Uniform Sampling through the Lovász Local Lemma

Heng Guo Berkeley, Jun 06 2017

Queen Mary, University of London

Draft: arxiv.org/abs/1611.01647

Joint with Mark Jerrum (QMUL) and Jingcheng Liu (Berkeley)

A tale of two algorithms

(Moser and Tardos meet Wilson)

 Φ : a *k*-CNF formula with degree *d*.

$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

Degree: any variable x belongs to at most d clauses.

Lovász Local Lemma [Erdős, Lovász 75]: if $d \leq \frac{2^k}{ek}$, then there always exists a satisfying assignment to Φ .

LLL only guarantees an **exponentially** small probability.

 Φ : a *k*-CNF formula with degree *d*.

$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

Degree: any variable *x* belongs to at most *d* clauses.

Lovász Local Lemma [Erdős, Lovász 75]: if $d \leq \frac{2^k}{ek}$, then there always exists a satisfying assignment to Φ .

LLL only guarantees an exponentially small probability.

 Φ : a *k*-CNF formula with degree *d*.

$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$$

Degree: any variable *x* belongs to at most *d* clauses.

Lovász Local Lemma [Erdős, Lovász 75]: if $d \leq \frac{2^k}{ek}$, then there always exists a satisfying assignment to Φ .

LLL only guarantees an exponentially small probability.

A remarkable breakthrough is due to [Moser, Tardos 10], where they found an efficient version of LLL:

1. Initialize all variables randomly.

 While there exists an unsatisfied clause: pick one (various rules) and resample all its variables.

[Moser, Tardos 10] showed that this algorithm is efficient under the same condition as LLL.

A remarkable breakthrough is due to [Moser, Tardos 10], where they found an efficient version of LLL:

- 1. Initialize all variables randomly.
- 2. While there exists an unsatisfied clause: pick one (various rules) and resample all its variables.

[Moser, Tardos 10] showed that this algorithm is efficient under the same condition as LLL.

A remarkable breakthrough is due to [Moser, Tardos 10], where they found an efficient version of LLL:

- 1. Initialize all variables randomly.
- 2. While there exists an unsatisfied clause: pick one (various rules) and resample all its variables.

[Moser, Tardos 10] showed that this algorithm is efficient under the same condition as LLL.

Moser-Tardos works for the general "variable" framework:

Variables X_1, \ldots, X_n "Bad" events A_1, \ldots, A_m

The goal is to find a "perfect" assignment of the variables avoiding all "bad" events.

Equivalently, this is a product distribution conditioned on none of A_i occurring.

Symmetric LLL condition: $ep\Delta \leqslant 1$

p: probability of A_i Δ : # of dependent events of A_i

For k-CNF, $p = 2^{-k}$ and $\Delta \leq (d-1)k$.

Moser-Tardos works for the general "variable" framework:

Variables X_1, \ldots, X_n "Bad" events A_1, \ldots, A_m

The goal is to find a "perfect" assignment of the variables avoiding all "bad" events.

Equivalently, this is a product distribution conditioned on none of A_i occurring.

Symmetric LLL condition: $ep\Delta \leqslant 1$

p: probability of A_i Δ : # of **dependent** events of A_i

For k-CNF, $p = 2^{-k}$ and $\Delta \leq (d-1)k$.

Question Instead of finding a solution, can we uniformly generate a solution?

Unfortunately, Moser-Tardos's output is not necessarily uniform. Consider independent sets on a path of length 2.

If a vertex starts unoccupied, it will stay unoccupied.

Question

Instead of finding a solution, can we uniformly generate a solution?

Unfortunately, Moser-Tardos's output is not necessarily uniform. Consider independent sets on a path of length 2.

If a vertex starts unoccupied, it will stay unoccupied.

• • •

Question

Instead of finding a solution, can we uniformly generate a solution?

Unfortunately, Moser-Tardos's output is not necessarily uniform.

Consider independent sets on a path of length 2.

If a vertex starts unoccupied, it will stay unoccupied.

Question

Instead of finding a solution, can we uniformly generate a solution?

Unfortunately, Moser-Tardos's output is not necessarily uniform.

Consider independent sets on a path of length 2.

If a vertex starts unoccupied, it will stay unoccupied.

Wilson's "cycle-popping" algorithm

Goal: sample a uniform spanning tree with root r.

- For each v ≠ r, assign a random arrow from v to one of its neighbours.
- While there is a (directed) cycle in the current graph, resample all vertices along all cycles.

3. Output.

Wilson's "cycle-popping" algorithm

Goal: sample a uniform spanning tree with root r.

- 1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- 2. While there is a (directed) cycle in the current graph, resample all vertices along all cycles.

3. Output.

- \rightarrow 1. For each $v \neq r$, assign a random arrow from v to one of its neighbours.
 - 2. While there is a (directed) cycle in the current graph, resample all vertices along all cycles.

3. Output.

- **1.** For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- → 2. While there is a (directed) cycle in the current graph, resample all vertices along all cycles.

3. Output.

- **1.** For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- → 2. While there is a (directed) cycle in the current graph, resample all vertices along all cycles.

3. Output.

- **1.** For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- → 2. While there is a (directed) cycle in the current graph, resample all vertices along all cycles.

