Undecidability Results

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

On Model Checking Boolean BI

Heng Guo Hanpin Wang Zhongyuan Xu Yongzhi Cao

School of Electronic Engineering and Computer Science Peking university

> CSL'09 Coimbra, 07 Sep 2009

Undecidability Results

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Backgrounds Semigroup Presentation

Undecidability Results

Propositions Infinitely related Monoid

Decidability Results

Finitely Generated Monoid Finitely Related Monoid

Additional Remarks

Additional Remarks

Outline

Introduction Backgrounds Semigroup Presentati

Undecidability Results

Decidability Results

Additional Remarks

Additional Remarks

(ロ) (同) (三) (三) (三) (○) (○)

The logic of Bunched Implication

- A substructural logic with natural resource interpretation, introduced by O'Hearn and Pym '99.
- Additive connectives (⊤, ⊥, ∧, ∨, →) along with multiplicative connectives (⊤*, *, -*).
- Various semantic models: cartesian doubly closed category, preordered commutative monoid, etc.
- The additives are generally interpreted in the *intuitionistic* way.

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Boolean BI

- Classical additives: Boolean BI (BBI).
- A typical model: partially defined commutative monoid.
- Most famous application of BBI: Separation Logic.

Undecidability Result

Additional Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

The semantics

- Commutative monoid. ε and \circ .
- Additive connectives (\top, \neg, \wedge) are interpreted classically.
- Multiplicative connectives:

$$\begin{array}{rcl} m \models \top^* & \Leftrightarrow & m = \varepsilon \\ m \models \varphi_1 * \varphi_2 & \Leftrightarrow & \exists m_1, m_2. \ m = m_1 \circ m_2 \ \text{s.t.} \\ m_1 \models \varphi_1 \ \text{and} \ m_2 \models \varphi_2 \\ m \models \varphi_1 * \varphi_2 & \Leftrightarrow & \forall m_1. \ m_1 \models \varphi_1. \\ & & \text{implies} \ m \circ m_1 \models \varphi_2 \end{array}$$

Additional Remarks

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Some Notations

- $\varphi_1 * {}^{\exists} \varphi_2 = \neg (\varphi_1 * \neg \varphi_2)$. Then $m \models \varphi_1 * {}^{\exists} \varphi_2$ iff $\exists m_1 . m_1 \models \varphi_1$ and $m_1 \circ m \models \varphi_2$.
- We use $\rho(\varphi)$ to denote the set on which φ holds.

•
$$\begin{aligned} \rho(\varphi_1 * \varphi_2) &= \rho(\varphi_1) \circ \rho(\varphi_2) \\ \rho(\varphi_1 * {}^{\exists}\varphi_2) &= \rho(\varphi_2) : \rho(\varphi_1) \end{aligned}$$

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The model checking problem

- To decide whether $m \models \varphi$ in a given model.
- Some related problems have been resolved:
 - The validity and model checking problems of separation Logic are answered by Calcagno, Yang, O'hearn '01.
 - The validity of BI is decidable using Resource Tableaux. (Galmiche, Méry, Pym '02)

Additional Remarks

Our Results

• Generally, the model checking problem is undecidable, even in finitely generated free monoid, somehow the simplest model.

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Our Results

- Generally, the model checking problem is undecidable, even in finitely generated free monoid, somehow the simplest model.
- Generator propositions, analogue of "x → −, −"in Separation logic.

Undecidability Result

Additional Remarks

(ロ) (同) (三) (三) (三) (○) (○)

Our Results

- Generally, the model checking problem is undecidable, even in finitely generated free monoid, somehow the simplest model.
- Generator propositions, analogue of "x → −, −"in Separation logic.
- In this setting, we show that for *infinitely related* monoid, the model checking problem is undecidable, and for *finitely related* monoid, decidable.

Undecidability Results

Decidability Results

Additional Remarks

Outline

Introduction Backgrounds Semigroup Presentation

Undecidability Results

Decidability Results

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のへで

Undecidability Result

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Semigroup Presentation

- To describe monoids.
- A monoid *M* is characterized by its generator set *X*, and generation relation *R*. (*X*; *R*) is called a presentation of *M*.
- $R = \emptyset$: Free monoid X^* .

