A SIMPLE FPRAS FOR BI-DIRECTED REACHABILITY

Heng Guo (University of Edinburgh) Joint with Mark Jerrum (Queen Mary, University of London)

PKU TCS seminar, Dec 27 2017

COUNTING

Complexity class **#P** by Valiant (1979):

a counting analogue of NP.

Evaluation of probabilities; Multivariate integration; Counting discrete structures ...

RELIABILITY: in a graph (or network) G = (V, E), suppose each edge fails with probability p. What's the probability that the remaining graph is connected?

In other words, we want to compute

The unweighted case (namely, p = 0.5) is among the original 17 **#P**-complete problem in [Valiant '79].

Exact evaluation is **#P**-complete [Jerrum '81] [Provan, Ball '83].

Karger (1999) gave an FPRAS for unreliability, but the complexity of approximating reliability is still open.

The unweighted case (namely, p = 0.5) is among the original 17 **#P**-complete problem in [Valiant '79].

Exact evaluation is **#P**-complete [Jerrum '81] [Provan, Ball '83].

Karger (1999) gave an FPRAS for unreliability, but the complexity of approximating reliability is still open. The unweighted case (namely, p = 0.5) is among the original 17 **#P**-complete problem in [Valiant '79].

Exact evaluation is **#P**-complete [Jerrum '81] [Provan, Ball '83].

Karger (1999) gave an FPRAS for unreliability, but the complexity of approximating reliability is still open.

REACHABILITY

We say a directed graph G with root r is *root-connected* if all vertices can reach r.

Ball and Provan (1983) defined REACHABILITY: in a directed graph with root r, suppose each arc fails with probability p, what's the probability that the remaining graph is root-connected?

$$Z_{\text{reach}}(G,p) := \sum_{R \subseteq E: (V, R) \text{ is root-connected}} p^{|E \setminus R|} (1-p)^{|R|}.$$

REACHABILITY

We say a directed graph G with root r is *root-connected* if all vertices can reach r.

Ball and Provan (1983) defined REACHABILITY: in a directed graph with root r, suppose each arc fails with probability p, what's the probability that the remaining graph is root-connected?

$$\mathsf{Z}_{\texttt{reach}}(\mathsf{G}, \mathsf{p}) := \sum_{\mathsf{R} \subseteq \mathsf{E}: (\mathsf{V}, \mathsf{R}) \text{ is root-connected}} \mathsf{p}^{|\mathsf{E} \setminus \mathsf{R}|} (1-\mathsf{p})^{|\mathsf{R}|}.$$

Cluster: no edge going out

Cluster popping [Gorodezky, Pak 14]: randomize edges and repeatedly pop minimal clusters.

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak 14]: randomize edges and repeatedly pop minimal clusters.

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak 14]: randomize edges and repeatedly pop minimal clusters.

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak 14]: randomize edges and repeatedly pop minimal clusters.

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak 14]: randomize edges and repeatedly pop minimal clusters.

PARTIAL REJECTION SAMPLING

(WHY IS CLUSTER-POPPING CORRECT AND EFFICIENT?)

The prototypical NP-complete problem: given a CNF formula, does it have a satisfying assignment? $(x_1 \lor \overline{x_3} \lor x_5) \land (x_2 \lor x_3) \land (\overline{x_3} \lor \overline{x_4}) \land (x_1 \lor \overline{x_5} \lor x_6 \lor x_7) \dots$

Rejection sampling: assign each variable uniformly at random and independently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

The prototypical NP-complete problem: given a CNF formula, does it have a satisfying assignment?

 $(\mathbf{x}_1 \vee \overline{\mathbf{x}_3} \vee \mathbf{x}_5) \wedge (\mathbf{x}_2 \vee \mathbf{x}_3) \wedge (\overline{\mathbf{x}_3} \vee \overline{\mathbf{x}_4}) \wedge (\mathbf{x}_1 \vee \overline{\mathbf{x}_5} \vee \mathbf{x}_6 \vee \mathbf{x}_7) \dots$

Rejection sampling: assign each variable uniformly at random and independently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

The prototypical NP-complete problem: given a CNF formula, does it have a satisfying assignment?

