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Deterministic vs randomised counting

Estimating the volume of a convex body:

• No polynomial-time deterministic approximation algorithm using membership queries only;
(Elekes 1986, Bárány and Füredi 1987)

• Efficient randomised approximation algorithm does exist!
(Dyer, Frieze, and Kannan 1991)

However, Weitz (2006) gave an FPTAS for the hardcore model up to the tree uniqueness threshold,
whose randomised counterparts are not known until very recently (Anari, Liu, and Oveis Gharan,
2020).

Since then, deterministic counting algorithms are catching up in many fronts.



The hardcore model

The Gibbs distribution for the hardcore model:

for an independent set I, µ(I) = λ|I|

Z
, where Z =

∑
I∈I λ

|I|

We often want to approximate Z, or equivalently, sample
from µ.

Standard Glauber dynamics converges to µ.



Glauber dynamics

Systematic scan Glauber dyanmics:

Pick the next vertex v, resample its state conditioned on its
neighbours

For the resampling step, draw uniform r ∼ [0, 1]:

• if one of its neighbour is occupied,

make v unoccupied regardless of r;

• if none of its neighbour is occupied,

make v unoccupied if r ⩽ 1
1+λ ; occupied otherwise.

In either case, v is unoccupied if r ⩽ 1
1+λ .
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Counting to sampling reduction

Standard self-reduction (Jerrum, Valiant, and Vazirani, 1986)

1

Z
=

Z(σv1 = 0)

Z
· Z(σv1 = 0, σv2 = 0)

Z(σv1 = 0)
· · · · · Z(∧

n
i=1σvi = 0)

Z(∧n−1i=1 σvi = 0)

Each term
Z(∧j

i=1σvi
=0)

Z(∧j−1
i=1σvi

=0)
is the marginal probability of vj where ∀i < j, vi is pinned to 0.

Equivalently, we can remove vi for all i < j from G and consider the marginal of vj.

It suffices to approximate these marginals within ε
n

to get an ε-approximation to Z.
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Equivalently, we can remove vi for all i < j from G and consider the marginal of vj.

It suffices to approximate these marginals within ε
n

to get an ε-approximation to Z.

While the whole Glauber dynamics requires a lot of time / randomness to simulate, can we draw
from for the marginal distribution more efficiently?

For example, instead of O(n logn), can we use O(logn) time / random variables for each vertex?
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Coupling towards the past

Resolve(v, t)

Xv = 0

r
t ⩽

1
1
+
λ

∀(u, v) ∈ E,
Resolve(u, updt(u))

rt >
1
1+λ

∃u
, X
u
=
1

Xv = 1

∀
u
,
X
u
=

0

updt(u) is the

last update time

of u before t

When resolving (v, t),

first check if Xt(v) is

known, or if rt has

been drawn before
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last update time

of u before t
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This can be viewed as either

• a coupling with the stationary process, or

• a grand coupling (using the same rt) for all possible starting X0.

This grand coupling is very similar to Coupling From The Past by Wilson and Propp (1996).



Truncation

Running CTTP till it terminates yields a perfect sample.

Truncate it if ⩾ T random variables are revealed.

dTV
(
µv, µalg

)
⩽ Pr[ Truncation ]

In a typical application (such as λ < 1
∆−1

for hardcore),
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Thus, taking T = O(log n
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(
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ε

)C
random choices, we

can deterministically estimate the marginal probability with ε
n

error.
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Anand–Jerrum (2022) algorithm

Our algorithm is inspired by the algorithm of Anand and Jerrum (2022):

• recursive marginal sampler

• designed for spin systems on infinite graphs

• constant expected running time with exponential tail bounds

• uses strong spatial mixing

The main difference is that in Anand–Jerrum, once a vertex is fixed, it has to stay fixed in all future
recursive calls.



What are these algorithms good for?

Pros

• Approximate samples from the marginal distribution in O(logn) time

• Can be used to perfectly sample a full configuration in linear expected running time

• Deterministic approximation algorithm

Cons

• Weaker bounds for spin systems

For hardcore models in bounded degree graphs, CTTP works if λ ⩽ 1
∆−1 , smaller than the

critical λc(∆) ≈ e
∆

(Weitz, 2006).



Applications
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CTTP for HIS

Theorem

Let k ⩾ 2 and ∆ ⩾ 2 be two integers such that ∆ ⩽ 1√
8ek2

· 2k
2 . There is an FPTAS for the number

of independent sets in k-uniform hypergraphs with maximum degree ∆.

