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The complexity of computing quantities

P: polynomial-time computable
NP: polynomial-time verifiable

Complexity class #P by Valiant (ȢѴƭѴ):

a counting analogue of NP.

Evaluation of probabilities;
Partition functions in statistical mechanics;
Counting discrete structures …



The complexity of approximate counting

What about (multiplicatively) approximating #P-complete problems?

• at most NP-hard (Stockmeyer, ȢѴ8ѳ);

• any polynomial approximation can be amplified into an (1 ± ε)-
approximation with overhead polynomial in 1/ε.

Efficient approximation algorithms do exist! Most famous example: the
permanent of a non-negativematrix (Jerrum, Sinclair, andVigoda, ѰѵѵѲ).

Many problems were proposed in 8ѵs, and subsequently solved in Ѵѵs,
but there are still a fair amount of leftovers!



NƾǍǐǈǋǄ ǋƾǅǂƺƻǂǅǂǍǒ



Network reliability

Given a undirected graph (a.k.a. network) G = (V, E), define a random
subgraphG(p) by removing each edge independently with probability p.

One may be curious about all kinds of properties of G(p):

• Pr[G(p) is connected] (Aǅǅ-ǍƾǋǆǂǇƺǅ) ǋƾǅǂƺƻǂǅǂǍǒ

• Pr[s and t are connected in G(p)] s-t ǋƾǅǂƺƻǂǅǂǍǒ

• Pr[G(p) is acyclic] …



Network reliability

(Aǅǅ-ǍƾǋǆǂǇƺǅ) ǋƾǅǂƺƻǂǅǂǍǒ: The probability that G(p) is connected.

In other words, we want to compute

Zrel(G,p) :=
∑

R⊆E:(V,R) is connected

p|E\R|(1− p)|R|.

For example:

Zrel( , p) = = (1− p)n−1;

Zrel( , p) = + + + +

= (1− p)4 + 4p(1− p)3;

Zrel(G, 1/2) =
|{R ⊆ E : (V, R) is connected}|

2|E|
.



Computational complexity of reliability

Directed and undirected s-t ǋƾǅǂƺƻǂǅǂǍǒ (and a few other variants) are
featured in the original list of Ȣѱ #P-complete problemsby Valiant (ȢѴƭѴ).

Exact evaluation of ƺǅǅ-ǍƾǋǆǂǇƺǅ ǋƾǅǂƺƻǂǅǂǍǒ is shown to be#P-complete
by Jerrum (ȢѴ8Ȣ), and independently Provan and Ball (ȢѴ8ѱ).

What about approximation? Open since 8ѵs.

Karger (ȢѴѴѴ) has given a famous FPRAS for UǇǋƾǅǂƺƻǂǅǂǍǒ (namely
1 − Zrel). However, approximating 1 − Zrel does not yield a good ap-
proximation for Zrel when Zrel is exponentially small.



The Tutte polynomial

For a connected undirected graph G = (V, E),

ZTutte(G; x, y) :=
∑
R⊆E

(x− 1)κ(R)−1(y− 1)κ(R)+|R|−|V |,

where κ(R) is the number of connected components of (V, R).

A few specializations of (x, y):

• (1, 1): # of spanning trees;

• (1, 2): # of connected subgraphs, and

ZTutte(G; 1, 1/p) = Zrel(G,p) · p|V |−|E|−1

(1− p)|V |−1
;

• (2, 1): # of forests (acyclic subgraphs);

• (x− 1)(y− 1) = 2 and x, y > 0: ferromagnetic Ising model.
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Main result

Letm := |E| and n := |V |.

Theorem (G. and Jerrum, ѰѵȢ8)
There is a randomized algorithm approximatingZrel withinmultiplicative
factor (1± ε), with expected running time O

(
ε−2(1− p)−3m2n3

)
.

Theorem (G. and Jerrum, ѰѵȢ8)

There is an exact sampler to draw (edge-weighted) connected subgraphs
with expected running time O((1− p)−1m2n).



NƺǍǎǋƺǅ ƺǍǍƾǆǉǍǌ
(ƺǇƽ ǐǁǒ Ǎǁƾǒ ƽǈ ǇǈǍ ǌǎƼƼƾƾƽ)



Naive Monte Carlo

A natural unbiased estimator Z̃ of Zrel:

Ȣ. Draw k independent subgraphs (Ri)i∈[k] of G(p).

