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CǈǎǇǍǂǇǀ



Tǁƾ ƼǈǆǉǅƾǑǂǍǒ ǈƿ ƼǈǆǉǎǍǂǇǀ ǊǎƺǇǍǂǍǂƾǌ

Complexity class #P by Valiant (ȢѴƭѴ):

a counting analogue of NP.

Evaluation of probabilities;
Multivariate integration;
Counting discrete structures …



NƾǍǐǈǋǄ ǋƾǅǂƺƻǂǅǂǍǒ

RƾǅǂƺƻǂǅǂǍǒ: in a graph (or network)G = (V, E), suppose each edge fails
with probability p. What’s the probability that the remaining graph is
connected?

In other words, we want to compute

Zrel(G,p) :=
∑

R⊆E:(V,R) is connected

p|E\R|(1− p)|R|.

(1− p)4 p(1− p)3 Disconnected!



CǈǆǉǎǍƺǍǂǈǇƺǅ ƼǈǆǉǅƾǑǂǍǒ ǈƿ ǋƾǅǂƺƻǂǅǂǍǒ

The unweighted case (namely, p = 0.5) is among the original Ȣƭ #P-
complete problem in [Valiant ’ƭѴ].

Exact evaluation is #P-complete [Jerrum ’8Ȣ] [Provan, Ball ’8ѱ].

Karger (ȢѴѴѴ) gave an FPRAS for unreliability, but the complexity of ap-
proximating reliability is still open.
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RƾƺƼǁƺƻǂǅǂǍǒ

We say a directed graph G with root r is root-connected if all vertices
can reach r.

r

Root-connected

r

Root-connected

r

Not connected!

Ball and Provan (ȢѴ8ѱ) defined RƾƺƼǁƺƻǂǅǂǍǒ: in a directed graph with
root r, suppose each arc fails with probability p, what’s the probability
that the remaining graph is root-connected?

Zreach(G,p) :=
∑

R⊆E:(V,R) is root-connected

p|E\R|(1− p)|R|.
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CǅǎǌǍƾǋ ǉǈǉǉǂǇǀ

If G is bi-directed, approximating Zreach(G,p) can be reduced to sam-
pling root-connected subgraphs [Gorodezky, Pak ȢѲ].

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak ȢѲ]:
randomize edges and repeatedly pop mini-
mal clusters.

[G., Jerrum Ȣƭ]: the expected number of
rounds in a bi-directed graph is O

(
mn
1−p

)
.

r
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PƺǋǍǂƺǅ ǋƾǃƾƼǍǂǈǇ ǌƺǆǉǅǂǇǀ
(ǐǁǒ ǂǌ ƼǅǎǌǍƾǋ-ǉǈǉǉǂǇǀ ƼǈǋǋƾƼǍ ƺǇƽ ƾƿƿǂƼǂƾǇǍ?)



A ǋƺǇƽǈǆ ǐƺǅǄ SAT-ǌǈǅǏƾǋ

The prototypical NP-complete problem:
given a CNF formula, does it have a satisfying assignment?

(x1 ∨ x3 ∨ x5)∧ (x2 ∨ x3)∧ (x3 ∨ x4)∧ (x1 ∨ x5 ∨ x6 ∨ x7) . . .

Rejection sampling: assign each variable uniformly at random and inde-
pendently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

It is optimal in a very general setting! [Moser, Tardos Ȣѵ]
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Vƺǋǂƺƻǅƾ ƿǋƺǆƾǐǈǋǄ ǈƿ Ǎǁƾ LǈǏ˿ǌǓ LǈƼƺǅ Lƾǆǆƺ

Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X1, . . . , Xn “Bad” events A1, . . . , Am

Dependency graph: Ai and Aj are adjacent if var(Ai) ∩ var(Aj) ̸= ∅.

Erdős and Lovász (ȢѴƭѳ): 4p∆ ⩽ 1⇒ existence of a perfect assignment.

p: max probability of Ai ∆: max degree of the dependency graph

Lovász (ȢѴƭƭ) improved the condition to ep(∆+ 1) ⩽ 1.

