Holographic Algorithms Beyond Matchgates

Heng Guo

(joint work with Jin-Yi Cai and Tyson Williams)

University of Wisconsin-Madison

København

July 11th 2014

Counting Perfect Matchings

Counting Perfect Matchings

Counting Perfect Matchings

• Counting Perfect Matchings is **#P**-hard [Valiant 79] in general graphs.

- Counting Perfect Matchings is **#P**-hard [Valiant 79] in general graphs.
- However, for planar graphs, there is a polynomial time algorithm [Kastelyn 61 & 67, Temperley and Fisher 61].

- Counting Perfect Matchings is **#P**-hard [Valiant 79] in general graphs.
- However, for planar graphs, there is a polynomial time algorithm [Kastelyn 61 & 67, Temperley and Fisher 61].
- The FKT algorithm is based on Pfaffian orientations of planar graphs.

A systematic way to view #PM.

A systematic way to view #PM.

• Put functions EXACT-ONE (EO) on nodes and make edges variables.

Heng Guo (CS, UW-Madison)

A systematic way to view #PM.

• Put functions EXACT-ONE (EO) on nodes and make edges variables.

Heng Guo (CS, UW-Madison)

A systematic way to view #PM.

- Put functions EXACT-ONE (EO) on nodes and make edges variables.
- #PM is just the partition function:

Heng Guo (CS, UW-Madison)

$$\mathsf{Holant}_{\Omega} = \sum_{\sigma: E \mapsto \{0,1\}} \prod_{\nu \in V} f_{\nu}(\sigma \mid_{E(\nu)}),$$

a sum over all edge assignments $\sigma: E \to \{0,1\}.$

$$\mathsf{Holant}_{\Omega} = \sum_{\sigma: E \mapsto \{0,1\}} \prod_{\nu \in V} f_{\nu}(\sigma \mid_{E(\nu)}),$$

a sum over all edge assignments $\sigma: E \to \{0,1\}.$

It is parameterized by a function set \mathcal{F} with $f_{\nu} \in \mathcal{F}$.

$$\mathsf{Holant}_{\Omega} = \sum_{\sigma: E \mapsto \{0,1\}} \prod_{\nu \in V} f_{\nu}(\sigma \mid_{E(\nu)}),$$

a sum over all edge assignments $\sigma: E \to \{0,1\}.$

It is parameterized by a function set \mathcal{F} with $f_{\nu} \in \mathcal{F}$.

• Also known as:

Read-Twice #CSP,

$$\mathsf{Holant}_{\Omega} = \sum_{\sigma: E \mapsto \{0,1\}} \prod_{\nu \in V} f_{\nu}(\sigma \mid_{E(\nu)}),$$

a sum over all edge assignments $\sigma: E \to \{0,1\}.$

It is parameterized by a function set \mathcal{F} with $f_{\nu} \in \mathcal{F}$.

• Also known as:

Read-Twice #CSP, Tensor Networks,

$$\mathsf{Holant}_{\Omega} = \sum_{\sigma: E \mapsto \{0,1\}} \prod_{\nu \in V} f_{\nu}(\sigma \mid_{E(\nu)}),$$

a sum over all edge assignments $\sigma: E \to \{0,1\}.$

It is parameterized by a function set \mathcal{F} with $f_{\nu} \in \mathcal{F}$.

• Also known as:

Read-Twice #CSP, Tensor Networks, Graphical Models...

- View some functions together as a new one.
- The function *f* on the right is (2,0,0,1).

- View some functions together as a new one.
- The function *f* on the right is (2,0,0,1).

- View some functions together as a new one.
- The function *f* on the right is (2,0,0,1).

- View some functions together as a new one.
- The function f on the right is (2,0,0,1).

- View some functions together as a new one.
- The function *f* on the right is (2,0,0,1).

- View some functions together as a new one.
- The function *f* on the right is (2,0,0,1).
- This is also called tensor contraction.

