Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

Heng Guo¹ and Pinyan Lu²

¹Queen Mary, University of London ²Shanghai University of Finance and Economics

Paris, France

Sep 08 2016

Partition function (normalizing factor):

$$Z_G(\beta) = \sum_{\sigma: V \to \{0,1\}} w(\sigma)$$

where $w(\sigma) = \beta^{mono(\sigma)}$, $mono(\sigma)$ is the number of monochromatic edges under σ .

2-State Spin System

More generally, three parameters β , γ , and λ .

 $w(\sigma) = \beta^{m_0(\sigma)} \gamma^{m_1(\sigma)} \lambda^{n_0(\sigma)}$ $m_0(\sigma): \# \text{ of } (0,0) \text{ edges};$ $m_1(\sigma): \# \text{ of } (1,1) \text{ edges};$ $n_0(\sigma): \# \text{ of } 0 \text{ vertices}.$

$$Z_G(\beta,\gamma,\lambda) = \sum_{\sigma: V \to \{0,1\}} w(\sigma)$$

Edge: $\begin{bmatrix} \beta & 1 \\ 1 & \beta \end{bmatrix}$ Vertex: $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

More generally, three parameters β , γ , and λ .

 $w(\sigma) = \beta^{m_0(\sigma)} \gamma^{m_1(\sigma)} \lambda^{n_0(\sigma)}$ $m_0(\sigma): \# \text{ of } (0,0) \text{ edges};$ $m_1(\sigma): \# \text{ of } (1,1) \text{ edges};$ $n_0(\sigma): \# \text{ of } 0 \text{ vertices}.$

$$Z_G(\beta,\gamma,\lambda) = \sum_{\sigma: V \to \{0,1\}} w(\sigma)$$

Edge:
$$\begin{bmatrix} \beta & 1 \\ 1 & \gamma \end{bmatrix}$$
 Vertex: $\begin{bmatrix} \lambda \\ 1 \end{bmatrix}$

More generally, three parameters β , γ , and λ .

 $w(\sigma) = \beta^{m_0(\sigma)} \gamma^{m_1(\sigma)} \lambda^{n_0(\sigma)}$ $m_0(\sigma): \# \text{ of } (0,0) \text{ edges};$ $m_1(\sigma): \# \text{ of } (1,1) \text{ edges};$ $n_0(\sigma): \# \text{ of } 0 \text{ vertices}.$

$$Z_G(\beta,\gamma,\lambda) = \sum_{\sigma: V \to \{0,1\}} W(\sigma)$$

Edge:
$$\begin{bmatrix} \beta & 1 \\ 1 & \gamma \end{bmatrix}$$
 Vertex: $\begin{bmatrix} \lambda \\ 1 \end{bmatrix}$

More generally, three parameters β , γ , and λ .

 $w(\sigma) = \beta^{m_0(\sigma)} \gamma^{m_1(\sigma)} \lambda^{n_0(\sigma)}$ $m_0(\sigma): \# \text{ of } (0,0) \text{ edges};$ $m_1(\sigma): \# \text{ of } (1,1) \text{ edges};$ $n_0(\sigma): \# \text{ of } 0 \text{ vertices}.$

$$Z_G(\beta,\gamma,\lambda) = \sum_{\sigma: V \to \{0,1\}} W(\sigma)$$

Edge:
$$\begin{bmatrix} \beta & 1 \\ 1 & \gamma \end{bmatrix}$$
 Vertex: $\begin{bmatrix} \lambda \\ 1 \end{bmatrix}$

More generally, three parameters β , γ , and λ .

 $w(\sigma) = \beta^{m_0(\sigma)} \gamma^{m_1(\sigma)} \lambda^{n_0(\sigma)}$ $m_0(\sigma): \# \text{ of } (0,0) \text{ edges};$ $m_1(\sigma): \# \text{ of } (1,1) \text{ edges};$ $n_0(\sigma): \# \text{ of } 0 \text{ vertices}.$

$$Z_G(\beta,\gamma,\lambda) = \sum_{\sigma: V \to \{0,1\}} w(\sigma)$$

Examples

• Ising model:
$$\begin{bmatrix} \beta & 1 \\ 1 & \beta \end{bmatrix}$$
 and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (no external field)
$$Z_G(\beta) = \sum_{\sigma: V \to \{0,1\}} \beta^{mono(\sigma)}$$

