A SIMPLE FPRAS FOR BI-DIRECTED REACHABILITY

Heng Guo (University of Edinburgh)

Joint with Mark Jerrum (Queen Mary, University of London)

PKU TCS seminar, Dec 27 2017

COUNTING

THE COMPLEXITY OF COMPUTING QUANTITIES

Complexity class #P by Valiant (1979):

a counting analogue of NP.

Evaluation of probabilities;
Multivariate integration;
Counting discrete structures ...

NETWORK RELIABILITY

RELIABILITY: ina graph (or network) G = (V, E), suppose each edge fails
with probability p. What's the probability that the remaining graph is
connected?

In other words, we want to compute

ZreL(G)p) = Z PlE\R‘“ —'P)‘Rl-
RCE:(V, R) is connected

(1—p)* p(1—p)3 Disconnected!

COMPUTATIONAL COMPLEXITY OF RELIABILITY

The unweighted case (namely, p = 0.5) is among the original 17 #P-
complete problem in [Valiant '79].

COMPUTATIONAL COMPLEXITY OF RELIABILITY

The unweighted case (namely, p = 0.5) is among the original 17 #P-
complete problem in [Valiant '79].

Exact evaluation is #P-complete [Jerrum '81] [Provan, Ball '83].

COMPUTATIONAL COMPLEXITY OF RELIABILITY

The unweighted case (namely, p = 0.5) is among the original 17 #P-
complete problem in [Valiant '79].

Exact evaluation is #P-complete [Jerrum '81] [Provan, Ball '83].

Karger (1999) gave an FPRAS for unreliability, but the complexity of ap-
proximating reliability is still open.

REACHABILITY

We say a directed graph G with root r is root-connected if all vertices
canreachr.

LT

Root-connected Root-connected Not connected!

REACHABILITY

We say a directed graph G with root r is root-connected if all vertices

canreach.
T T T
o— 0 E HI
Root-connected Root-connected Not connected!

Ball and Provan (1983) defined REACHABILITY: in a directed graph with
root r, suppose each arc fails with probability p, what's the probability
that the remaining graph is root-connected?

Zreach(G)p) = Z P‘E\le —P)‘RI-
RCE:(V, R) is root-connected

CLUSTER POPPING

If G is bi-directed, approximating Z,cqcn (G, p) can be reduced to sam-
pling root-connected subgraphs [Gorodezky, Pak 14].

CLUSTER POPPING

If G is bi-directed, approximating Z,cqcn (G, p) can be reduced to sam-
pling root-connected subgraphs [Gorodezky, Pak 14].

Cluster: no edge going out. < <

CLUSTER POPPING

If G is bi-directed, approximating Z,cqcn (G, p) can be reduced to sam-
pling root-connected subgraphs [Gorodezky, Pak 14].

Cluster: no edge going out. < <

Cluster popping [Gorodezky, Pak 14]:
randomize edges and repeatedly pop mini- ' ST .
mal clusters.

CLUSTER POPPING

If G is bi-directed, approximating Z,cqcn (G, p) can be reduced to sam-
pling root-connected subgraphs [Gorodezky, Pak 14].

Cluster: no edge going out. < <

Cluster popping [Gorodezky, Pak 14]: v
randomize edges and repeatedly pop mini- '
mal clusters.

CLUSTER POPPING

If G is bi-directed, approximating Z,cqcn (G, p) can be reduced to sam-
pling root-connected subgraphs [Gorodezky, Pak 14].

Cluster: no edge going out. < <

Cluster popping [Gorodezky, Pak 14]: v
randomize edges and repeatedly pop mini- '
mal clusters.

[G., Jerrum 17]: the expected number of 4 4

rounds in a bi-directed graph is O <%)

PARTIAL REJECTION SAMPLING

(WHY IS CLUSTER-POPPING CORRECT AND EFFICIENT?)

A RANDOM WALK SAT-SOLVER

The prototypical NP-complete problem:
given a CNF formula, does it have a satisfying assignment?

(x1VX3Vxs) A (x2Vx3)AXZVXI) A (x1 VX5 VxgVXx7)...

A RANDOM WALK SAT-SOLVER

The prototypical NP-complete problem:
given a CNF formula, does it have a satisfying assignment?

(x1VX3Vxs) A (x2Vx3)AXZVXI) A (x1 VX5 VxgVXx7)...

Rejection sampling: assign each variable uniformly at random and inde-
pendently. If not satisfying, reject and repeat.

