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Lecture 1

Basics on Linear Algebra

In this initial lecture we summarise many useful concepts and facts, some of which
will provide the foundation for the discussions in the rest of the lectures. Most of the
materials will be familiar to a reader who has had a standard Linear Algebra course,
so the materials will be presented quickly without formal proofs.

1.1 Vectors

Throughout the lectures we will consider finite-dimensional vector spaces over the field
C of real numbers. Vectors will be usually represented by symbols u, v, w, x, etc., and
scalers by a, b, s, t, etc. The symbol n will mean the dimension of the vector space
under consideration.

For any two vectors u, v, the inner product between u and v will be denoted by
⟨u, v⟩ =

∑n
i=1 ui · vi and we say that u, v are orthogonal, and we write u ⊥ v, if

⟨u, v⟩ = 0. We will focus on the space Rn, in which every element is a column vector
with n coordinates. In this case, we can write ⟨u, v⟩ = u⊺v, where ⊺ denotes the
transpose of matrices of any size. Notice that the distinction between column vectors
and row vectors is important: as we define u, v ∈ Rn as columns vectors, the dimension
of u⊺v is 1, while the dimension of uv⊺ is n× n.

For any vector v ∈ Rn, the ℓp-norm of v is defined by ∥v∥p = (
∑n

i=1 |vi|p)
1/p. In

particular, the ∞-norm of v is defined by ∥v∥∞ = max1≤i≤n |vi|, and for simplicity we
write ∥v∥ = ∥v∥2.

Theorem 1.1 (Hölder inequality). For any p, q ∈ R with 1/p+1/q = 1 and u, v ∈ Rn,
it holds that |⟨u, v⟩| ≤ ∥u∥p · ∥v∥q.

By setting p = q = 1/2, the Hölder inequality gives |⟨u, v⟩| ≤ ∥u∥ · ∥v∥, i.e., the
Cauchy-Schwarz inequality.
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Theorem 1.2. For any v ∈ Rn and 1 ≤ p ≤ q < ∞, it holds that ∥v∥q ≤ ∥v∥p ≤
n1/p−1/q∥v∥q.

A subspace S ⊆ Rn is a set of vectors closed under scalar multiplication and
addition. A linear combination of vectors is an expression of the form c1v1 + · · ·+ ckvk,
where v1, . . . , vk ∈ Rn and c1, . . . , ck ∈ R. The set of all linear combinations of
v1, . . . , vk ∈ Rn forms a subspace, and is denoted by

span{v1, . . . , vk} = {c1v1 + · · ·+ ckvk : c1, . . . , ck ∈ R}.

Vectors v1, . . . , vk ∈ Rn are said to be linearly dependent if there exist scalars
c1, . . . , ck ∈ R, not all zero, such that c1v1 + · · ·+ ckvk = 0; otherwise they are called
linearly independent. If S = span{v1, . . . , vk} and v1, . . . , vk ∈ Rn are linearly
independent, we say that {v1, . . . , vk} is a basis for S. Moreover, if the vectors are
pairwise orthogonal and have all norm one, they form an orthonormal basis. The
dimension of a subspace S, dimS, is the number of vectors in a basis for S. Finally,
we say that two subspaces S, T ⊆ Rn are orthogonal, and write S ⊥ T , if for any
x ∈ S and y ∈ T we have that x ⊥ y.

1.2 Matrices

The fundamental object used in the course is the notion of matrices. For any m,n ∈ N,
a matrix A ∈ Rm×n is an m-by-n array of real numbers (Aij)1≤i≤m,1≤j≤n. For any
A ∈ Rm×n, A⊺ ∈ Rn×m where A⊺

i,j = Ai,j.
The image of A is

imA = {y ∈ Rm : ∃x ∈ Rn \ {0} s.t. Ax = y},

and its kernel is kerA = {x ∈ Rn : Ax = 0}. Notice that imA is a subspace of Rm,
while kerA is a subspace of Rn. The dimension of the image is called the rank of
A, and is equal the number of linearly independent columns (or rows) of A, while
the dimension of the kernel is called nullity. They are related by the rank-nullity
theorem:

dim imA+ dimkerA = n.

If A is a square matrix, i.e., m = n, then kerA = Rn \ imA, and kernel and image are
orthogonal to each other. If A = A⊺, we say that A is symmetric.

The trace of a matrix A ∈ Rm×n is defined as tr(A) = A1,1 + · · · + Ap,p, where
p = min{m,n}. The trace is invariant under cyclic permutations, i.e.,

tr(ABCD) = tr(BCDA) = tr(CDAB).

The norm of a matrix A is defined as

∥A∥ = sup
∥x∥=1

∥Ax∥.
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A matrix A ∈ Rn×n is called invertible if there is a matrix B ∈ Rn×n such that
AB = BA = In, where In denotes the n× n identity matrix. If it is the case, then B
is uniquely determined by A, and is called the inverse of matrix A, denoted by A−1.