3. Output.

- **1.** For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- → 2. While there is a (directed) cycle in the current graph, resample all vertices along all cycles.

3. Output.

- **1.** For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- → 2. While there is a (directed) cycle in the current graph, resample all vertices along all cycles.

3. Output.

- **1.** For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- → 2. While there is a (directed) cycle in the current graph, resample all vertices along all cycles.

3. Output.

- **1.** For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- 2. While there is a (directed) cycle in the current graph, resample all vertices along all cycles.

ightarrow 3. Output.

- **1.** For each $v \neq r$, assign a random arrow from v to one of its neighbours.
- 2. While there is a (directed) cycle in the current graph, resample all vertices along all cycles.

3. Output.

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are "bad" events.

Wilson (1996) showed that the output is uniform.

But why? Wilson's proof is ad hoc. Is there a general criteria?

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are "bad" events.

Wilson (1996) showed that the output is uniform.

But why? Wilson's proof is *ad hoc*. Is there a general criteria?

Cycle-popping is a special case of Moser-Tardos:

Arrows are variables. Cycles are "bad" events.

Wilson (1996) showed that the output is uniform.

But why? Wilson's proof is *ad hoc*. Is there a general criteria?

Why is Wilson's algorithm uniform?

Dependency graph G = (V, E):

V corresponds to events;

 $(i,j) \notin E \implies A_i \text{ and } A_j \text{ are independent.}$

(In the variable framework, $var(A_i) \cap var(A_j) = \emptyset$.)

Then Δ is the maximum degree in *G*.

(Δ : max # of dependent events of A_i)

LLL condition: $ep\Delta \leq 1$.

Dependency graph G = (V, E):

V corresponds to events;

 $(i,j) \notin E \implies A_i \text{ and } A_j \text{ are independent.}$

(In the variable framework, $var(A_i) \cap var(A_j) = \emptyset$.)

Then Δ is the maximum degree in *G*.

(Δ : max # of **dependent** events of A_i)

LLL condition: $ep\Delta \leqslant 1$.

if any two "bad" events A_i and A_j are either independent or disjoint.

- Extremal instances minimize the probability of solutions (given the same dependency graph). [Shearer 85]
- Moser-Tardos is the slowest on extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

if any two "bad" events A_i and A_j are either independent or disjoint.

- Extremal instances minimize the probability of solutions (given the same dependency graph). [Shearer 85]
- Moser-Tardos is the slowest on extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

if any two "bad" events A_i and A_j are either independent or disjoint.

- Extremal instances minimize the probability of solutions (given the same dependency graph). [Shearer 85]
- Moser-Tardos is the slowest on extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

if any two "bad" events A_i and A_j are either independent or disjoint.

- Extremal instances minimize the probability of solutions (given the same dependency graph). [Shearer 85]
- Moser-Tardos is the slowest on extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)
We call an instance extremal:

if any two "bad" events A_i and A_j are either independent or disjoint.

- Extremal instances minimize the probability of solutions (given the same dependency graph). [Shearer 85]
- Moser-Tardos is the slowest on extremal instances.
- Slowest for searching, best for sampling.

Theorem (G., Jerrum, Liu 17)

For extremal instances, Moser-Tardos is uniform.

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be the same by following the arrow!

Other extremal instances:

- Sink-free orientations
 [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
 Reintroduced to show distributed LLL lower bound
 [Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 1
- Extremal CNF formulas

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be the same by following the arrow!

Other extremal instances:

Sink-free orientations
 [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
 Reintroduced to show distributed LLL lower bound

[Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]

• Extremal CNF formulas

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be the same by following the arrow!

Other extremal instances:

- Sink-free orientations

 [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
 Reintroduced to show distributed LLL lower bound
 [Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]
- Extremal CNF formulas

If two cycles share a vertex (dependent) and they both occur (overlapping), then these two cycles must be the same by following the arrow!

Other extremal instances:

- Sink-free orientations
 [Bubley, Dyer 97] [Cohn, Pemantle, Propp 02]
 Reintroduced to show distributed LLL lower bound
 [Brandt, Fischer, Hirvonen, Keller, Lempiäinen, Rybicki, Suomela, Uitto 16]
- Extremal CNF formulas

<i>X</i> ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	
X ₂	X _{2,0}	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	
X ₃	X _{3,0}	X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}	
<i>X</i> ₄	X _{4,0}	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	

<i>X</i> ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	
X ₂	X _{2,0}	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	• • •
X ₃	X _{3,0}	X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}	
<i>X</i> ₄	X _{4,0}	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	

<i>X</i> ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	
<i>X</i> ₂	X _{2,0}	X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	
<i>X</i> ₃	X _{3,0}	X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}	
<i>X</i> ₄	X _{4,0}	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	

<i>X</i> ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	
<i>X</i> ₂		X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	
<i>X</i> ₃		X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}	
<i>X</i> ₄	X _{4,0}	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	

<i>X</i> ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	
<i>X</i> ₂		X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	
<i>X</i> ₃		X _{3,1}	X _{3,2}	X _{3,3}	X _{3,4}	
<i>X</i> ₄	X _{4,0}	X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	

<i>X</i> ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	
X ₂		X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	• • •
X ₃			X _{3,2}	X _{3,3}	X _{3,4}	
<i>X</i> ₄		X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	

