A SIMPLE FPRAS FOR BI-DIRECTED REACHABILITY

Heng Guo (University of Edinburgh)
Joint with Mark Jerrum (Queen Mary, University of London)

PKU TCS seminar, Dec 27 2017
Counting
The complexity of computing quantities

Complexity class $\mathbb{#P}$ by Valiant (1979):

- a counting analogue of NP.

- Evaluation of probabilities;
- Multivariate integration;
- Counting discrete structures ...
Network Reliability

Reliability: in a graph (or network) $G = (V, E)$, suppose each edge fails with probability p. What’s the probability that the remaining graph is connected?

In other words, we want to compute

$$Z_{rel}(G, p) := \sum_{R \subseteq E: (V, R) \text{ is connected}} p^{|E \setminus R|} (1 - p)^{|R|}.$$
The unweighted case (namely, $p = 0.5$) is among the original 17 \texttt{#P}-complete problem in [Valiant '79].

Exact evaluation is \texttt{#P}-complete [Jerrum '81] [Provan, Ball '83].

Karger (1999) gave an FPRAS for unreliability, but the complexity of approximating reliability is still open.
The unweighted case (namely, $p = 0.5$) is among the original 17 \#P-complete problem in [Valiant ’79].

Exact evaluation is \#P-complete [Jerrum ’81] [Provan, Ball ’83].

Karger (1999) gave an FPRAS for unreliability, but the complexity of approximating reliability is still open.
The unweighted case (namely, $p = 0.5$) is among the original 17 #P-complete problem in [Valiant ’79].

Exact evaluation is #P-complete [Jerrum ’81] [Provan, Ball ’83].

Karger (1999) gave an FPRAS for unreliability, but the complexity of approximating reliability is still open.
We say a directed graph G with root r is \textit{root-connected} if all vertices can reach r.

Ball and Provan (1983) defined \textbf{REACHABILITY}: in a directed graph with root r, suppose each arc fails with probability p, what’s the probability that the remaining graph is root-connected?

$$Z_{\text{reach}}(G, p) := \sum_{R \subseteq E : (V, R) \text{ is root-connected}} p^{|E \setminus R|} (1 - p)^{|R|}.$$
We say a directed graph G with root r is *root-connected* if all vertices can reach r.

Ball and Provan (1983) defined **reachability**: in a directed graph with root r, suppose each arc fails with probability p, what’s the probability that the remaining graph is root-connected?

$$Z_{\text{reach}}(G, p) := \sum_{R \subseteq E : (V, R) \text{ is root-connected}} p^{|E \setminus R|} (1 - p)^{|R|}.$$
Cluster popping

If \(G \) is bi-directed, approximating \(Z_{\text{reach}}(G, p) \) can be reduced to sampling root-connected subgraphs [Gorodezky, Pak 14].

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak 14]: randomize edges and repeatedly pop minimal clusters.

[G., Jerrum 17]: the expected number of rounds in a bi-directed graph is \(O\left(\frac{mn}{1-p}\right) \).
If G is bi-directed, approximating $Z_{\text{reach}}(G, p)$ can be reduced to sampling root-connected subgraphs [Gorodezky, Pak 14].

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak 14]: randomize edges and repeatedly pop minimal clusters.

[G., Jerrum 17]: the expected number of rounds in a bi-directed graph is $O\left(\frac{mn}{1-p}\right)$.
If G is bi-directed, approximating $Z_{\text{reach}}(G, p)$ can be reduced to sampling root-connected subgraphs [Gorodezky, Pak 14].

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak 14]: randomize edges and repeatedly pop minimal clusters.

[G., Jerrum 17]: the expected number of rounds in a bi-directed graph is $O \left(\frac{mn}{1-p} \right)$.
If G is bi-directed, approximating $Z_{\text{reach}}(G, p)$ can be reduced to sampling root-connected subgraphs [Gorodezky, Pak 14].

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak 14]: randomize edges and repeatedly pop minimal clusters.

[G., Jerrum 17]: the expected number of rounds in a bi-directed graph is $O\left(\frac{mn}{1-p}\right)$.
If G is bi-directed, approximating $Z_{\text{reach}}(G, p)$ can be reduced to sampling root-connected subgraphs [Gorodezky, Pak 14].

Cluster: no edge going out.

Cluster popping [Gorodezky, Pak 14]: randomize edges and repeatedly pop minimal clusters.

