
A Sǂǆǉǅƾ FPRAS ƿǈǋ Bǂ-ƽǂǋƾƼǍƾƽ RƾƺƼǁƺƻǂǅǂǍǒ

Heng Guo (University of Edinburgh)

Joint with Mark Jerrum (Queen Mary, University of London)

PKU TCS seminar, Dec Ѱƭ ѰѵȢƭ

CǈǎǇǍǂǇǀ

Tǁƾ ƼǈǆǉǅƾǑǂǍǒ ǈƿ ƼǈǆǉǎǍǂǇǀ ǊǎƺǇǍǂǍǂƾǌ

Complexity class #P by Valiant (ȢѴƭѴ):

a counting analogue of NP.

Evaluation of probabilities;
Multivariate integration;
Counting discrete structures …

NƾǍǐǈǋǄ ǋƾǅǂƺƻǂǅǂǍǒ

RƾǅǂƺƻǂǅǂǍǒ: in a graph (or network)G = (V, E), suppose each edge fails
with probability p. What’s the probability that the remaining graph is
connected?

In other words, we want to compute

Zrel(G,p) :=
∑

R⊆E:(V,R) is connected

p|E\R|(1− p)|R|.

(1− p)4 p(1− p)3 Disconnected!

CǈǆǉǎǍƺǍǂǈǇƺǅ ƼǈǆǉǅƾǑǂǍǒ ǈƿ ǋƾǅǂƺƻǂǅǂǍǒ

The unweighted case (namely, p = 0.5) is among the original Ȣƭ #P-
complete problem in [Valiant ’ƭѴ].

Exact evaluation is #P-complete [Jerrum ’8Ȣ] [Provan, Ball ’8ѱ].

Karger (ȢѴѴѴ) gave an FPRAS for unreliability, but the complexity of ap-
proximating reliability is still open.

CǈǆǉǎǍƺǍǂǈǇƺǅ ƼǈǆǉǅƾǑǂǍǒ ǈƿ ǋƾǅǂƺƻǂǅǂǍǒ

The unweighted case (namely, p = 0.5) is among the original Ȣƭ #P-
complete problem in [Valiant ’ƭѴ].

Exact evaluation is #P-complete [Jerrum ’8Ȣ] [Provan, Ball ’8ѱ].

Karger (ȢѴѴѴ) gave an FPRAS for unreliability, but the complexity of ap-
proximating reliability is still open.

CǈǆǉǎǍƺǍǂǈǇƺǅ ƼǈǆǉǅƾǑǂǍǒ ǈƿ ǋƾǅǂƺƻǂǅǂǍǒ

The unweighted case (namely, p = 0.5) is among the original Ȣƭ #P-
complete problem in [Valiant ’ƭѴ].

Exact evaluation is #P-complete [Jerrum ’8Ȣ] [Provan, Ball ’8ѱ].

Karger (ȢѴѴѴ) gave an FPRAS for unreliability, but the complexity of ap-
proximating reliability is still open.

RƾƺƼǁƺƻǂǅǂǍǒ

We say a directed graph G with root r is root-connected if all vertices
can reach r.

r

Root-connected

r

Root-connected

r

Not connected!

Ball and Provan (ȢѴ8ѱ) defined RƾƺƼǁƺƻǂǅǂǍǒ: in a directed graph with
root r, suppose each arc fails with probability p, what’s the probability
that the remaining graph is root-connected?

Zreach(G,p) :=
∑

R⊆E:(V,R) is root-connected

p|E\R|(1− p)|R|.

RƾƺƼǁƺƻǂǅǂǍǒ

We say a directed graph G with root r is root-connected if all vertices
can reach r.

r

Root-connected

r

Root-connected

r

Not connected!

Ball and Provan (ȢѴ8ѱ) defined RƾƺƼǁƺƻǂǅǂǍǒ: in a directed graph with
root r, suppose each arc fails with probability p, what’s the probability
that the remaining graph is root-connected?

Zreach(G,p) :=
∑

R⊆E:(V,R) is root-connected

p|E\R|(1− p)|R|.

CǅǎǌǍƾǋ ǉǈǉǉǂǇǀ

If G is bi-directed, approximating Zreach(G,p) can be reduced to sam-
pling root-connected subgraphs [Gorodezky, Pak ȢѲ].

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak ȢѲ]:
randomize edges and repeatedly pop mini-
mal clusters.