A RANDOM WALK SAT-SOLVER

The prototypical NP-complete problem:
given a CNF formula, does it have a satisfying assignment?

(x1VX3Vxs) A (x2Vx3)AXZVXI) A (x1 VX5 VxgVXx7)...

Rejection sampling: assign each variable uniformly at random and inde-
pendently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

A RANDOM WALK SAT-SOLVER

The prototypical NP-complete problem:
given a CNF formula, does it have a satisfying assignment?

(x1VX3Vxs) A (x2Vx3)AXZVXI) A (x1 VX5 VxgVXx7)...

Rejection sampling: assign each variable uniformly at random and inde-
pendently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

It is optimal in a very general setting! [Moser, Tardos 10]

VARIABLE FRAMEWORK OF THE LOVASZ LOCAL LEMMA

Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X1,..., Xy ‘Bad” events Aq,...,Am

VARIABLE FRAMEWORK OF THE LOVASZ LOCAL LEMMA

Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X1,..., Xy ‘Bad” events Aq,...,Am

Dependency graph: A; and Aj are adjacent if var(A;) N var(A;) # 0.

VARIABLE FRAMEWORK OF THE LOVASZ LOCAL LEMMA

Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X1,..., Xy ‘Bad” events Aq,...,Am
Dependency graph: A; and Aj are adjacent if var(A;) N var(A;) # 0.

Erdés and Lovasz (1975): 4pA < 1= existence of a perfect assignment.

p: max probability of A; A: max degree of the dependency graph

VARIABLE FRAMEWORK OF THE LOVASZ LOCAL LEMMA

Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X1,..., Xy ‘Bad” events Aq,...,Am
Dependency graph: A; and Aj are adjacent if var(A;) N var(A;) # 0.

Erdés and Lovasz (1975): 4pA < 1= existence of a perfect assignment.

p: max probability of A; A: max degree of the dependency graph

Lovéasz (1977) improved the condition to ep(A +1) < 1.
Shearer (1985) gave the optimal condition of LLL.

VARIABLE FRAMEWORK OF THE LOVASZ LOCAL LEMMA

Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X1,..., Xy ‘Bad” events Aq,...,Am
Dependency graph: A; and Aj are adjacent if var(A;) N var(A;) # 0.

Erdés and Lovasz (1975): 4pA < 1= existence of a perfect assignment.

p: max probability of A; A: max degree of the dependency graph

Lovéasz (1977) improved the condition to ep(A +1) < 1.
Shearer (1985) gave the optimal condition of LLL.

LLL only guarantees an exponentially small probability.

MOSER-TARDOS RESAMPLING ALGORITHM

Beck (1991) showed that an algorithmic version is possible, starting a
long line of research.

MOSER-TARDOS RESAMPLING ALGORITHM

Beck (1991) showed that an algorithmic version is possible, starting a
long line of research.

Moser and Tardos (2010) found a very elegant algorithm:

1. Initialize all variables randomly.

2. While there exists an occurring bad event:
pick one (various rules) and resample all its variables.

MOSER-TARDOS RESAMPLING ALGORITHM

Beck (1991) showed that an algorithmic version is possible, starting a
long line of research.

Moser and Tardos (2010) found a very elegant algorithm:

1. Initialize all variables randomly.

2. While there exists an occurring bad event:
pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan 11], [Kolipaka, Szegedy 11], [Harris, Srinivasan 13],
[Achlioptas, lliopoulos 16], [Harvey, Vondrak 15], [He, Li, Liu, Wang, Xia 17].

SEARCHING VS. SAMPLING

Question
Instead of finding a solution, can we generate a random solution?

SEARCHING VS. SAMPLING

Question
Instead of finding a solution, can we generate a random solution?

Unfortunately, Moser-Tardos's output is not necessarily uniform.

SAMPLING INDEPENDENT SETS?

Target distribution: uniform on independent sets.

SAMPLING INDEPENDENT SETS?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

— 1. Randomize each vertex.

2. Resample all connected component
of size at least 2, until there is none.

SAMPLING INDEPENDENT SETS?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

1. Randomize each vertex.

— 2. Resample all connected component
of size at least 2, until there is none.

SAMPLING INDEPENDENT SETS?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

1. Randomize each vertex.

— 2. Resample all connected component
of size at least 2, until there is none.

SAMPLING INDEPENDENT SETS?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

1. Randomize each vertex.

— 2. Resample all connected component
of size at least 2, until there is none.