[G., Jerrum 17]: the expected number of rounds in a bi-directed graph is $O\left(\frac{mn}{1-p}\right)$.
PARTIAL REJECTION SAMPLING

(WHY IS CLUSTER-POPPING CORRECT AND EFFICIENT?)
A random walk SAT-solver

The prototypical NP-complete problem: given a CNF formula, does it have a satisfying assignment?

\[(x_1 \lor \overline{x}_3 \lor x_5) \land (x_2 \lor x_3) \land (\overline{x}_3 \lor x_4) \land (x_1 \lor \overline{x}_5 \lor x_6 \lor x_7) \ldots\]

Rejection sampling: assign each variable uniformly at random and independently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

It is optimal in a very general setting! [Moser, Tardos 10]
The prototypical **NP-complete** problem:
given a CNF formula, does it have a satisfying assignment?

\[(x_1 \lor x_3 \lor x_5) \land (x_2 \lor x_3) \land (x_3 \lor x_4) \land (x_1 \lor x_5 \lor x_6 \lor x_7) \ldots\]

Rejection sampling: assign each variable uniformly at random and independently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

It is optimal in a very general setting! [Moser, Tardos 10]
The prototypical **NP-complete** problem: given a CNF formula, does it have a satisfying assignment?

\[(x_1 \lor \overline{x_3} \lor x_5) \land (x_2 \lor x_3) \land (\overline{x_3} \lor \overline{x_4}) \land (x_1 \lor \overline{x_5} \lor x_6 \lor x_7) \ldots\]

Rejection sampling: assign each variable uniformly at random and independently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

It is optimal in a very general setting! [Moser, Tardos 10]
The prototypical NP-complete problem: given a CNF formula, does it have a satisfying assignment?

\[(x_1 \lor \overline{x}_3 \lor x_5) \land (x_2 \lor x_3) \land (\overline{x}_3 \lor \overline{x}_4) \land (x_1 \lor \overline{x}_5 \lor x_6 \lor x_7) \ldots\]

Rejection sampling: assign each variable uniformly at random and independently. If not satisfying, reject and repeat.

Walk-SAT: while there is a violated clause, re-randomize all its variables.

It is optimal in a very general setting! [Moser, Tardos 10]
Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X_1, \ldots, X_n \hspace{1cm} “Bad” events A_1, \ldots, A_m

Dependency graph: A_i and A_j are adjacent if $\text{var}(A_i) \cap \text{var}(A_j) \neq \emptyset$.

Erdős and Lovász (1975): $4p\Delta \leq 1 \Rightarrow$ existence of a perfect assignment.

p: max probability of A_i \hspace{1cm} Δ: max degree of the dependency graph

Lovász (1977) improved the condition to $ep(\Delta + 1) \leq 1$.

Shearer (1985) gave the optimal condition of LLL.

LLL only guarantees an exponentially small probability.
Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X_1, \ldots, X_n “Bad” events A_1, \ldots, A_m

Dependency graph: A_i and A_j are adjacent if $\var(A_i) \cap \var(A_j) \neq \emptyset$.

Erdős and Lovász (1975): $4p\Delta \leq 1 \Rightarrow$ existence of a perfect assignment.

p: max probability of A_i Δ: max degree of the dependency graph

Lovász (1977) improved the condition to $ep(\Delta + 1) \leq 1$.

Shearer (1985) gave the optimal condition of LLL.

LLL only guarantees an exponentially small probability.
Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X_1, \ldots, X_n
“Bad” events A_1, \ldots, A_m

Dependency graph: A_i and A_j are adjacent if $\text{var}(A_i) \cap \text{var}(A_j) \neq \emptyset$.

Erdős and Lovász (1975): $4p\Delta \leq 1 \Rightarrow$ existence of a perfect assignment.

p: max probability of A_i
Δ: max degree of the dependency graph

Lovász (1977) improved the condition to $ep(\Delta + 1) \leq 1$.

Shearer (1985) gave the optimal condition of LLL.

LLL only guarantees an exponentially small probability.
Variable framework of the Lovász Local Lemma

Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X_1, \ldots, X_n
“Bad” events A_1, \ldots, A_m

Dependency graph: A_i and A_j are adjacent if $\text{var}(A_i) \cap \text{var}(A_j) \neq \emptyset$.