- The function *f* on the right is (2,0,0,1).
- This is also called tensor contraction.
- Given functions f_1 , f_2 , and a partition x_1 and x_2 of variables x, the contraction g is:

$$g(\mathbf{x}) = \sum_{\mathbf{y}} f_1(\mathbf{x}_1, \mathbf{y}) f_2(\mathbf{x}_2, \mathbf{y}).$$

• View some functions together as a new one.

- The function *f* on the right is (2,0,0,1).
- This is also called tensor contraction.
- Given functions f_1 , f_2 , and a partition x_1 and x_2 of variables x, the contraction g is:

$$g(\mathbf{x}) = \sum_{\mathbf{y}} f_1(\mathbf{x_1}, \mathbf{y}) f_2(\mathbf{x_2}, \mathbf{y}).$$

• If a set of functions \mathscr{F} is tractable, then any function expressible by \mathscr{F} is also tractable.

Holographic Transformations

 Let Holant(f | g) be the problem when input graphs are bipartite and f and g are assigned on the two sides.

Holographic Transformations

- Let Holant(f | g) be the problem when input graphs are bipartite and f and g are assigned on the two sides.
- For a 2-by-2 nonsingular matrix *T*, two functions *f* and *g* of arities *m* and *n* respectively, Valiant's Holant theorem [Valiant 04] states

$$Holant(f | g) \equiv Holant(fT^{\otimes m} | (T^{-1})^{\otimes n}g).$$

Holographic Transformations

- Let Holant(f | g) be the problem when input graphs are bipartite and f and g are assigned on the two sides.
- For a 2-by-2 nonsingular matrix *T*, two functions *f* and *g* of arities *m* and *n* respectively, Valiant's Holant theorem [Valiant 04] states

$$Holant(f | g) \equiv Holant(fT^{\otimes m} | (T^{-1})^{\otimes n}g).$$

• Note that $Holant(f) \equiv Holant(f|=_2)$.

Holographic Algorithms Based on Matchgates

Holographic algorithm based on matchgates [Valiant 04] :

Holographic Algorithms Based on Matchgates

Holographic algorithm based on matchgates [Valiant 04] :

• Matchgates: functions expressible by perfect matchings.

Holographic Algorithms Based on Matchgates

Holographic algorithm based on matchgates [Valiant 04] :

- Matchgates: functions expressible by perfect matchings.
- Holographic Transformation: Holant $(f | g) \Rightarrow$ Holant $(fT^{\otimes m} | (T^{-1})^{\otimes n}g)$.

Holographic algorithm based on matchgates [Valiant 04] :

- Matchgates: functions expressible by perfect matchings.
- Holographic Transformation: Holant $(f | g) \Rightarrow$ Holant $(fT^{\otimes m} | (T^{-1})^{\otimes n}g)$.

A series of work (see e.g. [Cai and Lu 07]) characterizes what problems can be solved by holographic algorithms based on matchgates.

Holographic algorithm based on matchgates [Valiant 04] :

- Matchgates: functions expressible by perfect matchings.
- Holographic Transformation: Holant $(f | g) \Rightarrow$ Holant $(fT^{\otimes m} | (T^{-1})^{\otimes n}g)$.

A series of work (see e.g. [Cai and Lu 07]) characterizes what problems can be solved by holographic algorithms based on matchgates.

Question : how about replacing matchgates by other tractable functions?

Holographic algorithm based on matchgates [Valiant 04] :

- Matchgates: functions expressible by perfect matchings.
- Holographic Transformation: Holant $(f | g) \Rightarrow$ Holant $(fT^{\otimes m} | (T^{-1})^{\otimes n}g)$.

A series of work (see e.g. [Cai and Lu 07]) characterizes what problems can be solved by holographic algorithms based on matchgates.

Question : how about replacing matchgates by other tractable functions?