Shearer (ȢѴ8ѳ) gave the optimal condition of LLL.

LLL only guarantees an exponentially small probability.
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Mǈǌƾǋ-Tƺǋƽǈǌ ǋƾǌƺǆǉǅǂǇǀ ƺǅǀǈǋǂǍǁǆ

Beck (ȢѴѴȢ) showed that an algorithmic version is possible, starting a
long line of research.

Moser and Tardos (ѰѵȢѵ) found a very elegant algorithm:

Ȣ. Initialize all variables randomly.

Ѱ. While there exists an occurring bad event:
pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan ȢȢ], [Kolipaka, Szegedy ȢȢ], [Harris, Srinivasan Ȣѱ],
[Achlioptas, Iliopoulos Ȣ6], [Harvey, Vondrak Ȣѳ], [He, Li, Liu, Wang, Xia Ȣƭ].



Mǈǌƾǋ-Tƺǋƽǈǌ ǋƾǌƺǆǉǅǂǇǀ ƺǅǀǈǋǂǍǁǆ

Beck (ȢѴѴȢ) showed that an algorithmic version is possible, starting a
long line of research.

Moser and Tardos (ѰѵȢѵ) found a very elegant algorithm:

Ȣ. Initialize all variables randomly.

Ѱ. While there exists an occurring bad event:
pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan ȢȢ], [Kolipaka, Szegedy ȢȢ], [Harris, Srinivasan Ȣѱ],
[Achlioptas, Iliopoulos Ȣ6], [Harvey, Vondrak Ȣѳ], [He, Li, Liu, Wang, Xia Ȣƭ].



Mǈǌƾǋ-Tƺǋƽǈǌ ǋƾǌƺǆǉǅǂǇǀ ƺǅǀǈǋǂǍǁǆ

Beck (ȢѴѴȢ) showed that an algorithmic version is possible, starting a
long line of research.

Moser and Tardos (ѰѵȢѵ) found a very elegant algorithm:

Ȣ. Initialize all variables randomly.

Ѱ. While there exists an occurring bad event:
pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan ȢȢ], [Kolipaka, Szegedy ȢȢ], [Harris, Srinivasan Ȣѱ],
[Achlioptas, Iliopoulos Ȣ6], [Harvey, Vondrak Ȣѳ], [He, Li, Liu, Wang, Xia Ȣƭ].



SƾƺǋƼǁǂǇǀ Ǐǌ. SƺǆǉǅǂǇǀ

Question
Instead of finding a solution, can we generate a random solution?

Unfortunately, Moser-Tardos’s output is not necessarily uniform.
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SƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

Ȣ. Randomize each vertex.

Ѱ. Resample all connected component
of size at least 2, until there is none.

This does not draw from the target distribution:

• Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the
empty set is overly favored.

• The process converges too fast. However uniformly sampling indepen-
dent set is NP-hard (even approximately).
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WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ (ȢѴѴ6)

Goal: sample a uniform spanning tree with root r.

Ȣ. For each v ̸= r, assign a randomarrow
from v to one of its neighbours.

Ѱ. While there is a (directed) cycle in
the current graph, resample all arrows
along all cycles.

ѱ. Output.

r

No cycle + n− 1 edges⇒ Spanning Tree
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WǂǅǌǈǇ’ǌ “ƼǒƼǅƾ-ǉǈǉǉǂǇǀ” ƺǅǀǈǋǂǍǁǆ

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

Wilson (ȢѴѴ6) showed that the output is uniform.

But why? What is the general criterion?
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EǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

We call an instance extremal:

if any two “bad” events Ai and Aj are either independent or disjoint.

• Extremal instances minimize the probability of solutions (in some
precise sense) [Shearer 8ѳ].

• Moser-Tardos runs slowest in extremal instances.

• Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu Ȣƭ)
When the instance is extremal, the output of Moser-Tardos is uniform.
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EǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlap-
ping), then these two cycles must be identical by following the arrow!