Ѱ. Let

Z̃ :=
1

k

∑
i∈[k]

1conn(Ri),

where 1conn(R) is the indicator variable of (V, R) being
connected.

It is easy to see that E Z̃ = Zrel.

However, if Zrel is exponentially small (e.g. Zrel(Pn, p) = (1 − p)n−1),
then we will almost never see a connected Ri.

When that happens, the variance of 1conn(R) is exponentially large, and
k has to be exponentially large to yield a good approximation.
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Unreliability

Nonetheless, naive Monte Carlo (NMC) is the basic building block of the
FPRAS by Karger (ȢѴѴѴ) for UǇǋƾǅǂƺƻǂǅǂǍǒ (namely 1− Zrel).

Karger’s algorithm has been subsequently refined by Harris and Srini-
vasan (ѰѵȢѲ), Karger (ѰѵȢ6, ѰѵȢƭ).

Karger (ѰѵȢƭ) is a recursive algorithm using NMC running in O(n2.87).

• Run NMC, if pc > 1/2, where c is the size of the min-cut.
• Otherwise, draw subgraphs H1, H2 ∼ G(q) where q = 2−1/c > p, and

1

2
(Zunrel(H1, p/q) + Zunrel(H2, p/q))

is an unbiased estimator of Zunrel(G,p).
• Recursively estimate Zunrel(Hi, p/q) for i = 1, 2.

Similar ideas, once again, fail on graphs as simple as a path for Zrel.
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Reducing counting to sampling (Jerrum, Valiant, and Vazirani, ȢѴ86)

Let πG(·) be the product distribution over the edges, conditioned on the
resulting graph being connected.

We can approximate Zrel using an oracle drawing from πG.

G0 = G

⇒

G1

⇒

G2

⇒

G3
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Reducing counting to sampling (Jerrum, Valiant, and Vazirani, ȢѴ86)

Let πG(·) be the product distribution over the edges, conditioned on the
resulting graph being connected.

We can approximate Zrel using an oracle drawing from πG.

G0 = G

⇒

G1

⇒

G2

⇒

G3

Rewrite

Zrel(G) =
Zrel(G0)

Zrel(G1)
· Zrel(G1)

Zrel(G2)
· Zrel(G2)

Zrel(G3)
· Zrel(G3).



Reducing counting to sampling (Jerrum, Valiant, and Vazirani, ȢѴ86)

Let πG(·) be the product distribution over the edges, conditioned on the
resulting graph being connected.

We can approximate Zrel using an oracle drawing from πG.

G0 = G

⇒

G1

⇒

G2

⇒

G3

To estimate Zrel(Gi)
Zrel(Gi+1)

, draw C ∼ πGi+1
(·) and let

C ′ :=

{
C with prob. p;
C ∪ {e} otherwise,

and X := 1conn, Gi
(C ′).

Then EX = Zrel(Gi)
Zrel(Gi+1)

and its variance is bounded by a polynomial.



Markov chain Monte Carlo

There is a natural Markov chain converging to πG(·):

Ȣ. Let C0 = E.

Ѱ. Given Ct, randomly pick an edge e ∈ E.

If Ct \ {e} is disconnected then Ct+1 = Ct. Otherwise,

Ct+1 =

{
Ct ∪ {e} with prob. 1− p;
Ct \ {e} with prob. p.

Unfortunately, nothing is known about its mixing time (rate of conver-
gence).



A ǌǎǋǉǋǂǌǂǇǀ ƾǊǎǂǏƺǅƾǇƼƾ
(ƺǇƽ ƺǇ ƺǅǍƾǋǇƺǍǂǏƾ ǐƺǒ Ǎǈ ǌƺǆǉǅǂǇǀ)



Reachability

We say a directed graph D with root r is root-connected if all vertices
can reach r.

r

Root-connected

r

Root-connected

r

Not root-connected!

RƾƺƼǁƺƻǂǅǂǍǒ: in a directed graph D = (V,A) with root r, what’s the
probability thatD(p) is root-connected?

Zreach(D,p) :=
∑

R⊆A:(V,R) is root-connected

p|A\R|(1− p)|R|.



