
Counting Hypergraph Colourings in the
Local Lemma Regime

Heng Guo (University of Edinburgh)

Joint with Chao Liao (SJTU), Pinyan Lu (SHUFE), and Chihao Zhang (SJTU)

Birmingham, Jan 31 2019



Colourings



Graph (proper) colouring

3-colouring of the Petersen graph



Phase transitions

Phase transitions:
as some parameter changes, macroscopic
behaviours of the whole system change
drastically.

E.g. ice→ water→ water vapor
Solid

Liquid

Gas

Plasma

En
er
gy



Computational phase transitions

As parameters change, the computational complexity of a problem may
change drastically.

Determine whether a graph is q-colourable (or find one if it exists):

• q = 1, 2: trivial;

• q ⩾ 3 : NP-hard.

What about graphs with maximum degree ∆?

• q ⩾ ∆+ 1 : colourable by simple greedy algorithm;

• q ⩾ ∆− k∆ + 1 : polynomial-time (Molloy, Reed ’01 ’14);

• q ⩽ ∆− k∆ : NP-hard (Embden-Weinert, Hougardy,
(k∆ ≈

√
∆− 2) and Kreuter ’98).
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Properly colour a planar graph

Threshold phenonmena are most common, but things can be more compli-
cated!

Determine or find q-colourings for a planar graph:

• q = 2: easy;

• q = 3: NP-hard (Dailey ’80);

• q = 4: quadratic time (Four colour theorem)
by Robertson, Sanders, Seymour, and Thomas (1996);

• q ⩾ 5: linear time (much simpler proof) (RSST ’96).
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Randomly colour a graph

How about generating a uniform proper colouring at random?
(closely related to approximately count the number of colourings)

• q > 2∆ : rapid mixing of Glauber dynamics by Jerrum (1995); Salas and
Sokal (1997);

• q > 11
6
∆ : rapid mixing of WSK dynamics by Vigoda (2000);

improved by Chen and Moitra (2019); Delcourt, Perarnau, and
Postle (2019) to q >

(
11
6
− ε

)
∆ for a small ε;

• q < ∆ : NP-hard by Galanis, Štefankovič, and Vigoda (2015);
(even q)

It is conjectured that there is a threshold and qc = ∆+1. This is the unique-
ness threshold of Gibbs measures in an infinite ∆-regular tree (namely a
Bethe lattice), by Jonasson (2002).
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Frozen

Sometimes you just cannot let it go.

q = ∆+ 1 = 4

credit: Chihao Zhang



Disconnected state space

Markov chain is a random walk in the solution space.
(The solution space has to be connected!)



Disconnected state space

A disconnected state space is not good.



Disconnected state space

There’s still hope if one giant component dominates.



Disconnected state space

There’s still hope if one giant component dominates.
If q = ∆+ 1, then all other components are isolated vertices …

(Feghali, Johnson, and Paulusma 2016)



Disconnected state space

There’s still hope if one giant component dominates.
… and the number of isolated vertices is exponentially small.

(Bonamy, Bousquet, and Perarnau 2018)



Disconnected state space

There’s still hope if one giant component dominates.
FPTAS for counting 4-colourings in cubic graphs.

(Lu, Yang, Zhang, and Zhu 2017) (Not via Markov chains!)



What about hypergraphs?

A proper hypergraph colouring is one where no edge is monochromatic.



Previous results

For k-uniform hypergraphs, Bordewich, Dyer, and Karpinski (2006) show
that Glauber dynamics is rapidly mixing if

k ⩾ 4 and q > ∆ or k = 3 and q > 1.5∆.

However, Lovász local lemma implies that there exists a proper colouring if
q > 2e∆1/(k−1).

Frieze and Melsted (2011) showed that if q≪ ∆, then there exists a colour-
ing so that no move is possible (“frozen”).

Frieze and Anastos (2017) showed that Glauber dynamics still converges
rapidly if the hypergraph is simple and q > max{Ck logn, 500k3∆1/(k−1)}.

(Simple: every two hyperedges intersect in at most one vertex.)
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Our results

Theorem

For ∆ ⩾ 2, k ⩾ 28, and q > 315∆
14

k−14 , there is an FPTAS for the number of
q-colourings in k-uniform hypergraphs with maximum degree ∆.

Theorem

For ∆ ⩾ 2, k ⩾ 28, and q > 798∆
16

k−16/3 , there is also an almost-uniform
polynomial-time sampler.

Our approach is a modified version of Moitra (2017) based on the Lovász
local lemma. His original approach in this setting would require an extra
condition of the form k > C log∆.
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Lovász local lemma
(and how it helps with approximate counting)



Lovász local lemma

The original local lemma (Erdős and Lovász 75) was introduced to show the existence of 3-
colourings in hypergraphs.

Let H = (V,E) be the hypergraph, and Γ(e) be the set of hyperedges intersecting e ∈ E.
Then |Γ(e)| ⩽ (∆− 1)k.

