Institute for Computing Systems Architecture
University of Edinburgh, UK

Hugh Leather
Introduction

- Mobile is the next big thing
- Machine learning key to power and performance
- Prior work making machine learning in compilers practical at scale
Machine Learning in Compilers
Problem:
- Tuning heuristics is hard
- Architectures and compilers keep changing

Goal:
- Replace an heuristic with a Machine Learned one
- ML performs very well
Machine learning in compilers

Start with compiler data structures
AST, RTL, SSA, CFG, DDG, etc.

Predicted Optimisation Parameter

Unroll factor?
Scheduling priority?
Inline?
Compiler flags?
Machine learning in compilers

Human expert determines a mapping to a feature vector

- number of instructions
- mean dependency depth
- branch count
- loop nest level
- trip count
- ...
Now collect many examples of programs, determining their feature values.

Execute the programs with different compilation strategies and find the best for each.
Machine learning in compilers

Now give these examples to a machine learner

It learns a model

Best Heuristic Value
This model can then be used to predict the best compiler strategy from the features of a new program.
Machine learning in compilers

- Fit a curve (model) to data
- Look new point on curve for prediction
The pillars of machine learning in compilers

- Need to make practical at scale

Compiler Internals Access
libPlugin
Sourceforge – 400+ downloads

Cost of Iterative Compilation
Profile Races
LCTES 09

Enough Benchmarks
Automatic Benchmark Generation
In preparation

Choosing the Features
Automatic Feature Generation
CGO 09
Automatic Feature Generation
Choosing Features

- **Problem**
 - ML relies on good features
 - Subtle interaction between features and ML
 - Infinite number of features to choose from

- **Solution**
 - *Automatically search for good features!*
An example – Loop unrolling

- Set up
 - 57 benchmarks from MiBench, MediaBench and UTDSP
 - Found best unroll factor for each loop in [0-16]
 - Exhaustive evaluation to find oracle
An example – Loop unrolling

Original Loop
```c
for( i = 0; i < n; i = i ++ ) {
    c[i] = a[i] * b[i];
}
```

Unrolled 5 times
```c
for( i = 0; i < n; i = i + k ) {
    c[i+0] = a[i+0] * b[i+0];
    c[i+1] = a[i+1] * b[i+1];
    c[i+2] = a[i+2] * b[i+2];
    c[i+3] = a[i+3] * b[i+3];
    c[i+4] = a[i+4] * b[i+4];
    c[i+5] = a[i+5] * b[i+5];
}
```
GCC vs Oracle

- GCC gets 3% of maximum
- On average mostly not worth unrolling
State of the art features

- Lots of good work with hand-built features
 - Dubach, Cavazos, etc
- Stephenson was state of the art
 - Tackled loop unrolling heuristic
 - Spent some months designing features
 - Multiple iterations to get right
GCC vs Stephenson

- Gets 59% of maximum!
- Machine learning does well
To scale up, must reduce feature development time
A feature space for a motivating example

- Simple language the compiler accepts:
 - Variables, integers, '+', '*', parentheses

- Examples:
 - a = 10
 - b = 20
 - c = a * b + 12
 - d = a * ((b + c * c) * (2 + 3))
A feature space for a motivating example

- What type of features might we want?

\[a = ((b+c)*2 + d) * 9 + (b+2)*4 \]
A feature space for a motivating example

- What type of features might we want?

\[
a = ((b+c)*2 + d) * 9 + (b+2)*4
\]
A feature space for a motivating example

What type of features might we want?

\[a = ((b+c)^2 + d) \times 9 + (b+2)^4 \]
A feature space for a motivating example

- What type of features might we want?

```plaintext
count-nodes-matching(
  is-times &&
  left-child-matches(
    is-plus
  ) &&
  right-child-matches(
    is-constant
  )
)
```

```
a = ((b+c)*2 + d) * 9 + (b+2)*4
```

Value = 3
A feature space for a motivating example

- Define a simple feature language:

\[
\begin{align*}
\text{<feature>} & ::= \text{"count-nodes-matching("", <matches> ",")"} \\
\text{<matches>} & ::= \text{"is-constant"} \\
& \mid \text{"is-variable"} \\
& \mid \text{"is-any-type"} \\
& \mid (\text{"is-plus"} \mid \text{"is-times"}) \\
& \quad (\text{"& left-child-matches("}, <matches>, ")") \ ? \\
& \quad (\text{"& right-child-matches("}, <matches>, ")") \ ?
\end{align*}
\]

- GCC grammar is huge >160kb

- Genetic search for features that improve machine learning prediction
Results

- GCC 3% Stephenson 59% Ours 75%
- Automated features outperform human ones
Results

- Top Features Found

39% - get-attr(@num-iter)
Results

- Top Features Found

39% get-attr(@num-iter)

14% count(filter(/**, !(is-type(wide-int) || (is-type(float extend) &&[(is-type(reg)]/count(filter(/**,is-type(int)))))) || is-type(union type))))
Results

- **Top Features Found**

 - 39%
 get-attr(@num-iter)

 - 14%
 count(filter(/*, !(is-type(wide-int) || (is-type(float extend) && ![is-type(reg)]/count(filter(/*,is-type(int)))) || is-type(union type))))

