
Modified log-Sobolev inequalities for strongly
log-concave distributions

Heng Guo (University of Edinburgh)

Joint with Mary Cryan and Giorgos Mousa (Edinburgh)

Tsinghua University

Jun 25th, 2019



Strongly log-concave distributions



Discrete log-concave distribution

What is the correct definition of a log-concave distribution?

What about 1 dimension? For π : [n] → R⩾0, π(i+ 1)π(i− 1) ⩽ π(i)2?

Consider π(1) = 1/2, π(n) = 1/2 and all other π(i) are 0.

This distribution satisfies the condition, but it is not even unimodal.

What about high dimensions?
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Strongly log-concave polynomials

Log-concave polynomial

A polynomial p ∈ R⩾0[x1, . . . , xn] is log-concave (at x) if the Hessian ∇2 log p(x) is negative
semi-definite.

⇒ ∇2p(x) has at most one positive eigenvalue.

Strongly log-concave polynomial

A polynomial p ∈ R⩾0[x1, . . . , xn] is strongly log-concave if for any index set I ⊆ [n], ∂Ip is
log-concave at 1.

Originally introduced by Gurvitz (2009), equivalent to:

• completely log-concave (Anari, Oveis Gharan, and Vinzant, 2018);

• Lorentzian polynomials (Brändén and Huh, 2019+).



Strongly log-concave distributions

A distribution π : 2[n] → R⩾0 is strongly log-concave if so is its generating polynomial

gπ(x) =
∑

S⊆[n]

π(S)
∏
i∈S

xi.

An important example of homogeneous strongly log-concave distributions is the uniform distri-
bution over bases of a matroid (Anari, Oveis Gharan, and Vinzant 2018; Brändén and Huh 2019+).



Matroid

A matroid M = (E, I) consists of a finite ground set E and a collection I of subsets of E (indepen-
dent sets) such that:

• ∅ ∈ I;

• if S ∈ I, T ⊆ S, then T ∈ I (downward closed);

• if S, T ∈ I and |S| > |T |, then there exists an element i ∈ S \ T such that T ∪ {i} ∈ I.

Maximum independent sets are the bases. For any two bases, there is a sequence of exchanges of
ground set elements from one to the other.

Let n = |E| and r be the rank, namely the size of any basis.



Example — graphic matroids

Spanning trees for graphs form the bases of graphic matroids.

Nelson (2018): Almost all matroids are non-representable!



Alternative characterisation for SLC

Brändén and Huh (2019+): An r-homogeneous multiaffine polynomial p with non-negative coef-
ficients is strongly log-concave if and only if:

• the support of p is a matroid;

• after taking r− 2 partial derivatives, the quadratic is real stable or 0.

Real stable: p(x) ̸= 0 if ℑ(xi) > 0 for all i.

Real stable polynomials (and strongly Rayleigh distributions) capture only “balanced” matroids,
whereas SLC polynomials capture all matroids.



Bases-exchange walk

The following Markov chain PBX,π converges to a homogeneous SLC π:

1. remove an element uniformly at random from the current basis (call the resulting set S);

2. add i ̸∈ S with probability proportional to π(S ∪ {i}).

The implementation of the second step may be non-trivial.

The mixing time measures the convergence rate of a Markov chain:

tmix(P, ε) := min
t

{
t | ∥Pt(x0, ·) − π∥TV ⩽ ε

}
.



Example — bases-exchange

1. Remove an edge uniformly at random;

2. Add back one of the available choices uniformly at random.
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Example — bases-exchange

1. Remove an edge uniformly at random;

2. Add back one of the two choices uniformly at random.

If we encode the state as a binary string, then this is just the lazy random walk on the Boolean
hypercube {0, 1}r.

(The rank of this matroid is r and the ground set has size n = 2r.)

The mixing time is Θ(r log r).
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Main result — mixing time

Theorem (mixing time)
For any r-homogeneous strongly log-concave distribution π,

tmix(PBX,π, ε) ⩽ r

(
log log 1

πmin
+ log 1

2ε2

)
,

where πmin = minx∈Ω π(x).