Lemma 1.3. If ∥A∥ < 1, then I − A is invertible and

(I − A)−1 = I + A+ A2 + · · · ,

a convergent power series. This is called the Neumann Series.

Lemma 1.4. For any matrix A, the series

expA = I + A+
A2

2!
+ · · ·+ An

n!
+ · · ·

converges. This is called the exponential of A. The matrix expA is always invertibvle
and

(expA)−1 = exp(−A).

Conversely, every invertible matrix can be expressed as the exponential of some matrix.

Exercise 1.5. Let A ∈ Rn×n be symmetric, and x, y ∈ Rn. Then, it holds that
⟨Ax, y⟩ = ⟨x,Ay⟩.

1.3 Eigenvalues, and Eigenvectors

A fundamental concept in matrix analysis is the set of eigenvalues of a square matrix.

Definition 1.6. Let A ∈ Rn×n be a symmetric matrix. If λ ∈ R and v ∈ Rn \ {0}
satisfy

Av = λv,

then λ is called an eigenvalue of A and v is called an eigenvector of A associated
with λ. The pair (λ, v) is called an eigenpair of A. The set of A’s eigenvalues is called
the spectrum of A, and is denoted by σ(A). The condition number of A, denoted by
τ(A), is the ratio between the maximum eigenvalue of A and the minimum eigenvalue
of A.

When A is not symmetric, the eigenvalues of A can be complex-valued, and it
is sometimes more useful to consider singular values instead of eigenvalues. We say
that s is a singular value of A if and only if s is the non-negative square root of an
eigenvalue of A⊺A. It can be shown that A and A⊺ (respectively A⊺A and AA⊺) have
the same nonzero singular values (eigenvalues).

The main focus of the lectures is the symmetric matrices, and the Spectral
Theorem states that matrix A has n eigenvalues, and there exists an orthonormal
basis of Rn that consists of eigenvectors of A.
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Theorem 1.7. Assume that (λ1, f1), . . . , (λn, fn) are the eigenpairs of matrix A ∈
Rn×n, and f1, . . . , fn are orthonormal. Then, matrix A can be written as

A =
n∑

i=1

λifif
⊺
i .

Based on this theorem, one can generalise a real-valued function to a matrix-
valued function: let g : D → R be a function with domain D ⊆ R, and A ∈ Rn×n be
a symmetric matrix with eigendecomposition A =

∑n
i=1 λifif

⊺
i and σ(A) ⊆ D. Then,

g(A) is defined as

g(A) =
n∑

i=1

g(λi)fif
⊺
i .

Exercise 1.8. Let A ∈ Rn×n be symmetric, and Ak be the k-th power of A for some
k ∈ N. Then, it holds that

Ak =
n∑

i=1

λk
i fif

⊺
i .

Exercise 1.9. Let A ∈ Rn×n be symmetric. Then, it holds that

expA =
n∑

i=1

eλifif
⊺
i .

It is not difficult to prove that, for any invertible matrix A, one can write A−1 as
A−1 =

∑n
i=1 λ

−1
i fif

⊺
i , and from this equation it is obvious to see that A−1 exists if and

only if A has no eigenvalue equal to 0.

Remark 1.1. A matrix-valued function does not necessarily inherit all the properties
from its real-valued analogue. For instance, for any x, y ∈ R, exp(xy) = exp(x) exp(y),
but exp(AB) = exp(A) exp(B) holds if and only if AB = BA.

In later lectures we will study a generalisation of the inverse of matrices with
zeroes in their spectrum. For this reason we define the pseudoinverse A†, the matrix
that has the same kernel of A and acts as its inverse on the image of A. It can be
decomposed as

A† =
∑
λi ̸=0

1

λi

fif
⊺
i .

By definition, the matrix AA† = A†A =
∑

λi ̸=0 fif
⊺
i can be seen as the projection on

the subspace spanned by the eigenvectors corresponding to the nonzero eigenvalues
of A, i.e., the image of A. In general, given a subspace S with orthonormal basis
{v1, . . . , vk}, the projection on S is PS =

∑k
i=1 viv

⊺
i . Observe that PS acts as the

identity matrix on S, and as the all-zeroes matrix on its orthogonal subspace.

Theorem 1.10. Let A ∈ Rn×n be symmetric, and λ1, . . . , λn be the eigenvalues of A.
Then, it holds that tr(A) =

∑n
i=1 λi.
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1.4 Courant-Fischer Characterisation of Eigenvalues

For any matrix A ∈ Cn×n and a nonzero vector v ∈ Cn, the Rayleigh quotient of A
at v is defined as

v⊺Av

v⊺v
∈ C.