• Hardcore gas model: $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} \lambda \\ 1 \end{bmatrix}$ (Weighted independent set)

$$Z_G(\beta) = \sum_{|\alpha| = \alpha \text{ and a standard set } I} \lambda^{|I|}$$

Independent set I

Examples

• Ising model:
$$\begin{bmatrix} \beta & 1 \\ 1 & \beta \end{bmatrix}$$
 and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (no external field)
$$Z_G(\beta) = \sum_{\sigma: V \to \{0,1\}} \beta^{mono(\sigma)}$$

• Hardcore gas model: $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} \lambda \\ 1 \end{bmatrix}$ (Weighted independent set)

$$Z_G(\beta) = \sum_{\text{Independent set } I} \lambda^{|I|}$$

• Exact evaluating Z is **#P**-hard unless $\beta \gamma = 1$ or $\beta = \gamma = 0$ or $\lambda = 0$.

• Approximate the partition function Z.

Fully Polynomial-time Randomized Approximation Scheme (FPRAS) and FPTAS:
polynomial time in *n* and ¹ (multiplicative error c)

• Approximating Z is equivalent to approximate marginal probabilities p_v due to self-reducibility [Jerrum, Valiant, Vazirani 86].

- Exact evaluating Z is **#P**-hard unless $\beta \gamma = 1$ or $\beta = \gamma = 0$ or $\lambda = 0$.
- Approximate the partition function Z.
 - Fully Polynomial-time Randomized Approximation Scheme (FPRAS) and FPTAS: polynomial time in *n* and ¹/_ε (multiplicative error ε).
- Approximating Z is equivalent to approximate marginal probabilities
 p_v due to self-reducibility [Jerrum, Valiant, Vazirani 86].

- Exact evaluating Z is **#P**-hard unless $\beta \gamma = 1$ or $\beta = \gamma = 0$ or $\lambda = 0$.
- Approximate the partition function Z.
 - Fully Polynomial-time Randomized Approximation Scheme (FPRAS) and FPTAS:

polynomial time in *n* and $\frac{1}{\epsilon}$ (multiplicative error ϵ).

Approximating Z is equivalent to approximate marginal probabilities
 p_v due to self-reducibility [Jerrum, Valiant, Vazirani 86].

Edge Interaction

 $\begin{bmatrix} \beta & 1 \\ 1 & \gamma \end{bmatrix}$

• If $\beta \gamma = 1$, then the 2-spin system is trivial.

• Ferromagnetic Ising: $\beta \gamma > 1$.

Neighbours tend to have the same spin.

• Anti-ferromagnetic Ising: $\beta \gamma < 1$.

Neighbours tend to have different spins.

Edge Interaction

$$\left[\begin{array}{c} \beta \ 1 \\ 1 \ \gamma \end{array} \right]$$

• If $\beta \gamma = 1$, then the 2-spin system is trivial.

• Ferromagnetic Ising: $\beta \gamma > 1$.

Neighbours tend to have the same spin.

• Anti-ferromagnetic Ising: $\beta \gamma < 1$.

Neighbours tend to have different spins.

Edge Interaction

$$\left[\begin{array}{c} \beta \ 1 \\ 1 \ \gamma \end{array} \right]$$

- If $\beta \gamma = 1$, then the 2-spin system is trivial.
- Ferromagnetic Ising: β = γ > 1.βγ > 1.
 Neighbours tend to have the same spin.
- Anti-ferromagnetic Ising: $\beta = \gamma < 1.\beta \gamma < 1.$

Neighbours tend to have different spins.

Edge Interaction

$$\left[\begin{array}{c} \beta \ 1 \\ 1 \ \gamma \end{array} \right]$$

- If $\beta \gamma = 1$, then the 2-spin system is trivial.
- Ferromagnetic Ising: $\beta \gamma > 1$.

Neighbours tend to have the same spin.

• Anti-ferromagnetic lsing: $\beta \gamma < 1$.

Neighbours tend to have different spins.

Ferromagnetic 2-Spin Systems

FPRAS exists for ferromagnetic Ising models with consistent fields:
 β = γ > 1 and λ_ν ≥ 1 (or ≤ 1) for all v ∈ V
 [Jerrum, Sinclair 93].