Previously, Anari, Liu, Oveis Gharan, and Vinzant (2019):

tmix(PBX,π, ε) ⩽ r

(
log 1

πmin
+ log 1

ε

)
E.g. for the uniform distribution over bases of matroids (with n elements and rank r), our bound
is O(r(log r+ log logn)), whereas the previous bound is O(r2 logn).

The bound is asymptotically optimal, shown by the previous example.



Main result — concentration

Theorem (concentration bounds)
Let π and PBX,π be as before, andΩ be the support of π. For any observable function f : Ω → R and
a ⩾ 0,

Pr
x∼π

(|f(x) − Eπ f| ⩾ a) ⩽ 2 exp
(
−

a2

2rv(f)

)
,

where v(f) is the maximum of one-step variances

v(f) := max
x∈Ω

∑
y∈Ω

PBX,π(x, y)(f(x) − f(y))2

 .

For c-Lipschitz function f, v(f) ⩽ c2.

Generalises concentration of Lipschitz functions in strongly Rayleigh distributions by Pemantle
and Peres (2014); see also Hermon and Salez (2019+).



Dirichlet form

For a Markov chain P and two functions f and g over the state space Ω,

EP(f, g) := gT diag(π)Lf.

(the Laplacian L := I − P)

For reversible Markov chains,

EP(f, g) =
1

2

∑
x,y∈Ω

π(x)P(x, y)(f(x) − f(y)))(g(x) − g(y)).



Modified log-Sobolev inequality

Theorem (modified log-Sobolev inequality)
For any f : Ω → R⩾0,

EPBX,π(f, log f) ⩾ 1

r
· Entπ(f),

Both main results are consequences of this.

Entπ(f) is defined by

Entπ(f) := Eπ(f ◦ log f) − Eπ f · logEπ f.

If we normalise Eπ f = 1, then Entπ(f) = D(π ◦ f ∥ π), the relative entropy (or Kullback–Leibler
divergence) between π ◦ f and π.



Three “constants”

Poincare constant (spectral gap):

λ(P) := inf
Varπ(f) ̸=0

EP(f, f)

Varπ(f)
, tmix(P,ε) ⩽ 1

λ(P)

(
log 1

πmin
+ log 1

ε

)
log-Sobolev constant (Diaconis and Saloff-Coste, 1996):

α(P) := inf
Entπ(f) ̸=0

EP(
√
f,

√
f)

Entπ(f)
, tmix(P,ε) ⩽ 1

4α(P)

(
log log 1

πmin
+ log 1

2ε2

)
modified log-Sobolev constant (Bobkov and Tetali, 2006):

ρ(P) := inf
Entπ(f) ̸=0

EP(f, log f)

Entπ(f)
, tmix(P,ε) ⩽ 1

ρ(P)

(
log log 1

πmin
+ log 1

2ε2

)

2λ(P) ⩾ ρ(P) ⩾ 4α(P) (Bobkov and Tetali, 2006)

α(P) ⩽ 1

logπ−1
min

(observed by Hermon and Salez, 2019+)

ρ(PBX,π) ⩾ 1/r (our result)
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Decay of relative entropy



Stratification

The set of all independent sets of a matroid M is downward closed.

Let M(k) be the set of independent sets of size k. Thus, M(r) is the set of all bases.

Let Mi denote the matroid M after contracting i, which is another matroid itself.



Weights for independent sets

We equip M with the following inductively defined weight function:

w(I) :=

{
π(I)Zr if |I| = r,∑

I′⊃I, |I′|=|I|+1 w(I ′) if |I| < r,

for some normalisation constant Zr > 0.

For example, we may choose w(B) = 1 for all B ∈ B and Zr = |B|, which corresponds to the
uniform distribution over B.

Let πk be the distribution such that πk(I) ∝ w(I), and Zk be the corresponding normalising
constant.