A surprising equivalence

Ball (ȢѴ8ѵ) showed that for any undirected graph G = (V, E),

Zrel(G,p) = Zreach(
−→
G, p),

where
−→
G is the directed graph obtained by replacing every e ∈ E with a

pair of anti-parallel arcs. (Called bi-directed).

G
−→
Gr

Thus we just need to approximate ǋƾƺƼǁƺƻǂǅǂǍǒ in bi-directed graphs.



A coupling proof

We have an alternative coupling proof of Ball’s equivalence:

There is a coupling C under which

G(p) is connected⇔
−→
G (p) is root-connected.

Explore G and
−→
G like a BFS, starting from r. Reveal

−→
G (p) and G(p) as

the process proceeds. Couple the arc going towards the current vertex
in

−→
G (p) with the corresponding edge in G(p).

G

r

u

−→
G

r

u

Whenboth exploration processes end, the sets of vertices that can reach
r are exactly the same.
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Cluster-popping

Goal: sample uniform (or edge-weighted) root-connected subgraphs.

Gorodezky and Pak (ѰѵȢѲ) proposed the “cluster-popping” algorithm:
(Cluster: a subset of vertices not including r and with no arc going out.)

Ȣ. Let R be a subset of arcs by choosing each arc e with probability 1− p

independently.

Ѱ. While there is at least one cluster in (V, R):

• Let C1, . . . , Ck be all minimal clusters in (V, R), and C =
∪k

i=1 Ci.
• Re-randomize all arcs whose heads are in C to get a new R.

Gorodezky and Pak (ѰѵȢѲ) showed that this algorithm draws from the correct
distribution, and they also conjectured that cluster-popping runs in expected
polynomial time in bi-directed graphs.
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An example run

Cluster-popping: repeatedly resample minimal clusters.
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Mapping back to connected subgraph.
(Exploration order: left to right, bottom to top)
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PƺǋǍǂƺǅ ǋƾǃƾƼǍǂǈǇ ǌƺǆǉǅǂǇǀ
(A ǀƾǇƾǋƺǅ Ǎǁƾǈǋǒ ƻƾǁǂǇƽ ƼǅǎǌǍƾǋ-ǉǈǉǉǂǇǀ)



Partial rejection sampling

Cluster-popping falls into the ǉƺǋǍǂƺǅ ǋƾǃƾƼǍǂǈǇ ǌƺǆǉǅǂǇǀ framework
(G., Jerrum, and Liu, ѰѵȢƭ).

The goal is to sample froma product distribution, conditioned on a num-
ber of “bad” events not happening.

Rejection sampling throws away all variables.

Instead, we want to recycle some randomness while resampling the
“bad” events (and hopefully not too much more).



Partial rejection sampling

Cluster-popping under partial rejection sampling:

Arcs are variables. Minimal clusters are “bad” events.

r

There can be exponentially many bad events.



Extremal instances

An instance is called extremal (in the sense of Shearer (ȢѴ8ѳ) regarding
non-uniform Lovász Local Lemma):
if any two “bad” events Ai and Aj are either independent or disjoint.

r

If the instance is extremal, then eliminating precisely the “bad” events
in each iteration yields the correct distribution once halt (GJL’Ȣƭ)!
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Resampling table

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi.
When we need to resample, draw the next value in the stack.
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Change the future, not the history

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!
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For any output σ and τ, there is a bijection between trajectories leading
to σ and τ.
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Partial Rejection Sampling vs Markov chains

Markov chain is a random walk in the solution space.
(The solution space has to be connected,

and the mixing time is not easy to analyze.)



Partial Rejection Sampling vs Markov chains

PRS is a local search on the whole space.

σ



Partial Rejection Sampling vs Markov chains

PRS is a local search on the whole space.
(Ergodicity is not an issue.)

σ



Partial Rejection Sampling vs Markov chains

PRS is a local search on the whole space.
(Correctness guaranteed by the bijection.

Exact formula for its running time on extremal instances.)

σ

τ



Run-time analysis

Theorem (G., Jerrum, and Liu, ѰѵȢƭ)
Under Shearer’s condition, for extremal instances,

E T =
total weight of one-flaw assignments
total weight of perfect assignments

.