<i>X</i> ₁	X _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	
<i>X</i> ₂		X _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	
<i>X</i> ₃			X _{3,2}	X _{3,3}	X _{3,4}	
<i>X</i> ₄		X _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	

<i>X</i> ₁	X' _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	
<i>X</i> ₂		X' _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	•••
<i>X</i> ₃	A ₁	A_2	X' _{3,2}	X _{3,3}	X _{3,4}	
<i>X</i> ₄		X' _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	•••

<i>X</i> ₁	X′ _{1,0}	X _{1,1}	X _{1,2}	X _{1,3}	X _{1,4}	
X ₂		X' _{2,1}	X _{2,2}	X _{2,3}	X _{2,4}	•••
X ₃	A 1	A ₂	X' _{3,2}	X _{3,3}	X _{3,4}	
<i>X</i> ₄		X' _{4,1}	X _{4,2}	X _{4,3}	X _{4,4}	

For any output σ and τ , there is a bijection between trajectories leading to σ and τ .

Theorem (Kolipaka, Szegedy 11)

Under Shearer's condition, $\mathbb{E}T \leq \sum_{i=1}^{m} \frac{q_i}{q_{\emptyset}}$.

(Shearer's condition: $q_S \ge 0$ for all $S \subseteq V$, where q_S is the independence polynomial on $G \setminus \Gamma^+(S)$ with weight $-p_i$.)

For extremal instances:

 q_{\emptyset} is the prob. of **perfect** assignments (no A_i holds);

 q_i is the prob. of assignments such that only A_i holds.

Thus,

$$\sum_{i=1}^{m} \frac{q_i}{q_{\emptyset}} = \frac{\text{# near-perfect assignments}}{\text{# perfect assignments}}$$

Theorem (Kolipaka, Szegedy 11)

Under Shearer's condition, $\mathbb{E}T \leq \sum_{i=1}^{m} \frac{q_i}{q_{\emptyset}}$.

(Shearer's condition: $q_S \ge 0$ for all $S \subseteq V$, where q_S is the independence polynomial on $G \setminus \Gamma^+(S)$ with weight $-p_i$.)

For extremal instances:

 q_{\emptyset} is the prob. of perfect assignments (no A_i holds); q_i is the prob. of assignments such that only A_i holds.

Thus,

$$\sum_{i=1}^{m} \frac{q_i}{q_{\emptyset}} = \frac{\text{# near-perfect assignments}}{\text{# perfect assignments}}$$

Theorem (G., Jerrum, Liu 17)

Under Shearer's condition, for extremal instances,

$$\mathbb{E} T = \sum_{i=1}^{m} \frac{q_i}{q_{\emptyset}} = \frac{\text{\# near-perfect assignments}}{\text{\# perfect assignments}}$$

In other words, Moser-Tardos on extremal instances is slowest.

New consequences:

- The expected number of "popped cycles" in Wilson's algorithm is at most mn.
- 2. The expected number of "popped sinks" for sink-free orientations is linear in *n* if the graph is *d*-regular where $d \ge 3$.

For positive weighted independent sets, Weitz (2006) works up to the uniqueness threshold, with running time $n^{O(\log \Delta)}$. The MCMC approach runs in time $\widetilde{O}(n^2)$ for a smaller region. [Efthymiou, Hayes, Štefankovič, Vigoda, Yin 16]

When **p** satisfies Shearer's condition with constant slack in *G*, we can approximate $q_{\emptyset}(G, -\mathbf{p})$ in time $n^{O(\log \Delta)}$. [Harvey, Srivastava, Vondrak 16] [Patel, Regts, 16]

Is there an algorithm that doesn't have Δ in the exponent?

For positive weighted independent sets, Weitz (2006) works up to the uniqueness threshold, with running time $n^{O(\log \Delta)}$. The MCMC approach runs in time $\widetilde{O}(n^2)$ for a smaller region. [Efthymiou, Hayes, Štefankovič, Vigoda, Yin 16]

When **p** satisfies Shearer's condition with constant slack in *G*, we can approximate $q_{\emptyset}(G, -\mathbf{p})$ in time $n^{O(\log \Delta)}$. [Harvey, Srivastava, Vondrak 16] [Patel, Regts, 16]

Is there an algorithm that doesn't have Δ in the exponent?

For positive weighted independent sets, Weitz (2006) works up to the uniqueness threshold, with running time $n^{O(\log \Delta)}$. The MCMC approach runs in time $\widetilde{O}(n^2)$ for a smaller region. [Efthymiou, Hayes, Štefankovič, Vigoda, Yin 16]

When **p** satisfies Shearer's condition with constant slack in *G*, we can approximate $q_{\emptyset}(G, -\mathbf{p})$ in time $n^{O(\log \Delta)}$. [Harvey, Srivastava, Vondrak 16] [Patel, Regts, 16]

Is there an algorithm that doesn't have Δ in the exponent?

Approximating the independence polynomial?

Extremal: $Pr(perfect assignment) = q_{\emptyset}(G, -\mathbf{p}).$

Given G and **p**, if there are x_i 's and events A_i 's so that:

- $\Pr(A_i) = p_i;$
- G is the dependency graph;
- A_i's are extremal,

then we could use the uniform sampler (Moser-Tardos) to estimate q_{\emptyset} . With constant slack, Moser-Tardos runs in expected O(n) time.