This work provides some answer to the question.
$$\mathsf{Holant}_{\Omega} = \sum_{\sigma} \prod_{\nu \in V} f_{\nu}(\sigma \mid_{E(\nu)}),$$

When the function is **EXACT-ONE**, the Holant counts perfect matchings.

$$\mathsf{Holant}_{\Omega} = \sum_{\sigma} \prod_{\nu \in V} f_{\nu}(\sigma \mid_{E(\nu)}),$$

When the function is EXACT-ONE, the Holant counts perfect matchings.

• Such a function is symmetric. The output only depends on the Hamming weight of the input.

$$\mathsf{Holant}_{\Omega} = \sum_{\sigma} \prod_{\nu \in V} f_{\nu}(\sigma \mid_{E(\nu)}),$$

When the function is EXACT-ONE, the Holant counts perfect matchings.

- Such a function is symmetric. The output only depends on the Hamming weight of the input.
- List *f* by Hamming weights of its inputs: [*f*₀, *f*₁, ..., *f_n*].
 E.g. EXACT-ONE is [0, 1, 0, ..., 0].

$$\mathsf{Holant}_{\Omega} = \sum_{\sigma} \prod_{\nu \in V} f_{\nu}(\sigma \mid_{E(\nu)}),$$

When the function is EXACT-ONE, the Holant counts perfect matchings.

- Such a function is symmetric. The output only depends on the Hamming weight of the input.
- List *f* by Hamming weights of its inputs: [*f*₀, *f*₁, ..., *f_n*].
 E.g. EXACT-ONE is [0, 1, 0, ..., 0].
- This is called the succinct expression.

$$\mathsf{Holant}_{\Omega} = \sum_{\sigma} \prod_{\nu \in V} f_{\nu}(\sigma \mid_{E(\nu)}),$$

When the function is $\underline{Exact-One}$, the Holant counts perfect matchings.

- Such a function is symmetric. The output only depends on the Hamming weight of the input.
- List *f* by Hamming weights of its inputs: [*f*₀, *f*₁, ..., *f_n*].
 E.g. EXACT-ONE is [0, 1, 0, ..., 0].
- This is called the succinct expression.
- Functions expressible by symmetric functions are not necessarily symmetric.

• Consider the problem Holant([3, 0, 1, 0, 3]).

- Consider the problem Holant([3, 0, 1, 0, 3]).
- Under the transformation $\begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$,

 $Holant([3, 0, 1, 0, 3] \mid =_{2}) \equiv Holant([0, 0, 1, 0, 0] \mid \neq_{2}).$

- Consider the problem Holant([3, 0, 1, 0, 3]).
- Under the transformation $\begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$,

 $Holant([3, 0, 1, 0, 3] \mid =_{2}) \equiv Holant([0, 0, 1, 0, 0] \mid \neq_{2}).$

• \neq_2 imposes an orientation and [0, 0, 1, 0, 0] requires it to be Eulerian.

- Consider the problem Holant([3, 0, 1, 0, 3]).
- Under the transformation $\begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}$,

Holant($[3, 0, 1, 0, 3] | =_2$) \equiv Holant($[0, 0, 1, 0, 0] | \neq_2$).

- \neq_2 imposes an orientation and [0, 0, 1, 0, 0] requires it to be Eulerian.
- Holant([3, 0, 1, 0, 3]) in fact counts the number of Eulerian orientations on
 4-regular graphs (up to an easy to compute factor).

General Tractable Functions

- Product type, denoted \mathscr{P} : functions that are products of binary equalities, binary dis-equalities, and unary functions.
 - The algorithm is a simple propagation.

- Product type, denoted \mathscr{P} : functions that are products of binary equalities, binary dis-equalities, and unary functions.
 - The algorithm is a simple propagation.
- Affine type, denoted \mathscr{A} .

- Product type, denoted \mathscr{P} : functions that are products of binary equalities, binary dis-equalities, and unary functions.
 - The algorithm is a simple propagation.
- Affine type, denoted .
 - ► Parity functions define an affine system and the number of solutions is easy to compute via computing the rank. The family *A* generalizes such functions.