(Shearer (ȢѴ8ѳ) has shown a sufficient condition to guarantee the existence of
one perfect assignment, which is optimal for Lovász Local Lemma.)

The upper bound is shown by Kolipaka and Szegedy (ѰѵȢȢ).



Back to cluster-popping

Cluster-popping: repeatedly resample minimal clusters.

LetΩk be the set of subgraphs with kminimal clusters, and

Zk :=
∑

S∈Ωk

p|E\S|(1− p)|S|. Then, E T =
Z1

Z0

.

Lemma (G. and Jerrum, ѰѵȢ8)
For bi-directed graphs, Z1 ⩽ p

1−p
·mnZ0.

We show this by designing an injective mappingΩ1 → Ω0 × V × E.



Injective mapping

Given R ∈ Ω1, we map it to R0 ∈ Ω0 by “repairing” the unique minimal
cluster.

r

u ′u

v

Conversely, given R0 ∈ Ω0, (u, u ′) and v, we can recover R ∈ Ω1.
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Recap for reliability

Approximate Zrel(G) via a sequence of contractionsG0, . . . , Gn−1, and
estimate each Zrel(Gi)

Zrel(Gi+1)
using the following sampling oracle:

Ȣ. run cluster-popping to sample a root-connected subgraph in
−→
G ;

Ѱ. use the coupling to get a random connected subgraph.

To bound the running time of cluster-popping, we use a result of (GJL’Ȣƭ)
and design an injective mapping.



Counting connected subgraphs of fixed size

Let St be the set of connected subgraph of size t where n− 1 ⩽ t ⩽ m

and Nt = |St|. Then a result of Huh and Katz (ѰѵȢѰ) implies that the
sequence (Nt)t is log-concave, namely,

Nt−1Nt+1 ⩽ N2
t .

(Here we treat connected subgraphs as independent sets in the dual of the
graphicmatroid, which is representable andHK’ȢѰ applies. Similar log-concavity
in general matroid is resolved by Adiprasito, Huh, and Katz (ѰѵȢѳ).)

Given the sampler for connected subgraphs and log-concavity, we can
set p = Nt

Nt−1+Nt
so that subgraphs in St show up frequently enough.

There is a standard approach (Jerrum and Sinclair, ȢѴ8Ѵ) to estimate
each individualNt.



Other examples of PRS

Extremal instances:

• Uniform spanning trees — cycle-popping (Wilson, ȢѴѴ6)

• Uniform sink-free orientations — sink-popping
(Bubley and Dyer, ȢѴѴƭ) (Cohn, Pemantle, and Propp, ѰѵѵѰ)

General instances (G., Jerrum, and Liu, ѰѵȢƭ):

• Weighted independent set (Hardcore gas model)

• Hard disks / hard spheres model (G. and Jerrum, ѰѵȢ8)

• Solutions to k-CNF formulas with bounded variable degrees

Results for general instances are far from optimal.



CǈǇƼǅǎƽǂǇǀ ǋƾǆƺǋǄǌ



Approximating the Tutte polynomial

q = (x− 1)(y− 1)
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A common paradigm

Both our result and the previous positive result on the Tutte plane (Jer-
rum and Sinclair, ȢѴѴѱ) follow the same pattern:

Ȣ. Transform the problem into an equivalent one:

• Ferromagnetic Ising model→ even subgraphs (JS’Ѵѱ);
• Reliability→ bi-directed reachability.

Ѱ. Exploit some nice properties of the new solution space.

Are there other equivalences we have not discovered yet?



Open problems

• Is the Markov chain for connected subgraphs rapidly mixing?

• Approximating s-t ǋƾǅǂƺƻǂǅǂǍǒ, and other variants?

(The natural Markov chain is exponentially slow for s-t version.)

• Approximating ZTutte(G; x, 1) for x > 1 (edge-weighted forests)?



TǁƺǇǄ ǒǈǎ!

arXiv:1611.01647
(PƺǋǍǂƺǅ ǋƾǃƾƼǍǂǈǇ ǌƺǆǉǅǂǇǀ)

arXiv:1709.08561
(NƾǍǐǈǋǄ ǋƾǅǂƺƻǂǅǂǍǒ)

arXiv:1611.01647
arXiv:1709.08561
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