A simple construction exists if $p_i\leqslant 2^{-d_i}$ (in contrast to Shearer's threshold $pprox rac{1}{e\Delta}$).

Unfortunately, gaps exist between "abstract" and "variable" versions of the local lemma. [Kolipaka, Szegedy 11] [He, Li, Liu, Wang, Xia 17]

This approach does not work near Shearer's threshold. The situation is similar to the positive weight case, but for a different reason.

Extremal: $Pr(perfect assignment) = q_{\emptyset}(G, -\mathbf{p}).$

Given G and **p**, if there are x_i 's and events A_i 's so that:

- $\Pr(A_i) = p_i;$
- G is the dependency graph;
- A_i's are extremal,

then we could use the uniform sampler (Moser-Tardos) to estimate q_{\emptyset} . With constant slack, Moser-Tardos runs in expected O(n) time.

A simple construction exists if $p_i \leq 2^{-d_i}$ (in contrast to Shearer's threshold $\approx \frac{1}{e\Delta}$).

Unfortunately, gaps exist between "abstract" and "variable" versions of the local lemma. [Kolipaka, Szegedy 11] [He, Li, Liu, Wang, Xia 17]

This approach does not work near Shearer's threshold. The situation is similar to the positive weight case, but for a different reason.

Extremal: $Pr(perfect assignment) = q_{\emptyset}(G, -\mathbf{p}).$

Given G and **p**, if there are x_i 's and events A_i 's so that:

- $\Pr(A_i) = p_i;$
- G is the dependency graph;
- A_i's are extremal,

then we could use the uniform sampler (Moser-Tardos) to estimate q_{\emptyset} . With constant slack, Moser-Tardos runs in expected O(n) time.

A simple construction exists if $p_i \leq 2^{-d_i}$ (in contrast to Shearer's threshold $\approx \frac{1}{e\Delta}$).

Unfortunately, gaps exist between "abstract" and "variable" versions of the local lemma. [Kolipaka, Szegedy 11] [He, Li, Liu, Wang, Xia 17]

This approach does not work near Shearer's threshold. The situation is similar to the positive weight case, but for a different reason.

What else can we sample?

 \rightarrow 1. For each v, assign a random arrow from v to one of its neighbours.

- **1.** For each *v*, assign a random arrow from *v* to one of its neighbours.
- \rightarrow 2. While there is a "small" cycle, resample all vertices along all cycles.

- **1.** For each *v*, assign a random arrow from *v* to one of its neighbours.
- \rightarrow 2. While there is a "small" cycle, resample all vertices along all cycles.

- **1.** For each *v*, assign a random arrow from *v* to one of its neighbours.
- \rightarrow 2. While there is a "small" cycle, resample all vertices along all cycles.

- **1.** For each *v*, assign a random arrow from *v* to one of its neighbours.
- \rightarrow 2. While there is a "small" cycle, resample all vertices along all cycles.

- **1.** For each *v*, assign a random arrow from *v* to one of its neighbours.
- \rightarrow 2. While there is a "small" cycle, resample all vertices along all cycles.

- **1.** For each *v*, assign a random arrow from *v* to one of its neighbours.
- \rightarrow 2. While there is a "small" cycle, resample all vertices along all cycles.

- **1.** For each *v*, assign a random arrow from *v* to one of its neighbours.
- 2. While there is a "small" cycle, resample all vertices along all cycles.
- ightarrow 3. Output.

- **1.** For each *v*, assign a random arrow from *v* to one of its neighbours.
- 2. While there is a "small" cycle, resample all vertices along all cycles.
- 3. Output.

When this process stops, there is no small cycle and what is left is a Hamiltonian cycle.

Recall that $\mathbb{E} T = \frac{\# \text{ near-perfect assignments}}{\# \text{ perfect assignments}}$.

In our setting, a near-perfect assignment is a uni-cyclic arrow set.

Unfortunately, this ratio is exponentially large in a complete graph.

[Dyer, Frieze, Jerrum 98]:

In dense graphs ($\delta = (1/2 + \varepsilon)n$), Hamiltonian cycles are sufficiently dense among all 2-factors, which can be approximately sampled.

Open: Is there an efficient and exact sampler for Hamiltonian cycles in some interesting graph families?

Recall that $\mathbb{E} T = \frac{\# \text{ near-perfect assignments}}{\# \text{ perfect assignments}}$.

In our setting, a near-perfect assignment is a uni-cyclic arrow set.

Unfortunately, this ratio is exponentially large in a complete graph.

[Dyer, Frieze, Jerrum 98]:

In dense graphs $(\delta = (1/2 + \varepsilon)n)$, Hamiltonian cycles are sufficiently dense among all 2-factors, which can be approximately sampled.

Open: Is there an efficient and exact sampler for Hamiltonian cycles in some interesting graph families?
Recall that $\mathbb{E} T = \frac{\# \text{ near-perfect assignments}}{\# \text{ perfect assignments}}$.

In our setting, a near-perfect assignment is a uni-cyclic arrow set.

Unfortunately, this ratio is exponentially large in a complete graph.

[Dyer, Frieze, Jerrum 98]:

In dense graphs ($\delta = (1/2 + \varepsilon)n$), Hamiltonian cycles are sufficiently dense among all 2-factors, which can be approximately sampled.