• Extended to $\lambda_{\nu} \leq \frac{\gamma}{\beta}$ (if $\beta \leq \gamma$ and $\beta\gamma > 1$) [Goldberg, Jerrum, Paterson 03], [Liu, Lu, Zhang 14]. • FPRAS exists for ferromagnetic Ising models with consistent fields: $\beta = \gamma > 1$ and $\lambda_{\nu} \ge 1$ (or ≤ 1) for all $\nu \in V$

[Jerrum, Sinclair 93].

• Extended to $\lambda_{\nu} \leq \frac{\gamma}{\beta}$ (if $\beta \leq \gamma$ and $\beta\gamma > 1$) [Goldberg, Jerrum, Paterson 03], [Liu, Lu, Zhang 14].

Main Theorem

Theorem

If
$$\beta \leq 1 \leq \gamma$$
, $\beta\gamma > 1$, and $\lambda_v \leq \lambda_c = \left(\frac{\gamma}{\beta}\right)^{\Delta_c/2}$
where $\Delta_c = \frac{2\sqrt{\beta\gamma}}{\sqrt{\beta\gamma}-1}$, then FPTAS exists.

• > /-

• If we allow
$$\lambda_{\nu} > \lambda_{c}^{int} = \left(\frac{\gamma}{\beta}\right)^{(\lfloor \Delta_{c} \rfloor + 1)/2}$$
,
then Z is **#BIS**-hard to approximate [Liu, Lu, Zhang 14].

• **#BIS** is the complexity upper bound for all ferro 2-spin systems.

(1) * 1

Ferro 2-spin systems: Edge: $\begin{bmatrix} \beta & 1 \\ 1 & \gamma \end{bmatrix}$ Vertex: $\begin{bmatrix} \lambda_{\nu} \\ 1 \end{bmatrix}$

Replace a vertex of degree *d* with *d* copies.

$$R_{\nu} = \frac{\Pr(\nu = 0)}{\Pr(\nu = 1)}$$

Replace a vertex of degree *d* with *d* copies.

$$R_{v} = \frac{\Pr(v = 0)}{\Pr(v = 1)} = \frac{\Pr(v_{1} = 0, \dots, v_{d} = 0)}{\Pr(v_{1} = 1, \dots, v_{d} = 1)}$$

Replace a vertex of degree *d* with *d* copies.

$$R_{\nu} = \frac{\Pr(\nu = 0)}{\Pr(\nu = 1)} = \frac{\Pr(\nu_{1} = 0, \dots, \nu_{d} = 0)}{\Pr(\nu_{1} = 1, \dots, \nu_{d} = 1)}$$

= $\frac{\Pr(0000)}{\Pr(0001)} \cdot \frac{\Pr(0001)}{\Pr(0011)} \cdot \frac{\Pr(0011)}{\Pr(0111)} \cdot \frac{\Pr(0111)}{\Pr(1111)}$

• V

Replace a vertex of degree *d* with *d* copies.

$$R_{\mathbf{v}} = \frac{\Pr(\mathbf{v} = 0)}{\Pr(\mathbf{v} = 1)} = \frac{\Pr(\mathbf{v}_{1} = 0, \dots, \mathbf{v}_{d} = 0)}{\Pr(\mathbf{v}_{1} = 1, \dots, \mathbf{v}_{d} = 1)}$$
$$= \frac{\Pr(0000)}{\Pr(0001)} \cdot \frac{\Pr(0001)}{\Pr(0011)} \cdot \frac{\Pr(0011)}{\Pr(0111)} \cdot \frac{\Pr(0111)}{\Pr(1111)}$$

Each term $\frac{\Pr(0011)}{\Pr(0111)}$ can be viewed as the marginal ratio of v_i conditioned on a certain configuration of other v_i 's.

Self-Avoiding Walk (SAW) Tree

- SAW tree is essentially the tree of self-avoiding walks originating at v except that the vertices closing a cycle are also included in the tree.
 - Cycle-closing vertices are fixed according to the rule in the last slide.
- Do the tree recursion to calculate p_v.