[G., Jerrum Ȣƭ]: the expected number of
rounds in a bi-directed graph is O

(
mn
1−p

)
.

r

CǅǎǌǍƾǋ ǉǈǉǉǂǇǀ

If G is bi-directed, approximating Zreach(G,p) can be reduced to sam-
pling root-connected subgraphs [Gorodezky, Pak ȢѲ].

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak ȢѲ]:
randomize edges and repeatedly pop mini-
mal clusters.

[G., Jerrum Ȣƭ]: the expected number of
rounds in a bi-directed graph is O

(
mn
1−p

)
.

r

CǅǎǌǍƾǋ ǉǈǉǉǂǇǀ

If G is bi-directed, approximating Zreach(G,p) can be reduced to sam-
pling root-connected subgraphs [Gorodezky, Pak ȢѲ].

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak ȢѲ]:
randomize edges and repeatedly pop mini-
mal clusters.

[G., Jerrum Ȣƭ]: the expected number of
rounds in a bi-directed graph is O

(
mn
1−p

)
.

r

CǅǎǌǍƾǋ ǉǈǉǉǂǇǀ

If G is bi-directed, approximating Zreach(G,p) can be reduced to sam-
pling root-connected subgraphs [Gorodezky, Pak ȢѲ].

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak ȢѲ]:
randomize edges and repeatedly pop mini-
mal clusters.

[G., Jerrum Ȣƭ]: the expected number of
rounds in a bi-directed graph is O

(
mn
1−p

)
.

r

CǅǎǌǍƾǋ ǉǈǉǉǂǇǀ

If G is bi-directed, approximating Zreach(G,p) can be reduced to sam-
pling root-connected subgraphs [Gorodezky, Pak ȢѲ].

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak ȢѲ]:
randomize edges and repeatedly pop mini-
mal clusters.

[G., Jerrum Ȣƭ]: the expected number of
rounds in a bi-directed graph is O

(
mn
1−p

)
.

r

PƺǋǍǂƺǅ ǋƾǃƾƼǍǂǈǇ ǌƺǆǉǅǂǇǀ
(ǐǁǒ ǂǌ ƼǅǎǌǍƾǋ-ǉǈǉǉǂǇǀ ƼǈǋǋƾƼǍ ƺǇƽ ƾƿƿǂƼǂƾǇǍ?)

A ǋƺǇƽǈǆ ǐƺǅǄ SAT-ǌǈǅǏƾǋ

The prototypical NP-complete problem:
given a CNF formula, does it have a satisfying assignment?

(x1 ∨ x3 ∨ x5)∧ (x2 ∨ x3)∧ (x3 ∨ x4)∧ (x1 ∨ x5 ∨ x6 ∨ x7) . . .

Rejection sampling: assign each variable uniformly at random and inde-
pendently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

It is optimal in a very general setting! [Moser, Tardos Ȣѵ]

A ǋƺǇƽǈǆ ǐƺǅǄ SAT-ǌǈǅǏƾǋ

The prototypical NP-complete problem:
given a CNF formula, does it have a satisfying assignment?

(x1 ∨ x3 ∨ x5)∧ (x2 ∨ x3)∧ (x3 ∨ x4)∧ (x1 ∨ x5 ∨ x6 ∨ x7) . . .

Rejection sampling: assign each variable uniformly at random and inde-
pendently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

It is optimal in a very general setting! [Moser, Tardos Ȣѵ]

A ǋƺǇƽǈǆ ǐƺǅǄ SAT-ǌǈǅǏƾǋ

The prototypical NP-complete problem:
given a CNF formula, does it have a satisfying assignment?

(x1 ∨ x3 ∨ x5)∧ (x2 ∨ x3)∧ (x3 ∨ x4)∧ (x1 ∨ x5 ∨ x6 ∨ x7) . . .

Rejection sampling: assign each variable uniformly at random and inde-
pendently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

It is optimal in a very general setting! [Moser, Tardos Ȣѵ]

A ǋƺǇƽǈǆ ǐƺǅǄ SAT-ǌǈǅǏƾǋ

The prototypical NP-complete problem:
given a CNF formula, does it have a satisfying assignment?

(x1 ∨ x3 ∨ x5)∧ (x2 ∨ x3)∧ (x3 ∨ x4)∧ (x1 ∨ x5 ∨ x6 ∨ x7) . . .