Let $f \in \mathscr{A}$. Then f is of the form:

$$\chi_{\mathbf{x}A=0} \cdot \sqrt{-1}^{\mathbf{x}B\mathbf{x}^{\mathrm{T}}},$$

Let $f \in \mathscr{A}$. Then f is of the form:

$$\chi_{\mathbf{x}A=\mathbf{0}} \cdot \sqrt{-1}^{\mathbf{x}B\mathbf{x}^{\mathrm{T}}},$$

where $\mathbf{x} = (x_1, x_2, \dots, x_k, 1)$, A is a matrix over \mathbb{F}_2 ,

 χ is a 0-1 indicator function such that $\chi_{Ax=0}$ is 1 iff Ax = 0,

Let $f \in \mathscr{A}$. Then f is of the form:

$$\chi_{\mathbf{x}A=0} \cdot \sqrt{-1}^{\mathbf{x}B\mathbf{x}^{\mathrm{T}}},$$

where $\mathbf{x} = (x_1, x_2, \dots, x_k, 1)$, A is a matrix over \mathbb{F}_2 ,

 χ is a 0-1 indicator function such that $\chi_{Ax=0}$ is 1 iff Ax = 0,

and **B** is a symmetric integer matrix.

Let $f \in \mathscr{A}$. Then f is of the form:

$$\chi_{\mathbf{x}A=\mathbf{0}} \cdot \sqrt{-1}^{\mathbf{x}B\mathbf{x}^{\mathrm{T}}},$$

where $\mathbf{x} = (x_1, x_2, \dots, x_k, 1)$, A is a matrix over \mathbb{F}_2 ,

 χ is a 0-1 indicator function such that $\chi_{Ax=0}$ is 1 iff Ax = 0,

and **B** is a symmetric integer matrix.

• The contraction of any two functions in \mathscr{A} is still in \mathscr{A} and easy to compute [Cai, Lu, Xia 09].

Let $f \in \mathscr{A}$. Then f is of the form:

$$\chi_{\textbf{x}A=0}\cdot\sqrt{-1}^{\textbf{x}B\textbf{x}^{T}},$$

where $\mathbf{x} = (x_1, x_2, \dots, x_k, 1)$, A is a matrix over \mathbb{F}_2 ,

 χ is a 0-1 indicator function such that $\chi_{Ax=0}$ is 1 iff Ax = 0,

and *B* is a symmetric integer matrix.

- The contraction of any two functions in \mathscr{A} is still in \mathscr{A} and easy to compute [Cai, Lu, Xia 09].
- In particular, this family contains Clifford gates in quantum computation as a special case.

• Holant(f) \equiv Holant($f \mid =_2$) \equiv Holant($fT^{\otimes n} \mid (T^{-1})^{\otimes 2} =_2$)

- Holant $(f) \equiv \text{Holant}(f|=_2) \equiv \text{Holant}(fT^{\otimes n} | (T^{-1})^{\otimes 2} =_2)$
- Say f is \mathcal{F} -transformable if there exists T such that $\{fT^{\otimes n}, (T^{-1})^{\otimes 2} =_2\} \subset \mathcal{F}$.

- Holant $(f) \equiv \text{Holant}(f|=_2) \equiv \text{Holant}(fT^{\otimes n} | (T^{-1})^{\otimes 2} =_2)$
- Say f is \mathcal{F} -transformable if there exists T such that $\{fT^{\otimes n}, (T^{-1})^{\otimes 2} =_2\} \subset \mathcal{F}$.
- If \mathcal{F} defines a tractable Holant problem, then any \mathcal{F} -transformable is also tractable.

- Holant $(f) \equiv \text{Holant}(f|=_2) \equiv \text{Holant}(fT^{\otimes n} | (T^{-1})^{\otimes 2} =_2)$
- Say f is \mathcal{F} -transformable if there exists T such that $\{fT^{\otimes n}, (T^{-1})^{\otimes 2} =_2\} \subset \mathcal{F}$.
- If \mathcal{F} defines a tractable Holant problem, then any \mathcal{F} -transformable is also tractable.
- Both \mathscr{A} and \mathscr{P} -transformable functions are tractable.