SAMPLING INDEPENDENT SETS?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

1. Randomize each vertex.

2. Resample all connected component
of size at least 2, until there is none.

This does not draw from the target distribution:

» Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the
empty set is overly favored.

SAMPLING INDEPENDENT SETS?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

1. Randomize each vertex.

2. Resample all connected component
of size at least 2, until there is none.

This does not draw from the target distribution:

» Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the
empty set is overly favored.

» The process converges too fast. However uniformly sampling indepen-
dent set is NP-hard (even approximately).

WILSON'’S “CYCLE-POPPING” ALGORITHM (1996)

Goal: sample a uniform spanning tree with root r.

WILSON'’S “CYCLE-POPPING” ALGORITHM (1996)

Goal: sample a uniform spanning tree with root r.

T

WILSON'’S “CYCLE-POPPING” ALGORITHM (1996)

Goal: sample a uniform spanning tree with root r.

— 1. Foreachv # r,assign arandom arrow
from v to one of its neighbours. v

A 4

A

WILSON'’S “CYCLE-POPPING” ALGORITHM (1996)

Goal: sample a uniform spanning tree with root r.

1. Foreachv # r,assignarandom arrow
from v to one of its neighbours. v

A 4

— 2. While there is a (directed) cycle in
the current graph, resample all arrows Y
along all cycles. A A

A

WILSON'’S “CYCLE-POPPING” ALGORITHM (1996)

Goal: sample a uniform spanning tree with root r.

1. Foreachv # r,assignarandom arrow
from v to one of its neighbours. v

A 4
A 4

— 2. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles. A A A

A

WILSON'’S “CYCLE-POPPING” ALGORITHM (1996)

Goal: sample a uniform spanning tree with root r.

1. Foreachv # r,assignarandom arrow
from v to one of its neighbours. v

A 4
A 4

— 2. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles. A A A

A

WILSON'’S “CYCLE-POPPING” ALGORITHM (1996)

Goal: sample a uniform spanning tree with root r.

1. Foreachv # r,assignarandom arrow
from v to one of its neighbours. v

A 4
A 4

— 2. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles. A A A

A

WILSON'’S “CYCLE-POPPING” ALGORITHM (1996)

Goal: sample a uniform spanning tree with root r.

1. Foreachv # r,assignarandom arrow
from v to one of its neighbours. v

A
A

— 2. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles. A A A

WILSON'’S “CYCLE-POPPING” ALGORITHM (1996)

Goal: sample a uniform spanning tree with root r.

1. Foreachv # r,assignarandom arrow
from v to one of its neighbours. v

A

— 2. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles. A A A

WILSON'’S “CYCLE-POPPING” ALGORITHM (1996)

Goal: sample a uniform spanning tree with root r.

T

1. Foreachv # r,assignarandom arrow
from v to one of its neighbours.

2. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

— 3. Output.

WILSON'’S “CYCLE-POPPING” ALGORITHM (1996)

Goal: sample a uniform spanning tree with root r.

T

1. Foreachv # r,assignarandom arrow
from v to one of its neighbours.

2. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

3. Output.

No cycle + n — 1 edges = Spanning Tree

WILSON'’S “CYCLE-POPPING” ALGORITHM

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

WILSON'’S “CYCLE-POPPING” ALGORITHM

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

Wilson (1996) showed that the output is uniform.

WILSON'’S “CYCLE-POPPING” ALGORITHM

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

Wilson (1996) showed that the output is uniform.

But why? What is the general criterion?

EXTREMAL INSTANCES

We call an instance extremal:

if any two “bad” events A; and A; are either independent or disjoint.

EXTREMAL INSTANCES

We call an instance extremal:

if any two “bad” events A; and A; are either independent or disjoint.

+ Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 85].

EXTREMAL INSTANCES

We call an instance extremal:

if any two “bad” events A; and A; are either independent or disjoint.

+ Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 85].

* Moser-Tardos runs slowest in extremal instances.

EXTREMAL INSTANCES

We call an instance extremal:

if any two “bad” events A; and A; are either independent or disjoint.

+ Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 85].

* Moser-Tardos runs slowest in extremal instances.

« Slowest for searching, best for sampling.

EXTREMAL INSTANCES

We call an instance extremal:

if any two “bad” events A; and A; are either independent or disjoint.

+ Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 85].

* Moser-Tardos runs slowest in extremal instances.

« Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)
When the instance is extremal, the output of Moser-Tardos is uniform.

EXTREMAL INSTANCES

Wilson's setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlap-
ping), then these two cycles must be identical by following the arrow!

