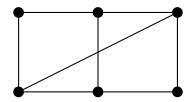
The Complexity of Ising Models with Complex Weights

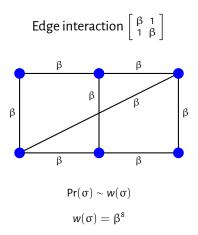
Leslie Ann Goldberg¹ and Heng Guo²

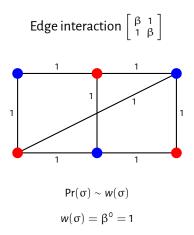
¹University of Oxford ²University of Wisconsin-Madison

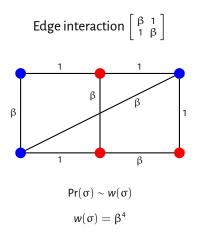
> Ann Arbor, MI Dec 6th 2014

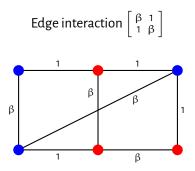
Edge interaction
$$\begin{bmatrix} \beta & 1 \\ 1 & \beta \end{bmatrix}$$











Partition function (normalizing factor):

$$Z_{G}(\beta) = \sum_{\sigma: V \to \{0,1\}} w(\sigma)$$

where $w(\sigma) = \beta^{m(\sigma)}$, $m(\sigma)$ is the number of monochromatic edges under σ .

Exact evaluation of $Z_G(\beta)$:

• **#P**-hard unless $\beta = 0, \pm 1, \pm i$. [Jaeger, Vertigan, Welsh 90]

Exact evaluation of $Z_G(\beta)$:

• **#P**-hard unless $\beta = 0, \pm 1, \pm i$. [Jaeger, Vertigan, Welsh 90]

Approximation:

• FPRAS if $\beta > 1$ and **NP**-hard if $0 < \beta < 1$. [Jerrum, Sinclair 93]

Exact evaluation of $Z_G(\beta)$:

• **#P**-hard unless $\beta = 0, \pm 1, \pm i$. [Jaeger, Vertigan, Welsh 90]

Approximation:

- FPRAS if $\beta > 1$ and **NP**-hard if $0 < \beta < 1$. [Jerrum, Sinclair 93]
- For bounded degree graphs and 0 $< \beta < 1$,
 - FPTAS below the uniqueness threshold.
 [Sinclair, Srivastava, Thurley 12] and [Li,Lu,Yin 12,13]
 - NP-hard beyond it. [Sly, Sun 12]

Exact evaluation of $Z_G(\beta)$:

• **#P**-hard unless $\beta = 0, \pm 1, \pm i$. [Jaeger, Vertigan, Welsh 90]

Approximation:

- FPRAS if $\beta > 1$ and **NP**-hard if $0 < \beta < 1$. [Jerrum, Sinclair 93]
- For bounded degree graphs and 0 $< \beta <$ 1,
 - FPTAS below the uniqueness threshold.
 [Sinclair, Srivastava, Thurley 12] and [Li,Lu,Yin 12,13]
 - NP-hard beyond it. [Sly, Sun 12]

Note that we can amplify any constant approximation into an FPRAS.

Exact evaluation of $Z_G(\beta)$:

• **#P**-hard unless $\beta = 0, \pm 1, \pm i$. []aeger, Vertigan, Welsh 90]

Approximation:

- FPRAS if $\beta > 1$ and **NP**-hard if $0 < \beta < 1$. [Jerrum, Sinclair 93]
- For bounded degree graphs and 0 $< \beta <$ 1,
 - FPTAS below the uniqueness threshold.
 [Sinclair, Srivastava, Thurley 12] and [Li,Lu,Yin 12,13]
 - NP-hard beyond it. [Sly, Sun 12]

Note that we can amplify any constant approximation into an FPRAS.

In this talk we will focus on approximating $Z_G(\beta)$ for $\beta \in \mathbb{C}$.