Bezáková, Galanis, Goldberg, G., and Štefankovič (2019): ∆ ⩾ 5 · 2k
2 , NP-hard

Hermon, Sly, and Zhang (2019): ∆ ⩽ c2
k
2 , randomised algorithm

Qiu, Wang, and Zhang (2022): ∆ ⩽ c
k
· 2k

2 , perfect sampler

He, Wang, and Yin (2023): ∆ ≲ 2
k
5 , deterministic algorithm
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A colouring σ : V → [q] is proper if no e ∈ E is monochromatic.

The Markov chain runs on a projected state space.
(Feng, G., Yin, and Zhang, 2021; Feng, He, and Yin, 2021)

Instead of assigning colours, we divide q colours into s “buckets”.
(Eventually we pick s = q2/3.)

The local lemma ensures that with suitable parameters, every ver-
tex’s marginal distribution, under an arbitrary conditioning, is
close to uniform.



Detour — Lovász local lemma

The original local lemma (Erdős and Lovász 1975) was introduced to show the existence of 3-colourings in hypergraphs.

LetH = (V,E) be the hypergraph, and Γ(e) be the set of hyperedges intersecting e ∈ E. Then |Γ(e)| ⩽ (∆− 1)k.

Theorem (Lovász 1977)

If there exists an assignment x : E → (0,1) such that for every e ∈ E we have

Pr(e is monochromatic) ⩽ x(e)
∏

e′∈Γ(e)

(
1− x(e ′)

)
, (1)

then a proper colouring exists.

Typically we set x(e) = 1
k∆ . It gives

x(e)
∏

e′∈Γ(e)

(
1− x(e ′)

) ⩾ 1

k∆

(
1−

1

k∆

)k(∆−1)

⩾ 1

ek∆
. (2)

Notice that Pr(e is monochromatic) = q

qk
= 1
qk−1 . Thus∆ ⩽ qk−1

ek suffices.
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Local uniformity

Let µ(·) be the Gibbs (uniform) distribution on all proper colourings,

The local lemma also gives an upper bound for any event under µ(·).

Theorem (Haeupler, Saha, and Srinivasan 2011)

If the local lemma holds for every e ∈ E, then for any event B, µ(B) ⩽ Pr(B)
∏
e∈Γ(B) (1− x(e))

−1
.

This implies that buckets are almost uniform, even with arbitrary conditioning. (Recall that s = q2/3.)

Lemma (local uniformity)

If ⌊q/s⌋k ⩾ 4eqs∆k, then for any v ∈ V , any subsetΛ ⊆ V \{v} and partial configuration σΛ ∈ [s]Λ, it follows that

∀j ∈ [s],
1

s

(
1−

1

4s

)
⩽ ψσΛv (j) ⩽ 1

s

(
1+

1

s

)
.

Namely, the probability of getting ⊥ is always small.

From this we need∆ ≲ (
q
s

)k.
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Complications in HC

There are a few issues with CTTP for hypergraph colourings.

1. We run Glauber dynamics in the projected state space, meaning that the “boundary” of a
vertex v needs to adapt to the current configuration.

We find a boundary such that all crossing hyperedges are non-monochromatic.

2. We cannot do the telescoping product reduction for the marginals. Instead, we consider a
sequence of hypergraphs by removing hyperedges one by one.

Thus we need to sample the marginal distribution of k vertices, instead of one. Some extra
care for consistency is required.

3. The above only samples buckets. To get the colours, we condition on the buckets of all vertices
within the boundary of the last update, and use brute force to get the colours.
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CTTP for HC

Theorem

Let k ⩾ 20, ∆ ⩾ 2 and q be three integers satisfying ∆ ⩽
(
q
64

)k−5
3 . There is an FPTAS for the

number of proper q-colourings in k-uniform hypergraphs with maximum degree ∆.

Galanis, G., and Wang (2022+): for even q, ∆ ⩾ 5 · qk
2 , NP-hard

Jain, Pham, and Vuong (2021a): ∆ ≲ q
k
3 , randomised algorithm

He, Sun, and Wu (2021): ∆ ≲ q
k
3 , perfect sampler

He, Wang, and Yin (2023): ∆ ≲ q
k
5 , deterministic algorithm

Other previous work:

Bordewich, Dyer, and Karpinski (2008); G., Liao, Lu, and Zhang (2019); Feng, He, and Yin (2021);
Jain, Pham, and Vuong (2021b)



CTTP for HC

Theorem

Let k ⩾ 20, ∆ ⩾ 2 and q be three integers satisfying ∆ ⩽
(
q
64

)k−5
3 . There is an FPTAS for the

number of proper q-colourings in k-uniform hypergraphs with maximum degree ∆.

