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Algorithms and phase transitions
• When are phase transitions barriers to efficient algorithms?


• What algorithmic techniques  can work in the low-temperature 
regime (strong interactions)?


• Based on joint work with many coauthors: Christian Borgs, 
Sarah Cannon, Jennifer Chayes, Zongchen Chen, Andreas 
Galanis, Leslie Goldberg, Tyler Helmuth, Matthew Jenssen, 
Peter Keevash, Guus Regts, James Stewart, Prasad Tetali, 
Eric Vigoda



Outline

• High and low temperature regimes in the Potts and hard-core 
models


• What is a phase transition? How are algorithms and phase 
transitions connected?


• Some low temperature algorithms


• Many open problems!



Potts model
Probability distribution on q-colorings   of the vertices of G:σ : V(G) → [q]

μ(σ) =
eβm(G,σ)

ZG(β)

 is the number of monochromatic edges of G under 

 

m(G, σ) σ

 is the inverse temperature.   is the ferromagnetic case: same color preferred β β ≥ 0

   is the partition function. ZG(β) = ∑
σ∈[q]V

eβm(G,σ)



Potts model

High temperature (  small)β Low temperature (  large)β



Phase transitions
• On  the Potts model undergoes a phase transition as  increases


• For small  influence of boundary conditions diminishes as volume grows; 
for large  influence of boundary conditions persists in infinite volume 

• For small , correlations decay exponentially fast, configurations are 
disordered (on, say, the discrete torus)


• For large , we have long range order (and a dominant color in a typical 
configuration)


• For small , Glauber dynamics mix rapidly;  for large  mix slowly
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Hard-core model
The hard-core model is a simple model of a gas.


Probability distribution on independent sets of G:





where   is the partition function (independence polynomial)

μλ(I) = λ|I|/ZG(λ)

ZG(λ) = ∑
I

λ|I|

 is the fugacity.  Larger  means stronger interactionλ ≥ 0 λ



Hard-core model
On  the hard-core model exhibits a phase transition as  changesℤd λ

Low fugacity High fugacity

Unoccupied

Even occupied

Odd occupied

High temperature Low temperature



Ground states
The ground states (maximum weight configurations) of the ferromagnetic 
Potts model are simple: they are the q monochromatic configurations.

The ground states of the hard-core model on  are also simple: the all even 
and all odd occupied configurations.  

ℤd



Algorithms

• Two main computational problems associated to a statistical physics 
model: approximate the partition function (counting) and output an 
approximate sample from the model (sampling)


• Many different approaches including Markov chains, correlation decay 
method, polynomial interpolation. 



Algorithms

• These algorithmic approaches work in great generality at high 
temperatures (weak interactions) but are limited by phase transitions


• Local Markov chains mix slowly at low temperatures


• Long-range correlations emerge on trees and graphs at low 
temperatures


• Complex zeroes of partition functions accumulate at a phase transition 
point



Algorithms

• How to circumvent these barriers?


• Design Markov chains on a different state space or with different 
transitions to avoid bottlenecks: Jerrum-Sinclair algorithm for the Ising 
model;  Swendsen-Wang dynamics for the Potts model 


• Today’s talk: use structure of the phase transition to design efficient 
algorithms



Algorithms
• Phase transitions come in many different varieties!


• Compare hard-core model on random regular graphs to the hard-core 
model on random regular bipartite graphs (replica symmetry breaking vs 
replica symmetric)


• Ferro Potts and hard-core on bipartite graphs: easy to find a ground 
state.  Does this mean it is easy to count and sample?  


• Models like these are distinctive for both phase transitions and 
algorithms



#BIS
• No known FPTAS/FPRAS or NP-hardness for counting the number of 

independent sets in a bipartite graph G.


• Dyer, Goldberg, Greenhill, Jerrum: defined a class of problems as hard 
to approximate as BIS.  


• Many natural approximate counting problems are #BIS-hard (counting 
stable matchings, ferromagnetic Potts model, counting colorings in 
bipartite graphs, etc..)


• #BIS-hardness even on graphs of maximum degree Δ ≥ 3



#BIS

• #BIS plays a role in approximate counting similar to that of Unique 
Games in optimization - not known to be hard or easy and captures 
complexity of many interesting problems


• Caveat / open problem: many problems are known to be #BIS-hard (like 
ferro Potts) but not known to be #BIS equivalent



Algorithms for #BIS-hard problems

• We can exploit the structure of instances to design efficient algorithms 
for models like Potts and hard-core at low temperatures


• Results for subgraphs of , random regular graphs, expander graphs


• Uses techniques from statistical physics and computer science used to 
understand phase transitions and prove slow mixing results for Markov 
chains

ℤd



Algorithms for #BIS-hard problems

• First step is to separate the state space into pieces dominated by a 
single ground state (e.g. mostly red, mostly green, mostly blue 
configurations for Potts;  mostly even and mostly odd occupied for hard-
core)


• Prove that contributions from intermediate configurations is exponentially 
small (a bottleneck!)


• Control each piece by showing that deviations from the ground state 
behave like a new high-temperature spin model



Unbalanced bipartite graphs
• Example: hard-core model on unbalanced bipartite graphs (different 

degrees or fugacities for left/right vertices (paper w/ S. Cannon)


• Setting: G is a biregular, bipartite graph with degrees  fugacity 
.  