Rejection sampling: assign each variable uniformly at random and inde-
pendently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

It is optimal in a very general setting! [Moser, Tardos Ȣѵ]

Vƺǋǂƺƻǅƾ ƿǋƺǆƾǐǈǋǄ ǈƿ Ǎǁƾ LǈǏ˿ǌǓ LǈƼƺǅ Lƾǆǆƺ

Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X1, . . . , Xn “Bad” events A1, . . . , Am

Dependency graph: Ai and Aj are adjacent if var(Ai) ∩ var(Aj) ̸= ∅.

Erdős and Lovász (ȢѴƭѳ): 4p∆ ⩽ 1⇒ existence of a perfect assignment.

p: max probability of Ai ∆: max degree of the dependency graph

Lovász (ȢѴƭƭ) improved the condition to ep(∆+ 1) ⩽ 1.

Shearer (ȢѴ8ѳ) gave the optimal condition of LLL.

LLL only guarantees an exponentially small probability.

Vƺǋǂƺƻǅƾ ƿǋƺǆƾǐǈǋǄ ǈƿ Ǎǁƾ LǈǏ˿ǌǓ LǈƼƺǅ Lƾǆǆƺ

Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X1, . . . , Xn “Bad” events A1, . . . , Am

Dependency graph: Ai and Aj are adjacent if var(Ai) ∩ var(Aj) ̸= ∅.

Erdős and Lovász (ȢѴƭѳ): 4p∆ ⩽ 1⇒ existence of a perfect assignment.

p: max probability of Ai ∆: max degree of the dependency graph

Lovász (ȢѴƭƭ) improved the condition to ep(∆+ 1) ⩽ 1.

Shearer (ȢѴ8ѳ) gave the optimal condition of LLL.

LLL only guarantees an exponentially small probability.

Vƺǋǂƺƻǅƾ ƿǋƺǆƾǐǈǋǄ ǈƿ Ǎǁƾ LǈǏ˿ǌǓ LǈƼƺǅ Lƾǆǆƺ

Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X1, . . . , Xn “Bad” events A1, . . . , Am

Dependency graph: Ai and Aj are adjacent if var(Ai) ∩ var(Aj) ̸= ∅.

Erdős and Lovász (ȢѴƭѳ): 4p∆ ⩽ 1⇒ existence of a perfect assignment.

p: max probability of Ai ∆: max degree of the dependency graph

Lovász (ȢѴƭƭ) improved the condition to ep(∆+ 1) ⩽ 1.

Shearer (ȢѴ8ѳ) gave the optimal condition of LLL.

LLL only guarantees an exponentially small probability.

Vƺǋǂƺƻǅƾ ƿǋƺǆƾǐǈǋǄ ǈƿ Ǎǁƾ LǈǏ˿ǌǓ LǈƼƺǅ Lƾǆǆƺ

Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X1, . . . , Xn “Bad” events A1, . . . , Am

Dependency graph: Ai and Aj are adjacent if var(Ai) ∩ var(Aj) ̸= ∅.

Erdős and Lovász (ȢѴƭѳ): 4p∆ ⩽ 1⇒ existence of a perfect assignment.

p: max probability of Ai ∆: max degree of the dependency graph

Lovász (ȢѴƭƭ) improved the condition to ep(∆+ 1) ⩽ 1.

Shearer (ȢѴ8ѳ) gave the optimal condition of LLL.

LLL only guarantees an exponentially small probability.

Vƺǋǂƺƻǅƾ ƿǋƺǆƾǐǈǋǄ ǈƿ Ǎǁƾ LǈǏ˿ǌǓ LǈƼƺǅ Lƾǆǆƺ

Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X1, . . . , Xn “Bad” events A1, . . . , Am

Dependency graph: Ai and Aj are adjacent if var(Ai) ∩ var(Aj) ̸= ∅.

Erdős and Lovász (ȢѴƭѳ): 4p∆ ⩽ 1⇒ existence of a perfect assignment.

p: max probability of Ai ∆: max degree of the dependency graph

Lovász (ȢѴƭƭ) improved the condition to ep(∆+ 1) ⩽ 1.

Shearer (ȢѴ8ѳ) gave the optimal condition of LLL.

LLL only guarantees an exponentially small probability.

Mǈǌƾǋ-Tƺǋƽǈǌ ǋƾǌƺǆǉǅǂǇǀ ƺǅǀǈǋǂǍǁǆ

Beck (ȢѴѴȢ) showed that an algorithmic version is possible, starting a
long line of research.

Moser and Tardos (ѰѵȢѵ) found a very elegant algorithm:

Ȣ. Initialize all variables randomly.

