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COUNTING



THE COMPLEXITY OF COMPUTING QUANTITIES

Complexity class #P by Valiant (1979):

a counting analogue of NP.

Evaluation of probabilities;
Multivariate integration;
Counting discrete structures ...




NETWORK RELIABILITY

RELIABILITY: ina graph (or network) G = (V, E), suppose each edge fails
with probability p. What's the probability that the remaining graph is
connected?

In other words, we want to compute

ZreL(G)p) = Z PlE\R‘“ —'P)‘Rl-
RCE:(V, R) is connected

(1—p)* p(1—p)3 Disconnected!
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COMPUTATIONAL COMPLEXITY OF RELIABILITY

The unweighted case (namely, p = 0.5) is among the original 17 #P-
complete problem in [Valiant '79].

Exact evaluation is #P-complete [Jerrum '81] [Provan, Ball '83].

Karger (1999) gave an FPRAS for unreliability, but the complexity of ap-
proximating reliability is still open.



REACHABILITY

We say a directed graph G with root r is root-connected if all vertices
canreachr.
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REACHABILITY

We say a directed graph G with root r is root-connected if all vertices

canreach.
T T T
o— 0 E HI
Root-connected Root-connected Not connected!

Ball and Provan (1983) defined REACHABILITY: in a directed graph with
root r, suppose each arc fails with probability p, what's the probability
that the remaining graph is root-connected?

Zreach(G)p) = Z P‘E\le —P)‘RI-
RCE:(V, R) is root-connected
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CLUSTER POPPING

If G is bi-directed, approximating Z,cqcn (G, p) can be reduced to sam-
pling root-connected subgraphs [Gorodezky, Pak 14].

Cluster: no edge going out. < <

Cluster popping [Gorodezky, Pak 14]: v
randomize edges and repeatedly pop mini- '
mal clusters.

[G., Jerrum 17]: the expected number of 4 4

rounds in a bi-directed graph is O <%)




PARTIAL REJECTION SAMPLING

(WHY IS CLUSTER-POPPING CORRECT AND EFFICIENT?)
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A RANDOM WALK SAT-SOLVER

The prototypical NP-complete problem:
given a CNF formula, does it have a satisfying assignment?

(x1VX3Vxs) A (x2Vx3)AXZVXI) A (x1 VX5 VxgVXx7)...

Rejection sampling: assign each variable uniformly at random and inde-
pendently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

It is optimal in a very general setting! [Moser, Tardos 10]
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VARIABLE FRAMEWORK OF THE LOVASZ LOCAL LEMMA

Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X1,..., Xy ‘Bad” events Aq,...,Am
Dependency graph: A; and Aj are adjacent if var(A;) N var(A;) # 0.

Erdés and Lovasz (1975): 4pA < 1= existence of a perfect assignment.

p: max probability of A; A: max degree of the dependency graph

Lovéasz (1977) improved the condition to ep(A +1) < 1.
Shearer (1985) gave the optimal condition of LLL.

LLL only guarantees an exponentially small probability.
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MOSER-TARDOS RESAMPLING ALGORITHM

Beck (1991) showed that an algorithmic version is possible, starting a
long line of research.

Moser and Tardos (2010) found a very elegant algorithm:

1. Initialize all variables randomly.

2. While there exists an occurring bad event:
pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan 11], [Kolipaka, Szegedy 11], [Harris, Srinivasan 13],
[Achlioptas, lliopoulos 16], [Harvey, Vondrak 15], [He, Li, Liu, Wang, Xia 17].
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Unfortunately, Moser-Tardos's output is not necessarily uniform.
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SAMPLING INDEPENDENT SETS?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

1. Randomize each vertex.

2. Resample all connected component
of size at least 2, until there is none.

This does not draw from the target distribution:

» Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the
empty set is overly favored.

» The process converges too fast. However uniformly sampling indepen-
dent set is NP-hard (even approximately).
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WILSON'’S “CYCLE-POPPING” ALGORITHM (1996)

Goal: sample a uniform spanning tree with root r.