Additional Remarks

(ロ) (同) (三) (三) (三) (○) (○)

Semigroup Presentation (cont.)

- *Finitely generated* (f.g.) monoid and *finitely related* (f.r.) monoid.
- In the following, we only consider commutative monoid.
- For a *f.g.* monoid M = (X; R), every element *m* in *M* is a congruence class in X^* , denoted as [m].
- A *f.g.* free monoid X^* is isomorphic to \mathbb{N}^k .

Additional Remarks

(ロ) (同) (三) (三) (三) (○) (○)

Semigroup Presentation (cont.)

- *Finitely generated* (f.g.) monoid and *finitely related* (f.r.) monoid.
- In the following, we only consider commutative monoid.
- For a *f.g.* monoid M = (X; R), every element *m* in *M* is a congruence class in X^* , denoted as [m].
- A *f.g.* free monoid X^* is isomorphic to \mathbb{N}^k .

Theorem (Redei's theorem)

Every finitely generated commutative monoid is finitely related.

Undecidability Result

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Partially defined monoid

• Partial monoid captures some essential property. Like in separation logic, not every two heaps are composable.

Undecidability Result

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Partially defined monoid

- Partial monoid captures some essential property. Like in separation logic, not every two heaps are composable.
- Simulate partial monoid by total monoid:
 - $m_1 \circ m_2 = \pi$ if $m_1 \circ m_2$ is undefined.
 - $\pi \circ m = \pi$
- For simplicity, we only consider total monoid.

Additional Remarks

Outline

Introduction

Undecidability Results Propositions Infinitely related Monoi

Decidability Results

Additional Remarks

Undecidability Results

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The Hilbert 10th Problem

Negative Solution of H10 (Matiyasevich '70)

Given a polynomial of several variables $P(x_1 \dots x_k)$ with integer coefficients, it is undecidable whether there is a vector $(x_1 \dots x_k) \in \mathbb{N}^k$ that $P(x_1 \dots x_k) = 0$.

Undecidability Results

Decidability Results 00000000000000 00 Additional Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Undecidability

• Recursively defined propositions lead to undecidability.

Undecidability Results ○○● ○○○○○○○○ Decidability Results 00000000000000 00 Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Undecidability

- Recursively defined propositions lead to undecidability.
- In \mathbb{N}^k , for any given polynomial $P(x_1 \dots x_m)$, define

$$\rho(p) = \{ (e_1, \ldots, e_m) \mid P(e_1 \ldots e_m) = 0 \}$$

Undecidability Results

Decidability Results 00000000000000 00 Additional Remarks

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Undecidability

- Recursively defined propositions lead to undecidability.
- In \mathbb{N}^k , for any given polynomial $P(x_1 \dots x_m)$, define

$$\rho(p) = \{ (e_1, \ldots, e_m) \mid P(e_1 \ldots e_m) = 0 \}$$

Check $\varepsilon \models \top \ast^{\exists} p \Leftrightarrow$ decide whether the equation $P(x_1 \dots x_m) = 0$ has solutions.

Undecidability Results

Additional Remarks

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Introduction

Undecidability Results Propositions Infinitely related Monoid

Decidability Results

Additional Remarks

Undecidability Results

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Generator propositions

- The resource model is often discrete.
- In separation logic, formulae are constructed from atomic assertions like "x → −, −".

Undecidability Results

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Generator propositions

- The resource model is often discrete.
- In separation logic, formulae are constructed from atomic assertions like "x → −, −".
- Given a monoid M = (X; R), define p_x such that $\rho(p_x) = \{ x \mid x \in X \}$. We call these p_x "generator propositions".

Undecidability Results

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Undecidability

• Even restricted to generator propositions, the model checking problem in infinitely related monoid is undecidable.

Undecidability Results

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Undecidability

- Even restricted to generator propositions, the model checking problem in infinitely related monoid is undecidable.
- In comparison, the model checking problem for quantifier-free assertion language of separation logic is decidable. The model is a partially defined infinitely related monoid.

Undecidability Results

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Minsky Machine

- Deterministic computation model. A series of commands and several counters.
- Two types of commands:
 - 1. Increase a counter, then jump.
 - 2. If a counter is zero, then do nothing and jump, else decrease and jump.