Ѱ. While there exists an occurring bad event:
pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan ȢȢ], [Kolipaka, Szegedy ȢȢ], [Harris, Srinivasan Ȣѱ],
[Achlioptas, Iliopoulos Ȣ6], [Harvey, Vondrak Ȣѳ], [He, Li, Liu, Wang, Xia Ȣƭ].

Mǈǌƾǋ-Tƺǋƽǈǌ ǋƾǌƺǆǉǅǂǇǀ ƺǅǀǈǋǂǍǁǆ

Beck (ȢѴѴȢ) showed that an algorithmic version is possible, starting a
long line of research.

Moser and Tardos (ѰѵȢѵ) found a very elegant algorithm:

Ȣ. Initialize all variables randomly.

Ѱ. While there exists an occurring bad event:
pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan ȢȢ], [Kolipaka, Szegedy ȢȢ], [Harris, Srinivasan Ȣѱ],
[Achlioptas, Iliopoulos Ȣ6], [Harvey, Vondrak Ȣѳ], [He, Li, Liu, Wang, Xia Ȣƭ].

Mǈǌƾǋ-Tƺǋƽǈǌ ǋƾǌƺǆǉǅǂǇǀ ƺǅǀǈǋǂǍǁǆ

Beck (ȢѴѴȢ) showed that an algorithmic version is possible, starting a
long line of research.

Moser and Tardos (ѰѵȢѵ) found a very elegant algorithm:

Ȣ. Initialize all variables randomly.

Ѱ. While there exists an occurring bad event:
pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan ȢȢ], [Kolipaka, Szegedy ȢȢ], [Harris, Srinivasan Ȣѱ],
[Achlioptas, Iliopoulos Ȣ6], [Harvey, Vondrak Ȣѳ], [He, Li, Liu, Wang, Xia Ȣƭ].

SƾƺǋƼǁǂǇǀ Ǐǌ. SƺǆǉǅǂǇǀ

Question
Instead of finding a solution, can we generate a random solution?

Unfortunately, Moser-Tardos’s output is not necessarily uniform.

SƾƺǋƼǁǂǇǀ Ǐǌ. SƺǆǉǅǂǇǀ

Question
Instead of finding a solution, can we generate a random solution?

Unfortunately, Moser-Tardos’s output is not necessarily uniform.

SƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

Ȣ. Randomize each vertex.

Ѱ. Resample all connected component
of size at least 2, until there is none.

This does not draw from the target distribution:

• Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the
empty set is overly favored.

• The process converges too fast. However uniformly sampling indepen-
dent set is NP-hard (even approximately).

SƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

→ Ȣ. Randomize each vertex.

Ѱ. Resample all connected component
of size at least 2, until there is none.

This does not draw from the target distribution:

• Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the
empty set is overly favored.

• The process converges too fast. However uniformly sampling indepen-
dent set is NP-hard (even approximately).

SƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

Ȣ. Randomize each vertex.

→ Ѱ. Resample all connected component
of size at least 2, until there is none.

This does not draw from the target distribution:

• Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the
empty set is overly favored.

• The process converges too fast. However uniformly sampling indepen-
dent set is NP-hard (even approximately).

SƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

Ȣ. Randomize each vertex.

→ Ѱ. Resample all connected component
of size at least 2, until there is none.

This does not draw from the target distribution:

• Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the
empty set is overly favored.

• The process converges too fast. However uniformly sampling indepen-
dent set is NP-hard (even approximately).

SƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

Ȣ. Randomize each vertex.

→ Ѱ. Resample all connected component
of size at least 2, until there is none.

This does not draw from the target distribution:

• Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the
empty set is overly favored.

• The process converges too fast. However uniformly sampling indepen-
dent set is NP-hard (even approximately).

SƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

Ȣ. Randomize each vertex.

Ѱ. Resample all connected component
of size at least 2, until there is none.

This does not draw from the target distribution:

• Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the
empty set is overly favored.

• The process converges too fast. However uniformly sampling indepen-
dent set is NP-hard (even approximately).

SƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

Ȣ. Randomize each vertex.

Ѱ. Resample all connected component
of size at least 2, until there is none.

This does not draw from the target distribution:

• Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the
empty set is overly favored.

• The process converges too fast. However uniformly sampling indepen-
dent set is NP-hard (even approximately).

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ (ȢѴѴ6)

Goal: sample a uniform spanning tree with root r.

Ȣ. For each v ̸= r, assign a randomarrow
from v to one of its neighbours.