EXTREMAL INSTANCES

Wilson's setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlap-
ping), then these two cycles must be identical by following the arrow!

Other extremal instances:

« “Cluster-popping” [Gorodezky, Pak 14]

EXTREMAL INSTANCES

Wilson's setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlap-
ping), then these two cycles must be identical by following the arrow!

Other extremal instances:

« “Cluster-popping” [Gorodezky, Pak 14]
+ Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]

EXTREMAL INSTANCES

Wilson's setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlap-
ping), then these two cycles must be identical by following the arrow!

Other extremal instances:

« “Cluster-popping” [Gorodezky, Pak 14]
+ Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]

Reintroduced to show distributed LLL lower bound

[Brandt, Fischer, Hirvonen, Keller, Lempidinen, Rybicki, Suomela, Uitto 16]

EXTREMAL INSTANCES

Wilson's setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlap-
ping), then these two cycles must be identical by following the arrow!

Other extremal instances:

« “Cluster-popping” [Gorodezky, Pak 14]
+ Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]

Reintroduced to show distributed LLL lower bound

[Brandt, Fischer, Hirvonen, Keller, Lempidinen, Rybicki, Suomela, Uitto 16]

We may give weights to the variables. Thus the target distribution is a
product distribution conditioned on none of “bad” events occurring.

RESAMPLING TABLE

Associate an infinite stack Xj o, X,1,... to each random variable X;.
When we need to resample, draw the next value in the stack.

X1 [Xao | X900 [Xo2 | X913 | Xq4

X2 | X20 | X2,1 | X2,2 | X23 | X2,4

) 5

X3 [X3,0 | X3,1 | X3,2 | X3,3 | X34

))

Xa | Xay0 | X1 | Xa2 | X4,3 | Xa,4

RESAMPLING TABLE

Associate an infinite stack Xj o, X,1,... to each random variable X;.
When we need to resample, draw the next value in the stack.

Xq Xi0 | X12 [X133 | X1,4
X2 X210 | X22 | X23 | X2.4
X3 X3,1 | X3,2 | X3,3 | X34

))

X4 X | Xa2 | X3 | Xay4

RESAMPLING TABLE

Associate an infinite stack Xj o, X,1,... to each random variable X;.
When we need to resample, draw the next value in the stack.

Xq Xi0 | X12 [X133 | X1,4
X2 X210 | X22 | X23 | X2.4
X3 X3,1 | X3,2 | X3,3 | X34

))

X4 Xa1 | Xa2 | Xa.3 | Xg4

RESAMPLING TABLE

Associate an infinite stack Xj o, X,1,... to each random variable X;.
When we need to resample, draw the next value in the stack.

Xq Xi0 | X12 [X133 | X1,4
X2 X2,2 | X23 | X2,4
X3 X3,2 | X33 | X34
X4 X4,2 | Xa3 | X4,

RESAMPLING TABLE

Associate an infinite stack Xj o, X,1,... to each random variable X;.
When we need to resample, draw the next value in the stack.

Xq Xi0 | X12 [X133 | X1,4
X2 X222 | X2,3 | X2.4
X3 X3,2 | X33 | X34
X4 X4,2 | Xa3 | X4,

RESAMPLING TABLE

Associate an infinite stack Xj o, X,1,... to each random variable X;.
When we need to resample, draw the next value in the stack.

X13 | X1,4

X23 | X2.4

X33 | X34

)

X4,3 | Xa.4

CHANGE THE FUTURE, NOT THE PAST

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X13 | X1,4

X23 | X2.4

X33 | X34

)

X4,3 | Xa.4

CHANGE THE FUTURE, NOT THE PAST

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X13 | X1,4

X23 | X2.4

X33 | X34

)

X4,3 | Xa.4

CHANGE THE FUTURE, NOT THE PAST

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X13 | X1,4

X23 | X2.4

X33 | X34

)

X4,3 | Xa.4

CHANGE THE FUTURE, NOT THE PAST

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!

X13 | X1,4

X23 | X2.4

X33 | X34

)

X4,3 | Xa.4

For any output o and T, there is a bijection between trajectories leading
tooand .

RUNNING TIME ON EXTREMAL INSTANCES

Theorem (G, Jerrum, Liu 17)

Under Shearer’s condition, for extremal instances,

—_ i qi _ #near-perfect assignments
— qp # perfect assignments

(Shearer’s condition: qs > 0 for all S C V, where qs is the independence poly-
nomial on G \ T*(S) with weight —p; on vertex j.)