Open: Is there an efficient and exact sampler for Hamiltonian cycles in some interesting graph families?

Beyond Extremal Instances

Partial Rejection Sampling [G., Jerrum, Liu 17]:

- 1. Initialize σ randomize all variables independently.
- **2.** While σ is not perfect:

choose an appropriate subset of events, $Resample(\sigma)$; re-randomize all variables in $Resample(\sigma)$.

For extremal instances, Resample(σ) is simply Bad(σ).

Partial Rejection Sampling [G., Jerrum, Liu 17]:

- 1. Initialize σ randomize all variables independently.
- 2. While σ is not perfect:

choose an appropriate subset of events, $Resample(\sigma)$; re-randomize all variables in $Resample(\sigma)$.

For extremal instances, Resample(σ) is simply **Bad**(σ).

Partial Rejection Sampling [G., Jerrum, Liu 17]:

- 1. Initialize σ randomize all variables independently.
- **2.** While σ is not perfect:

choose an appropriate subset of events, $Resample(\sigma)$; re-randomize all variables in $Resample(\sigma)$.

For extremal instances, Resample(σ) is simply **Bad**(σ).

Partial Rejection Sampling [G., Jerrum, Liu 17]:

- 1. Initialize σ randomize all variables independently.
- 2. While σ is not perfect:

choose an appropriate subset of events, $Resample(\sigma)$; re-randomize all variables in $Resample(\sigma)$.

For extremal instances, Resample(σ) is simply **Bad**(σ).

Goal: conditioned on \Re , all perfect assignments are reachable.

Unblocking: under an assignment σ , a subset *S* of variables is *unblocking*, if all events intersecting *S* are determined by $\sigma|_{S}$.

(only need to worry about events intersecting both S and \overline{S} .)

Examples:

The set of all variables is unblocking.

Goal: conditioned on \Re , all perfect assignments are reachable.

Unblocking: under an assignment σ , a subset S of variables is *unblocking*, if all events intersecting S are determined by $\sigma|_{S}$.

(only need to worry about events intersecting both S and \overline{S} .)

Examples:

The set of all variables is unblocking.

Goal: conditioned on \Re , all perfect assignments are reachable.

Unblocking: under an assignment σ , a subset S of variables is *unblocking*, if all events intersecting S are determined by $\sigma|_{S}$.

(only need to worry about events intersecting both S and \overline{S} .)

Examples:

The set of all variables is unblocking.

Goal: conditioned on \Re , all perfect assignments are reachable.

Unblocking: under an assignment σ , a subset S of variables is *unblocking*, if all events intersecting S are determined by $\sigma|_{S}$.

(only need to worry about events intersecting both S and \overline{S} .)

Examples:

The set of all variables is unblocking.

- **1.** Resample(σ) contains **Bad**(σ);
- **2.** Resample(σ) is unblocking;
- 3. What is revealed has to be resampled.

 $Resample(\sigma)$ can be found by a breadth-first search.

- **1.** Resample(σ) contains **Bad**(σ);
- **2.** Resample(σ) is unblocking;
- 3. What is revealed has to be resampled.

 $Resample(\sigma)$ can be found by a breadth-first search.

- **1.** Resample(σ) contains **Bad**(σ);
- 2. Resample(σ) is unblocking;
- 3. What is revealed has to be resampled.

 $Resample(\sigma)$ can be found by a breadth-first search.

- **1.** Resample(σ) contains **Bad**(σ);
- 2. Resample(σ) is unblocking;
- 3. What is revealed has to be resampled.

 $Resample(\sigma)$ can be found by a breadth-first search.

- **1.** Resample(σ) contains **Bad**(σ);
- 2. Resample(σ) is unblocking;
- 3. What is revealed has to be resampled.

 $Resample(\sigma)$ can be found by a breadth-first search.

Markov chain is a random walk in the solution space.

(The solution space has to be connected!)

PRS is a local search on the whole space.

PRS is a local search on the whole space.

(Connectivity is not an issue.)

PRS is a local search on the whole space.

(Uniformity is guaranteed by the bijection.)

Partial Rejection Sampling:

repeatedly resample the appropriately chosen $Resample(\sigma)$.

Theorem (G., Jerrum, Liu 17)

When PRS halts, its output is uniform.

Some applications beyond extremal instances:

- Weighted independent sets.
- *k*-CNF formulas.

Partial Rejection Sampling:

repeatedly resample the appropriately chosen $Resample(\sigma)$.

Theorem (G., Jerrum, Liu 17)

When **PRS** halts, its output is uniform.

Some applications beyond extremal instances:

- Weighted independent sets.
- *k*-CNF formulas.

Partial Rejection Sampling:

repeatedly resample the appropriately chosen $Resample(\sigma)$.

Theorem (G., Jerrum, Liu 17)

When **PRS** halts, its output is uniform.

Some applications beyond extremal instances:

- Weighted independent sets.
- *k*-CNF formulas.

- 1. Randomize each vertex.
- Let Bad be the set of vertices whose connected component has size ≥ 2.
- 3. Resample = $Bad \cup \partial Bad$.
- 4. Resample **Resample**. Check independence.

- ightarrow 1. Randomize each vertex.
 - Let Bad be the set of vertices whose connected component has size ≥ 2.
 - 3. Resample = $Bad \cup \partial Bad$.
 - 4. Resample Resample. Check independence.