IQP (Instantaneous Quantum Polynomial-time) [Shepherd, Bremner 09] is a subclass of **BQP**.

IQP (Instantaneous Quantum Polynomial-time) [Shepherd, Bremner 09] is a subclass of **BQP**.

An **IQP** circuit satisfies:

- each qubit line starts and ends with an H gate;
- all other gates are diagonal.

IQP (Instantaneous Quantum Polynomial-time) [Shepherd, Bremner 09] is a subclass of **BQP**.

An **IQP** circuit satisfies:

- each qubit line starts and ends with an H gate;
- all other gates are diagonal.

Lemma (Fuiji, Morimae, 13)

Given an **IQP** circuit *C* and an output **x**, there is a graph *G* such that the marginal probability of **x** equals to $|Z_G(e^{\pi i/4})|$ up to an easy to compute factor.

Given an **IQP** circuit *C* and an output **x**, there is a graph *G* such that the marginal probability of **x** equals to $|Z_G(e^{\pi i/4})|$ up to an easy to compute factor.

Given an **IQP** circuit *C* and an output **x**, there is a graph *G* such that the marginal probability of **x** equals to $|Z_G(e^{\pi i/4})|$ up to an easy to compute factor.

Lemma (Bremner, Jorza, Shepherd 11)

Sampling **x** with multiplicative errors classically in polynomial time implies that the polynomial hierarchy collapses to the third level.

Given an **IQP** circuit *C* and an output **x**, there is a graph *G* such that the marginal probability of **x** equals to $|Z_G(e^{\pi i/4})|$ up to an easy to compute factor.

Lemma (Bremner, Jorza, Shepherd 11)

Sampling **x** with multiplicative errors classically in polynomial time implies that the polynomial hierarchy collapses to the third level.

Combining above two results together, $|Z_C(e^{\pi i/4})|$ cannot be approximated efficiently unless the polynomial hierarchy collapses.

Given an **IQP** circuit *C* and an output **x**, there is a graph *G* such that the marginal probability of **x** equals to $|Z_G(e^{\pi i/4})|$ up to an easy to compute factor.

Lemma (Bremner, Jorza, Shepherd 11)

Sampling **x** with multiplicative errors classically in polynomial time implies that the polynomial hierarchy collapses to the third level.

Combining above two results together, $|Z_C(e^{\pi i/4})|$ cannot be approximated efficiently unless the polynomial hierarchy collapses.

But is the quantum machinery necessary to study $Z_G(\beta)$?

Approximate Complex Numbers

Given a complex number z, one may approximate |z| and $\arg(z)$.

Approximate Complex Numbers

Given a complex number z, one may approximate |z| and arg(z).

Definition (Ziv's measure [Ziv 82])

The distance between two complex numbers z and z' should be measured as

$$d(z, z') = \frac{|z - z'|}{\max(|z|, |z'|)},$$

where d(0, 0) = 0.

Given a complex number z, one may approximate |z| and arg(z).

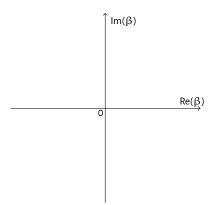
Definition (Ziv's measure [Ziv 82])

The distance between two complex numbers z and z' should be measured as

$$d(z, z') = \frac{|z - z'|}{\max(|z|, |z'|)},$$

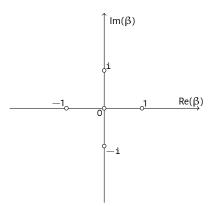
where d(0, 0) = 0.

Hardness of approximating |z| or arg(z) implies hardness under Ziv's measure.

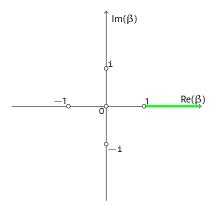


Our main result is the approximation complexity of $|Z_G(\beta)|$ for $\beta \in \mathbb{C}$.