Erdős and Lovász (1975): $4p\Delta \leq 1 \Rightarrow$ existence of a perfect assignment.
p: max probability of A_i
Δ: max degree of the dependency graph

Lovász (1977) improved the condition to $ep(\Delta + 1) \leq 1$.
Shearer (1985) gave the optimal condition of LLL.

LLL only guarantees an exponentially small probability.
Find a “perfect” assignment of the variables avoiding all “bad” events.

Variables X_1, \ldots, X_n "Bad" events A_1, \ldots, A_m

Dependency graph: A_i and A_j are adjacent if $\text{var}(A_i) \cap \text{var}(A_j) \neq \emptyset$.

Erdős and Lovász (1975): $4p\Delta \leq 1 \Rightarrow$ existence of a perfect assignment.

p: max probability of A_i \hspace{1cm} \Delta$: max degree of the dependency graph

Lovász (1977) improved the condition to $ep(\Delta + 1) \leq 1$.

Shearer (1985) gave the optimal condition of LLL.

LLL only guarantees an exponentially small probability.
Beck (1991) showed that an algorithmic version is possible, starting a long line of research.

Moser and Tardos (2010) found a very elegant algorithm:

1. Initialize all variables randomly.

2. While there exists an occurring bad event:
 pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan 11], [Kolipaka, Szegedy 11], [Harris, Srinivasan 13],
[Achlioptas, Iliopoulos 16], [Harvey, Vondrak 15], [He, Li, Liu, Wang, Xia 17].
Beck (1991) showed that an algorithmic version is possible, starting a long line of research.

Moser and Tardos (2010) found a very elegant algorithm:

1. Initialize all variables randomly.

2. While there exists an occurring bad event:
 pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan 11], [Kolipaka, Szegedy 11], [Harris, Srinivasan 13], [Achlioptas, Iliopoulos 16], [Harvey, Vondrak 15], [He, Li, Liu, Wang, Xia 17].
Beck (1991) showed that an algorithmic version is possible, starting a long line of research.

Moser and Tardos (2010) found a very elegant algorithm:

1. Initialize all variables randomly.

2. While there exists an occurring bad event: pick one (various rules) and resample all its variables.

Many developments since then:

[Haeupler, Saha, Srinivasan 11], [Kolipaka, Szegedy 11], [Harris, Srinivasan 13], [Achlioptas, Iliopoulos 16], [Harvey, Vondrak 15], [He, Li, Liu, Wang, Xia 17].
Question

Instead of finding a solution, can we generate a random solution?

Unfortunately, Moser-Tardos’s output is not necessarily uniform.
Question

Instead of finding a solution, can we generate a random solution?

Unfortunately, Moser-Tardos’s output is not necessarily uniform.
Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

1. Randomize each vertex.
2. Resample all connected component of size at least 2, until there is none.

This does not draw from the target distribution:

- Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the empty set is overly favored.
- The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).
Sampling independent sets?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

→ 1. Randomize each vertex.
→ 2. Resample all connected component of size at least 2, until there is none.

This does not draw from the target distribution:

• Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the empty set is overly favored.
• The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).
Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

1. Randomize each vertex.

→ 2. Resample all connected component of size at least 2, until there is none.

This does not draw from the target distribution:

• Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the empty set is overly favored.
• The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).
Sampling Independent Sets?

Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

1. Randomize each vertex.

→ 2. Resample all connected component of size at least 2, until there is none.

This does not draw from the target distribution:

- Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the empty set is overly favored.
- The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).
Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

1. Randomize each vertex.

→ 2. Resample all connected component of size at least 2, until there is none.

This does not draw from the target distribution:

- Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the empty set is overly favored.
- The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).
Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

1. Randomize each vertex.
2. Resample all connected component of size at least 2, until there is none.

This does not draw from the target distribution:

- Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the empty set is overly favored.
- The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).
Target distribution: uniform on independent sets.

Adapting Moser-Tardos:

1. Randomize each vertex.
2. Resample all connected component of size at least 2, until there is none.

This does not draw from the target distribution:

• Once a vertex is unoccupied, it will stay unoccupied till the end. Hence the empty set is overly favored.
• The process converges too fast. However uniformly sampling independent set is NP-hard (even approximately).
Wilson’s “cycle-popping” algorithm (1996)

Goal: sample a uniform spanning tree with root r.

1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.

2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.

3. Output.

No cycle + $n - 1$ edges \Rightarrow Spanning Tree
Goal: sample a uniform spanning tree with root r.

1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.

2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.

