
The Complexity of IsingModels with ComplexWeights

Leslie AnnGoldberg1 and HengGuo 2

1University of Oxford
2University ofWisconsin-Madison

AnnArbor,MI
Dec 6th 2014

HengGuo (CS, UW-Madison) Complex Ising Midwest Theory Day 2014 1 / 14



IsingModel

Edge interaction
[
β 1
1 β

]
1β

β1

1β

β1

1β
β1

β11β

Partition function (normalizing factor):

ZG(β) =
∑

σ:V→{0,1}

w(σ)

wherew(σ) = βm(σ),m(σ) is the number ofmonochromatic edges underσ.
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Complexity Results

Exact evaluation of ZG(β):
#P-hard unlessβ = 0,±1,±i. [ Jaeger, Vertigan,Welsh 90 ]

Approximation:
FPRAS ifβ > 1 andNP-hard if 0 < β < 1. [ Jerrum, Sinclair 93 ]
For bounded degree graphs and 0 < β < 1,

▶ FPTAS below the uniqueness threshold.
[ Sinclair, Srivastava, Thurley 12 ] and [ Li,Lu,Yin 12,13 ]

▶ NP-hard beyond it. [ Sly, Sun 12 ]

Note that we can amplify any constant approximation into an FPRAS.

In this talk wewill focus on approximating ZG(β) forβ ∈ C.
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QuantumConnection

IQP (Instantaneous QuantumPolynomial-time) [ Shepherd, Bremner 09 ] is a
subclass ofBQP.

An IQP circuit satisfies:
each qubit line starts and endswith anH gate;
all other gates are diagonal.

Lemma ( Fuiji, Morimae, 13 )
Given an IQP circuit C and an output x, there is a graphG such that themarginal
probability of x equals to |ZG(eπi/4)| up to an easy to compute factor.

HengGuo (CS, UW-Madison) Complex Ising Midwest Theory Day 2014 4 / 14



QuantumConnection

IQP (Instantaneous QuantumPolynomial-time) [ Shepherd, Bremner 09 ] is a
subclass ofBQP.

An IQP circuit satisfies:
each qubit line starts and endswith anH gate;
all other gates are diagonal.

Lemma ( Fuiji, Morimae, 13 )
Given an IQP circuit C and an output x, there is a graphG such that themarginal
probability of x equals to |ZG(eπi/4)| up to an easy to compute factor.

HengGuo (CS, UW-Madison) Complex Ising Midwest Theory Day 2014 4 / 14



QuantumConnection

IQP (Instantaneous QuantumPolynomial-time) [ Shepherd, Bremner 09 ] is a
subclass ofBQP.

An IQP circuit satisfies:
each qubit line starts and endswith anH gate;
all other gates are diagonal.

Lemma ( Fuiji, Morimae, 13 )
Given an IQP circuit C and an output x, there is a graphG such that themarginal
probability of x equals to |ZG(eπi/4)| up to an easy to compute factor.

HengGuo (CS, UW-Madison) Complex Ising Midwest Theory Day 2014 4 / 14



Implication on Complex Ising

Lemma ( Fuiji, Morimae, 13 )
Given an IQP circuit C and an output x, there is a graphG such that themarginal
probability of x equals to |ZG(eπi/4)| up to an easy to compute factor.

Lemma ( Bremner, Jorza, Shepherd 11 )
Sampling xwithmultiplicative errors classically in polynomial time implies that
the polynomial hierarchy collapses to the third level.

Combining above two results together, |ZG(eπi/4)| cannot be approximated
efficiently unless the polynomial hierarchy collapses.

But is the quantummachinery necessary to study ZG(β)?
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Approximate ComplexNumbers

Given a complex number z, onemay approximate |z| and arg(z).

Definition (Ziv'smeasure [ Ziv 82 ])
The distance between two complex numbers z and z ′ should bemeasured as

d(z, z ′) =
|z− z ′|

max(|z|, |z ′|)
,

where d(0, 0) = 0.

Hardness of approximating |z| or arg(z) implies hardness under Ziv'smeasure.
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Complex Ising

Ourmain result is the approximation complexity of |ZG(β)| forβ ∈ C.

β ∈ {0,±1,±i}, tractable. [JVW90].