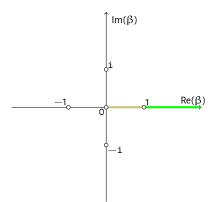
• $\beta \in \{0, \pm 1, \pm i\}$, tractable. [JVW90].



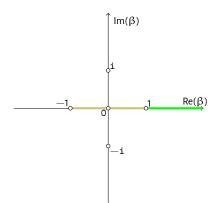
- $\beta \in \{0, \pm 1, \pm i\}$, tractable. [JVW90].
- $\beta \in (1, \infty)$, FPRAS. []S93]



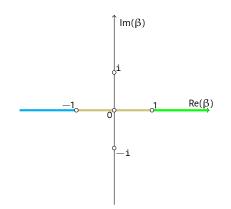
- $\beta \in \{0, \pm 1, \pm i\}$, tractable. [JVW90].
- $\beta \in (1,\infty)$, FPRAS. []S93]
- $\beta \in (0,1)$, NP-hard. []S93]



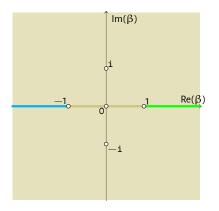
- $\beta \in \{0, \pm 1, \pm i\}$, tractable. [JVW90].
- $\beta \in (1,\infty)$, FPRAS. []S93]
- $\beta \in (0,1)$, NP-hard. []S93]
- $\beta \in (-1, 0)$, NP-hard. [G]08]



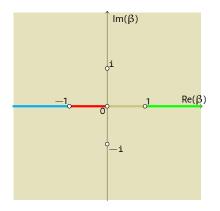
- $\beta \in \{0, \pm 1, \pm i\}$, tractable. [JVW90].
- $\beta \in (1,\infty)$, FPRAS. []S93]
- $\beta \in (0,1)$, NP-hard. []S93]
- $\beta \in (-1, 0)$, NP-hard. [G]08]
- $\beta \in (-\infty, -1), \#PM. [G]08]$



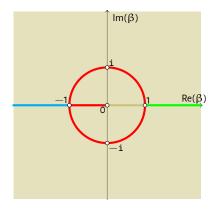
- $\beta \in \{0, \pm 1, \pm i\}$, tractable. [JVW90].
- $\beta \in (1,\infty)$, FPRAS. []S93]
- $\beta \in (0,1)$, NP-hard. []S93]
- $\beta \in (-1, 0)$, NP-hard. [G]08]
- $\beta \in (-\infty, -1)$, #PM. [G]08]
- $\beta \notin \mathbb{R} \cup \{i, -i\}, NP$ -hard. [GG14]



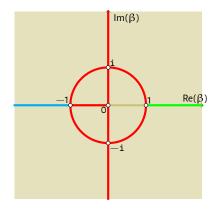
- $\beta \in \{0, \pm 1, \pm i\}$, tractable. [JVW90].
- $\beta \in (1,\infty)$, FPRAS. []S93]
- $\beta \in (0,1)$, NP-hard. []S93]
- $\beta \in (-1, 0)$, NP-hard. [G]08]
- $\beta \in (-\infty, -1), \#PM. [G]08]$
- $\beta \notin \mathbb{R} \cup \{i, -i\}, NP$ -hard. [GG14]
- $\beta \in (-1, 0)$, **#P**-hard. [GG14]



- $\beta \in \{0, \pm 1, \pm i\}$, tractable. [JVW90].
- $\beta \in (1, \infty)$, FPRAS. []S93]
- $\beta \in (0,1)$, NP-hard. []S93]
- $\beta \in (-1, 0)$, NP-hard. [G]08]
- $\beta \in (-\infty, -1), \#PM.$ [G]08]
- $\beta \notin \mathbb{R} \cup \{i, -i\}, NP$ -hard. [GG14]
- $\beta \in (-1, 0)$, **#P**-hard. [GG14]
- $|\beta| = 1, \beta \notin \{\pm 1, \pm i\},$ #P-hard. [GG14]