Undecidability Results

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Minsky Machine

- Deterministic computation model. A series of commands and several counters.
- Two types of commands:
 - 1. Increase a counter, then jump.
 - 2. If a counter is zero, then do nothing and jump, else decrease and jump.
- Snapshot (*i*, *m*, *n*): current command line *i*, the values of the two counters *m*, *n*.

Undecidability Results

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Proof Outline

- Reduce the halting problem of Minsky Machine to the model checking problem.
- Construct a monoid such that Minsky Machine halts iff a special element satisfies a certain formula.

Undecidability Results

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Generator set

- The generator set contains four parts:
 - $Q = \{q_i\}$: the command lines;
 - $S = \{s_{i,\lambda_k}\}$: positions in a command sequence;
 - $A_1 = \{a_{1,i}\}$ and $A_2 = \{a_{2,j}\}$: the status of the two counters;

• halt.

• λ_k is a sequence like 2, 3, 4'1.

Undecidability Results

Additional Remarks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Generator set

- The generator set contains four parts:
 - $Q = \{q_i\}$: the command lines;
 - $S = \{s_{i,\lambda_k}\}$: positions in a command sequence;
 - $A_1 = \{a_{1,i}\}$ and $A_2 = \{a_{2,j}\}$: the status of the two counters;

• halt.

- λ_k is a sequence like 2, 3, 4'1.
- $q_i \circ a_{1,m} \circ a_{2,n}$ corresponds to the snapshot (i, m, n).

Undecidability Results

Additional Remarks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Generation relation

• Every command corresponds to a generation relation pattern.

Undecidability Results

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Generation relation

- Every command corresponds to a generation relation pattern.
- The both sides of a relation are of the form
 *s*_{*j*,λ_k} ∘ *q*_{*i*} ∘ *a*_{1,m} ∘ *a*_{2,n}, except those containing *halt*.

Undecidability Results

Additional Remarks

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Generation relation

- Every command corresponds to a generation relation pattern.
- The both sides of a relation are of the form
 *s*_{*j*,λ_k} ∘ *q*_{*i*} ∘ *a*_{1,m} ∘ *a*_{2,n}, except those containing *halt*.
- Execute *j*th command in λ_k in the snapshot (*i*, *n*, *m*), leads to s_{j+1,λ_k} multiplies appropriate element.

Undecidability Results ○○○ ○○○○○○●○

Additional Remarks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Simulation

• Every element whose congruence class is non-trivial is of the form $s_{j,\lambda_k} \circ q_i \circ a_{1,n} \circ a_{2,m}$.

Undecidability Results ○○○ ○○○○○○●○

Additional Remarks

(ロ) (同) (三) (三) (三) (○) (○)

Simulation

- Every element whose congruence class is non-trivial is of the form $s_{j,\lambda_k} \circ q_i \circ a_{1,n} \circ a_{2,m}$.
- The execution of Minsky machine can be viewed as applying appropriate generation relation from s_{1,λk} ∘ q₁ ∘ a_{1,0} ∘ a_{2,0}.

Undecidability Results ○○○ ○○○○○○●○

Additional Remarks

(日) (日) (日) (日) (日) (日) (日)

Simulation

- Every element whose congruence class is non-trivial is of the form s_{j,λk} ο q_i ο a_{1,n} ο a_{2,m}.
- The execution of Minsky machine can be viewed as applying appropriate generation relation from s_{1,λk} ∘ q₁ ∘ a_{1,0} ∘ a_{2,0}.
- If and only if the Minsky machine halts, there exists a λ_k such that $s_{k,\lambda_k} \circ halt \in [s_{1,\lambda_k} \circ q_1 \circ a_{1,0} \circ a_{2,0}]$.