RUNNING TIME ON EXTREMAL INSTANCES

Theorem (G, Jerrum, Liu 17)

Under Shearer’s condition, for extremal instances,

—_ i qi _ #near-perfect assignments
— qp # perfect assignments

(Shearer’s condition: qs > 0 for all S C V, where qs is the independence poly-
nomial on G \ T*(S) with weight —p; on vertex j.)

In general (non-extremal), ET < } ", 2—5 [Kolipaka, Szegedy 11].

Hence, Moser-Tardos on extremal instances is the slowest.

BACK TO CLUSTER-POPPING

Cluster-popping: repeatedly resample minimal clusters.

Let Qy be the set of subgraphs with k minimal clusters.
_4

Zi =) p=I(—p)s ET=3
SeQy 0

[G., Jerrum 17]: for bi-directed graphs, Z; < %Zo.

We show this by designing an injective mapping Q; — Qo x V x E.

BACK TO CLUSTER-POPPING

Cluster-popping: repeatedly resample minimal clusters.

Let Qy be the set of subgraphs with k minimal clusters.

_ &

Zi =) p=I(—p)s ET= 7,

SeQy

[G., Jerrum 17]: for bi-directed graphs, Z; < %Zoi

We show this by designing an injective mapping Q; — Qo x V x E.

Theorem

There is an FPRAS for REACHABILITY in bi-directed graphs. The running
time is O (e~ 2p(1 —p)~3m?n3) for an (1 + €)-approximation.

A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size > 2.

3. Res = Bad U 0Bad.

4. Resample Res.
Check independence.

A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS

— 1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size > 2.

3. Res = Bad U 0Bad.

4. Resample Res.
Check independence.

A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS

1. Randomize each vertex.

— 2. Let Bad be the set of vertices whose
connected component has size > 2.

3. Res = Bad U 0Bad.

4. Resample Res.
Check independence.

A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS
1. Randomize each vertex.

2. Let Bad be the set of vertices whose [

connected component has size > 2. N

— 3. Res = Bad U 0Bad.

4. Resample Res.
Check independence.

A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS
1. Randomize each vertex.

2. Let Bad be the set of vertices whose [

connected component has size > 2.

3. Res = Bad U 0Bad.

— 4. Resample Res.
Check independence.

A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size > 2.

3. Res = Bad U 0Bad.

— 4. Resample Res.
Check independence.

A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS

1. Randomize each vertex.
— 2. Let Bad be the set of vertices whose

connected component has size > 2.

3. Res = Bad U 0Bad.

4. Resample Res.
Check independence.

A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS

g R N\
1. Randomize each vertex.
2. Let Bad be the set of vertices whose C
connected component has size > 2. L/
— 3. Res = Bad U 0Bad.

4. Resample Res.
Check independence.

A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size > 2. L/

3. Res = Bad U 0Bad.

— 4. Resample Res.
Check independence.

A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size > 2.

3. Res = Bad U 0Bad.

— 4. Resample Res.
Check independence.

A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS

1. Randomize each vertex.

2. Let Bad be the set of vertices whose
connected component has size > 2.

3. Res = Bad U 0Bad.

4. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.

BEYOND EXTREMAL CASES

We also gave a general algorithm, and is optimal in certain restricted
cases, up to constants [G., Jerrum, Liu 17].

BEYOND EXTREMAL CASES

We also gave a general algorithm, and is optimal in certain restricted
cases, up to constants [G., Jerrum, Liu 17].

But it falls short in general. My conjecture is that there is an efficient
algorithm whenever pA? < C for some constant C.

BEYOND EXTREMAL CASES

We also gave a general algorithm, and is optimal in certain restricted
cases, up to constants [G., Jerrum, Liu 17].

But it falls short in general. My conjecture is that there is an efficient
algorithm whenever pA? < C for some constant C.

On the other hand, there is a constant C’ such that if pA? > C’, then
sampling is NP-hard [Bezékova, Galanis, Goldberg, G., Stefankovi¢ 16].

CONCLUDING REMARKS

OPEN PROBLEMS

+ How to sample connected subgraphs (or approximate reliability)?

* What is the optimal sampling algorithm in the local lemma setting
in general?

» Canwedothis for perfect matchings -resampling permutations???

A professor is one who can speak on any subject for precisely fifty min-
utes.
— Norbert Wiener

THANK YOU!

arxXiv:1611.01647
arxXiv:1709.08561

arXiv:1611.01647
arXiv:1709.08561

	Counting
	Partial rejection sampling
	Concluding remarks

