Counting and sampling algorithms at low temperature

New frontiers in approximate counting **STOC 2020**

Will Perkins (UIC)

Algorithms and phase transitions

- regime (strong interactions)?
- **Eric Vigoda**

• When are phase transitions barriers to efficient algorithms?

• What algorithmic techniques can work in the low-temperature

 Based on joint work with many coauthors: Christian Borgs, Sarah Cannon, Jennifer Chayes, Zongchen Chen, Andreas Galanis, Leslie Goldberg, Tyler Helmuth, Matthew Jenssen, Peter Keevash, Guus Regts, James Stewart, Prasad Tetali,

- models
- transitions connected?
- Some low temperature algorithms
- Many open problems!

Outline

High and low temperature regimes in the Potts and hard-core

• What is a phase transition? How are algorithms and phase

Potts model

Probability distribution on q-colorings $\sigma: V(G) \rightarrow [q]$ of the vertices of G:

 $\mu(\sigma)$ =

$m(G,\sigma)$ is the number of monochromatic edges of G under σ $Z_G(\beta) = \sum e^{\beta m(G,\sigma)}$ is the partition function. $\sigma \in [q]^V$

 β is the inverse temperature. $\beta \ge 0$ is the **ferromagnetic** case: same color preferred

$$= \frac{e^{\beta m(G,\sigma)}}{Z_G(\beta)}$$

Potts model

High temperature (β small)

Low temperature (β large)

Phase transitions

- On \mathbb{Z}^d the Potts model undergoes a **phase transition** as β increases
- For small β influence of boundary conditions diminishes as volume grows; for large β influence of boundary conditions persists in infinite volume
- For small β , correlations decay exponentially fast, configurations are disordered (on, say, the discrete torus)
- For large β , we have long range order (and a dominant color in a typical configuration)
- For small β , Glauber dynamics **mix rapidly**; for large β **mix slowly**

Hard-core model

The hard-core model is a simple model of a gas.

Probability distribution on independent sets of G:

$$\mu_{\lambda}(I) = \lambda^{|I|} / Z_G($$

where
$$Z_G(\lambda) = \sum_I \lambda^{|I|}$$
 is the particular of I

 $\lambda \geq 0$ is the **fugacity**. Larger λ means stronger interaction

- (λ)
- artition function (independence polynomial)

Hard-core model

On \mathbb{Z}^d the hard-core model exhibits a **phase transition** as λ changes

Unoccupied

Even occupied

Odd occupied

Low fugacity High temperature High fugacity Low temperature

Ground states

and all odd occupied configurations.

The ground states (maximum weight configurations) of the ferromagnetic Potts model are simple: they are the q monochromatic configurations.

The ground states of the hard-core model on \mathbb{Z}^d are also simple: the all even

- Two main computational problems associated to a statistical physics model: approximate the partition function (counting) and output an approximate sample from the model (sampling)
- Many different approaches including Markov chains, correlation decay method, polynomial interpolation.

- These algorithmic approaches work in great generality at high temperatures (weak interactions) but are **limited by phase transitions**
- Local Markov chains mix slowly at low temperatures
- Long-range correlations emerge on trees and graphs at low temperatures
- Complex zeroes of partition functions accumulate at a phase transition point

- How to circumvent these barriers?
- Design Markov chains on a different state space or with different transitions to avoid bottlenecks: Jerrum-Sinclair algorithm for the Ising model; Swendsen-Wang dynamics for the Potts model
- Today's talk: use structure of the phase transition to design efficient algorithms

- Phase transitions come in many different varieties!
- Compare hard-core model on random regular graphs to the hard-core model on random regular bipartite graphs (replica symmetry breaking vs replica symmetric)
- Ferro Potts and hard-core on bipartite graphs: easy to find a ground state. Does this mean it is easy to count and sample?
- Models like these are distinctive for both phase transitions and algorithms

- independent sets in a bipartite graph G.
- to approximate as BIS.
- bipartite graphs, etc..)
- #BIS-hardness even on graphs of maximum degree $\Delta \geq 3$

#BIS

No known FPTAS/FPRAS or NP-hardness for counting the number of

• Dyer, Goldberg, Greenhill, Jerrum: defined a class of problems as hard

 Many natural approximate counting problems are #BIS-hard (counting) stable matchings, ferromagnetic Potts model, counting colorings in

- #BIS plays a role in approximate counting similar to that of Unique **Games** in optimization - not known to be hard or easy and captures complexity of many interesting problems
- Caveat / open problem: many problems are known to be #BIS-hard (like ferro Potts) but not known to be **#BIS equivalent**

#BIS

Algorithms for #BIS-hard problems

- We can exploit the structure of instances to design efficient algorithms for models like Potts and hard-core at low temperatures
- Results for subgraphs of \mathbb{Z}^d , random regular graphs, expander graphs
- Uses techniques from statistical physics and computer science used to understand phase transitions and prove slow mixing results for Markov chains

Algorithms for #BIS-hard problems

- single ground state (e.g. mostly red, mostly green, mostly blue core)
- **small** (a bottleneck!)
- behave like a new high-temperature spin model

• First step is to separate the state space into pieces dominated by a configurations for Potts; mostly even and mostly odd occupied for hard-