When v is the eigenvector of A associated with an eigenvalue λ, it is straightforward
to check that

v⊺Av

v⊺v
=

v⊺(λv)

v⊺v
= λ. (1.1)

Exercise 1.11. For any symmetric A ∈ Rn×n with eigenvalues λ1 ≤ · · · ≤ λn, it holds
for any v ∈ Rn that

v⊺Av

v⊺v
∈ [λ1, λn].

Combining (1.1) with the fact above, the smallest eigenvalue λ1 = λmin(A) and the
largest eigenvalue λn = λmax(A) of a symmetric matrix A ∈ Rn×n can be written as

λmin(A) = min
v∈Rn,v ̸=0

v⊺Av

v⊺v
, λmax(A) = max

v∈Rn,v ̸=0

v⊺Av

v⊺v
.

Generalising this fact, any eigenvalue of A can be written as a solution of an optimisation
problem as follows:

Let A ∈ Rn×n be a symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn and corre-
sponding eigenvectors f1, . . . , fn. Then, it holds that

λi = min
v⊥f1,...,fi−1,v ̸=0

v⊺Av

v⊺v
= max

v⊥fi+1,...,fn,v ̸=0

v⊺Av

v⊺v
. (1.2)

Moreover, the corresponding v ∈ Rn that minimises or maximises (1.2) above is the
eigenvector fi.

Theorem 1.12 (Courant-Fisher Min-Max Characterisation of Eigenvalues). Let A ∈
Rn×n be a symmetric matrix with eigenvalues λ1 ≤ · · · ≤ λn and corresponding
eigenvectors f1, . . . , fn. Then, it holds for any 1 ≤ i ≤ n that

λi = min
S:dimS=i

max
x∈S,x̸=0

x⊺Ax

x⊺x
= max

S:dimS=n−i+1
min

x∈S,x̸=0

x⊺Ax

x⊺x
, (1.3)

where S is a subspace of Rn.

1.5 Positive Definite Matrices

Positive (semi)-definite matrices are the matrices that always have non-negative (or
positive) Rayleigh quotients. Formally, any symmetric matrix A ∈ Rn×n is positive
definite if v⊺Av > 0 for any nonzero v ∈ Rn, and we write A ≻ 0 if A is positive
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fn

f1f1
f2f2

Figure 1.1: Example of an ellipsoid in Rn defined by a positive definite matrix A.

definitive. Similarly, a symmetric matrix A ∈ Rn×n is positive semidefinite if v⊺Av ≥ 0
for any nonzero v ∈ Rn, and we write A ⪰ 0 to represent that A is positive semidefinite.
The notions ≺ and ⪯ can be defined in the same way.

The relations ≻ and ⪰ are generalisations of partial orders defined over R, and it
is straightforward to prove the following facts.

Exercise 1.13. Let A,B,C ∈ Rn×n be symmetric matrices. Then the following holds:

• If A ⪰ B, then A−B ⪰ 0;

• If A ⪰ B, then A+ C ⪰ B + C;

• If A ⪰ B and B ⪰ C, then A ⪰ C.

For any positive definite matrix A ∈ Rn×n, one can view A as an ellipsoid in
n-dimensional Euclidean space:

ellip(A) =
{
x ∈ Rn : x⊺A−1x ≤ 1

}
.

That is, the eigenvectors f1, . . . , fn of A are the semi-principal axes of ellip(A), and
the length of the i-th semiaxis fi is λ

−1/2
i , see Figure 1.1 for illustration. From this

perspective, the smaller the value of τ(A) is, the closer ellip(A) is to be a sphere in Rn.



Lecture 2

Graph Spectra

Throughout the course let G = (V,E) be an undirected graph with n vertices and
m edges. The set of neighbours of vertex u is represented by N(u), and its degree
is du = |N(u)|. For simplicity, we write u ∼ v if {u, v} is an edge of G. For any set
S ⊆ V , let vol(S) =

∑
u∈S du. In particular, let vol(G) =

∑
u∈V [G] du.

2.1 Graph Laplacians

We first define the graph matrices used in the course. Let D ∈ Rn×n be the diagonal
matrix where Du,u = du for any vertex u. The adjacency matrix of graph G is the
matrix A defined by Au,v = 1 if u ∼ v, and Au,v = 0 otherwise. In particular, we write
Au,u = 1 if there is a self-loop of vertex u.

Exercise 2.1. It holds that tr(A2) = vol(G).

The Laplacian matrix of G is defined by L = D −A, where A is the adjacency
matrix of G. The normalised Laplacian matrix of G is defined by

L = D−1/2LD−1/2 = I −D−1/2AD−1/2.

By definition, we know that L = I − (1/d) · A if G is d-regular. Moreover, one can
view L as an operator on the space of function g : V (G) → R such that

Lg(u) = 1√
du

∑
v: u∼v

(
g(u)√
du

− g(v)√
dv

)
.