Correlation Decay

- SAW tree has exponential size in general.
 - Truncate the recursion within logarithmic depth.
 - How much error does the truncation incur?

Weak Spatial Mixing:

Strong Spatial Mixing:

Conditional Spatial Mixing

If $\lambda_v < \lambda_c$ for all v, conditional spatial mixing holds in arbitrary trees: Instead of worst case configurations in SSM, we only allow partial configurations that are dominated by the product measure of isolated vertices ($p_v \leq \frac{\lambda}{1+\lambda}$). (All vertices are leaning towards the good spin.)

Conditional Spatial Mixing

If $\lambda_v < \lambda_c$ for all *v*, conditional spatial mixing holds in arbitrary trees: Instead of worst case configurations in SSM, we only allow partial configurations that are dominated by the product measure of isolated vertices ($p_v \leq \frac{\lambda}{1+\lambda}$). (All vertices are leaning towards the good spin.)

SSM:

Conditional Spatial Mixing

If $\lambda_v < \lambda_c$ for all *v*, conditional spatial mixing holds in arbitrary trees: Instead of worst case configurations in SSM, we only allow partial configurations that are dominated by the product measure of isolated vertices ($p_v \leq \frac{\lambda}{1+\lambda}$). (All vertices are leaning towards the good spin.)

Conditional spatial mixing:

Pruning

If $\beta \leq 1 < \gamma$, in the SAW tree, we may first remove "bad" pinnings, the effective field is smaller (better).

Pruning

If $\beta \leq 1 < \gamma$, in the SAW tree, we may first remove "bad" pinnings, the effective field is smaller (better).

 $\mathsf{CSM} \Rightarrow \mathsf{SSM}$

What about $\beta > 1$?

If $\beta > 1$, then pruning fails.

In fact, there is no λ such that SSM holds for general trees.

What about $\beta > 1$?

If $\beta > 1$, then pruning fails.

In fact, there is no λ such that SSM holds for general trees.

However, if $\lambda_v \leq \lambda_c$, then $p_v \leq \frac{\lambda}{1+\lambda}$ for any graph *G*.

FPTAS without SSM?

The Exact Threshold?

Our result is tight up to an integrality gap.

However, neither λ_c nor λ_c^{int} is the right bound.

• There exists a small interval beyond λ_c where FPTAS still exists.

Degrees have to be integers.

• There is a $\lambda < \lambda_c^{int}$ such that SSM fails (in an irregular tree).

 WSM (in $\mathbb{T}_\Delta)
eq \mathsf{SSM}$

(even if $\beta \leqslant 1 < \gamma$)

This is in contrast to the anti-ferro case.

Our result is tight up to an integrality gap.

However, neither λ_c nor λ_c^{int} is the right bound.

- There exists a small interval beyond λ_c where FPTAS still exists.
 - Degrees have to be integers.
- There is a $\lambda < \lambda_c^{int}$ such that SSM fails (in an irregular tree).

WSM (in \mathbb{T}_{Δ}) \Rightarrow SSM

(even if $\beta \leqslant 1 < \gamma$)

This is in contrast to the anti-ferro case.

Our result is tight up to an integrality gap.

However, neither λ_c nor λ_c^{int} is the right bound.

- There exists a small interval beyond λ_c where FPTAS still exists.
 - Degrees have to be integers.
- There is a $\lambda < \lambda_c^{int}$ such that SSM fails (in an irregular tree).

WSM (in \mathbb{T}_{Δ}) \Rightarrow SSM

(even if $\beta \leqslant 1 < \gamma$)

This is in contrast to the anti-ferro case.

Heng Guo (QMUL)

Ferro 2-Spin Systems

Ferro 2-spin systems:

• FPTAS for $1 < \beta \leq \gamma, \lambda_{\nu} < \lambda_{c}$?

Conditional spatial mixing for graphs instead of trees.
 (This implies FPTAS for, say, planar graphs.)

• Avoid the gadget gap in the hardness proof.

Ferro 2-spin systems:

- FPTAS for $1 < \beta \leqslant \gamma, \lambda_{\nu} < \lambda_{c}$?
 - Conditional spatial mixing for graphs instead of trees.
 (This implies FPTAS for, say, planar graphs.)
- Avoid the gadget gap in the hardness proof.

Thank You!