3. Output.

No cycle + $n - 1$ edges \Rightarrow Spanning Tree
Wilson’s “cycle-popping” algorithm (1996)

Goal: sample a uniform spanning tree with root \(r \).

1. For each \(v \neq r \), assign a random arrow from \(v \) to one of its neighbours.

2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.

3. Output.

No cycle + \(n - 1 \) edges \(\Rightarrow \) Spanning Tree
Wilson’s “cycle-popping” algorithm (1996)

Goal: sample a uniform spanning tree with root \(r \).

1. For each \(v \neq r \), assign a random arrow from \(v \) to one of its neighbours.

2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.

3. Output.

No cycle + \(n - 1 \) edges \(\Rightarrow \) Spanning Tree
Wilson’s “cycle-popping” algorithm (1996)

Goal: sample a uniform spanning tree with root r.

1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.

→ 2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.

3. Output.

No cycle + $n - 1$ edges \Rightarrow Spanning Tree
Goal: sample a uniform spanning tree with root r.

1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.

2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.

3. Output.

No cycle + $n - 1$ edges \Rightarrow Spanning Tree
Wilson’s “cycle-popping” algorithm (1996)

Goal: sample a uniform spanning tree with root r.

1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.

2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.

3. Output.

No cycle $+ n - 1$ edges \Rightarrow Spanning Tree
Wilson’s “cycle-popping” algorithm (1996)

Goal: sample a uniform spanning tree with root r.

1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.

→ 2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.

3. Output.

No cycle $+ n - 1$ edges \Rightarrow Spanning Tree
Wilson’s “cycle-popping” algorithm (1996)

Goal: sample a uniform spanning tree with root r.

1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.

2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.

3. Output.

No cycle + $n - 1$ edges \Rightarrow Spanning Tree
Wilson’s “cycle-popping” algorithm (1996)

Goal: sample a uniform spanning tree with root \(r \).

1. For each \(v \neq r \), assign a random arrow from \(v \) to one of its neighbours.

2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.

→ 3. Output.

No cycle + \(n - 1 \) edges \(\Rightarrow \) Spanning Tree
Wilson’s “cycle-popping” algorithm (1996)

Goal: sample a uniform spanning tree with root \(r \).

1. For each \(v \neq r \), assign a random arrow from \(v \) to one of its neighbours.

2. While there is a (directed) cycle in the current graph, resample all arrows along all cycles.

3. Output.

No cycle + \(n - 1 \) edges \(\Rightarrow \) Spanning Tree
Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

Wilson (1996) showed that the output is uniform.

But why? What is the general criterion?
Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are “bad” events.

Wilson (1996) showed that the output is uniform.

But why? What is the general criterion?
Cycle-popping is a special case of Moser-Tardos:

- Arrows are variables.
- Cycles are “bad” events.

Wilson (1996) showed that the output is uniform.

But why? What is the general criterion?
Extremal instances

We call an instance extremal:

if any two “bad” events A_i and A_j are either independent or disjoint.

- Extremal instances minimize the probability of solutions (in some precise sense) [Shearer 85].
- Moser-Tardos runs slowest in extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

When the instance is extremal, the output of Moser-Tardos is uniform.
We call an instance *extremal*:

if any two “bad” events A_i and A_j are either independent or disjoint.

- Extremal instances **minimize** the probability of solutions (in some precise sense) [Shearer 85].
- Moser-Tardos runs slowest in extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

When the instance is extremal, the output of Moser-Tardos is uniform.
Extremal instances

We call an instance **extremal**:

if any two “bad” events A_i and A_j are either **independent** or **disjoint**.

- Extremal instances **minimize** the probability of solutions (in some precise sense) [Shearer 85].
- **Moser-Tardos** runs slowest in extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

When the instance is extremal, the output of Moser-Tardos is uniform.
We call an instance **extremal**:

if any two “bad” events A_i and A_j are either **independent** or **disjoint**.

- Extremal instances **minimize** the probability of solutions (in some precise sense) [Shearer 85].
- **Moser-Tardos** runs slowest in extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

When the instance is extremal, the output of Moser-Tardos is uniform.
Extremal instances

We call an instance **extremal**:

if any two “bad” events A_i and A_j are either **independent** or **disjoint**.

- Extremal instances **minimize** the probability of solutions (in some precise sense) [Shearer 85].
- **Moser-Tardos** runs slowest in extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

When the instance is extremal, the output of Moser-Tardos is uniform.
Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be identical by following the arrow!