For matrix L, we denote its n eigenvalues with λ1 ≤ · · · ≤ λn, with their corresponding
orthonormal eigenvectors f1, . . . , fn. The set of n eigenvalues {λi}ni=1 together with
their multiplicities is called the spectrum of a graph G.
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Lemma 2.2. All the eigenvalues of L are non-negative.
Proof. Let g ∈ Rn be any vector. Then, we have that

⟨g,Lg⟩
⟨g, g⟩

=
⟨g,D−1/2LD−1/2g⟩

⟨g, g⟩

=
⟨D−1/2g, LD−1/2g⟩

⟨g, g⟩
.

Let f = D−1/2g, and we have that

⟨g,Lg⟩
⟨g, g⟩

=
⟨f, Lf⟩

⟨D1/2f,D1/2f⟩
.

Notice that

⟨f, Lf⟩ =
∑
u,v

Lu,v · fufv =
∑
u

du · f 2
u −

∑
u∼v

2 · fufv =
∑
u∼v

(fu − fv)
2,

and therefore
⟨g,Lg⟩
⟨g, g⟩

=

∑
u∼v(fu − fv)

2∑
u du · f 2

u

≥ 0.

By (1.2), all the eigenvalues are non-negative. Moreover,

⟨g,Lg⟩
⟨g, g⟩

= 0

if fu = 1 for every vertex u, i.e., D1/2 · 1 is an eigenvector of L with the corresponding
eigenvalue 0, where 1 ∈ Rn is the vector with 1u = 1 for every u.
Lemma 2.3. Let G be a connected graph. Then, it holds that

∑n
i=1 λi = n.

Proof. By the definition of L, it holds that
∑n

i=1 λi = tr(L) = n.

2.2 Bounding λ2

Among the n eigenvalues, λ2 plays a central role in studying various aspects of a graph.
Here, we present some simple bounds, and more detailed analysis about λ2 will be
discussed in later lectures.
Theorem 2.4. It holds that

λ2 = inf
f⊥D1

∑
u∼v(fu − fv)

2∑
u du · f 2

u

.

Proof. The statement follows from the proof of Lemma 2.2 and the fact that

⟨g,D1/21⟩ = 0 ⇔ ⟨D1/2f,D1/21⟩ = 0 ⇔ ⟨f,D1⟩ = 0.
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The following equivalent definitions of λ2 will be used in our lectures.

Lemma 2.5. It holds that

λ2 = inf
f
sup
t

∑
u∼v(fu − fv)

2∑
u du · (fu − t)2

= inf
f

∑
u∼v(fu − fv)

2∑
u du ·

(
fu − f̄

)2 ,
where

f̄ =

∑
u du · fu
vol(G)

.

Proof. By direct calculation, we have that

inf
f
sup
t

∑
u∼v(fu − fv)

2∑
u du · (fu − t)2

= inf
f
sup
t

∑
u∼v(fu − fv)

2∑
u duf

2
u − 2t

∑
u dufu + t2

∑
u du

. (2.1)

Let us define
h(t) = t2

∑
u

du − 2t ·
∑
u

dufu.

Since
sup
t

∑
u∼v(fu − fv)

2∑
u duf

2
u − 2t

∑
u dufu + t2

∑
u du

is achieved if and only if h(t) achieves its minimum. Notice that

h′(t) = 2t · vol(G)− 2 ·
∑
u

dufu,

and h′(t) = 0 iff

t = f̄ =

∑
u dufu

vol(G)
.

Also, since h′′(t) = 2 vol(G) > 0, we know that h(t) achieves its minimum at the point
t = f̄ . Given this, we can rewrite (2.1) as

inf
f
sup
t

∑
u∼v(fu − fv)

2∑
u du · (fu − t)2

= inf
f

∑
u∼v(fu − fv)

2∑
u du · (fu − f̄)2

= inf
f

∑
u∼v(fu − fv)

2∑
u duf

2
u − 2f̄

∑
u dufu +

∑
u duf̄

2

= inf
f

∑
u∼v(fu − fv)

2∑
u duf

2
u − (

∑
u dufu)

2/ vol(G)
.

Now for any f ∈ Rn, we assume
∑

u fudu = α for some α, and define vector g ∈ Rn

such that
gu = fu −

α

volG
,
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which implies that ∑
u

gudu =
∑
u

fudu −
α

vol(G)

∑
u

du = 0,

i.e., g ⊥ D1. Since any vector f can be determined by a vector g satisfying g ⊥ D1
and α, we have that

inf
f
sup
t

∑
u∼v(fu − fv)

2∑
u du · (fu − t)2

= inf
f

∑
u∼v(fu − fv)

2∑
u duf

2
u − (

∑
u dufu)

2/ vol(G)

= inf
g,α

∑
u∼v(gu − gv)

2∑
u du(gu + α/ vol(G))2 − α2/ vol(G)

= inf
g,α

∑
u∼v(gu − gv)

2∑
u dug

2
u

= inf
g

∑
u∼v(gu − gv)

2∑
u dug

2
u

= inf
f⊥D1

∑
u∼v(fu − fv)

2∑
u duf

2
u

Combining this with Theorem 2.4 proves the statement.