- $\beta \in \{0, \pm 1, \pm i\}$, tractable. [JVW90].
- $\beta \in (1,\infty)$, FPRAS. []S93]
- $\beta \in (0,1)$, NP-hard. []S93]
- $\beta \in (-1, 0)$, NP-hard. [G]08]
- $\beta \in (-\infty, -1), \#PM. [G]08]$
- $\beta \notin \mathbb{R} \cup \{i, -i\}, NP$ -hard. [GG14]
- $\beta \in (-1, 0)$, **#P**-hard. [GG14]
- $|\beta| = 1, \beta \notin \{\pm 1, \pm i\},$ #P-hard. [GG14]
- Re(β)=0, $\beta \notin \{0, \pm i\}$, **#P**-hard. [GG14]



To get **#P**-hardness of approximation is non-trivial, as any problem in **#P** can be approximated using an **NP**-oracle within polynomial time.

To get **#P**-hardness of approximation is non-trivial, as any problem in **#P** can be approximated using an **NP**-oracle within polynomial time.

If $Z_G(\beta) = 0$, even the approximation requires the exact answer. We relax our problem so that if $Z_G(\beta) = 0$, we accept any return. Our hardness results hold for these relaxed versions.

To get **#P**-hardness of approximation is non-trivial, as any problem in **#P** can be approximated using an **NP**-oracle within polynomial time.

If $Z_G(\beta) = 0$, even the approximation requires the exact answer. We relax our problem so that if $Z_G(\beta) = 0$, we accept any return. Our hardness results hold for these relaxed versions.

We reduce #MINIMUM CARDINALITY (s, t)-CUT [Provan, Ball 83] to approximating $|Z_G(\beta)|$ for any $\beta \in (-1, 0)$.

To get **#P**-hardness of approximation is non-trivial, as any problem in **#P** can be approximated using an **NP**-oracle within polynomial time.

If $Z_G(\beta) = 0$, even the approximation requires the exact answer. We relax our problem so that if $Z_G(\beta) = 0$, we accept any return. Our hardness results hold for these relaxed versions.

We reduce #MINIMUM CARDINALITY (*s*, *t*)-CUT [Provan, Ball 83] to approximating $|Z_G(\beta)|$ for any $\beta \in (-1, 0)$.

The key part of the **#P**-hardness proof is a bisection argument. This idea has been used to show hardness of determining signs of Tutte polynomials (at real points). [Goldberg, Jerrum, 12]

• Given a graph G, suppose C = #Min-(s, t)-Cut.

Given a graph G, suppose C = #Min-(s, t)-Cut.

We may assume (s, t) is not in *G*. Introduce a new edge e = (s, t).

- Given a graph G, suppose C = #Min-(s, t)-Cut.
 We may assume (s, t) is not in G. Introduce a new edge e = (s, t).
- We want to put a weight **x** on *e* and a fixed weight γ on every other edge.

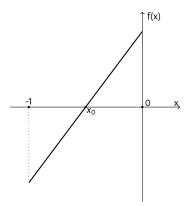
- Given a graph G, suppose C = #Min-(s, t)-Cut.
 We may assume (s, t) is not in G. Introduce a new edge e = (s, t).
- We want to put a weight **x** on *e* and a fixed weight γ on every other edge.
 - ► Using edge weight β, we build gadgets to implement γ.
 We can also approximate any x ∈ (-1,0) exponentially accurately.

- Given a graph G, suppose C = #Min-(s, t)-Cut.
 We may assume (s, t) is not in G. Introduce a new edge e = (s, t).
- We want to put a weight **x** on *e* and a fixed weight γ on every other edge.
 - ► Using edge weight β, we build gadgets to implement γ.
 We can also approximate any x ∈ (-1,0) exponentially accurately.
- Call the graph $G_{\mathbf{x}}$. Let $f(\mathbf{x}) = Z_{G_{\mathbf{x}}}(\mathbf{\gamma})$.