Other extremal instances:

• “Cluster-popping” [Gorodezky, Pak ȢѲ]

• Sink-free orientations [Bubley, Dyer Ѵƭ] [Cohn, Pemantle, Propp ѵѰ]
Reintroduced to show distributed LLL lower bound

[Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto Ȣ6]

We may give weights to the variables. Thus the target distribution is a
product distribution conditioned on none of “bad” events occurring.
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RƾǌƺǆǉǅǂǇǀ Ǎƺƻǅƾ

Associate an infinite stack Xi,0, Xi,1, . . . to each random variable Xi.
When we need to resample, draw the next value in the stack.
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CǁƺǇǀƾ Ǎǁƾ ƿǎǍǎǋƾ, ǇǈǍ Ǎǁƾ ǉƺǌǍ

For extremal instances, replacing a perfect assignment with another
one will not change the resampling history!
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For any output σ and τ, there is a bijection between trajectories leading
to σ and τ.
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RǎǇǇǂǇǀ Ǎǂǆƾ ǈǇ ƾǑǍǋƾǆƺǅ ǂǇǌǍƺǇƼƾǌ

Theorem (G., Jerrum, Liu Ȣƭ)

Under Shearer’s condition, for extremal instances,

E T =

m∑
i=1

qi

q∅
=

# near-perfect assignments
# perfect assignments

.

(Shearer’s condition: qS ⩾ 0 for all S ⊆ V , where qS is the independence poly-
nomial on G \ Γ+(S) with weight −pj on vertex j.)

In general (non-extremal), E T ⩽
∑m

i=1
qi

q∅
[Kolipaka, Szegedy ȢȢ].

Hence, Moser-Tardos on extremal instances is the slowest.
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BƺƼǄ Ǎǈ ƼǅǎǌǍƾǋ-ǉǈǉǉǂǇǀ

Cluster-popping: repeatedly resample minimal clusters.

LetΩk be the set of subgraphs with kminimal clusters.

Zk :=
∑

S∈Ωk

p|E\S|(1− p)|S| E T =
Z1

Z0

[G., Jerrum Ȣƭ]: for bi-directed graphs, Z1 ⩽ mn
1−p

Z0.

We show this by designing an injective mappingΩ1 → Ω0 × V × E.

Theorem
There is an FPRAS for RƾƺƼǁƺƻǂǅǂǍǒ in bi-directed graphs. The running
time is O

(
ε−2p(1− p)−3m2n3

)
for an (1± ε)-approximation.
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A ƼǈǋǋƾƼǍ ƺǅǀǈǋǂǍǁǆ ƿǈǋ ǌƺǆǉǅǂǇǀ ǂǇƽƾǉƾǇƽƾǇǍ ǌƾǍǌ

Ȣ. Randomize each vertex.

Ѱ. Let Bad be the set of vertices whose
connected component has size ⩾ 2.

ѱ. Res = Bad ∪ ∂Bad.

Ѳ. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.
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BƾǒǈǇƽ ƾǑǍǋƾǆƺǅ Ƽƺǌƾǌ

We also gave a general algorithm, and is optimal in certain restricted
cases, up to constants [G., Jerrum, Liu Ȣƭ].

But it falls short in general. My conjecture is that there is an efficient
algorithm whenever p∆2 ⩽ C for some constant C.

On the other hand, there is a constant C ′ such that if p∆2 ⩾ C ′, then
sampling is NP-hard [Bezáková, Galanis, Goldberg, G., Štefankovič Ȣ6].
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CǈǇƼǅǎƽǂǇǀ ǋƾǆƺǋǄǌ



OǉƾǇ ǉǋǈƻǅƾǆǌ

• How to sample connected subgraphs (or approximate reliability)?

• What is the optimal sampling algorithm in the local lemma setting
in general?

• Canwedo this for perfectmatchings - resampling permutations???



A professor is one who can speak on any subject for precisely fifty min-
utes.

— Norbert Wiener

TǁƺǇǄ ǒǈǎ!
arXiv:1611.01647
arXiv:1709.08561
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