Exercise 2.6. It holds that

λ2 = vol(G) · inf
f

∑
u∼v(fu − fv)

2∑
u,v dudv · (fu − fv)2

,

where
∑

u,v denotes the sum of all unordered pairs of vertices u, v in G.

Exercise 2.7. λ2 ≤ n/(n− 1), and λ2 = n/(n− 1) iff G is a complete graph.

Lemma 2.8. If G is not a complete graph, then λ2 ≤ 1.

Proof. Since G is not a complete graph, there are vertices u, v which are not connected
by an edge. Define a vector f ∈ Rn such that

fw =


du if w = v,

−dv if w = u,

0 otherwise.

By Theorem 2.4, it holds that

λ2 ≤
∑

u∼v(fu − fv)
2∑

u du · f 2
u

= 1.
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Exercise 2.9. G has k connected components iff λk = 0 and λk+1 > 0. In particular,
G is connected iff λ2 > 0.

Lemma 2.10. For any connected graph with diameter α, it holds that

λ2 ≥
1

α · vol(G)
.

Proof. Let f ∈ Rn with f ⊥ D1 be the vector such that

λ2 =

∑
u∼v(fu − fv)

2∑
u du · f 2

u

.

Let v0 be the vertex such that |fv0| = maxv |fv|. Since
∑

v fv · dv = 0, there is a vertex
u0 such that fv0 · fu0 < 0. Let P be a shortest path between u0 and v0. Hence, it holds
that

λ2 =

∑
u∼v(fu − fv)

2∑
v dvf

2
v

≥
∑

{u,v}∈P(fu − fv)
2

vol(G) · f 2
v0

≥ (1/α) · (fu0 − fv0)
2

vol(G) · f 2
v0

≥ 1

α · vol(G)
.

Corollary 2.11. For any connected graph G with n vertices, it holds that λ2 = O(1/n3).

Proof. The result follow from Lemma 2.10, vol(G) = O(n2), and α = O(n) for any
connected graph.

Based on Lemma 2.10, we know that a smaller value of α implies a larger value
of λ2 and, informally, the value of λ2 is closely related to the expansion property of
a graph. While this connection between λ2 and graph’s expansion will become more
clear in later lectures, the following result shows that a refined bound of λ2 can be
obtained once we have more information about the graph’s expansion properties.

Theorem 2.12. Let G be a d-regular graph of n vertices. Assume that there is a set
P of

(
n
2

)
paths connecting all pairs of vertices such that each path in P has length at

most ℓ and each edge of G is contained in at most β paths in P . Then,

λ2 ≥
n

dβℓ
.

Proof. Let f ∈ Rn be the eigenvector associated with λ2. Then we have that

λ2 =
n

d
·
∑

u∼v(fu − fv)
2∑

u,v(fu − fv)2
. (2.2)
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For any vertices u, v, let P (u, v) be the path connecting u and v. Then, it holds that

(fu − fv)
2 ≤ |P (u, v)| ·

∑
e∈P (u,v)
e={u′∼v′}

(fu′ − fv′)
2 ≤ ℓ ·

∑
e∈P (u,v)
e={u′∼v′}

(fu′ − fv′)
2 ,

and therefore

1

ℓ
·
∑
u,v

(fu − fv)
2 ≤

∑
u,v

∑
e∈P (u,v)
e={u′∼v′}

(fu′ − fv′)
2 ≤ β ·

∑
u∼v

(fu − fv)
2,

which is equivalent to ∑
u∼v

(fu − fv)
2 ≥ 1

β · ℓ
∑
u,v

(fu − fv)
2.

Combining this with (2.2) proves the theorem.

2.3 Bounding λn

Lemma 2.13. λn ≤ 2.

Proof. Let g ∈ Rn be any vector. Based on the calculations in the proof of Lemma 2.2,
it holds that

⟨g,Lg⟩
⟨g, g⟩

=

∑
u∼v(fu − fv)

2∑
u du · f 2

u

≤
∑

u∼v 2(f
2
u + f 2

v )∑
u du · f 2

u

=
2 ·
∑

u du · f 2
u∑

u du · f 2
u

= 2. (2.3)

Lemma 2.14. λn = 2 iff a connected component of G is a non-empty bipartite graph.