Ѱ. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

ѱ. Output.

r

No cycle + n− 1 edges⇒ Spanning Tree

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ (ȢѴѴ6)

Goal: sample a uniform spanning tree with root r.

Ȣ. For each v ̸= r, assign a randomarrow
from v to one of its neighbours.

Ѱ. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

ѱ. Output.

r

No cycle + n− 1 edges⇒ Spanning Tree

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ (ȢѴѴ6)

Goal: sample a uniform spanning tree with root r.

→ Ȣ. For each v ̸= r, assign a randomarrow
from v to one of its neighbours.

Ѱ. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

ѱ. Output.

r

No cycle + n− 1 edges⇒ Spanning Tree

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ (ȢѴѴ6)

Goal: sample a uniform spanning tree with root r.

Ȣ. For each v ̸= r, assign a randomarrow
from v to one of its neighbours.

→ Ѱ. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

ѱ. Output.

r

No cycle + n− 1 edges⇒ Spanning Tree

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ (ȢѴѴ6)

Goal: sample a uniform spanning tree with root r.

Ȣ. For each v ̸= r, assign a randomarrow
from v to one of its neighbours.

→ Ѱ. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

ѱ. Output.

r

No cycle + n− 1 edges⇒ Spanning Tree

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ (ȢѴѴ6)

Goal: sample a uniform spanning tree with root r.

Ȣ. For each v ̸= r, assign a randomarrow
from v to one of its neighbours.

→ Ѱ. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

ѱ. Output.

r

No cycle + n− 1 edges⇒ Spanning Tree

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ (ȢѴѴ6)

Goal: sample a uniform spanning tree with root r.

Ȣ. For each v ̸= r, assign a randomarrow
from v to one of its neighbours.

→ Ѱ. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

ѱ. Output.

r

No cycle + n− 1 edges⇒ Spanning Tree

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ (ȢѴѴ6)

Goal: sample a uniform spanning tree with root r.

Ȣ. For each v ̸= r, assign a randomarrow
from v to one of its neighbours.

→ Ѱ. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

ѱ. Output.

r

No cycle + n− 1 edges⇒ Spanning Tree

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ (ȢѴѴ6)

Goal: sample a uniform spanning tree with root r.

Ȣ. For each v ̸= r, assign a randomarrow
from v to one of its neighbours.

→ Ѱ. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

ѱ. Output.

r

No cycle + n− 1 edges⇒ Spanning Tree

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ (ȢѴѴ6)

Goal: sample a uniform spanning tree with root r.

Ȣ. For each v ̸= r, assign a randomarrow
from v to one of its neighbours.

Ѱ. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

→ ѱ. Output.

r

No cycle + n− 1 edges⇒ Spanning Tree

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ (ȢѴѴ6)

Goal: sample a uniform spanning tree with root r.

Ȣ. For each v ̸= r, assign a randomarrow
from v to one of its neighbours.

Ѱ. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

ѱ. Output.

r

No cycle + n− 1 edges⇒ Spanning Tree

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

Wilson (ȢѴѴ6) showed that the output is uniform.

But why? What is the general criterion?

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

Wilson (ȢѴѴ6) showed that the output is uniform.

But why? What is the general criterion?

WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

Wilson (ȢѴѴ6) showed that the output is uniform.

But why? What is the general criterion?

EǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

We call an instance extremal:

if any two “bad” events Ai and Aj are either independent or disjoint.

• Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 8ѳ].

• Moser-Tardos runs slowest in extremal instances.

• Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu Ȣƭ)
When the instance is extremal, the output of Moser-Tardos is uniform.

EǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

We call an instance extremal:

if any two “bad” events Ai and Aj are either independent or disjoint.

• Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 8ѳ].

• Moser-Tardos runs slowest in extremal instances.

• Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu Ȣƭ)
When the instance is extremal, the output of Moser-Tardos is uniform.

EǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

We call an instance extremal:

if any two “bad” events Ai and Aj are either independent or disjoint.

• Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 8ѳ].

• Moser-Tardos runs slowest in extremal instances.

• Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu Ȣƭ)
When the instance is extremal, the output of Moser-Tardos is uniform.

EǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

We call an instance extremal:

if any two “bad” events Ai and Aj are either independent or disjoint.

• Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 8ѳ].

• Moser-Tardos runs slowest in extremal instances.

• Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu Ȣƭ)
When the instance is extremal, the output of Moser-Tardos is uniform.

EǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

We call an instance extremal:

if any two “bad” events Ai and Aj are either independent or disjoint.

• Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 8ѳ].

• Moser-Tardos runs slowest in extremal instances.

• Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu Ȣƭ)
When the instance is extremal, the output of Moser-Tardos is uniform.

EǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlap-
ping), then these two cycles must be identical by following the arrow!

Other extremal instances:

• “Cluster-popping” [Gorodezky, Pak ȢѲ]

• Sink-free orientations [Bubley, Dyer Ѵƭ] [Cohn, Pemantle, Propp ѵѰ]
Reintroduced to show distributed LLL lower bound

[Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto Ȣ6]

We may give weights to the variables. Thus the target distribution is a
product distribution conditioned on none of “bad” events occurring.

EǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlap-
ping), then these two cycles must be identical by following the arrow!

Other extremal instances:

• “Cluster-popping” [Gorodezky, Pak ȢѲ]

• Sink-free orientations [Bubley, Dyer Ѵƭ] [Cohn, Pemantle, Propp ѵѰ]
Reintroduced to show distributed LLL lower bound

[Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto Ȣ6]

We may give weights to the variables. Thus the target distribution is a
product distribution conditioned on none of “bad” events occurring.

EǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlap-
ping), then these two cycles must be identical by following the arrow!

Other extremal instances:

• “Cluster-popping” [Gorodezky, Pak ȢѲ]

• Sink-free orientations [Bubley, Dyer Ѵƭ] [Cohn, Pemantle, Propp ѵѰ]
Reintroduced to show distributed LLL lower bound

[Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto Ȣ6]

We may give weights to the variables. Thus the target distribution is a
product distribution conditioned on none of “bad” events occurring.

EǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlap-
ping), then these two cycles must be identical by following the arrow!

Other extremal instances:

• “Cluster-popping” [Gorodezky, Pak ȢѲ]

• Sink-free orientations [Bubley, Dyer Ѵƭ] [Cohn, Pemantle, Propp ѵѰ]
Reintroduced to show distributed LLL lower bound

[Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto Ȣ6]

We may give weights to the variables. Thus the target distribution is a
product distribution conditioned on none of “bad” events occurring.

EǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlap-
ping), then these two cycles must be identical by following the arrow!

Other extremal instances:

• “Cluster-popping” [Gorodezky, Pak ȢѲ]

• Sink-free orientations [Bubley, Dyer Ѵƭ] [Cohn, Pemantle, Propp ѵѰ]
Reintroduced to show distributed LLL lower bound

[Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto Ȣ6]

We may give weights to the variables. Thus the target distribution is a
product distribution conditioned on none of “bad” events occurring.

RƾǌƺǆǉǅǂǇǀ Ǎƺƻǅƾ

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi.
When we need to resample, draw the next value in the stack.

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

RƾǌƺǆǉǅǂǇǀ Ǎƺƻǅƾ

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi.
When we need to resample, draw the next value in the stack.

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

RƾǌƺǆǉǅǂǇǀ Ǎƺƻǅƾ

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi.
When we need to resample, draw the next value in the stack.

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

RƾǌƺǆǉǅǂǇǀ Ǎƺƻǅƾ

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi.
When we need to resample, draw the next value in the stack.

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

RƾǌƺǆǉǅǂǇǀ Ǎƺƻǅƾ

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi.
When we need to resample, draw the next value in the stack.

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

RƾǌƺǆǉǅǂǇǀ Ǎƺƻǅƾ

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi.
When we need to resample, draw the next value in the stack.

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

CǁƺǇǀƾ Ǎǁƾ ƿǎǍǎǋƾ, ǇǈǍ Ǎǁƾ ǉƺǌǍ

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

A1

A2

X ′
4,1

X ′
3,2

X ′
2,1

X ′
1,0

For any output σ and τ, there is a bijection between trajectories leading
to σ and τ.

CǁƺǇǀƾ Ǎǁƾ ƿǎǍǎǋƾ, ǇǈǍ Ǎǁƾ ǉƺǌǍ

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

A1

A2

X ′
4,1

X ′
3,2

X ′
2,1

X ′
1,0

For any output σ and τ, there is a bijection between trajectories leading
to σ and τ.

CǁƺǇǀƾ Ǎǁƾ ƿǎǍǎǋƾ, ǇǈǍ Ǎǁƾ ǉƺǌǍ

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

A1

A2

X ′
4,1

X ′
3,2

X ′
2,1

X ′
1,0

For any output σ and τ, there is a bijection between trajectories leading
to σ and τ.