Other extremal instances:

- “Cluster-popping” [Gorodezky, Pak 14]
- Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02] Reintroduced to show distributed LLL lower bound [Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

We may give weights to the variables. Thus the target distribution is a product distribution conditioned on none of “bad” events occurring.
Extremal instances

Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be identical by following the arrow!

Other extremal instances:

- “Cluster-popping” [Gorodezky, Pak 14]
- Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
 Reintroduced to show distributed LLL lower bound
 [Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

We may give weights to the variables. Thus the target distribution is a product distribution conditioned on none of “bad” events occurring.
Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be identical by following the arrow!

Other extremal instances:

- “Cluster-popping” [Gorodezky, Pak 14]
- Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]

Reintroduced to show distributed LLL lower bound
[Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

We may give weights to the variables. Thus the target distribution is a product distribution conditioned on none of “bad” events occurring.
Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be identical by following the arrow!

Other extremal instances:

- “Cluster-popping” [Gorodezky, Pak 14]
- Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
 Reintroduced to show distributed LLL lower bound
 [Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

We may give weights to the variables. Thus the target distribution is a product distribution conditioned on none of “bad” events occurring.
Wilson’s setup is extremal:

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be identical by following the arrow!

Other extremal instances:

- “Cluster-popping” [Gorodezky, Pak 14]
- Sink-free orientations [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
 Reintroduced to show distributed LLL lower bound
 [Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

We may give weights to the variables. Thus the target distribution is a product distribution conditioned on none of “bad” events occurring.
Associate an infinite stack $X_{i,0}, X_{i,1}, \ldots$ to each random variable X_i. When we need to resample, draw the next value in the stack.

<table>
<thead>
<tr>
<th></th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X_{1,0}$</td>
<td>$X_{1,1}$</td>
<td>$X_{1,2}$</td>
<td>$X_{1,3}$</td>
<td>$X_{1,4}$</td>
</tr>
<tr>
<td>$X_{2,0}$</td>
<td>$X_{2,1}$</td>
<td>$X_{2,2}$</td>
<td>$X_{2,3}$</td>
<td>$X_{2,4}$</td>
</tr>
<tr>
<td>$X_{3,0}$</td>
<td>$X_{3,1}$</td>
<td>$X_{3,2}$</td>
<td>$X_{3,3}$</td>
<td>$X_{3,4}$</td>
</tr>
<tr>
<td>$X_{4,0}$</td>
<td>$X_{4,1}$</td>
<td>$X_{4,2}$</td>
<td>$X_{4,3}$</td>
<td>$X_{4,4}$</td>
</tr>
</tbody>
</table>
Associate an infinite stack $X_{i,0}, X_{i,1}, \ldots$ to each random variable X_i. When we need to resample, draw the next value in the stack.

<table>
<thead>
<tr>
<th></th>
<th>$X_{1,0}$</th>
<th>$X_{1,1}$</th>
<th>$X_{1,2}$</th>
<th>$X_{1,3}$</th>
<th>$X_{1,4}$</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td>$X_{2,0}$</td>
<td>$X_{2,1}$</td>
<td>$X_{2,2}$</td>
<td>$X_{2,3}$</td>
<td>$X_{2,4}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>X_3</td>
<td>$X_{3,0}$</td>
<td>$X_{3,1}$</td>
<td>$X_{3,2}$</td>
<td>$X_{3,3}$</td>
<td>$X_{3,4}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>X_4</td>
<td>$X_{4,0}$</td>
<td>$X_{4,1}$</td>
<td>$X_{4,2}$</td>
<td>$X_{4,3}$</td>
<td>$X_{4,4}$</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
Associate an infinite stack $X_{i,0}, X_{i,1}, \ldots$ to each random variable X_i. When we need to resample, draw the next value in the stack.

<table>
<thead>
<tr>
<th></th>
<th>$X_{1,0}$</th>
<th>$X_{1,1}$</th>
<th>$X_{1,2}$</th>
<th>$X_{1,3}$</th>
<th>$X_{1,4}$</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td>$X_{2,0}$</td>
<td>$X_{2,1}$</td>
<td>$X_{2,2}$</td>
<td>$X_{2,3}$</td>
<td>$X_{2,4}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>X_3</td>
<td>$X_{3,0}$</td>
<td>$X_{3,1}$</td>
<td>$X_{3,2}$</td>
<td>$X_{3,3}$</td>
<td>$X_{3,4}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>X_4</td>
<td>$X_{4,0}$</td>
<td>$X_{4,1}$</td>
<td>$X_{4,2}$</td>
<td>$X_{4,3}$</td>
<td>$X_{4,4}$</td>
<td>\cdots</td>
</tr>
</tbody>
</table>
Resampling Table

Associate an infinite stack $X_{i,0}, X_{i,1}, \ldots$ to each random variable X_i. When we need to resample, draw the next value in the stack.