Proof. From (2.3), we know that λn = 2 iff the eigenvector associated with λn satisfies∑
u∼v

(fu − fv)
2 =

∑
u∼v

2(f 2
u + f 2

v ),

i.e.,
∑

u∼v(fu + fv)
2 = 0, which is equivalent to say that

fu = −fv, for every u ∼ v. (2.4)

Since f is an eigenvector, there is at least one coordinate fu ̸= 0. Based on this and
(2.4), the sign of each fv ̸= 0 shows the partition of a connected component of G.
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2.4 Examples of Graph Spectra

We have seen that some of a graph’s properties can be obtained by its graph spectrum.
To summarise our discussion, let us look at several examples.

Example 2.15. Let the spectrum of a graph G be

0, 2/3, 2/3, 2/3, 2/3, 2/3, 5/3, 5/3, 5/3, 5/3.

From this sequence, we know that (i) G has 10 vertices; (2) G is connected; (3) G is
not bipartite.

Example 2.16. Let the spectrum of a graph G be

0, 0, 0.69, 0.69, 1.5, 1.5, 1.8, 1.8.

From this sequence, we know that (i) G has 8 vertices; (2) G is disconnected, and has
2 connected components; (3) none of G’s connected component is bipartite.

Finally, we show some examples of the spectra for specific graphs.

Example 2.17. For the complete graph Kn on n vertices, the eigenvalues are 0 and
n/(n− 1) with multiplicity n− 1.

Example 2.18. For the star Sn on n vertices, the eigenvalues are 0, 1 with multiplicity
n− 2, and 2.

Example 2.19. For the path Pn on n vertices, the eigenvalues are 1− cos
(

πk
n−1

)
for

k = 0, 1, . . . , n− 1.

Example 2.20. For the cycle Cn on n vertices, the eigenvalues are 1− cos
(
2πk
n

)
for

k = 0, 1, . . . , n− 1.

2.5 Laplacians for Weighted Graphs

Finally, we define graph matrices for weighted graphs. Let G = (V,E,w) be an
undirected graph with weight function w : V × V → R, such that w(u, v) = w(v, u)
for any u ∼ v, and w(u, v) ≥ 0 for any pair of u, v. Then, the degree du of vertex u
is defined as du =

∑
u∼v w(u, v), and vol(G) =

∑
v dv. The adjacency matrix of G is

defined as Au,v = w(u, v) for any pair of u, v. Then, the Laplacian matrix and the
normalised Laplacian matrix are defined in the same way as for an unweighted graph,
i.e.,

L = D − A,

L = I −D−1/2AD−1/2.
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We can still use the same characterisations for the eigenvalues of L, by taking the
weight function into account. For example, we have that

λ2 = inf
g⊥D1/21

⟨g,L⟩
⟨g, g⟩

= inf
f⊥D1

∑
u,v w(u, v)(fu − fv)

2∑
v dvf

2
v

.



Lecture 3

The Cheeger Inequality

For any undirected graph G = (V,E) and a set S ⊂ V , let

hG(S) =
|∂S|

min{vol(S), vol(V \ S)}
,

where ∂S = E(S, V \ S) denotes the set of edges with one endpoint in S and the other
endpoint in V \S. The Cheeger constant or the conductance of graph G is defined
as

hG = min
S

hG(S).

By definition, the set S achieving hG corresponds to the sparsest cut in G, and finding
such set S has many applications in computer science. For example, when analysing a
physical network, one can view the servers and the links connecting different servers as
the vertices and edges in graph G. Then, a higher value of hG shows that the underlying
network is more reliable, since one have to remove many links to make the network
disconnected. Moreover, as the number of edges corresponds to the construction cost,
it is desired to construct a network G with higher value of hG but keeping the number
of edges in G as small as possible. For image segmentation, a common approach is to
build a graph G based on the RGB values and the pairwise distances among different
pixels, and the sparsest cuts in G are used to identify different objects in a picture.
While we can formulate a sparse cut in different ways with respect to different settings,
one of the simplest formulations is as follows:

Problem 3.1 (The Sparsest Cut Problem). Given an undirected graph G = (V,E)
of n vertices as input, find a set S ⊂ V such that hG(S) = hG.

The sparest cut problem is NP-hard, and the current best approximation algorithm
achieves an approximation ratio of O(

√
log n), which is based spectral geometry and
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semi-definite programming. Indeed, designing approximation algorithms for the sparsest
cut problem is one of the most central problems in approximation algorithms.

In this lecture, we will see how hG relates to λ2, which is polynomial-time computable,
and design an approximation algorithm for the sparsest cut problem. Then, we will
discuss the high-order generalisation of the Cheeger inequality.

3.1 The Cheeger Inequality

We have seen several equivalent formulations for λ2 from the last lecture. From
these formulations, we can write λ2 as the minimum of a function g(x) over possible
x ∈ D ⊆ Rn, and the value of g(x) for any x ∈ D is an upper bound of λ2. Now, we
use the same method to show that λ2 can be upper bounded with respect to hG.

Lemma 3.1. λ2 ≤ 2 · hG.