- Holant $(f) \equiv \text{Holant}(f|=_2) \equiv \text{Holant}(fT^{\otimes n} | (T^{-1})^{\otimes 2} =_2)$
- Say f is \mathcal{F} -transformable if there exists T such that $\{fT^{\otimes n}, (T^{-1})^{\otimes 2} =_2\} \subset \mathcal{F}$.
- If \mathcal{F} defines a tractable Holant problem, then any \mathcal{F} -transformable is also tractable.
- Both \mathscr{A} and \mathscr{P} -transformable functions are tractable.
- \mathscr{A} (or \mathscr{P})-transformable is a proper super set of \mathscr{A} (or \mathscr{P}).

- Holant(f) \equiv Holant($f|=_2$) \equiv Holant($fT^{\otimes n} | (T^{-1})^{\otimes 2} =_2$)
- Say f is \mathcal{F} -transformable if there exists T such that $\{fT^{\otimes n}, (T^{-1})^{\otimes 2} =_2\} \subset \mathcal{F}$.
- If \mathcal{F} defines a tractable Holant problem, then any \mathcal{F} -transformable is also tractable.
- Both \mathscr{A} and \mathscr{P} -transformable functions are tractable.
- \mathscr{A} (or \mathscr{P})-transformable is a proper super set of \mathscr{A} (or \mathscr{P}).
- Fibonnaci gates [Cai, Lu, Xia 08] are in fact *P*-transformable.

Holant Dichotomy for General Graphs

Theorem (Cai, G., Williams 13)

Let f be a symmetric function. Holant(f) is #P-hard unless f is

- degenerate or binary,
- vanishing,
- Interpretended and American Americ American A
- ④ P-transformable.

which are computable in polynomial time.

This dichotomy also generalizes to a set of functions.

Holant Dichotomy for General Graphs

Theorem (Cai, G., Williams 13)

Let f be a symmetric function. Holant(f) is #P-hard unless f is

- degenerate or binary,
- vanishing,
- Interpretended and American Americ American A
- ④ P-transformable.

which are computable in polynomial time.

This dichotomy also generalizes to a set of functions.

Holant Dichotomy for General Graphs

Theorem (Cai, G., Williams 13)

Let f be a symmetric function. Holant(f) is #P-hard unless f is

- degenerate or binary,
- vanishing,
- Interpretended and Interprete
- ④ *P*-transformable.

which are computable in polynomial time.

This dichotomy also generalizes to a set of functions.

Main Results

Theorem

There is a polynomial time algorithm to decide whether a finite set of functions \mathfrak{F} is \mathscr{A} - or

 $\mathscr{P} extrm{-transformable}.$

Main Results

Theorem

There is a polynomial time algorithm to decide whether a finite set of functions \mathfrak{F} is \mathscr{A} - or

 $\mathscr{P} extrm{-transformable}.$

Theorem

There is a polynomial time algorithm to decide whether a finite set of symmetric functions ${\mathfrak F}$ given

in succinct expressions is \mathscr{A} - or \mathscr{P} -transformable.

Main Results

Theorem

There is a polynomial time algorithm to decide whether a finite set of functions \mathfrak{F} is \mathscr{A} - or

 $\mathscr{P} extrm{-transformable}.$

Theorem

There is a polynomial time algorithm to decide whether a finite set of symmetric functions ${\mathcal F}$ given

in succinct expressions is \mathscr{A} - or \mathscr{P} -transformable.

Corollary

The dichotomy theorem for symmetric Holant problems is decidable in polynomial time.