Undecidability Results

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Reduction

• Define $\phi_{as} = (\neg(\neg \top^* * \neg \top^*)) \land (\land_i \neg p_{q_i}) \land (\neg p_{halt}).$ Thus $\rho(\varphi_{as}) = S \cup A_1 \cup A_2.$

Undecidability Results

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Reduction

• Define $\phi_{as} = (\neg(\neg \top^* * \neg \top^*)) \land (\land_i \neg p_{q_i}) \land (\neg p_{halt}).$ Thus $\rho(\varphi_{as}) = S \cup A_1 \cup A_2.$

• Define
$$\phi = \phi_{as} \cdot \ast^{\exists} (p_{halt} \ast \phi_{as}).$$

Undecidability Results

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Reduction

• Define $\phi_{as} = (\neg(\neg \top^* * \neg \top^*)) \land (\land_i \neg p_{q_i}) \land (\neg p_{halt}).$ Thus $\rho(\varphi_{as}) = S \cup A_1 \cup A_2.$

• Define
$$\phi = \phi_{as} \cdot \ast^{\exists} (p_{halt} \ast \phi_{as}).$$

• Minsky machine halts. $\Leftrightarrow q_1 \circ a_{1,0} \circ a_{2,0} \models \varphi$.

Undecidability Results

 Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Undecidability Results

Decidability Results Finitely Generated Monoid Finitely Related Monoid

Additional Remarks

Undecidability Result

 Additional Remarks

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Rational sets

Definition (Rational Sets)

Let *M* be a monoid (not necessarily be commutative). The class of rational subsets of *M* is the least class \mathcal{E} of subsets of *M* satisfying the following conditions:

- 1. The empty set is in \mathscr{E} ;
- 2. Each single element set is in \mathscr{E} ;
- 3. If $X, Y \in \mathcal{E}$ then $X \cup Y \in \mathcal{E}$;
- 4. If $X, Y \in \mathcal{E}$ then $X \circ Y \in \mathcal{E}$;
- 5. If $X \in \mathcal{E}$ then $X^* \in \mathcal{E}$.

Undecidability Result

Decidability Results

Additional Remarks

(ロ) (同) (三) (三) (三) (○) (○)

Semi-linear sets

Definition (Semi-linear Sets)

A subset $X = \{a\} \circ B^*$ with $a \in M$, $B \subseteq M$, and B finite, is called linear. A finite union of linear sets is called semi-linear.

• Close representation of a semi-linear set $:a_1, \ldots, a_k$ and B_1, \ldots, B_k .

Undecidability Result

Decidability Results

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Some facts

- For a f.g. commutative monoid M, A subset X ⊆ M is rational iff it is semi-linear. (Eilenberg and Schutzenberger '69)
- If *X* and *Y* are rational subsets of a commutative monoid *M*, then their intersection $X \cap Y$, difference $Y \setminus X$ (hence $\overline{X} = M \setminus X$) and Y : X are rational. (E, S '69)

Undecidability Result

Decidability Results

Additional Remarks

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Some facts

- For a f.g. commutative monoid M, A subset X ⊆ M is rational iff it is semi-linear. (Eilenberg and Schutzenberger '69)
- If *X* and *Y* are rational subsets of a commutative monoid *M*, then their intersection $X \cap Y$, difference $Y \setminus X$ (hence $\overline{X} = M \setminus X$) and Y : X are rational. (E, S '69)

Recall that $\rho(\varphi_1 * \varphi_2) = \rho(\varphi_1) \circ \rho(\varphi_2)$, $\rho(\varphi_1 * {}^{\exists}\varphi_2) = \rho(\varphi_2) : \rho(\varphi_1)$. By induction, it follows that all $\rho(\varphi)$ are rational sets, and hence semi-linear sets.

Undecidability Result

Decidability Results

Additional Remarks

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Compute semi-linear sets

• Indeed, all [*m*] are also semi-linear sets.

Undecidability Result

Decidability Results

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Compute semi-linear sets

- Indeed, all [*m*] are also semi-linear sets.
- Koppenhagen and Mayr have developed an algorithm to compute the closed representation of a congruence class within exponential space.