T

1. Foreachv # r,assignarandom arrow
from v to one of its neighbours.

2. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

3. Output.

No cycle + n — 1 edges = Spanning Tree
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WILSON'’S “CYCLE-POPPING” ALGORITHM

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

Wilson (1996) showed that the output is uniform.

But why? What is the general criterion?



EXTREMAL INSTANCES

We call an instance extremal:

if any two “bad” events A; and A; are either independent or disjoint.



EXTREMAL INSTANCES

We call an instance extremal:

if any two “bad” events A; and A; are either independent or disjoint.

+ Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 85].



EXTREMAL INSTANCES

We call an instance extremal:

if any two “bad” events A; and A; are either independent or disjoint.

+ Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 85].

* Moser-Tardos runs slowest in extremal instances.



EXTREMAL INSTANCES

We call an instance extremal:

if any two “bad” events A; and A; are either independent or disjoint.

+ Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 85].

* Moser-Tardos runs slowest in extremal instances.

« Slowest for searching, best for sampling.



EXTREMAL INSTANCES

We call an instance extremal:

if any two “bad” events A; and A; are either independent or disjoint.

+ Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 85].

* Moser-Tardos runs slowest in extremal instances.

« Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)
When the instance is extremal, the output of Moser-Tardos is uniform.
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EXTREMAL INSTANCES

Wilson's setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlap-
ping), then these two cycles must be identical by following the arrow!

Other extremal instances:

« “Cluster-popping” [Gorodezky, Pak 14]
+ Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]

Reintroduced to show distributed LLL lower bound

[Brandt, Fischer, Hirvonen, Keller, Lempidinen, Rybicki, Suomela, Uitto 16]

We may give weights to the variables. Thus the target distribution is a
product distribution conditioned on none of “bad” events occurring.
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Associate an infinite stack Xj o, X,1,... to each random variable X;.
When we need to resample, draw the next value in the stack.
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RESAMPLING TABLE

Associate an infinite stack Xj o, X,1,... to each random variable X;.
When we need to resample, draw the next value in the stack.

X13 | X1,4

X23 | X2.4

X33 | X34

)

X4,3 | Xa.4
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CHANGE THE FUTURE, NOT THE PAST

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X13 | X1,4

X23 | X2.4

X33 | X34

)

X4,3 | Xa.4

For any output o and T, there is a bijection between trajectories leading
tooand .
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Theorem (G, Jerrum, Liu 17)

Under Shearer’s condition, for extremal instances,

—_ i qi _ #near-perfect assignments
— qp # perfect assignments

(Shearer’s condition: qs > 0 for all S C V, where qs is the independence poly-
nomial on G \ T*(S) with weight —p; on vertex j.)

In general (non-extremal), ET < } ", 2—5 [Kolipaka, Szegedy 11].

Hence, Moser-Tardos on extremal instances is the slowest.
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Cluster-popping: repeatedly resample minimal clusters.

Let Qy be the set of subgraphs with k minimal clusters.

_ &

Zi =) p=I(—p)s ET= 7,

SeQy

[G., Jerrum 17]: for bi-directed graphs, Z; < %Zoi

We show this by designing an injective mapping Q; — Qo x V x E.

Theorem

There is an FPRAS for REACHABILITY in bi-directed graphs. The running
time is O (e~ 2p(1 —p)~3m?n3) for an (1 + €)-approximation.
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A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size > 2.

3. Res = Bad U 0Bad.

4. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.
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BEYOND EXTREMAL CASES

We also gave a general algorithm, and is optimal in certain restricted
cases, up to constants [G., Jerrum, Liu 17].

But it falls short in general. My conjecture is that there is an efficient
algorithm whenever pA? < C for some constant C.

On the other hand, there is a constant C’ such that if pA? > C’, then
sampling is NP-hard [Bezékova, Galanis, Goldberg, G., Stefankovi¢ 16].



CONCLUDING REMARKS




OPEN PROBLEMS

+ How to sample connected subgraphs (or approximate reliability)?

* What is the optimal sampling algorithm in the local lemma setting
in general?

» Canwedothis for perfect matchings -resampling permutations???



A professor is one who can speak on any subject for precisely fifty min-
utes.
— Norbert Wiener

THANK YOU!
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