- Given a graph G, suppose C = #Min-(s, t)-Cut.
 We may assume (s, t) is not in G. Introduce a new edge e = (s, t).
- We want to put a weight **x** on *e* and a fixed weight γ on every other edge.
 - ► Using edge weight β, we build gadgets to implement γ.
 We can also approximate any x ∈ (-1,0) exponentially accurately.
- Call the graph G_x . Let $f(x) = Z_{G_x}(\gamma)$. Notice that f(x) is a linear function in x. Let x_0 be the root of f(x).

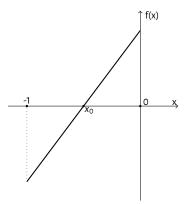
- Given a graph G, suppose C = #Min-(s, t)-Cut.
 We may assume (s, t) is not in G. Introduce a new edge e = (s, t).
- We want to put a weight **x** on *e* and a fixed weight γ on every other edge.
 - ► Using edge weight β, we build gadgets to implement γ.
 We can also approximate any x ∈ (-1,0) exponentially accurately.
- Call the graph G_x. Let f(x) = Z_{Gx}(γ).
 Notice that f(x) is a linear function in x.
 Let x₀ be the root of f(x).
- Our choice of γ guarantees that f(0) > 0, f(-1) < 0.

- Given a graph G, suppose C = #Min-(s, t)-Cut.
 We may assume (s, t) is not in G. Introduce a new edge e = (s, t).
- We want to put a weight **x** on *e* and a fixed weight γ on every other edge.
 - ► Using edge weight β, we build gadgets to implement γ.
 We can also approximate any x ∈ (-1,0) exponentially accurately.
- Call the graph G_x . Let $f(x) = Z_{G_x}(\gamma)$. Notice that f(x) is a linear function in x. Let x_0 be the root of f(x).
- Our choice of γ guarantees that f(0) > 0, f(-1) < 0.
 Moreover if we can approximate x₀ accurately enough, C can be computed exactly.

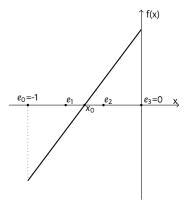


The oracle returns |f(x)| up to some constant K. Call the approximation g(x). We recursively shrink the interval containing x_0 .

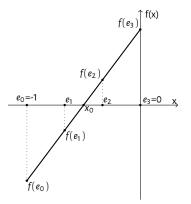
• We begin with the interval (-1,0).



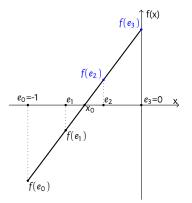
- We begin with the interval (-1,0).
- Divide the current interval into 3 subintervals equally.



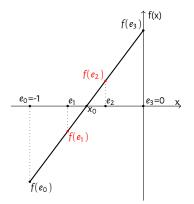
- We begin with the interval (-1,0).
- Divide the current interval into 3 subintervals equally.
- Evaluate |f(x)| approximately at the 4 endpoints.



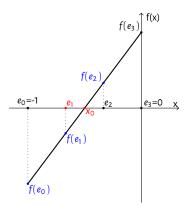
- We begin with the interval (-1,0).
- Divide the current interval into 3 subintervals equally.
- Evaluate |f(x)| approximately at the 4 endpoints.
- If two points x₁, x₂ are on the same side of x₀, then the accuracy K guarantees that the ordering of g(x₁) and g(x₂) is the same as that of |f(x₁)| and |f(x₂)|.



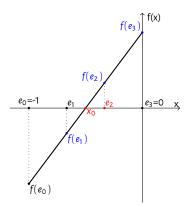
- We begin with the interval (-1,0).
- Divide the current interval into 3 subintervals equally.
- Evaluate |f(x)| approximately at the 4 endpoints.
- If two points x₁, x₂ are on the same side of x₀, then the accuracy K guarantees that the ordering of g(x₁) and g(x₂) is the same as that of |f(x₁)| and |f(x₂)|.
- Otherwise the order may be wrong, but it happens at most once.