<table>
<thead>
<tr>
<th></th>
<th>$X_{1,0}$</th>
<th>$X_{1,1}$</th>
<th>$X_{1,2}$</th>
<th>$X_{1,3}$</th>
<th>$X_{1,4}$</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Associate an infinite stack $X_{i,0}, X_{i,1}, \ldots$ to each random variable X_i. When we need to resample, draw the next value in the stack.

<table>
<thead>
<tr>
<th>X_1</th>
<th>$X_{1,0}$</th>
<th>$X_{1,1}$</th>
<th>$X_{1,2}$</th>
<th>$X_{1,3}$</th>
<th>$X_{1,4}$</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_2</td>
<td>$X_{2,0}$</td>
<td>$X_{2,1}$</td>
<td>$X_{2,2}$</td>
<td>$X_{2,3}$</td>
<td>$X_{2,4}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>X_3</td>
<td>$X_{3,0}$</td>
<td>$X_{3,1}$</td>
<td>$X_{3,2}$</td>
<td>$X_{3,3}$</td>
<td>$X_{3,4}$</td>
<td>\ldots</td>
</tr>
<tr>
<td>X_4</td>
<td>$X_{4,0}$</td>
<td>$X_{4,1}$</td>
<td>$X_{4,2}$</td>
<td>$X_{4,3}$</td>
<td>$X_{4,4}$</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
Associate an infinite stack $X_{i,0}, X_{i,1}, \ldots$ to each random variable X_i. When we need to resample, draw the next value in the stack.

<table>
<thead>
<tr>
<th></th>
<th>$X_{1,0}$</th>
<th>$X_{1,1}$</th>
<th>$X_{1,2}$</th>
<th>$X_{1,3}$</th>
<th>$X_{1,4}$</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>\cdots</td>
</tr>
<tr>
<td>X_3</td>
<td>$X_{3,0}$</td>
<td>$X_{3,1}$</td>
<td>$X_{3,2}$</td>
<td>$X_{3,3}$</td>
<td>$X_{3,4}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>X_2</td>
<td>$X_{2,0}$</td>
<td>$X_{2,1}$</td>
<td>$X_{2,2}$</td>
<td>$X_{2,3}$</td>
<td>$X_{2,4}$</td>
<td>\cdots</td>
</tr>
<tr>
<td>X_4</td>
<td>$X_{4,0}$</td>
<td>$X_{4,1}$</td>
<td>$X_{4,2}$</td>
<td>$X_{4,3}$</td>
<td>$X_{4,4}$</td>
<td>\cdots</td>
</tr>
</tbody>
</table>
For extremal instances, replacing a perfect assignment with another one will not change the resampling history!

For any output and , there is a bijection between trajectories leading to and .
For extremal instances, replacing a perfect assignment with another one will not change the resampling history!

<table>
<thead>
<tr>
<th></th>
<th>X_1</th>
<th>$X_1,1$</th>
<th>$X_1,2$</th>
<th>$X_1,3$</th>
<th>$X_{1,4}$</th>
<th>\cdots</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td>A_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_3</td>
<td>A_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For any output and input, there is a bijection between trajectories leading to $X_{i,0}$ and $X_{i,1}$.
For extremal instances, replacing a perfect assignment with another one will not change the resampling history!

<table>
<thead>
<tr>
<th></th>
<th>X_1'</th>
<th>$X_1,0$</th>
<th>$X_1,1$</th>
<th>$X_1,2$</th>
<th>$X_1,3$</th>
<th>$X_1,4$</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X_4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For any output and A, there is a bijection between trajectories leading to A and A'.
For extremal instances, replacing a perfect assignment with another one will not change the resampling history!

For any output σ and τ, there is a bijection between trajectories leading to σ and τ.