CǁƺǇǀƾ Ǎǁƾ ƿǎǍǎǋƾ, ǇǈǍ Ǎǁƾ ǉƺǌǍ

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X4,0

X3,0

X2,0

X1,0

X4,1

X3,1

X2,1

X1,1

X4,2

X3,2

X2,2

X1,2

X4,3

X3,3

X2,3

X1,3

X4,4

X3,4

X2,4

X1,4

X4

X3

X2

X1

. . .

. . .

. . .

. . .

A1

A2

X ′
4,1

X ′
3,2

X ′
2,1

X ′
1,0

For any output σ and τ, there is a bijection between trajectories leading
to σ and τ.

RǎǇǇǂǇǀ Ǎǂǆƾ ǈǇ ƾǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

Theorem (G., Jerrum, Liu Ȣƭ)

Under Shearer’s condition, for extremal instances,

E T =

m∑
i=1

qi

q∅
=

near-perfect assignments
perfect assignments

.

(Shearer’s condition: qS ⩾ 0 for all S ⊆ V , where qS is the independence poly-
nomial on G \ Γ+(S) with weight −pj on vertex j.)

In general (non-extremal), E T ⩽
∑m

i=1
qi

q∅
[Kolipaka, Szegedy ȢȢ].

Hence, Moser-Tardos on extremal instances is the slowest.

RǎǇǇǂǇǀ Ǎǂǆƾ ǈǇ ƾǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

Theorem (G., Jerrum, Liu Ȣƭ)

Under Shearer’s condition, for extremal instances,

E T =

m∑
i=1

qi

q∅
=

near-perfect assignments
perfect assignments

.

(Shearer’s condition: qS ⩾ 0 for all S ⊆ V , where qS is the independence poly-
nomial on G \ Γ+(S) with weight −pj on vertex j.)

In general (non-extremal), E T ⩽
∑m

i=1
qi

q∅
[Kolipaka, Szegedy ȢȢ].

Hence, Moser-Tardos on extremal instances is the slowest.

BƺƼǄ Ǎǈ ƼǅǎǌǍƾǋ-ǉǈǉǉǂǇǀ

Cluster-popping: repeatedly resample minimal clusters.

LetΩk be the set of subgraphs with kminimal clusters.

Zk :=
∑

S∈Ωk

p|E\S|(1− p)|S| E T =
Z1

Z0

[G., Jerrum Ȣƭ]: for bi-directed graphs, Z1 ⩽ mn
1−p

Z0.

We show this by designing an injective mappingΩ1 → Ω0 × V × E.

Theorem
There is an FPRAS for RƾƺƼǁƺƻǂǅǂǍǒ in bi-directed graphs. The running
time is O

(
ε−2p(1− p)−3m2n3

)
for an (1± ε)-approximation.

BƺƼǄ Ǎǈ ƼǅǎǌǍƾǋ-ǉǈǉǉǂǇǀ

Cluster-popping: repeatedly resample minimal clusters.

LetΩk be the set of subgraphs with kminimal clusters.

Zk :=
∑

S∈Ωk

p|E\S|(1− p)|S| E T =
Z1

Z0

[G., Jerrum Ȣƭ]: for bi-directed graphs, Z1 ⩽ mn
1−p

Z0.

We show this by designing an injective mappingΩ1 → Ω0 × V × E.

Theorem
There is an FPRAS for RƾƺƼǁƺƻǂǅǂǍǒ in bi-directed graphs. The running
time is O

(
ε−2p(1− p)−3m2n3

)
for an (1± ε)-approximation.

A ƼǈǋǋƾƼǍ ƺǅǀǈǋǂǍǁǆ ƿǈǋ ǌƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ

Ȣ. Randomize each vertex.

Ѱ. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

ѱ. Res = Bad ∪ ∂Bad.

Ѳ. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.

A ƼǈǋǋƾƼǍ ƺǅǀǈǋǂǍǁǆ ƿǈǋ ǌƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ

→ Ȣ. Randomize each vertex.

Ѱ. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

ѱ. Res = Bad ∪ ∂Bad.

Ѳ. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.

A ƼǈǋǋƾƼǍ ƺǅǀǈǋǂǍǁǆ ƿǈǋ ǌƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ

Ȣ. Randomize each vertex.

→ Ѱ. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

ѱ. Res = Bad ∪ ∂Bad.

Ѳ. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.