Deciding General & Functions

• Recall that for $f \in \mathscr{A}$,

$$f(\mathbf{x}) = \chi_{\mathbf{x}\mathbf{A}=0} \cdot \sqrt{-1}^{\mathbf{x}\mathbf{B}\mathbf{x}^{\mathrm{T}}}.$$

For a fixed arity *n*, there are $2^{O(n^2)}$ distinct functions in \mathscr{A} .

Deciding General & Functions

• Recall that for $f \in \mathscr{A}$,

$$f(\mathbf{x}) = \chi_{\mathbf{x}\mathbf{A}=0} \cdot \sqrt{-1}^{\mathbf{x}\mathbf{B}\mathbf{x}^{\mathrm{T}}}$$

For a fixed arity *n*, there are $2^{O(n^2)}$ distinct functions in \mathscr{A} .

• First check whether the support **S** of *f* is an affine subspace: Build a basis inductively.
Deciding General & Functions

• Recall that for $f \in \mathscr{A}$,

$$f(\mathbf{x}) = \chi_{\mathbf{x}\mathbf{A}=\mathbf{0}} \cdot \sqrt{-1}^{\mathbf{x}\mathbf{B}\mathbf{x}^{\mathrm{T}}}.$$

For a fixed arity *n*, there are $2^{O(n^2)}$ distinct functions in \mathscr{A} .

- First check whether the support **S** of *f* is an affine subspace: Build a basis inductively.
- If so, decide *B* by solving entries one at a time. Then check if it is consistent with *f*.

Deciding General *A*-transformable

• We want to decide whether there exists $T \in \mathbf{GL}_2(\mathbb{C})$ such that $fT^{\otimes n} \in \mathscr{A}$ (or \mathscr{P}), with the additional restriction $((T^{-1})^{\otimes 2} =_2) \in \mathscr{A}$ (or \mathscr{P}).

Deciding General *A*-transformable

- We want to decide whether there exists $T \in \mathbf{GL}_2(\mathbb{C})$ such that $fT^{\otimes n} \in \mathscr{A}$ (or \mathscr{P}), with the additional restriction $((T^{-1})^{\otimes 2} =_2) \in \mathscr{A}$ (or \mathscr{P}).
- Consider the stabilizer group of \mathscr{A} :

$$\mathsf{Stab}(\mathscr{A}) := \{ T \in \mathsf{GL}_2(\mathbb{C}) | T \mathscr{A} \subseteq \mathscr{A} \}.$$

In fact, Stab(\mathscr{A}) is generated by matrices $\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ up to a constant.

Deciding General *A*-transformable

- We want to decide whether there exists *T* ∈ GL₂(ℂ) such that *fT^{⊗n}* ∈ 𝒜 (or 𝒫), with the additional restriction ((*T⁻¹*)^{⊗2} =₂) ∈ 𝒜 (or 𝒫).
- Consider the stabilizer group of \mathscr{A} :

$$\operatorname{Stab}(\mathscr{A}) := \{ T \in \operatorname{GL}_2(\mathbb{C}) | T \mathscr{A} \subseteq \mathscr{A} \}.$$

In fact, Stab(\mathscr{A}) is generated by matrices $\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$ up to a constant.

• Normalize a valid transformation T using matrices in $\operatorname{Stab}(\mathscr{A})$ such that either $T \in \operatorname{SO}_2(\mathbb{C})$ or $\begin{bmatrix} 1 & 0\\ 0 & e^{\frac{\pi i}{4}} \end{bmatrix} T \in \operatorname{SO}_2(\mathbb{C})$.

•
$$T \in \mathbf{SO}_2(\mathbb{C}) \Leftrightarrow T = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
 where $a^2 + b^2 = 1$.

•
$$T \in \mathbf{SO}_2(\mathbb{C}) \Leftrightarrow T = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
 where $a^2 + b^2 = 1$.

