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ABSTRACT

Parallel skeletons are a structured parallel programming abstraction that provide pro-
grammers with a predefined set of algorithmic templates that can be combined, nested

and parameterized with sequential code to produce complex programs. The implemen-

tation of these skeletons is currently a manual process, requiring human expertise to
choose suitable implementation parameters that provide good performance. This paper

presents an empirical exploration of the optimization space of the FastFlow parallel skele-

ton framework. We performed this using a Monte Carlo search of a random subset of the
space, for a representative set of platforms and programs. The results show that the space

is program and platform dependent, non-linear, and that automatic search achieves a

significant average speedup in program execution time of 1.6× over a human expert. An
exploratory data analysis of the results shows a linear dependence between two of the

parameters, and that another two parameters have little effect on performance. These
properties are then used to reduce the size of the space by a factor of 6, reducing the

cost of the search. This provides a starting point for automatically optimizing parallel

skeleton programs without the need for human expertise, and with a large improvement
in execution time compared to that achievable using human expert tuning.

Keywords: Parallel skeletons, Multicore, Optimization space exploration, FastFlow.

1. Introduction

Relentless improvements in processor performance have come from increasing pro-

cessor frequency and complexity. This progress has slowed as processor designs come

up against physical limits, such as our limited capacity to remove heat [1]. The use

of multiple, simpler processing elements, or cores, has now become a focus for in-

dustry and research, as it is a promising avenue to continue improving processor

performance. By providing multiple cores, separate parts of a program can be exe-

cuted in parallel. However, performance relies heavily on the ability of the program

to fully utilize these cores. This requirement adds additional complexity at the soft-

ware level, and has led to the design of parallel abstractions that aim to hide this

from the programmer without introducing significant or unpredictable overheads.
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Parallel skeletons, also known as algorithmic skeletons, are one such abstrac-

tion [2, 3]. They are an approach to parallel programming designed to preserve

performance, be platform independent and remove low-level implementation issues.

The idea is to provide a collection of templates, or skeletons, each of which imple-

ments a standard algorithmic technique. They allow the programmer to produce

complex parallel programs by composing and nesting these skeletons together, and

parameterizing them with sequential, application specific code fragments. A skele-

ton library provides an implementation for each skeleton, which are used to compile

the program into a form that can be executed. Commonly provided skeletons include

task farms, pipelines, divide and conquer, and data-parallel map and reduce [2, 4].

The performance of a parallel skeleton program relies on an appropriate choice

of skeletons, implementing the sequential code fragments efficiently, and that the

library provides an efficient implementation for each skeleton [5, 6]. This paper

explores the performance increase available by optimizing the latter of these factors.

To do this, we empirically explore the optimization space of the FastFlow parallel

skeleton framework [7, 8]. We identify six implementation parameters and a finite

range of values for each. Program execution time for ten programs on five platforms

is measured using a Monte Carlo search of a random subset of the optimization

space. The best program execution time found is then compared to that achieved

using human expert chosen parameters. Our results show an average speedup of

1.6× over a human expert, that the space is non-linear, and platform and program

dependent. We also perform an exploratory data analysis to find properties of the

optimization space that can be exploited by automatic optimization techniques.

These results provide a starting point for automatically optimizing parallel skeleton

programs without the need for human expertise, and future work will develop static

heuristics to optimize programs with minimal additional compile time cost.

The rest of the paper is structured as follows. Section 2 provides motivation for

this research. Section 3 describes our approach to explore the optimization space

of parallel skeleton programs. Section 4 describes the FastFlow skeleton framework

library developed by Aldinucci et al. [7, 8]. Section 5 explains the methodology

behind the Monte Carlo search of the optimization space, the results of which are

analyzed in Sec. 6. Section 7 follows with a discussion of related work, and Sec. 8

summarizes the conclusions and discusses future work.

2. Motivation

Figure 1 shows the one-dimensional optimization space for a program that calcu-

lates the 40th number in the Fibonacci series, using a näıve recursive algorithm

without memoization. The optimization space consists of a single parameter: the

maximum recursion depth of the divide and conquer skeleton used. The experiment

was performed using the methodology and 32-core machine described in Sec. 5.4.