- 1. Randomize each vertex.
- ightarrow 2. Let **Bad** be the set of vertices whose connected component has size \geqslant 2.
 - 3. Resample = **Bad** $\cup \partial$ **Bad**.
 - 4. Resample Resample. Check independence.

- 1. Randomize each vertex.
- Let Bad be the set of vertices whose connected component has size ≥ 2.
- \rightarrow 3. Resample = **Bad** $\cup \partial$ **Bad**.
 - 4. Resample Resample. Check independence.

- 1. Randomize each vertex.
- Let Bad be the set of vertices whose connected component has size ≥ 2.
- 3. Resample = **Bad** $\cup \partial$ **Bad**.
- \rightarrow 4. Resample Resample. Check independence.

- 1. Randomize each vertex.
- Let Bad be the set of vertices whose connected component has size ≥ 2.
- 3. Resample = **Bad** $\cup \partial$ **Bad**.
- \rightarrow 4. Resample Resample. Check independence.

- 1. Randomize each vertex.
- \rightarrow 2. Let **Bad** be the set of vertices whose connected component has size \ge 2.
 - 3. Resample = **Bad** $\cup \partial$ **Bad**.
 - 4. Resample Resample. Check independence.

- 1. Randomize each vertex.
- Let Bad be the set of vertices whose connected component has size ≥ 2.
- \rightarrow 3. Resample = **Bad** $\cup \partial$ **Bad**.
 - 4. Resample Resample. Check independence.

- 1. Randomize each vertex.
- Let Bad be the set of vertices whose connected component has size ≥ 2.
- 3. Resample = **Bad** $\cup \partial$ **Bad**.
- \rightarrow 4. Resample Resample. Check independence.

- 1. Randomize each vertex.
- Let Bad be the set of vertices whose connected component has size ≥ 2.
- 3. Resample = **Bad** $\cup \partial$ **Bad**.
- \rightarrow 4. Resample Resample. Check independence.

- 1. Randomize each vertex.
- Let Bad be the set of vertices whose connected component has size ≥ 2.
- 3. Resample = **Bad** $\cup \partial$ **Bad**.
- 4. Resample Resample. Check independence.

Set-up

Vertex weight λ . "Bad" events are occupied edges: $p = \left(\frac{\lambda}{1+\lambda}\right)^2$. Dependency graph is the line graph. $\Delta = 2d - 2$.

Set-up

Vertex weight λ . "Bad" events are occupied edges: $p = \left(\frac{\lambda}{1+\lambda}\right)^2$. Dependency graph is the line graph. $\Delta = 2d - 2$.

Suppose $k = |Resample_t|$.

```
Then \mathbb{E} |\mathbf{Bad}_{t+1}| \leq ep\Delta \cdot k
```

Set-up

Vertex weight λ . "Bad" events are occupied edges: $p = \left(\frac{\lambda}{1+\lambda}\right)^2$. Dependency graph is the line graph. $\Delta = 2d - 2$.

Suppose $k = |Resample_t|$.

Then $\mathbb{E} | \mathbf{Bad}_{t+1} | \leq ep \Delta \cdot k$

- 1. Both Resample_t and ∂ Resample_t are "dangerous", and $|\partial$ Resample_t $| \leq \Delta \cdot k$.
- 2. Under LLL condition, for any event *E*,

 $\Pr(E \mid \bigwedge \overline{A_i}) \leq \mathbf{e} \Pr(E).$
Set-up

Vertex weight λ . "Bad" events are occupied edges: $p = \left(\frac{\lambda}{1+\lambda}\right)^2$. Dependency graph is the line graph. $\Delta = 2d - 2$.

Suppose $k = |\text{Resample}_t|$. Then $\mathbb{E} |\text{Bad}_{t+1}| \leq ep\Delta \cdot k \implies \mathbb{E} |\text{Resample}_{t+1}| \leq ep\Delta^2 \cdot k$.

Set-up

Vertex weight λ . "Bad" events are occupied edges: $p = \left(\frac{\lambda}{1+\lambda}\right)^2$. Dependency graph is the line graph. $\Delta = 2d - 2$.

Suppose $k = |Resample_t|$.

Then $\mathbb{E} |\operatorname{Bad}_{t+1}| \leqslant ep\Delta \cdot k \quad \Rightarrow \quad \mathbb{E} |\operatorname{Resample}_{t+1}| \leqslant ep\Delta^2 \cdot k.$

The resampling region shrinks if

 $ep\Delta^2 < 1 \quad \Leftrightarrow \quad \lambda = O(1/d)$

(Recall that the local lemma requires $ep\Delta \leqslant$ 1.)

Sampling independent sets with weight λ and maximum degree *d*:

- If λ < λ_c(d) ≈ ^e/_d, there is a deterministic, approximate, and polynomialtime algorithm [Weitz 06]. (Best randomized algorithm (based on Markov chains) has a worse range but O(n log n) running time.)
- If $\lambda > \lambda_c(d) \approx \frac{e}{d}$, it is NP-hard [Sly 10].

Our algorithm has linear expected running time if $\lambda \leq \frac{1}{2\sqrt{ed}-1}$.

The range is off by a constant, but it is fast, simple, exact, and distributed.