Theorem (Lovász ’77)

If there exists an assignment x : E → (0,1) such that for every e ∈ E we have

Pr(e is monochromatic) ⩽ x(e)
∏

e′∈Γ(e)

(
1− x(e ′)

)
, (1)

then a proper colouring exists.

Typically we set x(e) = 1
k∆ . It gives

x(e)
∏

e′∈Γ(e)

(
1− x(e ′)

) ⩾ 1

k∆

(
1−

1

k∆

)k(∆−1)

⩾ 1

ek∆
. (2)

Notice that Pr(e is monochromatic) = q

qk = 1
qk−1 .

Thus qk−1 ⩾ ek∆, or equivalently q ⩾ (ek∆)
1

k−1 suffices.
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A fine-tuned version

Let C be the set of all proper colourings.

Let µ(·) be the Gibbs (uniform) distribution on all proper colourings,

(namely the product distribution conditioned on no monochromatic edge).

The local lemma also gives an upper bound for any event under µ(·).

Theorem (Haeupler, Saha, and Srinivasan ’11)
If (1) holds for every e ∈ E, then for any event B, it holds that

µ(B) ⩽ Pr(B)
∏

e∈Γ(B)

(1− x(e))−1
.
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Reducing to computing marginal probabilities

For approximate counting, we use the (algorithmic) local lemma to find a partial colouring τ

so that every hyperedge is satisfied by the first k1 vertices.

(This will succeed as long as q > (ek1∆)
1

k1−1 . k1 will eventually be set to k
14 .)

Then we compute the probability of τ by “pinning” vertices one by one.

Let U = {u1, . . . ,ur} be the support of τ.

qn−r

|C|
= Pr

σ∼µ
(σ |= τ)

= Pr
σ∼µ

(∀u ∈ U, σ(u) = τ(u))

= Pr
σ∼µ

(σ(u1) = τ(u1)) · Pr
σ∼µ

(∀u ∈ U, σ(u) = τ(u) | σ(u1) = τ(u1))

= Pr
σ∼µ

(σ(u1) = τ(u1)) · Pr
σ∼µ

(σ(u2) = τ(u2) | σ(u1) = τ(u1))

· Pr
σ∼µ

(∀u ∈ U, σ(u) = τ(u) | σ(u1) = τ(u1), σ(u2) = τ(u2))

Thus the key is to estimate marginal probabilities under partial colourings (up to 1± ε
n error),

where at least k− k1 vertices are uncoloured in every edge.
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n error),

where at least k− k1 vertices are uncoloured in every edge.
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Local uniformity

Lemma

If ∀e ∈ E, k ′ ⩽ |e| ⩽ k, t ⩾ k and q ⩾ (et∆)
1

k′−1 , then for any v ∈ V and any colour
c ∈ [q],

1

q

(
1−

1

t

)
⩽ Pr

σ∼µ
(σ(v) = c) ⩽ 1

q

(
1+

4

t

)
.

The upper bound comes from a direct application of the fine-tuned version.

The lower bound is obtained by giving upper bounds for “blocking cases”.
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We use this lemma with t ≈ ∆C at various places with various C. Recall that our
assumption is of the form q ⩾ C ′∆

C′′
k .

Under µ, all vertices are very close to uniform.
We use this lemma when some vertices are already coloured, namely for µ condi-
tioned on a partial colouring.
The quantity k ′ is theminimumnumber of uncoloured vertices among all unsatisfied
hyperedges (namely k ′ = k− k1).

A good start, but not enough. The goal is
ε

n
-approximation of the marginals.
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Coupling

Say we want to compute the marginal probability of v.

Let Ci be the set of colourings where v is coloured i, and µi be uniform over
Ci. We want to couple µ1 and µ2.

Start: V1 = {v}, Vcol = {v}. Maintain V2 = V \V1.

Body:

1. For any hyperedge e intersecting both V1 and V2, let u be its first vertex. Couple u

maximally assuming its marginal probabilities are known.

2. Remove all hyperedges that are satisfied in both copies.

3. If an edge has k2 vertices coloured, put all remaining vertices inV1 (failed) and remove
the edge.

Stop: all hyperedges intersecting V1 are removed.

(The constant k2 is eventually set to 3k
7 for approximate counting and 3k

8 for sampling.)
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Coupling - An example

V1 : descrepency. Vcol : coloured. V2 := V \V1.

Stop: all hyperedges intersecting V1 are removed.

V1 V1

At any time, there are at least k ′ − k2 empty vertices in any hyperedge.

If q > C∆
3

k′−k2 , then the coupling stops in O(logn) steps with probability 1−O
(

1
nc

)
.

Moitra (2017) marks what vertices to couple in advance, whereas our coupling is adaptive.
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Coupling tree

x, y

xu←1

yu←1
xu←1

yu←q
xu←q

yu←1
xu←q

yu←q…… …… ……

... ... ... ... ... ... ... ...