This example demonstrates that the optimization space of a skeleton parallel

program can be complex and non-linear, exhibiting multiple optimal parameter

values, even for an extremely simple optimization space consisting of a single pa-
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Fig. 1. Comparison of the maximum recursion depth chosen by a human expert and the best

possible choice for a program computing the 40th Fibonacci number. This shows that a significant
speedup of 2.2× over a human expert is available. The error bars show 99% confidence intervals.

rameter. A human expert choose a maximum recursion depth of 20, whereas a value

of 26 achieves the best execution time. This is a significant speedup of 2.2× over the

human expert chosen parameter. This shows that there is large scope for improving

program execution time over a human expert, and suggests that the optimization

space for multiple parameters will be extremely complex, making it very difficult

for a human expert to tune programs.

This motivates the use of automatic optimization techniques to optimize parallel

skeleton programs. As a first step along the road to developing these, we present the

results of an empirical exploration of the optimization space of the FastFlow par-

allel skeleton framework followed by an exploratory analysis to look for interesting

characteristics of the space. In future work, these characteristics will be combined

with the static information about communication and computation provided by the

choice of skeleton to either reduce the cost of automatic search or design static

heuristics with minimal compile time cost.

3. Optimization Space Exploration

To explore the optimization space of FastFlow we identify a set of implementation

parameters that may have an effect on program execution time. For each parameter

we chose a finite range of values, and this forms the optimization space explore.

We then collect a suite of representative programs and platforms, and perform a

Monte Carlo search of a subset of the optimization space for each program-platform

combination. On each step of the search, a uniformly random point in the space

that has not been seen before is chosen, and the program compiled with the chosen

parameters. Program execution time is then measured by executing the program.

This results in a mean program execution time measured for a representative subset

of the space, for each program-platform combination.

The program execution time using human expert chosen parameters is also mea-

sured for every program-platform combination. This allows us to compare the exe-

cution time of expert tuned programs against that found by an automatic search.

Measuring the performance of a representative subset of the optimization space

for each program allows us to perform statistical analysis of the space, to find
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characteristics that can be used to reduce the cost of automated search. For example,

we evaluate the importance of each parameter on the optimization space.

4. FastFlow

FastFlow [9, 7, 10, 11, 8] is a parallel programming framework for shared memory

multi-core systems. FastFlow was specifically designed to introduce minimal over-

head and be scalable. Aldinucci et al. [9, 7, 10, 11] demonstrate this by comparing

the performance of a variety of programs implemented using FastFlow to carefully

hand optimized versions written using lower-level parallel abstractions.

FastFlow therefore represents the state-of-the-art in terms of performance, and

so is a good starting point when exploring the scope for performance improvement.

It is implemented as a library in C++ and consists of six layers, each of which

provides an incremental abstraction over the previous layer. These are as follows:

(i) Hardware. FastFlow is designed for multi-core shared memory architectures.

(ii) Run-time support provides a general purpose threading model built on top of

POSIX threads, a custom memory allocator and two lock-free single-producer

single-consumer (SPSC) queue implementations [12] which threads use to com-

municate. The two types are:

• Bounded queues, which impose a fixed upper limit on the number of items

they can buffer. If a producer attempts to push an item onto a full queue

they will block until a consumer consumes an item.

• Unbounded queues, which do not impose a limit on the number of items.

They can grow to accommodate as many items as the memory system

allows.

The choice to of queue depends on the required semantics. A bounded queue

with a buffer size of one can be used to implement a synchronization primitive

between two threads, and in queuing networks that contain a cycle unbounded

queues prevent the possibility of deadlock. The absence of locks in these queues

means that the synchronization overhead is low. This is one of the main factors

that contributes to FastFlow’s performance and scalability [9, 10].

(iii) Low-level programming provides non-blocking, lock-free synchronization mech-

anisms built using the SPSC queues provided by the previous layer including

multiple-producer multiple-consumer queues.

(iv) High-level programming provides three parallel skeletons: farm,

farm-with-feedback and pipe implemented using threads and SPSC queues

as shown in Fig. 2. They are arbitrarily nestable and are parameterized with

sequential C++ code. The farm skeleton implements a bag of tasks pattern,

which processes a set of independent tasks using multiple worker threads. The

farm-with-feedback skeleton extends the farm skeleton by adding a feedback

path. This is equivalent to a divide and conquer skeleton, as the emitter can

schedule separate divide and conquer tasks to the workers. The pipe skeleton
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Fig. 2. FastFlow’s skeletons. Arrows represent SPSC queues and boxes represent threads.

implements a pipeline pattern with a fixed number of stages. This is constructed

from a fixed number of threads, one for each stage, connected by SPSC queues.

