters k, ∆, and λ be as in Lemma 24. Consider a family of hard-core instances where
the graphs are indeed ∆-regular trees. In Weitz’s algorithm, in order to ensure an O( 1

n
) truncation error,

Lemma 24 implies that ℓ must satisfy 1
2
( 1
∆k

)ℓ
= O( 1

n
), namely,

∆ℓ = Ω(n
1
k ).

This makes the overall running time TWeitz = Ω(n1+ 1
k ). In comparison, for these parameters, the algo-

rithm in Theorem 1 has a running time upper bound Õ
(
n

1+ 1
2k+O( 1

k2 log∆
)
)
, which is faster by a factor of

roughly Ω̃(n1/2k).

Proof of Lemma 24. Let w be an arbitrary vertex at level 0 ⩽ t ⩽ ℓ. Let π denote the Gibbs distribution
on the subtree rooted Tw at w. Recall that σ0,σ1 are pinnings on T(ℓ), where T(ℓ) is level ℓ of T . Let
p0
t(c) = πσ0

w (c) and p1
t(c) = πσ1

w (c) for c ∈ {0, 1}, where we use σ0 and σ1 to denote all-0 and all-1
pinnings on Tw ∩ T(ℓ). By symmetry, p0

t(·) and p1
t(·) depend only on t but not on w. In particular,

p0
0 = µσ0

v and p1
0 = µσ1

v for the root v. For any 0 ⩽ t ⩽ ℓ, define

R0
t :=

p0
t(1)

p0
t(0)

, R1
t :=

p1
t(1)

p1
t(0)

.

We next prove the following result holds for all 1 ⩽ t ⩽ ℓ− 1:∣∣R0
t − R1

t

∣∣ ⩾ 1
2

(
1
∆k

)ℓ−t−1
.(8)

We need the following bound to prove (8). By considering the worst pinning on the neighbourhood, we
have the following bound on both ratios R0

s and R1
s

∀0 ⩽ s ⩽ ℓ− 1, R0
s,R1

s ⩽ λ =
2

(∆− 1)∆k
.(9)

We prove (8) by induction on t from ℓ − 1 to 1. The base case is t = ℓ − 1. Note that ∆k ⩾ 4. A
straightforward calculation shows that∣∣R0

ℓ−1 − R1
ℓ−1
∣∣ = |1 − λ| = 1 −

2
(∆− 1)∆k

⩾ 1
2

.

For the induction step, fix 1 ⩽ t ⩽ ℓ− 2. The recursion function in (∆− 1)-ary tree is

f(x) = λ

(
1

1 + x

)∆−1
.

Note that R0
t = f(R0

t+1) and R1
t = f(R1

t+1). By the mean value theorem, there exists min(R0
t+1,R1

t+1) <

θ < max(R0
t+1,R1

t+1) such that ∣∣R0
t − R1

t

∣∣ = |f ′(θ)| ·
∣∣R0

t+1 − R1
t+1
∣∣ .

By (9) and the fact ∆k ⩾ 4, we have∣∣f ′(θ)∣∣ = λ(∆− 1)
(

1
1 + θ

)∆

⩾ λ(∆− 1)
(

1
1 + λ

)∆

⩾ λ(∆− 1) exp(−λ∆)

=
2
∆k

exp
(
−

2∆
(∆− 1)∆k

)
⩾ 2

∆k
exp

(
−

4
∆k

)
⩾ 1

∆k
.
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By the induction hypothesis that
∣∣R0

t+1 − R1
t+1
∣∣ ⩾ 1

2(
1
∆k )

ℓ−t−2, we can prove (8) for t. This finishes the
induction step for 1 ⩽ t ⩽ ℓ− 3.

Finally, we use (8) to bound |R0
0 − R1

0|. The proof is similar to the proof in the induction step. The only
difference is that the recursion for root v becomes g(x) = λ

( 1
1+x

)∆. By a similar calculation, there exists
min(R0

1,R1
1) < θ < max(R0

1,R1
1) such that

|R0
0 − R1

0| = |g ′(θ)| ·
∣∣R0

1 − R1
1
∣∣ ⩾ ∆λ

(
1

1 + θ

)∆+1
· 1

2

(
1
∆k

)ℓ−2

=
∆

(∆− 1)(1 + θ)
· λ(∆− 1)

(
1

1 + θ

)∆

· 1
2

(
1
∆k

)ℓ−2

⩾ ∆

(∆− 1)(1 + λ)
· 1

2

(
1
∆k

)ℓ−1
⩾ 1

3

(
1
∆k

)ℓ−1
.

By the definitions of R0
0 and R1

0 and the fact ∆k ⩾ 4, we have
dTV(µ

σ0
v ,µσ1

v ) = |µσ0
v (1) − µσ1

v (1)| = µσ0
v (0)µσ1

v (0)|R0
0 − R1

0|

⩾
(

1
1 + λ

)2
· 1

3

(
1
∆k

)ℓ−1
⩾ 4

27

(
1
∆k

)ℓ−1
⩾ 1

2

(
1
∆k

)ℓ

. □

Appendix C. GRid gRaph with adRatic-sized boundaRy

Although the distance-n boundary of the Z2 lattice contains only 4n vertices, there are subgraphs that
blow this number up to Ω(n2). Below is one such graph constructed recursively. For large enough even
n, the graph G(n) is given by Figure 3.

S

1

2

3

n
2

n
2 + 1

n
2 + 1

n
2 + 2

n− 1

n

1

2

3

n
2

n
2 + 3

n
2 + 1

n
2 + 2

n-1

n

G(n2 − 1)G(n2 − 3)

G(n2 − 2) G(n2 − 2)

FiguRe 3. The graphG(n)when n is even. The number next to a vertex indicates its distance
from the starting vertex S.

The odd-n case can be constructed similarly. Let f(n) be the number of distance-n vertices from the
vertex S in the graph G(n). Then f(n) = 4f(n2 − Θ(1)) + Θ(1). By the Master Theorem, f(n) = Θ(n2).
Also note that such a construction can be made on an induced subgraph of Z2, by splitting each edge here
into two edges joined by a vertex.
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