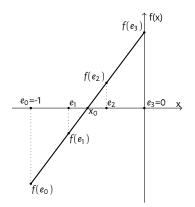
- We begin with the interval (-1,0).
- Divide the current interval into 3 subintervals equally.
- Evaluate |f(x)| approximately at the 4 endpoints.
- If two points x_1, x_2 are on the same side of x_0 , then the accuracy K guarantees that the ordering of $g(x_1)$ and $g(x_2)$ is the same as that of $|f(x_1)|$ and $|f(x_2)|$.
- Otherwise the order may be wrong, but it happens at most once.
- If $g(e_0) > g(e_1) > g(e_2)$, then $e_1 < x_0$.



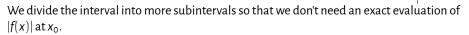
- We begin with the interval (-1,0).
- Divide the current interval into 3 subintervals equally.
- Evaluate |f(x)| approximately at the 4 endpoints.
- If two points x₁, x₂ are on the same side of x₀, then the accuracy K guarantees that the ordering of g(x₁) and g(x₂) is the same as that of |f(x₁)| and |f(x₂)|.
- Otherwise the order may be wrong, but it happens at most once.
- If $g(e_0) > g(e_1) > g(e_2)$, then $e_1 < x_0$. If $g(e_1) < g(e_2) < g(e_3)$, then $e_2 > x_0$.

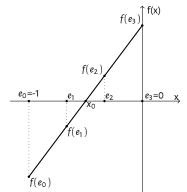


- We begin with the interval (-1,0).
- Divide the current interval into 3 subintervals equally.
- Evaluate |f(x)| approximately at the 4 endpoints.
- If two points x₁, x₂ are on the same side of x₀, then the accuracy K guarantees that the ordering of g(x₁) and g(x₂) is the same as that of |f(x₁)| and |f(x₂)|.
- Otherwise the order may be wrong, but it happens at most once.
- If $g(e_0) > g(e_1) > g(e_2)$, then $e_1 < x_0$. If $g(e_1) < g(e_2) < g(e_3)$, then $e_2 > x_0$.
- At least one of the cases is true, so we can shrink the interval by ²/₃.



- We begin with the interval (-1,0).
- Divide the current interval into 3 subintervals equally.
- Evaluate |f(x)| approximately at the 4 endpoints.
- If two points x₁, x₂ are on the same side of x₀, then the accuracy K guarantees that the ordering of g(x₁) and g(x₂) is the same as that of |f(x₁)| and |f(x₂)|.
- Otherwise the order may be wrong, but it happens at most once.
- If $g(e_0) > g(e_1) > g(e_2)$, then $e_1 < x_0$. If $g(e_1) < g(e_2) < g(e_3)$, then $e_2 > x_0$.
- At least one of the cases is true, so we can shrink the interval by $\frac{2}{3}$.





Further results

• Hardness results of approximating $\arg(Z_G(\beta))$.

Further results

- Hardness results of approximating $\arg(Z_G(\beta))$.
- Given an oracle computing the sign of Tutte polynomial at (-e^{2πi/5}, -e^{8πi/5}) over planar graphs, all problems in BQP can be solved classically in polynomial time [Bordewich, Freedman, Lovász, Welsh 05].

Further results

- Hardness results of approximating $\arg(Z_G(\beta))$.
- Given an oracle computing the sign of Tutte polynomial at (-e^{2πi/5}, -e^{8πi/5}) over planar graphs, all problems in BQP can be solved classically in polynomial time [Bordewich, Freedman, Lovász, Welsh 05].
 We showed that to determine this sign is #P-hard over general graphs.