Sampling independent sets with weight λ and maximum degree *d*:

- If λ < λ_c(d) ≈ ^e/_d, there is a deterministic, approximate, and polynomialtime algorithm [Weitz 06]. (Best randomized algorithm (based on Markov chains) has a worse range but O(n log n) running time.)
- If $\lambda > \lambda_c(d) \approx \frac{e}{d}$, it is NP-hard [Sly 10].

Our algorithm has linear expected running time if $\lambda \leq \frac{1}{2\sqrt{ed-1}}$.

The range is off by a constant, but it is fast, simple, exact, and distributed.

 \exists constant *C* s.t. if $p\Delta^2 \ge C$, then even approximate sampling is **NP**-hard. Hence we have to assume stronger conditions than $ep\Delta \le 1$.

Indenependent sets are nice in that **Resample** is just **Bad** \cup **∂Bad**. In general, **Resample** can expand more than one hop. Denote by r_{ij} the probability that A_i may expand to A_j . Let $r = \max\{r_{ij}\}$.

Theorem (G., Jerrum, Liu 17) If $ep\Delta^2 \leq 1/6$ and $er\Delta \leq 1/3$, then $\mathbb{E}T = O(m)$.

The expected number of rounds is $O(\log m)$.

The expected number of variable resamples is $O(n \log m)$.

Our proof is a supermartingale argument on |Resample|.

The condition on **r** is necessary.

 \exists constant *C* s.t. if $p\Delta^2 \ge C$, then even approximate sampling is **NP**-hard. Hence we have to assume stronger conditions than $ep\Delta \le 1$.

Indenependent sets are nice in that **Resample** is just **Bad** $\cup \partial$ **Bad**. In general, **Resample** can expand more than one hop. Denote by r_{ij} the probability that A_i may expand to A_j . Let $r = \max\{r_{ij}\}$.

Theorem (G., Jerrum, Liu 17) If $ep\Delta^2 \leq 1/6$ and $er\Delta \leq 1/3$, then $\mathbb{E}T = O(m)$.

The expected number of rounds is $O(\log m)$.

The expected number of variable resamples is $O(n \log m)$.

Our proof is a supermartingale argument on |Resample|.

The condition on **r** is necessary.

 \exists constant *C* s.t. if $p\Delta^2 \ge C$, then even approximate sampling is **NP**-hard. Hence we have to assume stronger conditions than $ep\Delta \le 1$.

Indenependent sets are nice in that **Resample** is just **Bad** $\cup \partial$ **Bad**. In general, **Resample** can expand more than one hop. Denote by r_{ij} the probability that A_i may expand to A_j . Let $r = \max\{r_{ij}\}$.

Theorem (G., Jerrum, Liu 17)

If $ep\Delta^2 \leq 1/6$ and $er\Delta \leq 1/3$, then $\mathbb{E}T = O(m)$.

The expected number of rounds is $O(\log m)$.

The expected number of variable resamples is $O(n \log m)$.

Our proof is a supermartingale argument on |**Resample**|. The condition on *r* is necessary.

 \exists constant *C* s.t. if $p\Delta^2 \ge C$, then even approximate sampling is **NP**-hard. Hence we have to assume stronger conditions than $ep\Delta \le 1$.

Indenependent sets are nice in that **Resample** is just **Bad** $\cup \partial$ **Bad**. In general, **Resample** can expand more than one hop. Denote by r_{ij} the probability that A_i may expand to A_j . Let $r = \max\{r_{ij}\}$.

Theorem (G., Jerrum, Liu 17)

If $ep\Delta^2 \leq 1/6$ and $er\Delta \leq 1/3$, then $\mathbb{E}T = O(m)$.

The expected number of rounds is $O(\log m)$.

The expected number of variable resamples is $O(n \log m)$.

Our proof is a supermartingale argument on |Resample|.

The condition on **r** is necessary.

NP-Hardness for sampling: $d \ge 3$ – decision hardness for general formula $d \ge 6, k = 2$ (monotone formula) [Sly 10] $d \ge 5 \cdot 2^{k/2}$ (monotone formula) [Bezáková, Galanis, Goldberg, G., Štefankovič 16] (LLL condition is $d \le \frac{2^k}{ek}$.)

Theorem (G., Jerrum, Liu 17)

PRS has linear expected running time if $d \leq \frac{1}{6e} \cdot 2^{k/2}$, and any two dependent clauses share at least $\min\{\log dk, k/2\}$ variables.

NP-hard even if $d \ge 5 \cdot 2^{k/2}$ and intersection = k/2 [BGGGŠ 16]

NP-Hardness for sampling: $d \ge 3$ – decision hardness for general formula $d \ge 6, k = 2$ (monotone formula) [Sly 10] $d \ge 5 \cdot 2^{k/2}$ (monotone formula) [Bezáková, Galanis, Goldberg, G., Štefankovič 16] (LLL condition is $d \le \frac{2^k}{ek}$.)

Theorem (G., Jerrum, Liu 17)

PRS has linear expected running time if $d \leq \frac{1}{6e} \cdot 2^{k/2}$, and any two dependent clauses share at least $\min\{\log dk, k/2\}$ variables.