Galanis, G., and Wang (2022+): for even q, ∆ ⩾ 5 · qk
2 , NP-hard

Jain, Pham, and Vuong (2021a): ∆ ≲ q
k
3 , randomised algorithm

He, Sun, and Wu (2021): ∆ ≲ q
k
3 , perfect sampler

He, Wang, and Yin (2023): ∆ ≲ q
k
5 , deterministic algorithm

Other previous work:

Bordewich, Dyer, and Karpinski (2008); G., Liao, Lu, and Zhang (2019); Feng, He, and Yin (2021);
Jain, Pham, and Vuong (2021b)



CTTP for HC

Theorem

Let k ⩾ 20, ∆ ⩾ 2 and q be three integers satisfying ∆ ⩽
(
q
64

)k−5
3 . There is an FPTAS for the

number of proper q-colourings in k-uniform hypergraphs with maximum degree ∆.

Galanis, G., and Wang (2022+): for even q, ∆ ⩾ 5 · qk
2 , NP-hard

Jain, Pham, and Vuong (2021a): ∆ ≲ q
k
3 , randomised algorithm

He, Sun, and Wu (2021): ∆ ≲ q
k
3 , perfect sampler

He, Wang, and Yin (2023): ∆ ≲ q
k
5 , deterministic algorithm

Other previous work:

Bordewich, Dyer, and Karpinski (2008); G., Liao, Lu, and Zhang (2019); Feng, He, and Yin (2021);
Jain, Pham, and Vuong (2021b)



CTTP for HC

Theorem

Let k ⩾ 20, ∆ ⩾ 2 and q be three integers satisfying ∆ ⩽
(
q
64

)k−5
3 . There is an FPTAS for the

number of proper q-colourings in k-uniform hypergraphs with maximum degree ∆.

Galanis, G., and Wang (2022+): for even q, ∆ ⩾ 5 · qk
2 , NP-hard

Jain, Pham, and Vuong (2021a): ∆ ≲ q
k
3 , randomised algorithm

He, Sun, and Wu (2021): ∆ ≲ q
k
3 , perfect sampler

He, Wang, and Yin (2023): ∆ ≲ q
k
5 , deterministic algorithm

Other previous work:

Bordewich, Dyer, and Karpinski (2008); G., Liao, Lu, and Zhang (2019); Feng, He, and Yin (2021);
Jain, Pham, and Vuong (2021b)



CTTP for HC

Theorem

Let k ⩾ 20, ∆ ⩾ 2 and q be three integers satisfying ∆ ⩽
(
q
64

)k−5
3 . There is an FPTAS for the

number of proper q-colourings in k-uniform hypergraphs with maximum degree ∆.

Galanis, G., and Wang (2022+): for even q, ∆ ⩾ 5 · qk
2 , NP-hard

Jain, Pham, and Vuong (2021a): ∆ ≲ q
k
3 , randomised algorithm

He, Sun, and Wu (2021): ∆ ≲ q
k
3 , perfect sampler

He, Wang, and Yin (2023): ∆ ≲ q
k
5 , deterministic algorithm

Other previous work:

Bordewich, Dyer, and Karpinski (2008); G., Liao, Lu, and Zhang (2019); Feng, He, and Yin (2021);
Jain, Pham, and Vuong (2021b)



CTTP for HC

Theorem

Let k ⩾ 20, ∆ ⩾ 2 and q be three integers satisfying ∆ ⩽
(
q
64

)k−5
3 . There is an FPTAS for the

number of proper q-colourings in k-uniform hypergraphs with maximum degree ∆.

Galanis, G., and Wang (2022+): for even q, ∆ ⩾ 5 · qk
2 , NP-hard

Jain, Pham, and Vuong (2021a): ∆ ≲ q
k
3 , randomised algorithm

He, Sun, and Wu (2021): ∆ ≲ q
k
3 , perfect sampler

He, Wang, and Yin (2023): ∆ ≲ q
k
5 , deterministic algorithm

Other previous work:

Bordewich, Dyer, and Karpinski (2008); G., Liao, Lu, and Zhang (2019); Feng, He, and Yin (2021);
Jain, Pham, and Vuong (2021b)



A few words about the analysis

Recall that the truncation probability at T = O(logn) bounds the error in TV distance.

To bound the truncation probability, we consider the extended hypergraph, introduced by He, Sun,
and Wu (2021). It creates a copy of each variable every time it is updated.

If truncation happens, then there must be a large connected component in the extended hyper-
graph, inside which there are a linear fraction of variables getting ⊥ when they are first resolved.
The last event is very unlikely because of local uniformity from the local lemma.

This analysis requires ∆ ≲ sk/2. Recall that local uniformity requires ∆ ≲ (q/s)k.

Thus, the best we can do is ∆ ≲ qk/3 by choosing s ≈ q2/3.