• Condition:  


• This includes regimes with non-uniqueness on the infinite biregular tree 
and slow mixing in random graphs


• We obtain an FPTAS and point-to-point correlation decay on all graphs

ΔL, ΔR
λ = 1

ΔR ≥ 10ΔL log(ΔL)



Unbalanced bipartite graphs
• We expect to see many left occupied vertices and few right occupied 

vertices in a typical independent set


• We think of the `ground state’ as the collection of independent sets with 
no right occupied vertices: these contribute  to the partition 
function


• Deviations from this ground state are occupied right vertices

(1 + λ)|L|



Unbalanced bipartite graphs
• A polymer  is a 2-linked set of vertices from R


• The weight of a polymer is   


• Two polymers are compatible if their union is not 2-linked

γ

wγ =
λ|γ|

(1 + λ)|N(γ)|

ZG(λ) = (1 + λ)|L| ∑
Γ

∏
γ∈Γ

wγ

where the sum is over collections of compatible polymers



Unbalanced bipartite graphs
• How to analyze this new model?  


•   so   at 


• Exponentially decaying weights when 


• We have switched from strong interactions to weak interactions!  Low 
temperature to high temperature

|N(γ) | ≥
ΔR

ΔL
|γ | wγ ≤ 2− ΔR

ΔL
|γ| λ = 1

ΔR > ΔL



Cluster expansion
• The cluster expansion is a tool from mathematical physics for analyzing 

probability laws on ‘dilute’ collections of geometric objects.


• It applies to a very general weighted independent set model — on a 
graph with inhomogeneous weights and unbounded vertex degrees. Each 
vertex represents a geometric object, neighboring objects overlap.

Z = ∑
Γ

∏
γ∈Γ

wγ



Cluster expansion

• The cluster expansion says that, under some conditions,

log Z = ∑
Γc

Φ(Γc) ∏
γ∈Γc

wγ

• The sum is over connected collections of polymers. Informally, the 
conditions say that the weights are exponentially small in the size of the 
contours.


• The algorithm is to truncate the cluster expansion (like Barvinok’s 
algorithm of truncating the Taylor series)



Algorithms
Making the cluster expansion algorithmic requires:


Enumerating polymers of size : essentially enumerating connected 
subgraphs in a bounded degree graph


Computing polymer weights 


Sampling is done via self-reducibility on the level of polymers

O(log n)



Markov chains
• The results and techniques suggest a simpler and faster sampling 

algorithm: start with the all left occupied independent set and run 
Glauber dynamics. 


• This chain may mix slowly from a worst-case start but converge close to 
stationarity from a good start.


• More generally for models with multiple dominant ground states, start 
chains from each.  Fast mixing within a state


• How to prove that this works?  



Markov chains
• Some progress w/ Chen, Galanis, Goldberg, Stewart, Vigoda: define a 

Markov chain on polymer configurations, adding or removing a single 
polymer at a time


• Under weaker conditions than cluster expansion convergence, this chain 
mixes rapidly


• Need stronger than cluster expansion conditions to implement a single 
step efficiently


• Comparison techniques give polynomial-time mixing within a state (with 
rejection) but not O(n log n) as we’d expect



Perturbative Approach
• The cluster expansion is a perturbative tool in statistical physics: needs 

some parameter to get large to ensure sufficient exponential decay


• In general we can’t expect the techniques to work in a sharp range of 
parameters


• Semi-exception is large q Potts and random cluster models: can get 
efficient algorithms at all temperatures (on  w/ Borgs-Chayes-
Helmuth-Tetali;  on random graphs w/ Helmuth-Jenssen)


• Can we sample from the hard-core model on random bipartite graphs for 
all fugacities ?

ℤd

λ



Summary

• The connection between phase transitions and algorithms is fascinating 
and complex


• #BIS captures a class of counting problems in which ground states are 
easy to find but complexity of approximate counting is unknown


• On structured instances probabilistic tools can be made algorithmic at 
low temperatures 

• Two tools: polymer models and the cluster expansion 



Open Questions
• More algorithms for #BIS - more classes of graphs, better running times 

(subexponential?)  see Goldberg-Lapinskas-Richerby for exponential-time 
algorithms


• Markov chains beyond mixing times - using well chosen starting 
configurations to sample efficiently despite slow mixing


• Deeper understanding of the relationship between phase transitions and 
algorithms: explanation for ‘coincidence’ of Lee-Yang and Heilmann-Lieb 
theorems and efficient algorithms for ferro Ising and matchings


• Make non-perturbative tools algorithmic



Open Questions

Thank you!

• More algorithms for #BIS - more classes of graphs, better running times 
(subexponential?)  see Goldberg-Lapinskas-Richerby for exponential-time 
algorithms


• Markov chains beyond mixing times - using well chosen starting 
configurations to sample efficiently despite slow mixing


• Deeper understanding of the relationship between phase transitions and 
algorithms: explanation for ‘coincidence’ of Lee-Yang and Heilmann-Lieb 
theorems and efficient algorithms for ferro Ising and matchings


• Make non-perturbative tools algorithmic