Example

1 4
2

3

Independent sets of the matroid:

M(3) = B

M(2)

M(1)

M(0)

124 1 134 1

12 1 13 1 14 2 24 1 34 1

1 4 2 2 3 2 4 4

∅ 12



Three views

Polynomial Matroid Distribution

∂
∂xi

p contraction over i conditioning on having i

set xi = 0 deletion of i conditioning on not having i

(r− k)! · ∂Ip(1) w(I) ∝ πk(I)

p(1) |B| π0(∅) = 1



Random walk between levels

12 1 13 1 14 2 24 1 34 1

1 4 2 2 3 2 4 4

There are two natural random walks converging to πk.

The “down-up” random walk P∨
k :

→ 1. remove an element of I ∈ M(k) uniformly at random to get I ′ ∈ M(k− 1);

2. move to J such that J ∈ M(k), J ⊃ I ′ with probability w(J)
w(I′) .

The bases-exchange walk PBX,π = P∨
r .

The “up-down” walk P∧
k is defined similarly.
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Decomposing the walks

Let Ak be the matrix whose rows are indexed by M(k) and columns by M(k + 1) such that
Ak(I, J) = 1 if and only if I ⊂ J.

Let wk = {w(I)}I∈M(k), and

P
↓
k+1 :=

1

k+ 1
·AT

k;

P
↑
k := diag(wk)

−1Ak diag(wk+1).

We have

P∨
k+1 = P

↓
k+1P

↑
k;

P∧
k = P

↑
kP

↓
k+1.
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Key lemma

Lemma
For any k ⩾ 2 and f : M(k) → R⩾0,

Entπk
(f)

k
⩾

Entπk−1
(P↑

k−1f)

k− 1
.

• If Eπk
f = 1, then πk ◦ f is a distribution. View it as a row vector:

πk−1 ◦
(
P
↑
k−1f

)
= (πk ◦ f)P↓

k.

So applying P
↑
k−1 to the left corresponds to the random walk P

↓
k.

• Then the lemma is saying that P↓
k contracts the relative entropy by at least (1− 1/k).
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Base case

For the base case, we want to show that

Entπ2
(f) − 2Entπ1

(P↑
1f) ⩾ 0.

Using a log a
b
⩾ a− b for a, b > 0, we can get

Entπ2
(f) − 2Entπ1

(P↑
1f) ⩾ 1−

1

2Z2

· hTWh,

where Wij = w({i, j}) and h = P
↑
1f.

Since W = (r − 2)!Zr∇2gπ(1), it has at most one positive eigenvalue. The quadratic form is
maximised at h = P

↑
1f = 1, which proves the base case.
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Decomposing πk

Consider the following process:

1. draws a basis B ∼ π;

2. repeatedly removes an element from the current set uniformly at random for at most r repetitions.

The outcome Xk after removing r− k elements follows exactly πk.

By the Law of Total Probability,

Pr(Xk = I) =
∑

i∈M(1)

Pr(Xk = I | X1 = {i}) · Pr(X1 = {i}).

Noticing that Pr(Xk = I | X1 = {i}) = πi,k−1(I) and Pr(X1 = {i}) = π1(i),

πk =
∑

i∈M(1)

πi,k−1 · π1(i).
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Induction step

The distribution πk has the decomposition:

πk =
∑

i∈M(1)

π1(i) · πi,k−1.

This leads to a decomposition of relative entropy:

Entπk
(f) =

∑
i∈M(1)

π1(i)Entπi,k−1
(f) + Entπ1

(f(1)).

where f(1)(i) := Eπi,k−1
f. In fact, f(1) =

∏k−1
j=1 P

↑
j f.



Induction step (cont.)

As f(1) =
∏k−1

j=1 P
↑
j f,

Entπk
(f) =

∑
i∈M(1)

π1(i)Entπi,k−1
(f) + Entπ1

(f(1))

Entπk−1
(P↑

k−1f) =
∑

i∈M(1)

π1(i)Entπi,k−2
(P↑

k−1f) + Entπ1
(f(1))

Induction hypothesis on Mi implies that

Entπi,k−1
(f) ⩾ k− 1

k− 2
· Entπi,k−2

(P↑
k−1f).