Proof. Let C = (A,B) be the optimal cut that achieves hG, and let |C| be the number
of edges in this cut. We define a vector x ∈ Rn such that xu = 1/ vol(A) if u ∈ A, and
xu = −1/ vol(B) of u ∈ B. Since

⟨x,D1⟩ =
∑
u∈A

du
vol(A)

−
∑
u∈B

du
vol(B)

= 0,

it holds that

λ2 ≤
∑

u∼v(xu − xv)
2∑

u du · x2
u

=
|C| · (1/ vol(A) + 1/ vol(B))2

1/ vol(A) + 1/ vol(B)

= |C| ·
(

1

vol(A)
+

1

vol(B)

)
≤ 2|C|

min{vol(A), vol(B)}
= hG,

which proves the statement.

Next, we will show that hG can be upper bounded with respect to λ2 as well.

Theorem 3.2 (Cheeger Inequality). It holds that hG ≤
√
2 · λ2.

The core behind the proof of the Cheeger inequality is the following fact, which
corresponds to an approximation algorithm for finding a sparse cut. For any vector
y ∈ Rn, we assume that y1 ≤ . . . ≤ yn. For any t ∈ R, define

St = {u : yu ≤ t}.

We call these {St}nt=1 sweep sets.

Lemma 3.3. For any vector y satisfying y⊺D1 = 0, there is a number t such that

hG(St) ≤

√
2 · y

⊺Ly

y⊺Dy
.
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Notice that the vector y = D−1/2f2 satisfies

y⊺Ly

y⊺Dy
=

f⊺
2D

−1/2LD−1/2f2
f⊺
2D

−1/2DD−1/2f2
=

f⊺
2Lf2
f⊺
2 f2

= λ2.

Hence, based on Lemma 3.3 we have the following algorithm for finding a sparse cut.

Algorithm 1 Algorithm for finding a sparse cut
1: f = D−1/2f2
2: Sort all the vertices such that f(u1) ≤ . . . ≤ f(un)
3: t = 0
4: S = ∅
5: S⋆ = {u1}
6: while t ≤ n do
7: t = t+ 1
8: S = S ∪ {ut}
9: if hG(S) ≤ hG(S

⋆) then S⋆ = S

10: return S⋆

Theorem 3.4. Algorithm 1 returns a set S such that hG(S) ≤
√
2λ2.

3.2 Proof of Lemma 3.3

Proof of Lemma 3.3. Let

ρ =
y⊺Ly

y⊺Dy
=

∑
u∼v(yu − yv)

2∑
u du · y2u

.

Without loss of generality, we assume that y1 ≤ . . . ≤ yn, and let j be the smallest
number such that

∑
i≤j di ≥ vol(G)/2.

We introduce another vector z ∈ Rn such that zu = yu − yj, and hence zj = 0.
Moreover, it is easy to show that

z⊺Lz

z⊺Dz
=

y⊺Ly

y⊺Dy + vol(G) · y2j
≤ ρ.

We further scale vector z such that z21 + z2n = 1, and define set

Vt = {u : zu ≤ t}.

Since
hG(Vt) =

|∂Vt|
min{vol(Vt), vol(V \ Vt)}

,
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our goal is to define a distribution on t such that

E [|∂Vt|]
E [min{vol(Vt), vol(V \ Vt)}]

≤
√
2ρ, (3.1)

Notice that (3.1) is equivalent to show that E
[√

2ρ ·min {vol(Vt), vol(V \ Vt)} − |∂Vt|
]
≥

0. Therefore, there is a set V ′ such that
√
2ρ ·min {vol(V ′), vol(V \ V ′)} ≥ |∂V ′|, i.e.,

|∂V ′|
min {vol(V ′), vol(V \ V ′)}

≤
√
2ρ.

To define such a distribution, we choose t according to the probability density
function 2|t|. Hence, the probability that a value between [a, b] is chosen is

P [t ∈ [a, b]] =

∫ b

a

2|t|dt = sgn(b) · b2 − sgn(a) · a2.

Since z21 + z2n = 1, we have that

P [t ∈ [z1, zn]] =

∫ zn

z1

2|t|dt = sgn(zn) · z2n − sgn(z1) · z21 = 1.

So it suffices to analyse E [min {vol (Vt) , vol(V \ Vt)}] and E [|∂Vt|].
Analysis of E [min {vol (Vt) , vol(V \ Vt)}]. Notice that

E [vol (Vt)] =
∑
u

P [zu ≤ t] · du.

By the choice of j, we know that t < 0 implies that vol(Vt) < vol(G)/2, while t > 0
implies that vol(V \ Vt) ≤ vol(G)/2. Hence, it holds that

E [min {vol (Vt) , vol(V \ Vt)}]

=
∑
u

P [zu ≤ t and t < 0] · du +
∑
u

P [zu > t and t ≥ 0] · du

=
∑

u: zu≤t

du · z2u +
∑

u: zu>t

du · z2u

= z⊺Dz.