Undecidability Result

Decidability Results

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Back to the model checking problem

• Consider the canonical surjective morphism $\alpha : X^* \mapsto M$, $\alpha^{-1}(m) = [m]$. We have:

$$\begin{array}{ll} m \in \rho(\varphi) & \Leftrightarrow & [m] \subseteq \alpha^{-1}(\rho(\varphi)) \\ & \Leftrightarrow & [m] \cap \alpha^{-1}(\rho(\varphi)) \neq \emptyset. \end{array}$$

Undecidability Result

Decidability Results

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Back to the model checking problem

• Consider the canonical surjective morphism $\alpha : X^* \mapsto M$, $\alpha^{-1}(m) = [m]$. We have:

$$\begin{array}{ll} m \in \rho(\varphi) & \Leftrightarrow & [m] \subseteq \alpha^{-1}(\rho(\varphi)) \\ & \Leftrightarrow & [m] \cap \alpha^{-1}(\rho(\varphi)) \neq \emptyset. \end{array}$$

- We already can compute the closed representation of [m].
 In the following we show how to compute that of α⁻¹(ρ(φ)).
- In fact, we compute it inductively, and hence the following lemma is needed.

Undecidability Result

Decidability Results

Additional Remarks

From connectives to set operations

Lemma

For a f.g. monoid M = (X; R) and BI formulae φ , φ_1 , and φ_2 , the following holds:

•
$$\alpha^{-1}(\rho(p_x)) = [x]$$

•
$$\alpha^{-1}(\rho(\top)) = X^*$$

•
$$\alpha^{-1}(\rho(\neg \varphi)) = \overline{\alpha^{-1}(\rho(\varphi))}$$

•
$$\alpha^{-1}(\rho(\varphi_1 \land \varphi_2)) = \alpha^{-1}(\rho(\varphi_1)) \cap \alpha^{-1}(\rho(\varphi_2))$$

•
$$\alpha^{-1}(\rho(\top^*)) = [\varepsilon]$$

•
$$\alpha^{-1}(\rho(\varphi_1 * \varphi_2)) = \alpha^{-1}(\rho(\varphi_1)) \circ \alpha^{-1}(\rho(\varphi_2))$$

•
$$\alpha^{-1}(\rho(\varphi_1 * \exists \varphi_2)) = \alpha^{-1}(\rho(\varphi_2)) : \alpha^{-1}(\rho(\varphi_1))$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

Undecidability Result

Decidability Results

Additional Remarks

(日)

Compute semi-linear sets

Since α⁻¹(ρ(p_x)) = [x], Koppenhagen-Mayr algorithm also builds up our induction basis. What we left to do is to compute the closed representations of *X*, X ∩ Y, X ∘ Y, and X : Y.

Undecidability Result 000 00000000 Decidability Results

Additional Remarks

(ロ) (同) (三) (三) (三) (○) (○)

Compute semi-linear sets

- Since α⁻¹(ρ(p_x)) = [x], Koppenhagen-Mayr algorithm also builds up our induction basis. What we left to do is to compute the closed representations of *X*, X ∩ Y, X ∘ Y, and X : Y.
- Since $X^* \cong \mathbb{N}^k$, we consider these semi-linear sets in \mathbb{N}^k .

Undecidability Result 000 00000000 Decidability Results

Additional Remarks

A D F A 同 F A E F A E F A Q A

Compute semi-linear sets

- Since α⁻¹(ρ(p_x)) = [x], Koppenhagen-Mayr algorithm also builds up our induction basis. What we left to do is to compute the closed representations of *X*, X ∩ Y, X ∘ Y, and X : Y.
- Since $X^* \cong \mathbb{N}^k$, we consider these semi-linear sets in \mathbb{N}^k .
- For two semi-linear sets $X = \bigcup_i (a_i + B_i^*)$ and $Y = \bigcup_j (a_j + B_i^*)$, it is easy to see:

$$\begin{array}{rcl} X + Y & = & \bigcup_{i,j} ((a_i + B_i^*) + (a_j + B_j^*)) \\ X \cap Y & = & \bigcup_{i,j} ((a_i + B_i^*) \cap (a_j + B_j^*)) \\ Y - X & = & \bigcup_{i,j} ((a_j + B_j^*) - (a_i + B_i^*)) \\ \overline{X} & = & \bigcap_i (\overline{a_i + B_i^*}) \end{array}$$

Hence we only need to deal with linear sets.