 $(\mathbf{x}_1 \vee \overline{\mathbf{x}_3} \vee \mathbf{x}_5) \wedge (\mathbf{x}_2 \vee \mathbf{x}_3) \wedge (\overline{\mathbf{x}_3} \vee \overline{\mathbf{x}_4}) \wedge (\mathbf{x}_1 \vee \overline{\mathbf{x}_5} \vee \mathbf{x}_6 \vee \mathbf{x}_7) \dots$

Rejection sampling: assign each variable uniformly at random and independently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

The prototypical NP-complete problem: given a CNF formula, does it have a satisfying assignment?

 $(x_1 \vee \overline{x_3} \vee x_5) \wedge (x_2 \vee x_3) \wedge (\overline{x_3} \vee \overline{x_4}) \wedge (x_1 \vee \overline{x_5} \vee x_6 \vee x_7) \dots$

Rejection sampling: assign each variable uniformly at random and independently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

VARIABLE FRAMEWORK OF THE LOVÁSZ LOCAL LEMMA

Find a "perfect" assignment of the variables avoiding all "bad" events. Variables X_1, \ldots, X_n "Bad" events A_1, \ldots, A_m

Dependency graph: A_i and A_j are adjacent if $var(A_i) \cap var(A_j) \neq \emptyset$.

Erdős and Lovász (1975): $4p\Delta \leq 1 \Rightarrow$ existence of a perfect assignment.p: max probability of A_i Δ : max degree of the dependency graph

Lovász (1977) improved the condition to $ep(\Delta + 1) \leq 1$. Shearer (1985) gave the optimal condition of LLL.

VARIABLE FRAMEWORK OF THE LOVÁSZ LOCAL LEMMA

Find a "perfect" assignment of the variables avoiding all "bad" events. Variables X_1, \ldots, X_n "Bad" events A_1, \ldots, A_m

Dependency graph: A_i and A_j are adjacent if $var(A_i) \cap var(A_j) \neq \emptyset$.

Erdős and Lovász (1975): $4p\Delta \leq 1 \Rightarrow$ existence of a perfect assignment.p: max probability of A_i Δ : max degree of the dependency graph

Lovász (1977) improved the condition to $ep(\Delta + 1) \leq 1$. Shearer (1985) gave the optimal condition of LLL.

Find a "perfect" assignment of the variables avoiding all "bad" events.

Variables X_1, \ldots, X_n "Bad" events A_1, \ldots, A_m

Dependency graph: A_i and A_j are adjacent if $var(A_i) \cap var(A_j) \neq \emptyset$.

Erdős and Lovász (1975): $4p\Delta \leq 1 \Rightarrow$ existence of a perfect assignment.p: max probability of A_i Δ : max degree of the dependency graph

Lovász (1977) improved the condition to $ep(\Delta + 1) \leq 1$. Shearer (1985) gave the optimal condition of LLL.

Find a "perfect" assignment of the variables avoiding all "bad" events.

Variables X_1, \ldots, X_n "Bad" events A_1, \ldots, A_m

Dependency graph: A_i and A_j are adjacent if $var(A_i) \cap var(A_j) \neq \emptyset$.

Erdős and Lovász (1975): $4p\Delta \leq 1 \Rightarrow$ existence of a perfect assignment.p: max probability of A_i Δ : max degree of the dependency graph

Lovász (1977) improved the condition to $ep(\Delta + 1) \leq 1$. Shearer (1985) gave the optimal condition of LLL.

Find a "perfect" assignment of the variables avoiding all "bad" events.

Variables X_1, \ldots, X_n "Bad" events A_1, \ldots, A_m

Dependency graph: A_i and A_j are adjacent if $var(A_i) \cap var(A_j) \neq \emptyset$.

