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The random cluster model [Fortuin, Kasteleyn 1969]

Parameters 0 ⩽ p ⩽ 1 (edge weight), q ⩾ 0 (cluster weight).

Given graph G = (V , E), the measure on subgraph r ⊆ E is defined as

πRC(r) ∝ p|r |(1 − p)|E\r |qκ(r),

where κ(r) is the number of connected components in (V , r).

(1 − p)4q4 p2(1 − p)2q2 p4q
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The random cluster model [Fortuin, Kasteleyn 1969]

The partition function (normalizing factor):

ZRC(p, q) =
∑
r⊆E

p|r |(1 − p)|E\r |qκ(r).

Equivalent to the Tutte polynomial ZTutte(x , y):

q = (x − 1)(y − 1) p = 1 −
1
y
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The random cluster model [Fortuin, Kasteleyn 1969]

πRC(r) ∝ p|r |(1 − p)|E\r |qκ(r)

The motivation is to unify:

Ising model

q = 2

Potts model

q > 2, integer

Bond percolation

q = 1 (On Kn, Erdős-Rényi random graph)

Electrical network

q → 0 (Spanning trees if p → 0 and q
p → 0)
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Glauber dynamics

Glauber dynamics (single edge update) PRC (Metropolis):

Current state x ⊆ E

1 With prob. 1/2 do nothing. (Lazy)

2 Otherwise, choose an edge e u.a.r.

3 Move to y = x ⊕ {e} with prob. min
{

1, πRC(y)
πRC(x)

}
.

Detailed balance:

π(x)P(x , y) = π(y)P(y , x) = min{π(x),π(y)}
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Glauber dynamics

Glauber dynamics (single edge update) PRC (Metropolis):

PRC(x , y) =


1

2m min
{

1, πRC(y)
πRC(x)

}
if |x ⊕ y | = 1;

1 − 1
2m

∑
e∈E min

{
1, πRC(x⊕{e})

πRC(x)

}
if x = y ;

0 otherwise.

We are interested in the mixing time τϵ(PRC):

τϵ(PRC) = min
{

t : ||P t
RC(x0, ·) − π||TV ⩽ ϵ

}
.
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A simple example

Let p < 1/2.

min
{

1,
πRC(x ∪ {e})

πRC(x)

}

=


p

1−p if e is not a cut edge

p
q(1−p) if e is a cut edge
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Brief History

Studied extensively for special graphs,
such as the complete graph (mean-field) and the lattice Z2.

Mean-field: [Gore, Jerrum 1999]
[Blanca, Sinclair 2015]

Z2: [Borgs et al. 1999]
[Blanca, Sinclair 2016]
[Gheissari, Lubetzky 2016]

q > 2: Slow mixing for the complete graph.
0 ⩽ q ⩽ 2: No known fast mixing bound for general graphs.
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Main theorem

Theorem

For the random cluster model with parameters 0 < p < 1 and q = 2,

τϵ(PRC) ⩽ 10n4m2(lnπRC(x0)
−1 + ln ϵ−1).

For q > 2, there exists p such that PRC is slow mixing on complete

graphs. [Gore, Jerrum 1999] [Blanca, Sinclair 2015]

For q > 2 and 0 < p < 1, it is #BIS-hard to approximate ZRC(p, q).

[Goldberg, Jerrum 2012]

For 0 ⩽ q < 2, there is no known obstacle.
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Swandsen-Wang algorithm
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Ferromagnetic Ising model [Ising, Lenz 1925]

Parameter β > 1.

A configuration σ : V → {+,−}.

πIsing(σ) ∝ βmono(σ) = βm−cut(σ)

Partition function ZIsing(β) =
∑

σ βmono(σ)

β0 β2 β4
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Equivalence at q = 2

Let β = 1
1−p .

ZIsing(β) = β|E|ZRC (p, 2)
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Swendsen-Wang algorithm [Swendsen, Wang 1987]

A global Markov chain to sample Ising configurations.

Current configuration σ

1 Mark all monochromatic edges under σ as M

2 Remove each edge in M with probability β−1 (Recall β−1 = 1 − p)

3 Assign a random spin to each component of (V , M)

Practically very fast for the Ising model, but difficult to analyze.

Conjectured to be rapidly mixing for all graphs.

(Open problem since 90s.)
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Another simple example

1 Activate mono edges

2 Re-randomize mono edges

3 Color components
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Previous Results

Swendsen-Wang algorithm on the complete graph:

[Gore, Jerrum 1999]

[Cooper, Dyer, Frieze, Rue 2000]

[Long, Nachimus, Ning, Peres 2011]

[Borgs, Chayes, Tetali 2011]

[Galanis, Štefankovič, Vigoda 2015]

Theorem (Ullrich 2014)

τϵ(PSW ) ⩽ τϵ(PRC)
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Concequence — Swendsen-Wang algorithm is rapidly mixing

Theorem (Ullrich 2014)

τϵ(PSW ) ⩽ τϵ(PRC)

Combine with our theorem:

the Swendsen-Wang algorithm is rapidly mixing at q = 2,

namely, for the ferromagnetic Ising model at any temperature.