A ƼǈǋǋƾƼǍ ƺǅǀǈǋǂǍǁǆ ƿǈǋ ǌƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ

Ȣ. Randomize each vertex.

Ѱ. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

→ ѱ. Res = Bad ∪ ∂Bad.

Ѳ. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.

A ƼǈǋǋƾƼǍ ƺǅǀǈǋǂǍǁǆ ƿǈǋ ǌƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ

Ȣ. Randomize each vertex.

Ѱ. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

ѱ. Res = Bad ∪ ∂Bad.

→ Ѳ. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.

A ƼǈǋǋƾƼǍ ƺǅǀǈǋǂǍǁǆ ƿǈǋ ǌƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ

Ȣ. Randomize each vertex.

Ѱ. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

ѱ. Res = Bad ∪ ∂Bad.

→ Ѳ. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.

A ƼǈǋǋƾƼǍ ƺǅǀǈǋǂǍǁǆ ƿǈǋ ǌƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ

Ȣ. Randomize each vertex.

→ Ѱ. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

ѱ. Res = Bad ∪ ∂Bad.

Ѳ. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.

A ƼǈǋǋƾƼǍ ƺǅǀǈǋǂǍǁǆ ƿǈǋ ǌƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ

Ȣ. Randomize each vertex.

Ѱ. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

→ ѱ. Res = Bad ∪ ∂Bad.

Ѳ. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.

A ƼǈǋǋƾƼǍ ƺǅǀǈǋǂǍǁǆ ƿǈǋ ǌƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ

Ȣ. Randomize each vertex.

Ѱ. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

ѱ. Res = Bad ∪ ∂Bad.

→ Ѳ. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.

A ƼǈǋǋƾƼǍ ƺǅǀǈǋǂǍǁǆ ƿǈǋ ǌƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ

Ȣ. Randomize each vertex.

Ѱ. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

ѱ. Res = Bad ∪ ∂Bad.

→ Ѳ. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.

A ƼǈǋǋƾƼǍ ƺǅǀǈǋǂǍǁǆ ƿǈǋ ǌƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ

Ȣ. Randomize each vertex.

Ѱ. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

ѱ. Res = Bad ∪ ∂Bad.

Ѳ. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.

BƾǒǈǇƽ ƾǑǍǋƾǆƺǅ Ƽƺǌƾǌ

We also gave a general algorithm, and is optimal in certain restricted
cases, up to constants [G., Jerrum, Liu Ȣƭ].

But it falls short in general. My conjecture is that there is an efficient
algorithm whenever p∆2 ⩽ C for some constant C.

On the other hand, there is a constant C ′ such that if p∆2 ⩾ C ′, then
sampling is NP-hard [Bezáková, Galanis, Goldberg, G., Štefankovič Ȣ6].

BƾǒǈǇƽ ƾǑǍǋƾǆƺǅ Ƽƺǌƾǌ

We also gave a general algorithm, and is optimal in certain restricted
cases, up to constants [G., Jerrum, Liu Ȣƭ].

But it falls short in general. My conjecture is that there is an efficient
algorithm whenever p∆2 ⩽ C for some constant C.

On the other hand, there is a constant C ′ such that if p∆2 ⩾ C ′, then
sampling is NP-hard [Bezáková, Galanis, Goldberg, G., Štefankovič Ȣ6].

BƾǒǈǇƽ ƾǑǍǋƾǆƺǅ Ƽƺǌƾǌ

We also gave a general algorithm, and is optimal in certain restricted
cases, up to constants [G., Jerrum, Liu Ȣƭ].

But it falls short in general. My conjecture is that there is an efficient
algorithm whenever p∆2 ⩽ C for some constant C.

On the other hand, there is a constant C ′ such that if p∆2 ⩾ C ′, then
sampling is NP-hard [Bezáková, Galanis, Goldberg, G., Štefankovič Ȣ6].

CǈǇƼǅǎƽǂǇǀ ǋƾǆƺǋǄǌ

OǉƾǇ ǉǋǈƻǅƾǆǌ

• How to sample connected subgraphs (or approximate reliability)?

• What is the optimal sampling algorithm in the local lemma setting
in general?

• Canwedo this for perfectmatchings - resampling permutations???

A professor is one who can speak on any subject for precisely fifty min-
utes.

— Norbert Wiener

TǁƺǇǄ ǒǈǎ!
arXiv:1611.01647
arXiv:1709.08561

arXiv:1611.01647
arXiv:1709.08561

	Counting
	Partial rejection sampling
	Concluding remarks