• Key observation:

$$\begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix} \begin{bmatrix} a & b \\ -b & a \end{bmatrix} = \begin{bmatrix} a-bi & 0 \\ 0 & a+bi \end{bmatrix} \begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}.$$

$$\begin{bmatrix}1 & i\\ 1 & -i\end{bmatrix}^{\otimes n}g = \begin{bmatrix}1 & i\\ 1 & -i\end{bmatrix}^{\otimes n}\begin{bmatrix}a & b\\ -b & a\end{bmatrix}^{\otimes n}f.$$

•
$$T \in \mathbf{SO}_2(\mathbb{C}) \Leftrightarrow T = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
 where $a^2 + b^2 = 1$.

• Key observation:

$$\begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix} \begin{bmatrix} a & b \\ -b & a \end{bmatrix} = \begin{bmatrix} a-bi & 0 \\ 0 & a+bi \end{bmatrix} \begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}.$$

$$\begin{bmatrix}1 & i\\ 1 & -i\end{bmatrix}^{\otimes n}g = \left(\begin{bmatrix}1 & i\\ 1 & -i\end{bmatrix}\begin{bmatrix}a & b\\ -b & a\end{bmatrix}\right)^{\otimes n}f.$$

•
$$T \in \mathbf{SO}_2(\mathbb{C}) \Leftrightarrow T = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
 where $a^2 + b^2 = 1$.

• Key observation:

$$\begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix} \begin{bmatrix} a & b \\ -b & a \end{bmatrix} = \begin{bmatrix} a-bi & 0 \\ 0 & a+bi \end{bmatrix} \begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}.$$

$$\begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}^{\otimes n} g = \left(\begin{bmatrix} a-bi & 0 \\ 0 & a+bi \end{bmatrix} \begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix} \right)^{\otimes n} f.$$

•
$$T \in \mathbf{SO}_2(\mathbb{C}) \Leftrightarrow T = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
 where $a^2 + b^2 = 1$.

• Key observation:

$$\begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix} \begin{bmatrix} a & b \\ -b & a \end{bmatrix} = \begin{bmatrix} a-bi & 0 \\ 0 & a+bi \end{bmatrix} \begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}.$$

$$\begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}^{\otimes n} g = \begin{bmatrix} a-bi & 0 \\ 0 & a+bi \end{bmatrix}^{\otimes n} \left(\begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}^{\otimes n} f \right).$$

•
$$T \in \mathbf{SO}_2(\mathbb{C}) \Leftrightarrow T = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
 where $a^2 + b^2 = 1$.

• Key observation:

$$\begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix} \begin{bmatrix} a & b \\ -b & a \end{bmatrix} = \begin{bmatrix} a-bi & 0 \\ 0 & a+bi \end{bmatrix} \begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}.$$

$$\begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}^{\otimes n} g = \begin{bmatrix} a-bi & 0 \\ 0 & a+bi \end{bmatrix}^{\otimes n} \left(\begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}^{\otimes n} f \right).$$

•
$$T \in \mathbf{SO}_2(\mathbb{C}) \Leftrightarrow T = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
 where $a^2 + b^2 = 1$.

• Key observation:

$$\begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix} \begin{bmatrix} a & b \\ -b & a \end{bmatrix} = \begin{bmatrix} a-bi & 0 \\ 0 & a+bi \end{bmatrix} \begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}.$$

Then $g = T^{\otimes n} f$ iff

$$\begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}^{\otimes n} g = \begin{bmatrix} a-bi & 0 \\ 0 & a+bi \end{bmatrix}^{\otimes n} \left(\begin{bmatrix} 1 & i \\ 1 & -i \end{bmatrix}^{\otimes n} f \right).$$

• Diagonal transformations are easy to check.

Deciding Symmetric A-transformable

• Challenge: exponentially succinct.

Deciding Symmetric A-transformable

- Challenge: exponentially succinct.
- Any A-transformable function has to be in the form of (ν₀^{⊗n} + ν₁^{⊗n}). The (symmetric) tensor rank is 2 and preserved by any holographic transformation.