Coupling tree T: each node is a pair of partial colourings (x, y).

The children of (x, y) are all q2 ways to extend them to the next vertex.



Linear program

We cannot really run the coupling. Instead, we set up a linear program. The
variables are to mimic:

px
x,y =

|C1|

|Cx|
· µcp(x, y),

py
x,y =

|C2|

|Cy|
· µcp(x, y),

where Ci is the set of colourings s.t. v← i for i = 1, 2, and Cx (or Cy) is the
set of colourings consistent with x (or y).

Note that 0 ⩽ px
x,y, p

y
x,y ⩽ 1 as

∑
y px

x,y = 1.

We can write down linear constraints for these variables.
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Constraints 1

From the definition: |C1|

|C2|
=

px
x,y

p
y
x,y
· |Cx|

|Cy|
.

If (x, y) is a leaf in T, then we can compute |Cx|

|Cy|
in time exp(|V1 \ Vcol|).

Constraints 1: For every leaf (x, y), we have the constraints:

r ⩽
px
x,y

p
y
x,y

·
|Cx|

|Cy|
⩽ r.

Here r and r are our guessed lower and upper bounds for |C1|

|C2|
.
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Constraints 2

Constraints 2: For the root (x0, y0) ∈ T, we have

px0
x0,y0

= py0
x0,y0

= 1.

Moreover, for every non-leaf (x, y) ∈ T, let u be the next vertex to couple.
For every c ∈ [q],∑

c′∈[q]

pxu←c

xu←c,yu←c′ =
|C1|

|Cxu←c |
·
|Cxu←c |

|Cx|
· µcp(x, y) = px

x,y;

∑
c′∈[q]

p
yu←c

xu←c′ ,yu←c
=

|C2|

|Cyu←c |
·
|Cyu←c |

|Cy|
· µcp(x, y) = py

x,y.



Recover the marginals

Due to Constraints 2, a simple induction shows that for every σ ∈ C1,∑
(x,y)∈L(T): σ|=x

px
x,y = 1.

Rewrite |C1|:

|C1| =
∑

σ∈C1

1 =
∑

σ∈C1

∑
(x,y)∈L(T):σ|=x

px
x,y

=
∑

(x,y)∈L(T)

∑
σ|=x

px
x,y

=
∑

(x,y)∈L(T)

px
x,y |Cx| .

Similar equalities hold on the y side, implying:

|C1|

|C2|
=

∑
(x,y)∈L(T) p

x
x,y |Cx|∑

(x,y)∈L(T) p
y
x,y |Cy|

.



Recover the marginals (cont.)

|C1|

|C2|
=

∑
(x,y)∈L(T) p

x
x,y |Cx|∑

(x,y)∈L(T) p
y
x,y |Cy|

Recall Constraints 1. For any (x,y) ∈ L(T),

r ⩽ px
x,y |Cx|

p
y
x,y |Cy|

⩽ r.

It implies that

r ⩽ |C1|

|C2|
⩽ r.



Constraints 3

Unfortunately, the whole linear program is exponentially large. The saving
grace is that the coupling stops at O(logn) size whp.

If we truncate at O(logn) levels, the error should be small, due to local
uniformity.

Constraints 3: For every c, c ′ ∈ [q] that c ̸= c ′:

pxu←c

xu←c,yu←c′ ⩽
5

t
· px

x,y;

p
yu←c′

xu←c,yu←c′ ⩽
5

t
· py

x,y.

The quantity t will eventually be set as C(k∆)6.
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Truncation error

Recall that

|C1| =
∑

σ∈C1

∑
(x,y)∈L(T):σ|=x

px
x,y.

The truncation error from a particular σ ∈ C1 comes from conditioned on outputing σ, the
coupling lasts too long.

Such “bad” colourings do exist (all early vertices are monochromatic).

We prove two things:

1. The fraction of “bad” colourings is small;

2. For every “good” colouring, the truncation error is small because of Constraints 3.
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Bound the error

A “bad” colouring must fail many hyperedges during the coupling, but we
couple k2 vertices of every hyperedge.

Thus its fraction is small if k2 is sufficiently large.

The error allowed by Constraints 3 is controlled by the number of un-
coloured vertices in the coupling process, namely the quantity k ′ − k2.

The larger k ′−k2, themore uniform all vertices are and the smaller coupling
errors.

We solve an optimization problem to get the best k2 balancing the two
points above.
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Counting and sampling

So far we are calculating the marginal probability, which requires that there
are sufficiently many uncoloured vertices in all hyperedges.

• For approximate counting, we use the local lemma to find a partial
colouring so that every hyperedge is satisfied by its first k

14
vertices.

Then we compute the marginal probability of this partial colouring by
pinning vertices one by one.

• For sampling, we use the marginal to colour vertices, similar to the
coupling process. We colour 3k

16
vertices of every hyperedge.

With high probability, every remaining connected component has size
O(logn).
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Thank you!
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