The Swendsen-Wang algorithm is conjectured to have a n1/4 mixing time

(by Peres and Sokal).
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Even subgraphs
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Another equivalent formulations at q = 2

Even subgraphs

Let r ⊆ E such that every vertex in (V , r) has an even degree.

πeven(r) ∝ p|r |(1 − p)|E\r |

Partition function Zeven(p)

(1 − p)4 NOT EVEN p4

Heng Guo (QMUL) Random Cluster 2016/11/03 19 / 41



Equivalence at q = 2

Let β = 1
1−p .

ZIsing(β) = β|E|ZRC (p, 2) = 2|V |β|E|Zeven

(p
2

)
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Equivalence at q = 2

Random-cluster

(p, 2)

Ising model

β = (1 − p)−1

Even subgraphs

p/2

[Edwards, Sokal 1988]

[Fortuin, Kasteleyn 1969]

[Grimmett, Janson 2009]

[va
n de

r W
ae

rd
en

19
41

]

Slow mixing

FPRAS [Jerrum, Sinclair 93]This talk
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Grimmett-Janson coupling

Given a graph G, draw a random even subgraph S ⊆ E with p ⩽ 1
2 :

Pr(S = s) = πeven(s).

Then we add every edge e ̸∈ S with probability p ′ = p
1−p .

Call this subgraph R.

Theorem (Grimmett, Janson 2009)

Pr(R = r) = πRC; 2p,2(r).
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The Proof
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Bound the mixing time

A Markov chain is a random walk on its state space (exponentially large).

↔ ↔

▶ There are 2|E| many configurations.

▶ Two configurations are adjacent if they differ by exactly one edge.

Rapidly mixing ⇔ The state space is very well connected.
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Congestion and canonical paths

Construct a set Γ of canonical paths γxy for all pairs of states (x , y).

The key quantity of Γ is its congestion:

ρ(Γ) := max
(z,z ′)∈Ω2

P(z,z ′)>0

L
π(z)P(z, z ′)

∑
x ,y∈Ω2

γxy∋(z,z ′)

w(γxy ),

where

w(γxy ) = π(x)π(y).

Theorem (Sinclair 1992)

τε(P) ⩽ ρ(Γ)(lnπ(x0)
−1 + ln ε−1).
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Alternative view of canonical paths

Fix Γ = {γxy } and an integer k ⩽ L.

1 Draw the initial and final states I and F independently according to π(·).

2 A random path γIF ∈ Γ .

µ(γIF ) = w(γIF ) = π(I)π(F )

3 Let Zk be the k th state of γIF .

(Assume all paths in Γ have the same length L.)

The congestion ρ(Γ) is polynomial related with maxk
Pr(Zk=z)

π(z) .
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Alternative view in action

Let q = 1. Then πRC(·) is a product measure.

G:

e1

e2

e3

e4

σF

σI

σF

σIZ2:

I F

Pr(Zk = z)
π(z)

= 1
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From paths to flows

Instead of one path from x to y , we can have a random path from x to y .

Flow Γ is a collection of paths equipped with weights w(·) such that∑
γ is from x to y

w(γ) = π(x)π(y).

Zk is defined similarly.

1 Random initial and final states I and F

2 A random path γ from I to F according to w(·).

3 Zk is the k th state of γ.

We will look at Pr(Zk=z)
π(z) .
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Lifting canonical paths

In an ideal world . . .

Suppose we have canonical paths Γeven for even subgraphs with low

congestion. (similar to [Jerrum, Sinclair 93])

Then use Grimmett-Janson to lift Γeven to a flow for random cluster.

I = W0 W1 W2 WL−1 WL = F

Z0 Z1 Z2 ZL−1 ZL

G
rim

m
et

t-J
an

so
n

G
rim

m
et

t-J
an

so
n

G
rim

m
et

t-J
an

so
n G

rim
m

ett-Janson

G
rim

m
ett-Janson

w(ζ) = w(γ)Pr(γ → ζ)
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Ideal lifting

If Wk deviates from πeven(·) by at most polynomial, then so does Zk from πRC(·).

Pr(Wk = w)

πeven(w)
⩽ nO(1)ρ(Γ)

Pr(Zk = z) =
∑

w⊆z, w even

Pr(Wk = w)

(
p

1 − p

)|z\w | (1 − 2p
1 − p

)|E\z|

⩽ nO(1)ρ(Γ)
∑

w⊆z, w even

πeven(w)

(
p

1 − p

)|z\w | (1 − 2p
1 − p

)|E\z|

= nO(1)ρ(Γ)πRC(z) (by GJ)
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In the real world . . .