<table>
<thead>
<tr>
<th>X_1</th>
<th>$X_1',0$</th>
<th>$X_{1,1}$</th>
<th>$X_{1,2}$</th>
<th>$X_{1,3}$</th>
<th>$X_{1,4}$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_2</td>
<td>$X_{2,1}'$</td>
<td>$X_{2,2}$</td>
<td>$X_{2,3}$</td>
<td>$X_{2,4}$</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>X_3</td>
<td>$X_{3,1}'$</td>
<td>$X_{3,2}$</td>
<td>$X_{3,3}$</td>
<td>$X_{3,4}$</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>X_4</td>
<td>$X_{4,1}'$</td>
<td>$X_{4,2}$</td>
<td>$X_{4,3}$</td>
<td>$X_{4,4}$</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Theorem (G., Jerrum, Liu 17)

Under Shearer’s condition, for extremal instances,

\[
\mathbb{E} T = \sum_{i=1}^{m} \frac{q_i}{q_\emptyset} = \frac{\# \text{near-perfect assignments}}{\# \text{perfect assignments}}.
\]

(Shearer’s condition: \(q_S \geq 0\) for all \(S \subseteq V\), where \(q_S\) is the independence polynomial on \(G \setminus \Gamma^+(S)\) with weight \(-p_j\) on vertex \(j\).)

In general (non-extremal), \(\mathbb{E} T \leq \sum_{i=1}^{m} \frac{q_i}{q_\emptyset}\) [Kolipaka, Szegedy 11].

Hence, Moser-Tardos on extremal instances is the slowest.
Theorem (G., Jerrum, Liu 17)

Under Shearer’s condition, for extremal instances,

\[
\mathbb{E} T = \sum_{i=1}^{m} \frac{q_i}{q_\emptyset} = \frac{\# \text{ near-perfect assignments}}{\# \text{ perfect assignments}}.
\]

(Shearer’s condition: \(q_S \geq 0 \) for all \(S \subseteq V \), where \(q_S \) is the independence polynomial on \(G \setminus \Gamma^+(S) \) with weight \(-p_j\) on vertex \(j \).)

In general (non-extremal), \(\mathbb{E} T \leq \sum_{i=1}^{m} \frac{q_i}{q_\emptyset} \) [Kolipaka, Szegedy 11].

Hence, Moser-Tardos on extremal instances is the slowest.
Cluster-popping: repeatedly resample minimal clusters.

Let Ω_k be the set of subgraphs with k minimal clusters.

$$Z_k := \sum_{S \in \Omega_k} p^{d_S} (1 - p)^{|S|}$$

$E T = \frac{Z_1}{Z_0}$

[G., Jerrum 17]: for bi-directed graphs, $Z_1 \leq \frac{mn}{1-p} Z_0$.

We show this by designing an injective mapping $\Omega_1 \rightarrow \Omega_0 \times V \times E$.

Theorem

There is an FPRAS for REACHABILITY in bi-directed graphs. The running time is $O \left(\varepsilon^{-2} p (1 - p)^{-3} m^2 n^3 \right)$ for an $(1 \pm \varepsilon)$-approximation.
Cluster-popping: repeatedly resample minimal clusters.

Let Ω_k be the set of subgraphs with k minimal clusters.

$$Z_k := \sum_{S \in \Omega_k} p^{|E \setminus S|} (1 - p)^{|S|}$$

$$\mathbb{E} T = \frac{Z_1}{Z_0}$$

[G., Jerrum 17]: for bi-directed graphs, $Z_1 \leq \frac{mn}{1-p} Z_0$.

We show this by designing an injective mapping $\Omega_1 \rightarrow \Omega_0 \times V \times E$.

Theorem

There is an FPRAS for REACHABILITY in bi-directed graphs. The running time is $O(\varepsilon^{-2} p (1 - p)^{-3} m^2 n^3)$ for an $(1 \pm \varepsilon)$-approximation.
1. Randomize each vertex.

2. Let Bad be the set of vertices whose connected component has size ≥ 2.

3. $\text{Res} = \text{Bad} \cup \partial\text{Bad}$.

4. Resample Res.
 Check independence.

When the algorithm stops, it draws from the desired distribution.
A correct algorithm for sampling independent sets

1. Randomize each vertex.
2. Let Bad be the set of vertices whose connected component has size ≥ 2.
3. $\text{Res} = \text{Bad} \cup \partial\text{Bad}$.
4. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.
A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS

1. Randomize each vertex.

→ 2. Let \textbf{Bad} be the set of vertices whose connected component has size \(\geq 2 \).