Erdős and Lovász (1975): $4p\Delta \leq 1 \Rightarrow$ existence of a perfect assignment.p: max probability of A_i Δ : max degree of the dependency graph

Lovász (1977) improved the condition to $ep(\Delta + 1) \leq 1$. Shearer (1985) gave the optimal condition of LLL.

Beck (1991) showed that an algorithmic version is possible, starting a long line of research.

Moser and Tardos (2010) found a very elegant algorithm:

- **1.** Initialize all variables randomly.
- While there exists an occurring bad event: pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan 11], [Kolipaka, Szegedy 11], [Harris, Srinivasan 13], [Achlioptas, Iliopoulos 16], [Harvey, Vondrak 15], [He, Li, Liu, Wang, Xia 17]. Beck (1991) showed that an algorithmic version is possible, starting a long line of research.

Moser and Tardos (2010) found a very elegant algorithm:

- 1. Initialize all variables randomly.
- While there exists an occurring bad event: pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan 11], [Kolipaka, Szegedy 11], [Harris, Srinivasan 13], [Achlioptas, Iliopoulos 16], [Harvey, Vondrak 15], [He, Li, Liu, Wang, Xia 17]. Beck (1991) showed that an algorithmic version is possible, starting a long line of research.

Moser and Tardos (2010) found a very elegant algorithm:

- 1. Initialize all variables randomly.
- While there exists an occurring bad event: pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan 11], [Kolipaka, Szegedy 11], [Harris, Srinivasan 13], [Achlioptas, Iliopoulos 16], [Harvey, Vondrak 15], [He, Li, Liu, Wang, Xia 17].

Question

Instead of finding a solution, can we generate a random solution?

Unfortunately, Moser-Tardos's output is <mark>not</mark> necessarily uniform.

Question

Instead of finding a solution, can we generate a random solution?

Unfortunately, Moser-Tardos's output is not necessarily uniform.

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

- **1.** Randomize each vertex.
- 2. Resample all connected component of size at least 2, until there is none.

- Once a vertex is unoccupied, it will stay unoccupied fill the end. Hence the empty set is overly favored.
- The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

- \rightarrow **1.** Randomize each vertex.
 - 2. Resample all connected component of size at least 2, until there is none.

- Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the empty set is overly favored.
- The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

- 1. Randomize each vertex.
- \rightarrow **2.** Resample all connected component of size at least 2, until there is none.

- Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the empty set is overly favored.
- The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

- 1. Randomize each vertex.
- \rightarrow **2.** Resample all connected component of size at least 2, until there is none.

- Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the empty set is overly favored.
- The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

- 1. Randomize each vertex.
- \rightarrow **2.** Resample all connected component of size at least 2, until there is none.

- Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the empty set is overly favored.
- The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

- 1. Randomize each vertex.
- **2.** Resample all connected component of size at least 2, until there is none.

- Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the empty set is overly favored.
- The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

- 1. Randomize each vertex.
- **2.** Resample all connected component of size at least 2, until there is none.

- Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the empty set is overly favored.
- The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).
WILSON'S "CYCLE-POPPING" ALGORITHM (1996)

Goal: sample a uniform spanning tree with root $\ensuremath{\textbf{r}}$.

- For each v ≠ r, assign a random arrow from v to one of its neighbours.
- While there is a (directed) cycle in the current graph, resample all arrows along all cycles.
- 3. Output.

WILSON'S "CYCLE-POPPING" ALGORITHM (1996)

Goal: sample a uniform spanning tree with root r.

- 1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- 2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.
- 3. Output.

- → 1. For each $\nu \neq r$, assign a random arrow from ν to one of its neighbours.
 - 2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.
 - 3. Output.

- 1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- → 2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.
 - 3. Output.

- 1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- → 2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.
 - 3. Output.

- 1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- → 2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.
 - 3. Output.