(v) Problem solving environments (PSEs) are components that can be used to

exploit parallelism and are built using skeletons from the previous layer.

(vi) Applications are implemented using any any of the tools provide by the low-

level programming, high-level programming and PSE layers.

5. Experimental Setup

This section describes the experiment performed to explore FastFlow’s optimization

space. First, we identified a set of six implementation parameters affecting the

performance of FastFlow programs. A Monte Carlo search then measures program

execution time for a subset of the optimization space formed by these parameters.

Section 5.1 details the platforms and programs used and Sec. 5.2 explains the

parameters that make up the optimization space. Section 5.3 then explains details

of the Monte Carlo search. Section 5.4 describes the methodology used to measure

program execution time.

5.1. Platforms and Programs

The experiment was carried out on five platforms (see Tab. 1), each with differing

numbers of cores, internal architectures and memory hierarchies, so that the effect

of the hardware on the optimization space could be investigated.

Many of these platforms utilize frequency scaling, where the frequency of the

processor is scaled according to the workload of the system. The aim of this is to

reduce power consumption, however it can introduce significant noise into perfor-

Table 1. Platforms used in the experiments

Name Processor Cores Frequency Memory L3 Cache L2 Cache

32-core 4× Intel
Xeon L7555

32 1.87GHz 64GB 4× 24MB 32× 256KB

16-core 2× Intel
Xeon L7555

16 1.87GHz 64GB 2× 24MB 16× 256KB

6-core AMD Phenom II
X6 1055T (95W)

6 3.3GHz 8GB 1× 6MB 1× 512KB

4-core Intel Xeon

E5430

4 2.67GHz 8GB None 2× 6MB

2-core Intel Core 2

Duo E6400

2 2.13GHz 3GB None 1× 2MB

1240005-5



May 9, 2012 9:35 WSPC/INSTRUCTION FILE S0129626412400051

A. Collins, C. Fensch & H. Leather

mance measurements. To avoid this problem, frequency scaling was disabled and

the platforms were configured to use their maximum frequency.

We used a suite of ten existing FastFlow programs in the experiment. Some of

the programs are real world applications that have been modified to use FastFlow.

This is the case for the pbzip2 program, which uses a FastFlow farm to parallelize

the compression of individual blocks of the input file using the bzip2 compression

algorithm. Other programs are implementations of standard algorithms such as

Quicksort (quicksort) and Adaptive Quadrature (aquad).

The programs use two of the skeletons provided by FastFlow: farm and

farm-with-feedback. Unfortunately, programs using the pipe skeleton were not

available and could not be implemented due to time constraints. Each of the pro-

grams was modified to accept run-time and compile-time arguments in a common

format, to simplify running the experiment. This has negligible effect on perfor-

mance. Sample input data was provided with the source code for each program. To

avoid changing the behavior of each program on each platform the same input data

was used throughout.

5.2. Optimization Space

The following describes the optimization parameters that were chosen and why some

were not considered. The final set of six parameters explored in the experiment are

summarized in Tab. 2.

Table 2. Parameters explored in the experiment

Parameter Description

numworkers Number of threads

buffertype Type of queue: bounded or unbounded

buffersize Buffer size of queues

batchsize Number of items in a batch

cachealign Memory allocation alignment of items

seqthresh Maximum recursion depth for farm-with-feedback

5.2.1. Existing FastFlow Parameters

FastFlow’s low-level mechanisms and skeleton implementations include several pa-

rameters that have been tuned by a human expert. These are either fixed in its

implementation, or are chosen on a per-program basis. They include:

• Number of workers. This controls the number of threads used by the farm and

farm-with-feedback skeletons.

• Bounded/unbounded queues. Bounded queues may be more efficient than un-

bounded queues, as they do not need to resize their buffer, however they may

cause deadlock in programs with cyclic communication patterns.