Two issues:

1 We do not have good canonical paths for even subgraphs —

Jerrum-Sinclair chain moves among all subgraphs!

2 Grimmett-Janson adds indepdendent edges —

Zi and Zi+1 are not adjacent states!

They may differ by a lot of edges.
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Patch 1

Issue 1: need canonical paths for even subgraphs.

Construct paths Γeven = {γxy } where x and y are both even subgraphs.

▶ x ⊕ y is also even.

x ⊕ y can be covered by edge-disjoint cycles.

▶ Pick a canonical ordering of edges. Unwind each cycle:

W0 = x , Wi = Wi−1 ⊕ ei

▶ Enlarge the state space to all even and near-even subgraphs.

Every path is in the augmented space.

Γeven has low congestion — same reason as [Jerrum, Sinclair 1993].
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Patch 1

Issue 1: need canonical paths for even subgraphs.

x = Z0 y = Z6x ⊕ y

Z1

Z2

Z3

Z4

Z5
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Patch 1

Issue 1: need canonical paths for even subgraphs.

Γeven has low congestion — combinatorial encoding [Jerrum, Sinclair 1993].

For any γxy ∋ (z, z ′), let u = x ⊕ y ⊕ z. This mapping is injective.

x y

z z ′

x ⊕ y

u
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Γeven has low congestion — combinatorial encoding [Jerrum, Sinclair 1993].

For any γxy ∋ (z, z ′), let u = x ⊕ y ⊕ z. This mapping is injective.

x y

z z ′

x ⊕ y

u

π(x)π(y) = π(z)π(u)
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Γeven has low congestion — combinatorial encoding [Jerrum, Sinclair 1993].

For any γxy ∋ (z, z ′), let u = x ⊕ y ⊕ z. This mapping is injective.
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Γeven has low congestion — combinatorial encoding [Jerrum, Sinclair 1993].

For any γxy ∋ (z, z ′), let u = x ⊕ y ⊕ z. This mapping is injective.

x y

z z ′

x ⊕ y

u∑
γxy∋(z,z ′)

π(x)π(y) ⩽ π(z)
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Patch 1

Issue 1: need canonical paths for even subgraphs.

One final problem for issue 1:

W0 and WL are both even,
but intermediate Wi ’s can be near-even.

A generalization of Grimmett-Janson:

Give each near-even subgraph a penalty of 1/n2.

Add independent edges with prob. p
1−p as before.

Call the resulting measure π̂(·).
π̂(x)

πRC(x) = Θ(1).
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Patch 2

Issue 2: Zi and Zi+1 differ by more than 1 edge.

An easy fix: insert intermediate states to change edges one by one in

Zi ⊕ Zi+1, which has a product measure on E\(Wi ∪ Wi+1).

Wi Wi+1

Z 0
i Z 1

i Z m−1
i Z m

iZi = = Zi+1

G
rim

m
et

t-J
an

so
n

G
rim

m
ett-Janson

The distribution of Z j
i is the same as that of Zi (j < m).

Total length is mL.
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Better patch 2

Issue 2: Zi and Zi+1 differ by more than 1 edge.

Lift Wi+1 to Zi+1 conditional on Zi such that

Zi+1 and Zi are adjacent and the marginal of Zi+1 is correct.

The marginal distributions of Z0 and ZL are correct,

but their joint distribution is not — Z0 and ZL are correlated.

Append a tail on the path after ZL to re-randomize edges that are not

in WL. This removes the correlation.

Total length is at most L + m.
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Putting everything together

W0 W1 W2 WL

Z0 Z1 Z2 ZL ZL+m
Re-randomization

G
rim

m
et

t-J
an

so
n

Grim
mett-J

anso
n

W1 = W0 ∪ {e} ⇒ Z1 = Z0 ∪ {e}

W2 = W1\{e ′} ⇒ Z2 =

Z1 prob. p ′

Z1\{e ′} prob. 1 − p ′
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Future directions
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Tutte polynomial [Goldberg, Jerrum 08,12,14]

q = (x −1)(y −1)

Tractable

FPRAS

NP-hard
(most #P-hard)

#PM-equivalent

#BIS-hard

Open:
All white
0 ⩽ q < 1

1 < q < 2

q = 0
q = 1

q = 2

q = 2

q = 1

x

y

(1, 1)

−1

−1
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Recap

Theorem

At q = 2, τϵ(PRC) ⩽ 10n4m2(lnπRC(x0)
−1 + ln ϵ−1).

q = 2 tighter mixing time bound?

1 < q < 2 (monotone) fast mixing?

0 ⩽ q < 1 (e.g. Tutte(2,1) = #Forests) fast mixing???

Thank You!
Paper available: arxiv.org/abs/1605.00139
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