Induction hypothesis from M(k− 1) to M(1) implies that∑
i∈M(1)

π1(i)Entπi,k−2
(P↑

k−1f) ⩾ (k− 2)Entπ1
(f(1)).

Finally, notice that

k− 1

k− 2
=

k

k− 1
+

1

(k− 1)(k− 2)
.



Recap

We have shown entropy contraction from level k to level k− 1:

Entπk
(f)

k
⩾

Entπk−1
(P↑

k−1f)

k− 1
.

It is straightforward from this to derive the modified log-Sobolev inequality, with the help of
Jensen’s inequality.



Bound the mixing time directly

For a distribution τ on M(k), the relative entropy D(τ ∥ πk) = Entπk
(D−1

k τ) where Dk = diag(πk). Moreover,
after one step of P∨

k , the distribution is (τTP∨
k )T = (P∨

k )Tτ. Since P∨
k is reversible, D−1

k (P∨
k )T = P∨

k D−1
k .

D
(
(P∨

k )Tτ ∥ πk

)
= Entπk

(D−1
k (P∨

k )Tτ)

= Entπk
(P∨

k D−1
k τ)

= Entπk
(P↓

kP
↑
k−1D

−1
k τ)

⩽ Entπk−1
(P↑

k−1D
−1
k τ) (Jensen’s inequality)

⩽
(
1−

1

k

)
Entπk

(D−1
k τ) (entropy contraction)

=

(
1−

1

k

)
D (τ ∥ πk) .

The mixing time bound follows from Pinsker’s inequality

2∥τ−σ∥2TV ⩽ D(τ ∥ σ).



Herbst argument

The Herbst argument is a standard trick to get sub-Gaussian concentration bounds from log-
Sobolev inequalities.

The key is to show, for t > 0 and c = v(f)
ρ(P) ,

E[etf] ⩽ etE f+ct2 .

Let Ft := etf−ct2 . Then we just need to show logE[Ft]
t

⩽ E f. This, in turn, follows from the claim
that t 7→ logE[Ft]

t
is non-increasing.

Note that

d

dt

(
logE[Ft]

t

)
=

Entπ(Ft) − ct2 E[Ft]
t2 E[Ft]

.

The following inequalities thus finish the argument

Entπ(Ft) ⩽
1

ρ(P)
EP(Ft, log Ft) ⩽

t2v(f)

2ρ(P)
E[Ft].
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Concluding remarks



Why strongly log-concave?

Apparently, strong log-concavity was used in two places:

• Base case: log-concavity;

• Inductive step: closure property under contractions.

The approach should still work with some distribution property that is closed under contractions
(namely conditioning) but has perhaps a “weaker” base case.



Entropy decomposition

• The decomposition of Entπk
(f) seems to be the key to our argument. This differs from the

traditional Markov chain decomposition techniques, where the state space is partitioned.

• Is there a more general technique?



An oddity

Recall

P∨
k+1 = P

↓
k+1P

↑
k;

P∧
k = P

↑
kP

↓
k+1.

Their spectral gaps are the same: λ(P∨
k+1) = λ(P∧

k ).

For modified log-Sobolev constants, we showed

ρ(P∨
k+1) ⩾

1

k+ 1
, ρ(P∧

k ) ⩾ 1

k+ 1
,

but

ρ(P∨
k+1) = ρ(P∧

k )?



Open problems

• Fast implementation of the (modified) bases-exchange?

• An Ω(r log r) lower bound of the mixing time?

• Deterministic counting algorithms?

• What can we say about the zeros of (inhomogeneous) SLC polynomials? E.g. the relia-
bility polynomial?

• Common bases / independent sets of matroids?
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A professor is one who can speak on any subject for precisely fifty minutes.

— Norbert Wiener

Thank you!
arXiv:1903.06081
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