- Hardness results of approximating $\arg(Z_G(\beta))$.
- Given an oracle computing the sign of Tutte polynomial at (-e^{2πi/5}, -e^{8πi/5}) over planar graphs, all problems in BQP can be solved classically in polynomial time [Bordewich, Freedman, Lovász, Welsh 05].
 We showed that to determine this sign is #P-hard over general graphs.
- A complete classification of approximating partition functions of Ising models with external fields, when both the edge weight and the field are roots of unity.

Complex Ising with Fields

Edge weight β , external field λ :

$$Z_G(\beta;\lambda) = \sum_{\sigma: V \to \{0,1\}} w(\sigma)$$

where $w(\sigma) = \beta^{m(\sigma)} \lambda^{c_1(\sigma)}$, $m(\sigma)$ is the number of monochromatic edges under σ , and $c_1(\sigma)$ is the number of "blue" vertices.

Complex Ising with Fields

Edge weight β , external field λ :

$$Z_{G}(\beta;\lambda) = \sum_{\sigma:V \to \{0,1\}} w(\sigma)$$

where $w(\sigma) = \beta^{m(\sigma)} \lambda^{c_1(\sigma)}$, $m(\sigma)$ is the number of monochromatic edges under σ , and $c_1(\sigma)$ is the number of "blue" vertices.

Theorem

Let β and λ be two roots of unity. Then the following holds:

- If $\beta = \pm 1$, or $\beta = \pm i$ and $\lambda \in \{1, -1, i, -i\}$, $Z_G(\beta; \lambda)$ can be computed exactly in polynomial time.
- Otherwise $|Z_G(\beta; \lambda)|$ is **#P**-hard to approximate.

• The general idea to reduce from previous cases.

- The general idea to reduce from previous cases.
- Given a graph G, we build a graph G' such that $Z_{G'}(\beta; \lambda)$ is close to $Z_G(\beta)$.

- The general idea to reduce from previous cases.
- Given a graph G, we build a graph G' such that $Z_{G'}(\beta; \lambda)$ is close to $Z_G(\beta)$.
- We can build gadgets to make |Z_G(β; λ) Z_G(β)| exponentially small, but we need to convert additive distances into multiplicative distances.

- The general idea to reduce from previous cases.
- Given a graph G, we build a graph G' such that $Z_{G'}(\beta; \lambda)$ is close to $Z_G(\beta)$.
- We can build gadgets to make |Z_G(β; λ) Z_G(β)| exponentially small, but we need to convert additive distances into multiplicative distances.
- If $|Z_G(\beta)| = 0$, then it is impossible.

The non-zero relaxation is necessary to make the reduction go through.

- The general idea to reduce from previous cases.
- Given a graph G, we build a graph G' such that $Z_{G'}(\beta; \lambda)$ is close to $Z_G(\beta)$.
- We can build gadgets to make |Z_G'(β; λ) Z_G(β)| exponentially small, but we need to convert additive distances into multiplicative distances.

• If $|Z_G(\beta)| = 0$, then it is impossible.

The non-zero relaxation is necessary to make the reduction go through.

So we can assume |Z_G(β)| ≠ 0. All we need is a lower bound of |Z_G(β)|.
 (Even an exponential one suffices.)

- The general idea to reduce from previous cases.
- Given a graph G, we build a graph G' such that $Z_{G'}(\beta; \lambda)$ is close to $Z_G(\beta)$.
- We can build gadgets to make |Z_G'(β; λ) Z_G(β)| exponentially small, but we need to convert additive distances into multiplicative distances.

• If $|Z_G(\beta)| = 0$, then it is impossible.

The non-zero relaxation is necessary to make the reduction go through.

- So we can assume |Z_G(β)| ≠ 0. All we need is a lower bound of |Z_G(β)|.
 (Even an exponential one suffices.)
- If β is rational, this is straightforward by a granularity argument.
 If β is algebraic, we need to use some basic transcendental number theory.

Thank You!

Papers and slides available on my homepage: www.cs.wisc.edu/~hguo/