• Queue length. In the case of bounded queues, this is the maximum number

of items that can be buffered by the queue. If this limit is reached, producers
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for the queue will block when attempting to push items into it. In the case of

unbounded queues, this controls the size of each chunk of memory allocated to

buffer items.

• Task scheduling. Custom scheduling policies can be defined for both the farm

and farm-with-feedback skeletons, which determine how tasks are distributed

to worker threads.

The experiment considers the first three of these parameters. Task scheduling is

not considered as FastFlow allows arbitrary scheduling methods to be defined and

a representative set of schedulers could not be developed due to time constraints.

5.2.2. Additional FastFlow Parameters

FastFlow is still being actively developed, and some of its interfaces have not

been fully implemented. For example it has no control over task granularity or

the recursion depth of divide and conquer algorithms implemented using the

farm-with-feedback skeleton. Both of these concerns are left to the application

programmer. Beyond the parameters already identified in FastFlow’s implementa-

tion, there is scope for further optimization:

• Task granularity. Tasks sent between threads can be grouped into batches of a

chosen size. This is likely to reduce communication/synchronisation overhead

at the cost of reducing the available task-parallelism and adversely effecting

load balancing.

• Maximum recursion depth. In the farm-with-feedback skeleton, the cut-off

between performing parallel and sequential computation could be controlled.

In order to control task granularity without needing to modify the benchmark

programs, an additional type of queue was implemented: the batched queue. These

are built on top of either a bounded or unbounded queue. The producer thread

accumulates items locally into a fixed sized batch. When the batch is full, they are

pushed onto the underlying queue as a single item. The consumer thread pops this

batch off of the queue and consumes its contents locally.

Maximum recursion depth applies to divide and conquer algorithms imple-

mented using the farm-with-feedback skeleton. The emitter thread controls the

point at which the sub-tasks are solved sequentially instead of being further sub-

divided into smaller problems to be solved in parallel. The current implementation

of this skeleton is quite low-level compared to divide and conquer skeletons provided

by other libraries [4] as it does not allow the skeleton to be parameterized with code

fragments specifically for the divide and conquer stages of the computation. It also

provides no mechanism for specifying a maximum recursion depth. It is likely that a

divide and conquer skeleton providing control over recursion depth will be included

in future versions of FastFlow, therefore it is considered in this experiment.
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5.3. Monte Carlo Search

A Monte Carlo search was performed across the entire optimization space to mea-

sure the execution time of each program on each platform for a random subset of

the optimization space. As the optimization space is enormous, exhaustively mea-

suring program execution time performance at every point in the space would take

a prohibitively long time. It is only practical to measure program execution time

for a small subset of the entire space.

Table 3 details the parameter values that constitute the optimization space.

Program execution time was measured for a random subset of all permutations of

these values. It is assumed that this subset is representative of the entire space, and

this assumption is justified in Sec. 6.4.

Table 3. Parameter values explored by the experiment

Parameter Values

numworkers 1, . . . , # cores × 1.5

buffertype Bounded or unbounded

buffersize 1, 2, 4, 8, . . . , 220

batchsize 1, 2, 4, 8, . . . , 220

cachealign 64, 128 or 256 bytes

Parameter Values

seqthresh w/ aquad .02, .04, .06, . . . , 1

seqthresh w/ fibonacci 10, 11, 12, . . . , 44

seqthresh w/ nqueens 3, 4, 5, . . . , 15

seqthresh w/ quicksort 1, 2, 4, 8, . . . , 221

5.4. Measuring Program Execution Time

Measurement of program execution time on a given platform needs to be performed

in a way such that the significance of any hypotheses can be evaluated. Georges

et al. [13] present a statistically rigorous method for benchmarking Java programs,

and many of their statistical and methodological techniques are applicable here. The

following methodology was used to measure the execution time of each program on

each platform for a given set of values for the optimization parameters:

• Compilation. The programs are implemented in C++, and are compiled to

native binaries on each platform using GCC 4.5 with -O3 optimizations.

• Timing method. Execution times are measured with millisecond accuracy.

• Maximum execution time. A trial of the experiment revealed that for many

parameter values, program execution time is prohibitively long. As the exper-

iment is looking for optimal regions of the space, such points are terminated

after reaching a fixed threshold and given an infinite execution time.