β ∈ (1,∞), FPRAS. [JS93]

β ∈ (0, 1),NP-hard. [JS93]

β ∈ (−1, 0),NP-hard. [GJ08]

β ∈ (−∞,−1), #PM. [GJ08]

β ̸∈ R∪ {i,−i},NP-hard. [GG14]

β ∈ (−1, 0), #P-hard. [GG14]

|β| = 1,β ̸∈ {±1,±i}, #P-hard. [GG14]

Re(β)=0,β ̸∈ {0,±i}, #P-hard. [GG14]

Re(β)

Im(β)

i

−i

1−1
0
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#P-hardness

To get #P-hardness of approximation is non-trivial, as any problem in #P can be
approximated using anNP-oracle within polynomial time.

If ZG(β) = 0, even the approximation requires the exact answer.
We relax our problem so that if ZG(β) = 0, we accept any return.
Our hardness results hold for these relaxed versions.

We reduce #MinimumCardinality (s, t)-Cut [ Provan, Ball 83 ] to approximating
|ZG(β)| for anyβ ∈ (−1, 0).

The key part of the #P-hardness proof is a bisection argument.
This idea has been used to showhardness of determining signs of Tutte
polynomials (at real points). [ Goldberg, Jerrum, 12 ]
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The Reduction

Given a graphG, suppose C = #Min-(s, t)-Cut.

Wemay assume (s, t) is not inG. Introduce a new edge e = (s, t).

Wewant to put aweight x on e and a fixedweight γ on every other edge.

▶ Using edgeweightβ, we build gadgets to implementγ.
We can also approximate any x ∈ (-1,0) exponentially accurately.

Call the graphGx. Let f(x) = ZGx(γ).
Notice that f(x) is a linear function in x.
Let x0 be the root of f(x).

Our choice ofγ guarantees that f(0) > 0, f(-1) < 0.
Moreover if we can approximate x0 accurately enough, C can be computed
exactly.
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Bisectionwith anOracle of ApproximatingNorms

The oracle returns |f(x)| up to some constant K. Call the approximation g(x).
We recursively shrink the interval containing x0.

Webeginwith the interval (-1,0).
Divide the current interval into 3 subintervals equally.
Evaluate |f(x)| approximately at the 4 endpoints.
If two points x1, x2 are on the same side of x0, then the
accuracy K guarantees that the ordering of g(x1) and
g(x2) is the same as that of |f(x1)| and |f(x2)|.
Otherwise the ordermay bewrong, but it happens at
most once.

If g(e0)>g(e1)>g(e2), then e1<x0.
If g(e1)<g(e2)<g(e3), then e2>x0.

At least one of the cases is true, so we can shrink the
interval by 2

3 .

0-1 x

f(x)

e2e1

f(e2)

f(e1)

f(e0)

f(e3)

x0

Wedivide the interval intomore subintervals so that we don't need an exact evaluation of
|f(x)| at x0.
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Further results

Hardness results of approximating arg(ZG(β)).

Given an oracle computing the sign of Tutte polynomial at (-e2πi/5,-e8πi/5)

over planar graphs, all problems inBQP can be solved classically in

polynomial time [ Bordewich, Freedman, Lovász,Welsh 05 ].

We showed that to determine this sign is #P-hard over general graphs.

A complete classification of approximating partition functions of Ising

models with external fields, when both the edgeweight and the field are

roots of unity.
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Complex Isingwith Fields

Edgeweightβ, external field λ:

ZG(β; λ) =
∑

σ:V→{0,1}

w(σ)

wherew(σ) = βm(σ)λc1(σ),m(σ) is the number ofmonochromatic edges under
σ, and c1(σ) is the number of “blue” vertices.

Theorem
Letβ and λ be two roots of unity. Then the following holds:

Ifβ = ±1, orβ = ±i and λ ∈ {1,−1, i,−i}, ZG(β; λ) can be computed
exactly in polynomial time.
Otherwise |ZG(β; λ)| is #P-hard to approximate.
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Proof Ideas

The general idea to reduce fromprevious cases.

Given a graphG, we build a graphG ′ such that ZG ′(β; λ) is close to ZG(β).

We can build gadgets tomake |ZG ′(β; λ) − ZG(β)| exponentially small,
but we need to convert additive distances intomultiplicative distances.

If |ZG(β)| = 0, then it is impossible.
The non-zero relaxation is necessary tomake the reduction go through.

Sowe can assume |ZG(β)| ̸= 0. All we need is a lower bound of |ZG(β)|.
(Even an exponential one suffices.)

Ifβ is rational, this is straightforward by a granularity argument.
Ifβ is algebraic, we need to use some basic transcendental number theory.
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Thank You!

Papers and slides available onmy homepage:
www.cs.wisc.edu/~hguo/
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