Deciding Symmetric A -transformable

- Challenge: exponentially succinct.
- Any A -transformable function has to be in the form of (v₀^{⊗n} + v₁^{⊗n}). The (symmetric) tensor rank is 2 and preserved by any holographic transformation.

• Let
$$v_0 = \begin{bmatrix} a_0 \\ b_0 \end{bmatrix}$$
 and $v_1 = \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$. Define

$$\theta(\nu_0, \nu_1) := \left(\frac{a_0a_1 + b_0b_1}{a_1b_0 - a_0b_1}\right)^2.$$

Then $\theta(v_0, v_1)$ is invariant under orthogonal transformations.

Deciding Symmetric A -transformable

- Challenge: exponentially succinct.
- Any A -transformable function has to be in the form of (v₀^{⊗n} + v₁^{⊗n}). The (symmetric) tensor rank is 2 and preserved by any holographic transformation.

• Let
$$v_0 = \begin{bmatrix} a_0 \\ b_0 \end{bmatrix}$$
 and $v_1 = \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$. Define

$$\theta(\nu_0, \nu_1) := \left(\frac{a_0a_1 + b_0b_1}{a_1b_0 - a_0b_1}\right)^2.$$

Then $\theta(v_0, v_1)$ is invariant under orthogonal transformations.

• \mathscr{A} -transformable $\Rightarrow \theta(v_0, v_1) = 0, -1 \text{ or } -\frac{1}{2}.$

Deciding Symmetric A-transformable

- Challenge: exponentially succinct.
- Any A -transformable function has to be in the form of (v₀^{⊗n} + v₁^{⊗n}). The (symmetric) tensor rank is 2 and preserved by any holographic transformation.

• Let
$$v_0 = \begin{bmatrix} a_0 \\ b_0 \end{bmatrix}$$
 and $v_1 = \begin{bmatrix} a_1 \\ b_1 \end{bmatrix}$. Define

$$\theta(\nu_0, \nu_1) := \left(\frac{a_0a_1 + b_0b_1}{a_1b_0 - a_0b_1}\right)^2.$$

Then $\theta(v_0, v_1)$ is invariant under orthogonal transformations.

- \mathscr{A} -transformable $\Rightarrow \theta(v_0, v_1) = 0, -1 \text{ or } -\frac{1}{2}.$
- When all these are satisfied, valid transformations are restricted to polynomially many.

Heng Guo (CS, UW-Madison)

• Recall that *P* contains function products of binary equalities, binary dis-equalities, and unary functions.

• Recall that \mathscr{P} contains function products of binary equalities, binary dis-equalities, and unary functions.

Lemma (Uniqueness of tensor factorizations)

Let $f(\mathbf{x}) = \prod_i f_i(\mathbf{x}_i)$ where $\{\mathbf{x}_i\}$ is a partition.

Then f_i's are unique up to permutations and can be computed in polynomial time.

• Recall that \mathscr{P} contains function products of binary equalities, binary dis-equalities, and unary functions.

Lemma (Uniqueness of tensor factorizations)

Let $f(\mathbf{x}) = \prod_i f_i(\mathbf{x}_i)$ where $\{\mathbf{x}_i\}$ is a partition.

Then f_i 's are unique up to permutations and can be computed in polynomial time.

- Function product factorizations are not unique, that is, *f*_i's are not unique if some **x**_i and **x**_i overlap.
- Deciding membership of \mathscr{P} is straightforward.

 For general functions, using ideas similar to *A*-transformable, we can restrict to orthogonal and related transformations. Then check them in the ¹ i -i
 ⁱ basis.

- For general functions, using ideas similar to *A*-transformable, we can restrict to orthogonal and related transformations. Then check them in the [1 i] -i] basis.
- For symmetric functions, the procedure is also similar to deciding symmetric *A*-transformable functions. We can check if *f* is a sum of two tensor powers and then check θ(ν₀, ν₁). When both checks pass, the number of valid transformations are restricted.

Thank you!

Papers are available on my homepage:

pages.cs.wisc.edu/~hguo/