Prove that contributions from intermediate configurations is exponentially

Control each piece by showing that deviations from the ground state

- Example: hard-core model on unbalanced bipartite graphs (different degrees or fugacities for left/right vertices (paper w/ S. Cannon)
- Setting: G is a biregular, bipartite graph with degrees Δ_I , Δ_R fugacity $\lambda = 1$.
- Condition: $\Delta_R \ge 10\Delta_L \log(\Delta_L)$
- and **slow mixing** in random graphs

• This includes regimes with non-uniqueness on the infinite biregular tree

• We obtain an **FPTAS** and point-to-point correlation decay on all graphs

- We expect to see many left occupied vertices and few right occupied vertices in a typical independent set
- We think of the `ground state' as the collection of **independent sets with no right occupied vertices**: these contribute $(1 + \lambda)^{|L|}$ to the partition function
- Deviations from this ground state are occupied right vertices

- A polymer γ is a 2-linked set of vertices from R
- The weight of a polymer is $W_{\gamma} =$
- Two polymers are compatible if their union is not 2-linked

$Z_G(\lambda) = (1 + \lambda)^{|L|} \sum |w_{\gamma}|$ γEI

where the sum is over collections of compatible polymers

$$\frac{\lambda^{|\gamma|}}{(1+\lambda)^{|N(\gamma)|}}$$

How to analyze this new model?

•
$$|N(\gamma)| \ge \frac{\Delta_R}{\Delta_L} |\gamma| \text{ so } w_{\gamma} \le 2^{-\frac{\Delta_R}{\Delta_L}}$$

- Exponentially decaying weights when $\Delta_R > \Delta_L$
- We have switched from strong interactions to weak interactions! Low temperature to high temperature

 $\sum_{L}^{\frac{R}{L}|\gamma|}$ at $\lambda = 1$

Cluster expansion

- The cluster expansion is a tool from mathematical physics for analyzing probability laws on 'dilute' collections of geometric objects.
- It applies to a very general weighted independent set model on a graph with inhomogeneous weights and unbounded vertex degrees. Each vertex represents a geometric object, neighboring objects overlap.

 $Z = \sum | w_{\gamma}|$ $\gamma \in \Gamma$

Cluster expansion

 The cluster expansion says that, under some conditions, $\log Z =$

- The sum is over connected collections of polymers. Informally, the conditions say that the weights are exponentially small in the size of the contours.
- The algorithm is to truncate the cluster expansion (like Barvinok's algorithm of truncating the Taylor series)

$$\sum_{\Gamma_c} \Phi(\Gamma_c) \prod_{\gamma \in \Gamma_c} w_{\gamma}$$

Making the cluster expansion algorithmic requires:

subgraphs in a bounded degree graph

Computing polymer weights

Sampling is done via self-reducibility on the level of polymers

- **Enumerating polymers** of size $O(\log n)$: essentially enumerating connected

Markov chains

- The results and techniques suggest a simpler and faster sampling algorithm: start with the all left occupied independent set and run Glauber dynamics.
- stationarity from a good start.
- chains from each. Fast mixing within a state
- How to prove that this works?

• This chain may mix slowly from a worst-case start but converge close to

More generally for models with multiple dominant ground states, start

Markov chains

- polymer at a time
- mixes rapidly
- **step** efficiently
- rejection) but not O(n log n) as we'd expect

 Some progress w/ Chen, Galanis, Goldberg, Stewart, Vigoda: define a Markov chain on polymer configurations, adding or removing a single

• Under weaker conditions than cluster expansion convergence, this chain

• Need stronger than cluster expansion conditions to implement a single

• Comparison techniques give polynomial-time mixing within a state (with

Perturbative Approach

- parameters
- Semi-exception is large q Potts and random cluster models: can get efficient algorithms at all temperatures (on \mathbb{Z}^d w/ Borgs-Chayes-Helmuth-Tetali; on random graphs w/ Helmuth-Jenssen)
- all fugacities λ ?

• The cluster expansion is a perturbative tool in statistical physics: needs some parameter to get large to ensure sufficient exponential decay

In general we can't expect the techniques to work in a sharp range of

• Can we sample from the hard-core model on random bipartite graphs for

Summary

- and complex
- easy to find but complexity of approximate counting is unknown
- **low temperatures**
- Two tools: polymer models and the cluster expansion

The connection between phase transitions and algorithms is fascinating

• **#BIS** captures a class of counting problems in which ground states are

On structured instances probabilistic tools can be made algorithmic at

Open Questions

- algorithms
- Markov chains beyond mixing times using well chosen starting configurations to sample efficiently despite slow mixing
- theorems and efficient algorithms for ferro Ising and matchings
- Make **non-perturbative** tools algorithmic

• More algorithms for #BIS - more classes of graphs, better running times (subexponential?) see Goldberg-Lapinskas-Richerby for exponential-time

 Deeper understanding of the relationship between phase transitions and algorithms: explanation for 'coincidence' of Lee-Yang and Heilmann-Lieb

Open Questions

- algorithms
- Markov chains beyond mixing times using well chosen starting configurations to sample efficiently despite slow mixing
- theorems and efficient algorithms for ferro Ising and matchings
- Make **non-perturbative** tools algorithmic

• More algorithms for #BIS - more classes of graphs, better running times (subexponential?) see Goldberg-Lapinskas-Richerby for exponential-time

 Deeper understanding of the relationship between phase transitions and algorithms: explanation for 'coincidence' of Lee-Yang and Heilmann-Lieb