This highlights a major difference between CTTP and Anand–Jerrum: in AJ, once a variable is
pinned, it will stay pinned for all future recursive calls. Thus, in the analysis above, it only con-
tributes once.
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Linear hypergraphs

Linear: ∀e1, e2 ∈ E, |e1 ∩ e2| ⩽ 1

Theorem

For any real δ > 0, let k ⩾ 25(1+δ)2

δ2
and ∆ ⩾ 2 be two integers such that ∆ ⩽ 1

100k3
2k/(1+δ). There is an

FPTAS for the number of independent sets in k-uniform linear hypergraphs with maximum degree ∆.

Theorem

For any read δ > 0, let k ⩾ 50(1+δ)2

δ2
, ∆ ⩾ 2 and q be three integers such that ∆ ⩽

(
q

50

)k−3
2+δ . There is an

FPTAS for the number of proper q-colourings in k-uniform linear hypergraphs with maximum degree ∆.

Thesematch various bounds for randomised algorithms in the leading order byHermon, Sly, andZhang (2019);
Qiu, Wang, and Zhang (2022); Feng, G., and Wang (2022).

For linear hypergraph independent sets, no hardness result is known.
For colouring linear hypergraphs, Galanis, G., andWang (2022+) showed that it isNP-hard to find a colouring
if ∆ ⩾ 2kqk logq+ 2q.



Linear hypergraphs

Linear: ∀e1, e2 ∈ E, |e1 ∩ e2| ⩽ 1

Theorem

For any real δ > 0, let k ⩾ 25(1+δ)2

δ2
and ∆ ⩾ 2 be two integers such that ∆ ⩽ 1

100k3
2k/(1+δ). There is an

FPTAS for the number of independent sets in k-uniform linear hypergraphs with maximum degree ∆.

Theorem

For any read δ > 0, let k ⩾ 50(1+δ)2

δ2
, ∆ ⩾ 2 and q be three integers such that ∆ ⩽

(
q

50

)k−3
2+δ . There is an

FPTAS for the number of proper q-colourings in k-uniform linear hypergraphs with maximum degree ∆.

Thesematch various bounds for randomised algorithms in the leading order byHermon, Sly, andZhang (2019);
Qiu, Wang, and Zhang (2022); Feng, G., and Wang (2022).

For linear hypergraph independent sets, no hardness result is known.
For colouring linear hypergraphs, Galanis, G., andWang (2022+) showed that it isNP-hard to find a colouring
if ∆ ⩾ 2kqk logq+ 2q.



Linear hypergraphs

Linear: ∀e1, e2 ∈ E, |e1 ∩ e2| ⩽ 1

Theorem

For any real δ > 0, let k ⩾ 25(1+δ)2

δ2
and ∆ ⩾ 2 be two integers such that ∆ ⩽ 1

100k3
2k/(1+δ). There is an

FPTAS for the number of independent sets in k-uniform linear hypergraphs with maximum degree ∆.

Theorem

For any read δ > 0, let k ⩾ 50(1+δ)2

δ2
, ∆ ⩾ 2 and q be three integers such that ∆ ⩽

(
q

50

)k−3
2+δ . There is an

FPTAS for the number of proper q-colourings in k-uniform linear hypergraphs with maximum degree ∆.
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For linear hypergraph independent sets, no hardness result is known.
For colouring linear hypergraphs, Galanis, G., andWang (2022+) showed that it isNP-hard to find a colouring
if ∆ ⩾ 2kqk logq+ 2q.
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For linear hypergraph independent sets, no hardness result is known.
NP-hard if ∆ ⩾ 2.5 · 2k by Qiu and Wang (2022).

For colouring linear hypergraphs, Galanis, G., andWang (2022+) showed that it isNP-hard to find a colouring
if ∆ ⩾ 2kqk logq+ 2q.



Spin systems

With little additional effort, one can show that the algorithm by Anand and Jerrum (2022) obtains
approximate marginal samples within O(logn) time for spin systems with strong spatial mixing
in subexponential neighbourhood growth graphs.

This implies various new FPTASes, most notably, for lattices, such as 6-colourings on Z2.

The main challenge remains:

find a O(logn)-time marginal sampler for the hardcore model or graph colourings under condi-
tions where other methods work.

For q-colouring graphs with degree ⩽ ∆, our method works when q = Ω(∆2), and yet many
rapid mixing or perfect sampling results are known when q > C∆ for various constant C.
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Open problems

• Hypergraph colourings: ∆ ≲ qk/2?

• Running time:

we take T = poly(∆, k, logq) log n
ε
, which leads to

(
n
ε

)poly(∆,k,logq)
for FPTAS.

Does f(∆, k, q)
(
n
ε

)c
-time FPTAS exist for a constant c?

• Can we derandomise other chains like the matching chain or the bases-exchange chain?
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Thank you!
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