Undecidability Results

Decidability Results

Additional Remarks

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The case of X + Y and $X \cap Y$

X + Y For two linear sets $a + B^*$ and $a' + B'^*$, it is easy to see their summation is:

 $(a+a')+(B\cup B')^*$

Undecidability Results

Decidability Results

Additional Remarks

The case of X + Y and $X \cap Y$

X + Y For two linear sets $a + B^*$ and $a' + B'^*$, it is easy to see their summation is:

 $(a + a') + (B \cup B')^*$

 $X \cap Y$ For two linear sets $a + B^*$, $a' + B'^* \subseteq \mathbb{N}^k$. Assume $B = \{b_1, \dots, b_n\}$ and $B' = \{b'_1, \dots, b'_{n'}\}$, then every element in $X \cap Y$ corresponds to two vectors $\{x_i\}, \{x'_i\}$, which satisfies the following system of linear Diophantine equations:

$$\sum_{i=1}^{n} b_i x_i - \sum_{j=1}^{n'} b'_j x'_j = a' - a$$

Undecidability Result

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Solving the system of linear Diophantine equations

• The solution of a system of linear Diophantine equations, in fact, constitutes a semi-linear set.

Undecidability Results

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Solving the system of linear Diophantine equations

- The solution of a system of linear Diophantine equations, in fact, constitutes a semi-linear set.
- There are many algorithms to solve this problem.

Undecidability Result

Decidability Results

Additional Remarks

(ロ) (同) (三) (三) (三) (○) (○)

The case of Y - X

For two linear sets $X = a + B^*$ and $Y = a' + B'^*$, assume $B = \{b_1, \dots, b_n\}$ and $B' = \{b'_1, \dots, b'_{n'}\}$. It is easy to see that

$$Y - X = \{(a' - a) + \sum_{i=1}^{n'} (t'_i b'_i) - \sum_{j=1}^{n} (t_j b_j) | t'_i, t_j \in \mathbb{N}\} \cap \mathbb{N}^k$$

Then it is similar to the $X \cap Y$ case. We can get the representation after solving the system of linear Diophantine equations:

$$(a'-a) + \sum_{i=1}^{n'} (t'_i b'_i) - \sum_{j=1}^{n} (t_j b_j) = \sum_{i=1}^{k} x_i e_i$$

in which t'_i , t_i , x_i are variables.

Undecidability Result

Decidability Results

Additional Remarks

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

The case of \overline{X}

- Assume $X = a + B^*$. Divide \mathbb{N}^k into a series of semi-linear sets $\{a_j + B_j^* + B^*\}$.
- *X* must lie in some of these sets. It is easy to express the subtraction.

Undecidability Result

Decidability Results

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

```
Check m \models \varphi
```

Procedure:

1. Generate the representation of [m] and $\alpha^{-1}(\rho(\varphi))$.

2. Decide whether them overlap.

Undecidability Results

Decidability Results

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

Introduction

Undecidability Results

Decidability Results

Finitely Generated Monoid Finitely Related Monoid

Additional Remarks

Undecidability Result

Decidability Results

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Finitely Related Monoid

• For *infinitely generated finitely related* monoid, the model checking problem can be reduced to the finitely generated case.

Undecidability Result

Decidability Results

Additional Remarks

(ロ) (同) (三) (三) (三) (○) (○)

Finitely Related Monoid

- For *infinitely generated finitely related* monoid, the model checking problem can be reduced to the finitely generated case.
- There are only finitely many generators that will be involved in the process of model checking.
- Map all the generator of no interest to one of them. The truth of the satisfaction relation will not change.
- The model checking problem for all finitely related monoid is decidable.

Undecidability Result

Additional Remarks

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Automata theory

- We may add a new connective corresponds to X*. Thus every rational set has the the form of ρ(φ).
- Kleene theorem : In a free commutative monoid, a set is rational iff it is recognizable by finite automata.
- It is shown that in the case of finitely generated commutative monoid, a monoid is kleene iff it is rational. (Rupert '91)

 \Rightarrow The set $\rho(\varphi)$ is recognizable by finite automata, iff the monoid is rational, .

Undecidability Result

Additional Remarks

Model checking BI and CBI

BI Preorder. Chain condition.

Undecidability Result

Additional Remarks

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Model checking BI and CBI

- BI Preorder. Chain condition.
- CBI Similar to inverse monoid or cancellative monoid. Weaker decidable condition.

Undecidability Results

Decidability Results

Additional Remarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Thanks!