- 1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- → 2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.
 - 3. Output.

- 1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- → 2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.
 - 3. Output.

- 1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- → 2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.
 - 3. Output.

- 1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- 2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.
- \rightarrow **3.** Output.

- 1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- 2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.
- 3. Output.

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are "bad" events.

Wilson (1996) showed that the output is uniform.

But why? What is the general criterion?

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are "bad" events.

Wilson (1996) showed that the output is uniform.

But why? What is the general criterion?

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are "bad" events.

Wilson (1996) showed that the output is uniform.

But why? What is the general criterion?

if any two "bad" events A_i and A_j are either independent or disjoint.

- Extremal instances minimize the probability of solutions (in some precise sense) [Shearer 85].
- Moser-Tardos runs slowest in extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

if any two "bad" events A_i and A_j are either independent or disjoint.

- Extremal instances minimize the probability of solutions (in some precise sense) [Shearer 85].
- Moser-Tardos runs slowest in extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

if any two "bad" events A_i and A_j are either independent or disjoint.

- Extremal instances minimize the probability of solutions (in some precise sense) [Shearer 85].
- Moser-Tardos runs slowest in extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

if any two "bad" events A_i and A_j are either independent or disjoint.

- Extremal instances minimize the probability of solutions (in some precise sense) [Shearer 85].
- Moser-Tardos runs slowest in extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

if any two "bad" events A_i and A_j are either independent or disjoint.

- Extremal instances minimize the probability of solutions (in some precise sense) [Shearer 85].
- Moser-Tardos runs slowest in extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be identical by following the arrow!

Other extremal instances:

- "Cluster-popping" [Gorodezky, Pak 14]
- Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02] Reintroduced to show distributed LLL lower bound [Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be identical by following the arrow!

Other extremal instances:

- "Cluster-popping" [Gorodezky, Pak 14]
- Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
 Reintroduced to show distributed LLL lower bound
 [Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be identical by following the arrow!

Other extremal instances:

- "Cluster-popping" [Gorodezky, Pak 14]
- Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
 Reintroduced to show distributed LLL lower bound
 [Brandt, Fischer, Hirvonen, Keller, Lempläinen, Rybicki, Suomela, Ultto 16]

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be identical by following the arrow!

Other extremal instances:

- "Cluster-popping" [Gorodezky, Pak 14]
- Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02] Reintroduced to show distributed LLL lower bound [Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be identical by following the arrow!

Other extremal instances:

- "Cluster-popping" [Gorodezky, Pak 14]
- Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02] Reintroduced to show distributed LLL lower bound [Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

X ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	•••
X ₂	X _{2,0}	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	•••
X ₃	X _{3,0}	X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}	•••
X ₄	X _{4,0}	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	•••

X ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	
X ₂	X _{2,0}	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	•••
X ₃	X _{3,0}	X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}	
X ₄	X _{4,0}	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	

X ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	•••
X ₂	X _{2,0}	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	•••
X ₃	X _{3,0}	X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}	
X4	X _{4,0}	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	•••

X ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	•••
X ₂	X _{2,0}	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	•••
X ₃	X _{3,0}	X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}	•••
X4	X _{4,0}	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	•••

X ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	
X ₂	X _{2,0}	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	
X ₃	X _{3,0}	X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}	
X ₄	X _{4,0}	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	

X ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	•••
X ₂	X _{2,0}	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	
X ₃	X _{3,0}		X _{3,2}	X _{3,3}	X _{3,4}	
X ₄	X _{4,0}	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	•••

For extremal instances, replacing a perfect assignment with another one will not change the resampling history!

X ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	•••
X ₂	X _{2,0}	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	•••
	X _{3,0}					
X ₄	X _{4,0}	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	•••

For extremal instances, replacing a perfect assignment with another one will not change the resampling history!

For extremal instances, replacing a perfect assignment with another one will not change the resampling history!

