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Ising Model
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Partition function (normalizing factor):

ZG(β) =
∑

σ:V→{0,1}

w(σ)

where w(σ) = βm(σ), m(σ) is the number of monochromatic edges under σ.
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FKT Algorithm

Computing the partition function of the Ising model is #P-hard unless

in some degenerate cases.

For planar graphs, there is a polynomial time algorithm [Kastelyn 61 &

67, Temperley and Fisher 61].

Reduction to #PM (counting perfect matchings) in planar graphs.

▶ #PM is #P-hard [Valiant 79] in general graphs as well.

#PM can be computed via Pfaffian orientations of planar graphs.
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Holographic Algorithms

Valiant introduced holographic algorithms to extend the reach of FKT

algorithms [Valiant 04]:

Matchgates: functions expressible by perfect matchings.

Holographic Transformation: a change of basis.

A series of work (see e.g. [Cai and Lu 07]) characterizes what problems

can be solved by holographic algorithms based on matchgates.

It still leaves open the question of whether holographic algorithms solve

#P-hard problems?

We need to answer this question in some framework.
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#CSP

A natural generalization of the Ising partition function is Counting Constraint

Satisfaction Problems (with weights).

▶ Vertex-coloring model — vertices are variables and edges are

functions.

▶ Edges (pairwise) → hyperedges (multi-party).

Name #CSP(F)

Instance A bipartite graph G = (V , C, E) and a mapping π : C → F

Output The quantity: ∑
σ:V→{0,1}

∏
c∈C

fc
(
σ |N(c)

)
,

where N(c) are the neighbors of c and fc = π(c) ∈ F.
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Counting Perfect Matchings

Perfect Matchings

f1 f2 f1

f3

f1f3f4

f2
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Holant Problems

#PM is provably not expressible in vertex assignment models.

(see e.g. [Freedman, Lovász, and Schrijver 07])

Edge-coloring models — edges are variables and vertices are functions.

Name Holant(F)

Instance A graph G = (V , E) and a mapping π : V → F

Output The quantity: ∑
σ:E→{0,1}

∏
v∈V

fv
(
σ |E(v)

)
,

where E(v) are the incident edges of v and fv = π(v) ∈ F.
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More general than #CSP:

#CSP(F) ≡T Holant(EQ ∪ F),

where EQ = {=1,=2,=3, . . . } is the set of equalities of all arities.

Equivalent formulation: Tensor network contraction . . .

Pl-Holant(F) denotes the version where instances are all planar.
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#PM as a Holant

Put functions EXACTONE (EO) on nodes (edges are variables).

#PM is then the partition function:

#PM =
∑

σ:E→{0,1}

∏
v∈V

EOd(σ |E(v)).

EO3 EO4 EO3

EO4

EO3EO4EO3

EO3
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Complexity Classifications

Counting problems with local constraints are usually classified into:

1. P-time solvable over general graphs;

2. #P-hard over general graphs but P-time solvable over planar graphs;

3. #P-hard over planar graphs.

Category (2) is always captured by holographic algorithms with matchgates.

Examples include:

Tutte polynomials [Vertigan 91], [Vertigan 05].

Spin systems [Kowalczyk 10], [Cai, Kowalczyk, Williams 12].

#CSP [Cai, Lu, Xia 10], [G. and Williams 13].
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Main Result

Let F be a set of symmetric complex-weighted Boolean functions.

Pl-Holant(F) is #P-hard unless

1. Holant(F) is tractable;

2. there exists a holographic transformation under which F is matchgate,

3. F defines a special class of problems to count orientations.

Category (1) is characterized in [Cai, G., Williams 13].

Category (3) is not captured by holographic algorithms with matchgates!
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New Planar Tractable Case

Counting Orientations, where two types of nodes are allowed:

1. Exactly one edge coming in;

2. All edges coming in or going out (either a sink or a source).

Moreover, we require that the gcd of the degrees of type 2 nodes is at

least 5.

Then the problem is tractable.
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#PM in Planar Hypergraphs

As a special case of our result, consider the following problem.

Name #Planar-Hyper-PM(S)

Instance A hypergraph H whose incidence graph is planar, and

hyperedge sizes are prescribed by S.

Output The number of perfect matchings in H.

Let t = gcd(S).

If t ⩾ 5 or S ⊆ {1, 2},

then #Planar-Hyper-PM(S) is computable in polynomial time.

Otherwise t ⩽ 4, S ̸⊆ {1, 2}, and #Planar-Hyper-PM(S) is #P-hard.
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The Algorithm

The algorithm is based on recursively simplifying the instance, until it

can be solved by known algorithms such as FKT.

The planar constraint guarantees the existence of certain structures

that can be simplified.

Some steps of the process may provide orientations inconsistent with

the original instance, but we can keep track of enough information to

go back and check.

Tractable mainly due to degree rigidity.
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Examplary Planar Structures

Lemma
Let G = (L ∪ R, E) be a planar bipartite graph with parts L and R.

Every vertex in L has degree at least 5;

every vertex in R has degree at least 3.

If G is simple, then there exists one of the two wheel structures in G.

· · ·

· · ·· · ·

(a) Type 1

· · · · · ·

· · ·· · ·

(b) Type 2
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A Score Based Proof

Assign a score sv to each vertex v ∈ V so that∑
v∈V

sv = |V |− |E |+ |F | = 2 > 0.

▶ |V |: +1 each;

▶ |F |: 1
k each;

▶ −|E |: − 7
12 for degree 3 and − 5

12 for the other, or − 1
2 each.

If no wheel structure exists, then there exists a 1-1 mapping between

positive vertices and negative vertices, and negative scores are larger.

Hence the total score has to be negative. Contradiction.
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Proof Roadmap of the Main Theorem

Identification

of tractable

signatures

Previous

dichotomy

theorems

New

hardness

proofs

Single

signature

dichotomy

Mixing

New

tractable

problems

Pl-#CSP2

dichotomy

p. 63—p. 128

Final

dichotomy
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Guidance or Misguidance?

We start the whole project with the belief that HA with matchgates captures

all planar tractable cases . . .

. . . until we were stuck proving Pl-#CSPd dichotomies.

(The non-planar version is an important stepping stone in previous work

[Huang and Lu 12] and [Cai, G., Williams 13].)

The natural generalization for d ⩾ 5 does not hold, and in the end we proved

the d = 2 case (where the natural generalization does hold).

However lots of progress was made due to this belief.
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Concluding Remarks

A sharp algebraic separation exists between tractable and #P-hard

problems.

There exists planar tractable cases that are not captured by

holographic algorithms with matchages (or FKT).
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Thank You!
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