NP-hard even if $d \ge 5 \cdot 2^{k/2}$ and intersection = k/2 [BGGGŠ 16]

NP-Hardness for sampling: $d \ge 3$ – decision hardness for general formula $d \ge 6, k = 2$ (monotone formula) [Sly 10] $d \ge 5 \cdot 2^{k/2}$ (monotone formula) [Bezáková, Galanis, Goldberg, G., Štefankovič 16] (LLL condition is $d \le \frac{2^k}{ek}$.)

Theorem (G., Jerrum, Liu 17)

PRS has linear expected running time if $d \leq \frac{1}{6e} \cdot 2^{k/2}$, and any two dependent clauses share at least $\min\{\log dk, k/2\}$ variables.

NP-hard even if $d \ge 5 \cdot 2^{k/2}$ and intersection = k/2 [BGGGŠ 16]

Ref.	Condition	Restriction	Method
[Bubley, Dyer 97]	d = 2		Markov chain
[Bordewich, Dyer, Karpinski 06]	$d \leq k-2$	monotone	Markov chain
[Liu, Lu 15]	$d \leqslant 5$	monotone	Correlation decay
[BGGGŠ 16]	$d = 6, k = 3$ or $d \leq k$	monotone	Correlation decay

Ref.	Condition	Restriction	Method
[Bubley, Dyer 97]	d = 2		Markov chain
[Bordewich, Dyer, Karpinski 06]	$d \leqslant k-2$	monotone	Markov chain
[Liu, Lu 15]	$d \leqslant 5$	monotone	Correlation decay
[BGGGŠ 16]	d = 6, k = 3 or $d \leq k$	monotone	Correlation decay
[Hermon, Sly, Zhang 17]	$d \leqslant c 2^{k/2}$	monotone	Markov chain

Ref.	Condition	Restriction	Method
[Bubley, Dyer 97]	d = 2		Markov chain
[Bordewich, Dyer, Karpinski 06]	$d \leqslant k-2$	monotone	Markov chain
[Liu, Lu 15]	$d \leqslant 5$	monotone	Correlation decay
[BGGGŠ 16]	$d = 6, k = 3$ or $d \leq k$	monotone	Correlation decay
[Hermon, Sly, Zhang 17]	$d \leqslant c 2^{k/2}$	monotone	Markov chain
[Moitra 17]	$d \leqslant \widetilde{O}(2^{k/60})$		Correlation decay + LP

Ref.	Condition	Restriction	Method
[Bubley, Dyer 97]	d = 2		Markov chain
[Bordewich, Dyer, Karpinski 06]	$d \leqslant k-2$	monotone	Markov chain
[Liu, Lu 15]	$d \leqslant 5$	monotone	Correlation decay
[BGGGŠ 16]	$d = 6, k = 3$ or $d \leq k$	monotone	Correlation decay
[Hermon, Sly, Zhang 17]	$d \leqslant c 2^{k/2}$	monotone	Markov chain
[Moitra 17]	$d\leqslant \widetilde{O}(2^{k/60})$		Correlation decay + LP
[G., Jerrum, Liu 17]	$d \leqslant c 2^{k/2}$	Intersection \ge min{log dk, k/2}	PRS

Ref.	Condition	Restriction	Method
[Bubley, Dyer 97]	d = 2		Markov chain
[Bordewich, Dyer, Karpinski 06]	$d \leqslant k-2$	monotone	Markov chain
[Liu, Lu 15]	$d \leqslant 5$	monotone	Correlation decay
[BGGGŠ 16]	$d = 6, k = 3$ or $d \leq k$	monotone	Correlation decay
[Hermon, Sly, Zhang 17]	$d \leqslant c 2^{k/2}$	monotone	Markov chain
[Moitra 17]	$d \leqslant \widetilde{O}(2^{k/60})$		Correlation decay + LP
[G., Jerrum, Liu 17]	$d \leqslant c 2^{k/2}$	Intersection \ge min{log dk, k/2}	PRS

Concluding remarks

- For extremal instances, Moser-Tardos is uniform, with expected running time # "near-perfect" assignments # "perfect" assignments.
- For general instances, we need to carefully choose a resampling set to ensure uniformity.
- The expected running time is linear if $p\Delta^2 = O(1)$ and $r\Delta = O(1)$.

- For extremal instances, Moser-Tardos is uniform, with expected running time # "near-perfect" assignments # "perfect" assignments.
- For general instances, we need to carefully choose a resampling set to ensure uniformity.

• The expected running time is linear if $p\Delta^2 = O(1)$ and $r\Delta = O(1)$.

- For extremal instances, Moser-Tardos is uniform, with expected running time # "near-perfect" assignments # "perfect" assignments.
- For general instances, we need to carefully choose a resampling set to ensure uniformity.
- The expected running time is linear if $p\Delta^2 = O(1)$ and $r\Delta = O(1)$.

Existence threshold [Erdős, Lovász 75]

$$\approx \frac{1}{e\Delta}$$

р

Searching threshold [Moser, Tardos 10]

$$\approx \frac{1}{e\Delta}$$

р

- $O(n^c)$ algorithm for the independence polynomial with negative weights?
- Can we sample Hamiltonian cycles exactly and efficiently in some interesting graph families?
- How to remove the side condition on intersections?
 - Where is the transition threshold for *k*-CNF of degree *d*?
- Beyond the variable model resampling permutations???

Thank you!