3. \textbf{Res} = \textbf{Bad} \cup \partial \textbf{Bad}.

4. Resample \textbf{Res}.
 Check independence.

When the algorithm stops, it draws from the desired distribution.
1. Randomize each vertex.

2. Let Bad be the set of vertices whose connected component has size ≥ 2.

$\Rightarrow 3. \quad \text{Res} = \text{Bad} \cup \partial \text{Bad}$.

4. Resample Res.
 Check independence.

When the algorithm stops, it draws from the desired distribution.
A CORRECT ALGORITHM FOR SAMPLING INDEPENDENT SETS

1. Randomize each vertex.

2. Let Bad be the set of vertices whose connected component has size ≥ 2.

3. $\text{Res} = \text{Bad} \cup \partial \text{Bad}$.

→ 4. Resample Res.
 Check independence.

When the algorithm stops, it draws from the desired distribution.
1. Randomize each vertex.

2. Let Bad be the set of vertices whose connected component has size ≥ 2.

3. $\text{Res} = \text{Bad} \cup \partial \text{Bad}$.

→ 4. Resample Res.
 Check independence.

When the algorithm stops, it draws from the desired distribution.
1. Randomize each vertex.

2. Let Bad be the set of vertices whose connected component has size ≥ 2.

3. $\text{Res} = \text{Bad} \cup \partial\text{Bad}$.

4. Resample Res.
 Check independence.

When the algorithm stops, it draws from the desired distribution.
1. Randomize each vertex.

2. Let Bad be the set of vertices whose connected component has size ≥ 2.

\rightarrow 3. $\text{Res} = \text{Bad} \cup \partial\text{Bad}$.

4. Resample Res.
 Check independence.

When the algorithm stops, it draws from the desired distribution.
A correct algorithm for sampling independent sets

1. Randomize each vertex.

2. Let Bad be the set of vertices whose connected component has size ≥ 2.

3. $\text{Res} = \text{Bad} \cup \partial\text{Bad}$.

→ 4. Resample Res.
 Check independence.

When the algorithm stops, it draws from the desired distribution.
1. Randomize each vertex.

2. Let Bad be the set of vertices whose connected component has size ≥ 2.

3. $\text{Res} = \text{Bad} \cup \partial \text{Bad}$.

→ 4. Resample Res.
Check independence.

When the algorithm stops, it draws from the desired distribution.
1. Randomize each vertex.

2. Let Bad be the set of vertices whose connected component has size ≥ 2.

3. $\text{Res} = \text{Bad} \cup \partial \text{Bad}$.

4. Resample Res.
 Check independence.

When the algorithm stops, it draws from the desired distribution.
We also gave a general algorithm, and is optimal in certain restricted cases, up to constants [G., Jerrum, Liu 17].

But it falls short in general. My conjecture is that there is an efficient algorithm whenever $p\Delta^2 \leq C$ for some constant C.

On the other hand, there is a constant C' such that if $p\Delta^2 \geq C'$, then sampling is NP-hard [Bezáková, Galanis, Goldberg, G., Štefankovič 16].
We also gave a general algorithm, and is optimal in certain restricted cases, up to constants [G., Jerrum, Liu 17].

But it falls short in general. My conjecture is that there is an efficient algorithm whenever $p\Delta^2 \leq C$ for some constant C.

On the other hand, there is a constant C' such that if $p\Delta^2 \geq C'$, then sampling is NP-hard [Bezáková, Galanis, Goldberg, G., Štefankovič 16].
We also gave a general algorithm, and is optimal in certain restricted cases, up to constants [G., Jerrum, Liu 17].

But it falls short in general. My conjecture is that there is an efficient algorithm whenever $p\Delta^2 \leq C$ for some constant C.

On the other hand, there is a constant C' such that if $p\Delta^2 \geq C'$, then sampling is \textbf{NP}-hard [Bezáková, Galanis, Goldberg, G., Štefankovič 16].
CONCLUDING REMARKS
Open Problems

• How to sample connected subgraphs (or approximate reliability)?

• What is the optimal sampling algorithm in the local lemma setting in general?

• Can we do this for perfect matchings - resampling permutations???
A professor is one who can speak on any subject for precisely fifty minutes.

— Norbert Wiener

THANK YOU!

arXiv:1611.01647
arXiv:1709.08561