X ₁	X' _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	•••
X ₂		X' _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	•••
X ₃		A_2	X' _{3,2}	X _{3,3}	X _{3,4}	•••
X ₄		X' _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	•••

For extremal instances, replacing a perfect assignment with another one will not change the resampling history!

X ₁	X' _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	•••
X ₂		X' _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	•••
X ₃		A_2	X' _{3,2}	X _{3,3}	X _{3,4}	•••
X ₄		X' _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	•••

For any output σ and τ , there is a bijection between trajectories leading to σ and τ .

Theorem (G., Jerrum, Liu 17)

Under Shearer's condition, for extremal instances,

$$\mathbb{E} T = \sum_{i=1}^{m} \frac{q_i}{q_{\emptyset}} = \frac{\text{\# near-perfect assignments}}{\text{\# perfect assignments}}$$

(Shearer's condition: $q_S \ge 0$ for all $S \subseteq V$, where q_S is the independence polynomial on $G \setminus \Gamma^+(S)$ with weight $-p_j$ on vertex j.)

In general (non-extremal), $\mathbb{E}T \leq \sum_{i=1}^{m} \frac{q_i}{q_a}$ [Kolipaka, Szegedy 11].

Hence, Moser-Tardos on extremal instances is the slowest.

Theorem (G., Jerrum, Liu 17)

Under Shearer's condition, for extremal instances,

$$\mathbb{E} T = \sum_{i=1}^{m} \frac{q_i}{q_{\emptyset}} = \frac{\text{\# near-perfect assignments}}{\text{\# perfect assignments}}$$

(Shearer's condition: $q_S \ge 0$ for all $S \subseteq V$, where q_S is the independence polynomial on $G \setminus \Gamma^+(S)$ with weight $-p_j$ on vertex j.)

In general (non-extremal), $\mathbb{E}T \leq \sum_{i=1}^{m} \frac{q_i}{q_A}$ [Kolipaka, Szegedy 11].

Hence, Moser-Tardos on extremal instances is the slowest.
Cluster-popping: repeatedly resample minimal clusters.

Let Ω_k be the set of subgraphs with k minimal clusters.

$$Z_k := \sum_{S \in \Omega_k} p^{|E \setminus S|} (1-p)^{|S|} \qquad \qquad \mathbb{E} T = \frac{Z_1}{Z_0}$$

[G., Jerrum 17]: for bi-directed graphs, $Z_1 \leqslant \frac{mn}{1-p}Z_0$.

We show this by designing an injective mapping $\Omega_1 \to \Omega_0 \times V \times E.$

Theorem There is an FPRAS for REACHABILITY in bi-directed graphs. The running time is O $(\varepsilon^{-2}p(1-p)^{-3}m^2n^3)$ for an $(1 \pm \varepsilon)$ -approximation. Cluster-popping: repeatedly resample minimal clusters.

Let Ω_k be the set of subgraphs with k minimal clusters.

$$Z_k := \sum_{S \in \Omega_k} p^{|E \setminus S|} (1-p)^{|S|} \qquad \qquad \mathbb{E} T = \frac{Z_1}{Z_0}$$

[G., Jerrum 17]: for bi-directed graphs, $Z_1 \leqslant \frac{mn}{1-p}Z_0$.

We show this by designing an injective mapping $\Omega_1 \rightarrow \Omega_0 \times V \times E.$

Theorem

There is an FPRAS for REACHABILITY in bi-directed graphs. The running time is O $(\epsilon^{-2}p(1-p)^{-3}m^2n^3)$ for an $(1 \pm \epsilon)$ -approximation.

- 1. Randomize each vertex.
- **2.** Let **Bad** be the set of vertices whose connected component has size ≥ 2 .
- **3.** Res = Bad $\cup \partial$ Bad.
- 4. Resample Res. Check independence.

- \rightarrow 1. Randomize each vertex.
 - **2.** Let **Bad** be the set of vertices whose connected component has size ≥ 2 .
 - **3.** Res = Bad $\cup \partial$ Bad.
 - 4. Resample Res. Check independence.