• Sufficient repeats. By performing repeated measurements the random error in

the sample mean can be quantified using confidence intervals, which provide a

range of values that include the true mean with a given probability. They can

also be used as a stopping condition for the number of repeats: when the range

of the confidence interval relative to the mean (the coefficient of variation) falls

below a chosen threshold, stop the measurements. The stopping criteria are:

– Perform between 10 and 100 repeats.
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– Stop if the coefficient of variation drops below 1%, for a 99% confidence

interval.

These criteria are fairly arbitrary, however they are only required to provide a

stopping condition that achieves sufficiently tight confidence intervals.

• Outlier removal. The arithmetic mean is used to provide a single point esti-

mate of program execution time, however it is not a robust statistic. This means

that outliers will have a large effect on its value and cause the range of any

confidence intervals to increase dramatically. To shrink the confidence interval

to an acceptable size many more repeats would be necessary, but performing

these additional measurements is not practical. This motivates the removal of

outliers. This is done using interquartile range removal [14], which calculates

the 25% quartile Q1 and 75% quartile Q3, and discards points lying outside of

the range [Q1 − k(Q3 −Q1), Q3 + k(Q3 −Q1)], where k = 3.

6. Results and Analysis

This section analyses the results of the Monte Carlo search and shows that the

results support the hypothesis that there is scope for optimization beyond human

expert chosen parameters. An exploratory data analysis is also performed to look

for properties of the optimization space that can be used to reduce the size of the

space. This analysis provides a starting point for developing automatic optimiza-

tion techniques and static heuristics to improve program performance over that

achievable by a human expert with minimal compile time cost.

6.1. Speedup Over Human Expert Chosen Parameters

Figure 3 shows the speedup of the best parameters found by the Monte Carlo

search over the baseline execution time for human expert chosen parameters. This

shows large performance improvement over a human expert is achievable, with an

average speedup of 1.6×. Each bar shows the mean speedup of each program on

each platform. The average speedup across all programs on each platform, across all

platforms for each program, and across all platforms and programs are also shown.

The error bars show confidence intervals with a significance level of 0.01
5×10 set by
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Fig. 3. Speedup over human expert chosen parameters found by the Monte Carlo search

1240005-9



May 9, 2012 9:35 WSPC/INSTRUCTION FILE S0129626412400051

A. Collins, C. Fensch & H. Leather

Bonferroni correction [15]. This allows multi-hypothesis testing with a significance

level of 0.01 by direct comparison the confidence intervals.

Most of the programs exhibit a statistically significant speedup, and for some

the speedup is large. The difference in average speedup between the Monte Carlo

search and human expert chosen parameters is significant with p < 1% and a

critical t value of 11.5. aquad achieves a speedup of over 2× on all but 2-core,

with a 9× speedup on 32-core. fibonacci and pbzip2 perform worse than human

expert chosen parameters on 6-core. This shows that the Monte Carlo search did

not find the human chosen parameters in these instances. The average speedup for

each platform is in the range 1.1–2.8×. Interestingly, the speedup varies across both

platforms and programs and the parameter values that provide the best performance

differ across platforms and programs. For example, the speedup for aquad is 9× on

32-core and 1.1× on 2-core. This suggests that the best choice of parameters is

both platform and program dependent.

This shows that there is large scope for improving program execution time over

a human expert, which is a surprising result given that human expertise usually

performs better than compilers. Reasons for this may include the non-linearity, and

program and platform dependent nature of the optimization space. This makes it

very difficult for an expert to manually tune programs and achieve performance

equivalent to that possible using automatic search.

6.2. Exploratory Analysis of the Optimization Space

This section analyses the space to look for properties that will be used to reduce

the cost of automated search by reducing the size search space and, in future work,

design static heuristics.

6.2.1. The effect of each parameter on execution time

Figure 4 shows that some parameters have a larger effect on program execution

time than others, by plotting the average performance loss across all platforms and

buffertype
cachealign

buffersize
seqthresh

batchsize
numworkers

Parameter
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Fig. 4. Average performance loss when each parameter is not carefully tuned. This shows it

is important to tune the four parameters on the right of the graph, and not necessary to tune
buffertype and cachealign. Error bars show 99% confidence intervals.
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programs when each parameter is not carefully tuned. The chosen parameter was

fixed and the others varied to find the best program execution time. The execution

time for all fixed values of the parameter were then averaged, giving a measure of

the average performance when the parameter is not tuned.