 - 8%
 count(filter(/*, (is-type(basic-block) && (
 @loop-depth==2 ||
 0.0 > (
 (count(filter(/*, is-type(var decl))) -
 (count(filter(/*, (is-type(xor) && @mode==HI))) +
 sum(
 filter(/*, (is-type(call insn) && has-attr(@unchanging))),
 count(filter(/*, is-type(real type)))))) /
 count(filter(/*, is-type(code label))))))))
GCC vs Stephenson vs Ours

<table>
<thead>
<tr>
<th></th>
<th>GCC</th>
<th>Stephenson</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heuristic</td>
<td>Months</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Features</td>
<td>-</td>
<td>Months</td>
<td>-</td>
</tr>
<tr>
<td>Training</td>
<td>-</td>
<td>Days</td>
<td>Days</td>
</tr>
<tr>
<td>Learning</td>
<td>-</td>
<td>Seconds</td>
<td>Hours</td>
</tr>
<tr>
<td>Results</td>
<td>3%</td>
<td>59%</td>
<td>75%</td>
</tr>
</tbody>
</table>
Machine Learning for Mobile Systems
Mobiles

- Mobile devices will become THE consumer computing platform
- Need to make mobile devices faster
 - Quad cores here already
 - Increased power demand
- Need to make mobile devices lower power
 - Battery life measured in hours
 - Battery capacity not improving
Desktop vs Mobile

- Mobile is a different beast
 - Application characteristics
 - Customers
 - Information available
- Needs different techniques
Desktop vs Mobile

Desktop
- Applications
 - No app store
 - Many languages
 - Opaque binaries

Mobile (Android)
- Applications
 - Central app store
 - Mostly Java
 - Recompilable classes
Desktop
- Customers = Devs
 - Training in lab
 - Few benchmarks
 - Bad points OK

Mobile
- Customers = Users
 - Training in wild
 - All applications
 - Bad points, umm, bad
Desktop vs Mobile

Desktop
- No user knowledge
 - Static code features

Mobile
- User knowledge
 - Static code features
 - Application history
 - Geographical
 - Temporal
 - OS states
 - Usage patterns
Optimise applications

- All Android programs use Dalvik JIT - very slow
- Create a market replacement
- Light-weight profiling identifies hot methods
- Updates get experimental code
- System learns how to optimise similar apps for similar users
Optimise applications

- Needs zero user impact
 - ML directed profiling
 - ML guided iterative compilation
 - ML guided version selection
- Huge scope for research
Optimise power

- Recharge prediction allows power choices
Other topics

- Optimise communications
- Power modelling
- Scheduling heterogeneous multi-cores
- JIT optimisation
Conclusion

- Machine learning in compilers
 - Choosing Features
 - Enough Benchmarks
 - Cost of Iterative Compilation
 - Compiler Internals
- Machine learning the key to mobile systems
- Mobile is the next big thing
- Huge scope for research
Compiler internals

- Problem
 - Compilers not built for ML
 - Must access all internals
 - Prior approach was to hack the source

- Solution
 - libPlugin
 - Opens up GCC internals
 - Modern software engineering
 - Cooperative, extensible plug-ins, with AOP
 - Plug-ins now adopted in GCC
Cost of iterative compilation

- **Problem**
 - Gathering training data can take months
 - Statistical soundness often overlooked

- **Solution**
 - *Profile Races* *(H.Leather, B.Worton, M.O'Boyle)*
 - Program version race each other, losers quit early
 - Reduces training time by order of magnitude
 - Ensures statistically sound data
Enough benchmarks

- Problem
 - ML would like 10^5 examples
 - Only got a few dozen benchmarks

- Solution
 - *Automatic Benchmark Generation*
 (H.Leather,Z.Wang,A.Magni,C.Thompson - In preparation)
 - Genetic programming + constraint satisfaction to make 'human like' programs
 - Active learning to cover the training space
Difficulties choosing features

- The expert must do a good job of projecting down to features

- amount of white space
- average identifier length
- age of programmer
- name of program
- number of comments
Difficulties choosing features

- Machine learning doesn't work if the features don't distinguish the examples
Better features might allow classification.
Searching the Feature Space

- Overview of searching
Overview of grammar production

- GCC Exports Data Structures to XML
- Structure Analysed
- Grammar Created
- Sentence Generator Compiled
- Feature Search
- Final Features Produced

[Diagram showing flow of processing from GCC exports to final features produced, with intermediate steps involving XSL, GP Search, and Feature Interpreter]
ML for Mobile

- Server side native compilation of hot methods
ML for Mobile - Downsizing Down Sides

- Experiments on real users’ phones
- What about the bad search points?
- Multiple versions - known good and experimental
- $P(\text{experimental}) \propto \text{confidence(Experimental)}$
Comms updates are expensive
Updates need to be fresh and not wasted
Build cost models
Predictor 'use' times
Schedule updates for predicted lowest cost
Power models

- Need power models
 - Energy sensors are low fidelity
 - Batteries non-linear
 - Allow relaxation
 - Lowest power solution may not give longest battery life
- Power aware workloads needed
Heterogeneous multi-cores

- Simple heterogeneous multi-cores here now
- Scheduling is NP-hard
 - Even when application characteristics known
- Use ML to tune scheduling heuristics for power and performance
Performance - Dijkstra
Performance

Figure 5.1: Maximum speedups of runtime
Figure 5.2: Maximum energy improvement rates
Energy vs Performance

- Are energy and performance correlated?

- Not really! Why?
- If could predict recharge time, change version