- 1. Randomize each vertex.
- → 2. Let Bad be the set of vertices whose connected component has size ≥ 2 .
 - **3.** Res = Bad $\cup \partial$ Bad.
 - 4. Resample Res. Check independence.

- 1. Randomize each vertex.
- **2.** Let **Bad** be the set of vertices whose connected component has size ≥ 2 .
- \rightarrow **3.** Res = Bad $\cup \partial$ Bad.
 - 4. Resample Res. Check independence.

- 1. Randomize each vertex.
- **2.** Let **Bad** be the set of vertices whose connected component has size ≥ 2 .
- **3.** Res = Bad $\cup \partial$ Bad.
- \rightarrow 4. Resample Res. Check independence.

- 1. Randomize each vertex.
- **2.** Let **Bad** be the set of vertices whose connected component has size ≥ 2 .
- **3.** Res = Bad $\cup \partial$ Bad.
- \rightarrow 4. Resample Res. Check independence.

- 1. Randomize each vertex.
- → 2. Let Bad be the set of vertices whose connected component has size ≥ 2 .
 - **3.** Res = Bad $\cup \partial$ Bad.
 - 4. Resample Res. Check independence.

- 1. Randomize each vertex.
- **2.** Let **Bad** be the set of vertices whose connected component has size ≥ 2 .
- \rightarrow **3.** Res = Bad $\cup \partial$ Bad.
 - 4. Resample Res. Check independence.

- 1. Randomize each vertex.
- **2.** Let **Bad** be the set of vertices whose connected component has size ≥ 2 .
- **3.** Res = Bad $\cup \partial$ Bad.
- \rightarrow 4. Resample Res. Check independence.

- 1. Randomize each vertex.
- **2.** Let **Bad** be the set of vertices whose connected component has size ≥ 2 .
- **3.** Res = Bad $\cup \partial$ Bad.
- \rightarrow 4. Resample Res. Check independence.

- 1. Randomize each vertex.
- **2.** Let **Bad** be the set of vertices whose connected component has size ≥ 2 .
- **3.** Res = Bad $\cup \partial$ Bad.
- 4. Resample Res. Check independence.

We also gave a general algorithm, and is optimal in certain restricted cases, up to constants [G., Jerrum, Liu 17].

But it falls short in general. My conjecture is that there is an efficient algorithm whenever $p\Delta^2 \leq C$ for some constant C.

On the other hand, there is a constant C' such that if $p\Delta^2 \ge C'$, then sampling is **NP**-hard [Bezáková, Galanis, Goldberg, G., Štefankovič 16].

We also gave a general algorithm, and is optimal in certain restricted cases, up to constants [G., Jerrum, Liu 17].

But it falls short in general. My conjecture is that there is an efficient algorithm whenever $p\Delta^2 \leq C$ for some constant C.

On the other hand, there is a constant C' such that if $p\Delta^2 \ge C'$, then sampling is **NP**-hard [Bezáková, Galanis, Goldberg, G., Štefankovič 16].

We also gave a general algorithm, and is optimal in certain restricted cases, up to constants [G., Jerrum, Liu 17].

But it falls short in general. My conjecture is that there is an efficient algorithm whenever $p\Delta^2 \leq C$ for some constant C.

On the other hand, there is a constant C' such that if $p\Delta^2 \ge C'$, then sampling is **NP**-hard [Bezáková, Galanis, Goldberg, G., Štefankovič 16].

CONCLUDING REMARKS

- How to sample connected subgraphs (or approximate reliability)?
- What is the optimal sampling algorithm in the local lemma setting in general?
- Can we do this for perfect matchings resampling permutations???

A professor is one who can speak on any subject for precisely fifty minutes.

– Norbert Wiener

THANK YOU!

arXiv:1611.01647 arXiv:1709.08561