The results show that numworkers, seqthresh, batchsize and buffersize

have a large impact on program execution time. This suggests that to minimize pro-

gram execution time, it is important to tune these parameters. The error bars show

that numworkers has a larger impact on program execution time than batchsize,

suggesting that it is more important to carefully tune numworkers. The error bars

for batchsize and seqthresh are large, and overlap with the error bars for the

other parameters that have an impact on execution time. This suggests that the

performance impact of batchsize and seqthresh varies across platforms and/or

programs, therefore the importance of tuning these parameters is platform and/or

program dependent. buffertype and cachealign have little impact on execution

time, meaning that the cost of tuning these parameters may not be justified, given

the small performance increase achievable. This information can be used to reduce

the size of the search space explored by automatic search, by setting these param-

eters to fixed human expert chosen values and not tuning them.

6.2.2. Linear dimensionality reduction

The previous section identifies that buffertype and cachealign have little effect

on execution time, allowing the optimization space to be reduced by ignoring them.

Another technique for reducing the size of the optimization space is to exploit linear

dependencies between parameters, using a linear dimensionality reduction technique

called Principal Components Analysis (PCA) [16].

PCA finds orthogonal directions in an N -dimensional space that explain the

majority of the variability in the data. Applying this to positions that provide near

optimal performance (at > 95% performance) we find that fewer dimensions are

required to encode the majority of the variability in the near optimal positions.

For N -dimensional input data, PCA results in N eigenvectors ei (the rows of e

in Fig. 5) and corresponding eigenvalues λi. Each eigenvector represents a direction

in the N -dimensional space and its corresponding eigenvalue is proportional to the

variation of the data in that direction. The eigenvectors are sorted in order of

decreasing eigenvalue. The percentage of the variation in the data νm explained by

the first m eigenvectors can be calculated from their corresponding eigenvalues:

νm =

m∑
j=1

λj

/ N∑
k=1

λk

Creating a new space using the first m eigenvectors returned by PCA allows νm
percent of the variation in the optimal parameter choices to be expressed. If m is

less than N then we have reduced this new space will be smaller.
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N = 6 P = 5624

p =

(
batchsize, buffersize, buffertype,

cachealign, numworkers, seqthresh

)

λ = (0.443, 0.419, 0.204, 0.138, 0.007, 0.003)

e =


0.023 0.814 −0.000 −0.003 −0.580 0.013

−0.015 0.581 0.002 0.002 0.814 −0.014
−0.115 −0.001 0.005 −0.000 0.015 0.993

0.993 −0.010 −0.000 −0.001 0.028 0.115
−0.001 −0.001 0.003 −1.000 0.003 −0.001
−0.001 0.001 −1.000 −0.003 0.002 0.005


ν = (36%, 70%, 87%, 99%, 99%, 100%)

Fig. 5. Results of Principal Components Analysis for near optimal parameters (at > 95% per-

formance) with number of positions P , parameters p, eigenvalues λ, corresponding eigenvectors in

the rows of e and cumulative percentage of variability ν.

An issue with PCA is that it is sensitive to scaling: if each dimension has dif-

ferent units of measurement, they need to be scaled. Autoscaling is one method

of doing this. It divides the values along each dimension by the variance in that

dimension, resulting in unit variance along each dimension. The units of mea-

surement for numworkers also vary across platforms, taking values in the range

[1, 1.5 × number of cores]. This parameter is scaled to the range [0, 1.5], represent-

ing the percentage of the cores used.

Figure 5 shows the results of the PCA. The directions of greatest variability are

given by the eigenvectors, which are the rows ei in matrix e. Each column of this

matrix corresponds to a parameter in p. Each eigenvector ei has a corresponding

eigenvalue λi which is proportional to the variance of the data in the direction ei.

In order to explain 99% of the variability in the data, only the first four eigen-

vectors are required, as shown by the cumulative percentage of variability νi. This

agrees with the analysis in Sec. 6.2.1, which also shows that buffertype and

cachealign have little effect on execution time.

Eigenvectors e1 and e2 show a linear dependence between numworkers and

buffersize. e3 and e4 are almost identical to seqthresh and batchsize, showing

that these parameters have no linear dependence on any other parameters.

The implication of this is that the search space can be reduced from six dimen-

sions to four (by removing buffertype and cachealign) whilst still representing

99% of the parameters that provide near optimal performance. The linear depen-

dence between numworkers and buffersize can be used to reduce the size of the

optimization space further, by combining them into a single parameter. Further-

more, the first two eigenvectors explain 70% of the variation in the near optimal

parameters. Automatic search could be applied using only these two parameters

(buffersize and numworkers) and achieve reasonable program performance.
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These results reveal properties of the space that provide a starting point for

reducing the cost of automatic search and could be used, in future work, to develop

static heuristics that can optimize programs with minimal compile time cost.

6.3. Search Space Reduction

Removing the pair of parameters that have been identified as providing minimal

effect on program execution time reduces the size of the search space by a factor

of 6. The results of the PCA also show a linear dependency between another two

parameters. This could be used to combine the parameters into a single parameter,

reducing the size of the space further.

6.4. Is the Subset Explored Representative?

The reliability of the evidence derived from the results of the Monte Carlo search

depends on whether the subset of the space explored is representative of the entire

space. Unfortunately this cannot be determined accurately without measuring the

performance of the entire space, which is not feasible. However, the convergence of

the best found execution time provides some evidence that the subset is represen-

tative.

Figure 6 shows the best execution time found against the number of iterations

of the search. As a different total number of iterations were performed on each

platform, a separate graph is shown for each. The line on each graph shows execution

time averaged across all programs and the shaded region shows the variance.

These curves show, for every platform, that the best found execution time con-

verges before the maximum number of iterations is reached, and at this point of
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Fig. 6. Convergence of the Monte Carlo search. The shaded areas show 99% confidence intervals

for the mean.
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convergence the variance is small. This means that the search is likely to have found

a best execution time close to the true value across the entire space. Unfortunately,

this does not show that the search has identified all of the optimal regions.

A further issue with only measuring a subset of the optimization space is that

some of the subsequent analysis requires the performance at all points in the space

to be known. Nearest neighbor interpolation is used to overcome this by filling in

possible values for the missing points. However, it should be noted that this could

produce an estimate that does not accurately approximate the space as sharp peaks

could be smoothed out.

7. Related Work

There are several works that investigate the autotuning of skeletons [17, 18, 19].

Unlike our work, all these works only investigate a single pattern and none inves-

tigate how the size of the search space can be reduced. Christen et al. designed

an autotuned framework for stencil computation [18]. The framework uses Powell

and Nelder-Mead search strategies. There is no information about the number of

searches performed nor how close the strategy came to an optimal configuration.

Wang and O’Boyle [17] use machine learning to autotune pipeline computation.

Their method requires 3,000 iterations and achieves about 60% of the best obtain-

able performance. Dastgeer et al. [19] use machine learning to autotune a skeleton

for simple data parallel operations. However, this work only evaluates autotuning

for one parameter and with one application.

In addition, several groups have looked at autotuning of generic parallel pro-

gramming frameworks. Contreras and Martonosi investigate how the scheduler

in Intel’s Threading Building Blocks library can be optimized [20]; while Wang

and O’Boyle optimize thread number and scheduling strategy for OpenMP pro-

grams [21].

8. Conclusions and Future Work

The experiments carried out have demonstrated that there is significant scope for

improvement in performance over a human expert, with an average speedup across

all the programs and platforms of 1.6×. This is an impressive result, as human

expertise is usually capable of doing as well as, if not better than, a compiler. They

also demonstrate that the space is non-linear, and program and platform dependent,

which makes it very difficult for a human expert to manually tune programs.

Our exploratory analysis of the optimization space performs an initial step in

developing automatic optimization techniques for parallel skeleton programs that

can achieve significantly better program performance than that achievable by a

human expert. Two of the parameters were identified as having a minimal effect on

program performance and the optimal regions of the optimization space are platform

and program dependent. Principal Components Analysis also identified a linear

dependency between the number of workers and buffer size. This pair of parameters
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account for 70% of the variability in the optimal regions of the optimization space,

therefore performing automatic search in this reduced two dimensional space may

be able to provide near optimal performance with only a couple of iterations.

In future work, we will develop static heuristics from these results that improve

program performance without requiring a costly search of the optimization space

at compile time.
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