Analysis of E [|∂Vt|]. Notice that an edge u ∼ v with zu ≤ zv is in ∂Vt iff zu ≤ t
and zv ≥ t. This event occurs with probability∫ zv

zu

2|t|dt = sgn(zv) · z2v − sgn(zu) · z2u,
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which equals to |z2u − z2v | if sgn(zu) = sgn(zv), and z2u + z2v otherwise. We upper bound
both terms by the inequality

|z2u − z2v | ≤ |zu − zv| · (|zu|+ |zv|) ,

and
z2u + z2v ≤ (zu − zv)

2 ≤ |zu − zv| · (|zu|+ |zv|) .

Then, it holds that

E [|∂Vt|] =
∑

{u,v}∈E

P [zu ≤ t and zv > t]

≤
∑
u∼v

|zu − zv| · (|zu|+ |zv|)

≤
√∑

u∼v

|zu − zv|2 ·
√∑

u∼v

(|zu|+ |zv|)2

≤
√
z⊺Lz ·

√
2 · z⊺Dz,

where the second inequality follows by the Cauchy-Schwarz inequality. Therefore, we
have that

E [|∂Vt|]
E [min{vol(Vt), vol(V \ Vt)}]

≤
√

2 · z
⊺Lz

z⊺Dz
≤
√

2ρ.

By the averaging argument, there is a set Vt, such that hG(Vt) ≤
√
2ρ.

3.3 Further Discussions

Are these inequalities tight? Combining the Cheeger inequality with Lemma 3.1,
we have that

λ2/2 ≤ hG ≤
√

2 · λ2. (3.2)

The following two examples show that both sides of (3.2) are tight up to a constant
factor.

• For a path graph Pn, the Cheeger constant is

1

⌈(n− 1)/2⌉
,

and
λ2 = 1− cos

(
π

n− 1

)
≈ π2

2(n− 1)2
.

This shows that the Cheeger inequality is tight up to a constant factor.
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• For an n-cube, the Cheeger constant is 2/n which is equal to λ2. Hence, the first
inequality in (3.2) is tight within a constant factor as well.

Why is it called the Cheeger inequality? Theorem 3.2 was originally proven by
Cheeger in the setting of manifolds. It was shown about 20 years later that the same
inequality developed by Cheeger holds for graphs as well, and the proof for graphs
essentially follows exactly from the proof for manifolds. However, it is worth pointing
out that, the easier direction of (3.2), i.e., λ2/2 ≤ hG does not hold for manifolds.

Graphs in which the sweep cut failed to find a sparse cut. There have been
extensive studies about the graphs in which a sweep set algorithm based on f2 fails to
find a sparse cut. As an example, we define a grid graph as follows:

• There are
√
n rows and 3

√
n columns in the grid, and there is a vertex at the every

crossing “point” between a horizontal line segment and a vertical line segment.

• The weight of every edge, except the edges sitting in the middle row, has weight
1.

• The weight of every edge sitting in the middle row has weight 1/
√
n.

See Figure 3.1 for example. it is easy to see that the “horizontal cut” crossing the “thin”
edges is the sparsest cut, while the output of a sweep set algorithm is the “vertical cut”.

3
√
n coloums

√
n rows the sparest cut

the Cheeger’s cut

Figure 3.1: A grid graph with
√
n rows, and 3

√
n columns.

3.4 Higher-Order Cheeger Inequality

So far we have discussed the relations between λ2 and hG. Based on this, one can
ask if the structure of multi-clusters in a graph relates to the other eigenvalues of L.
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To build this connection, we generalise the Cheeger constant and define the k-way
expansion constant as

ρ(k) ≜ min
partition A1,...,Ak

max
1≤i≤k

hG(Ai). (3.3)

Here, we call subsets of vertices (i.e. clusters) A1, . . . , Ak a k-way partition of G
if Ai ∩ Aj = ∅ for different i and j, and

⋃k
i=1Ai = V . Usually we say a graph G

occurring in practice has k clusters if we can partition the vertex set of G into k subsets
A1, . . . , Ak, such that different clusters are loosely connected, i.e., the value of ρ(k) is
small. Lee et al. showed that the value of ρ(k) relates to λk, and proved the following
higher-order Cheeger inequality:

λk

2
≤ ρ(k) ≤ O(k2)

√
λk. (3.4)

At a very high level, the proof of the higher-order Cheeger inequality is to apply the
eigenvectors associated with λ2, . . . , λk to embed every vertex into a point in Rk. We
will discuss more about this approach when we discuss spectral clustering algorithms
in later lectures.



Lecture 4

Quasi-randomness

From previous discussions we know that high expansion property can be shown by a
large value of hG, or a large value of λ2. In this lecture we study vertex expansion,
and see how these different parameters relate each other. Throughout the lecture, let
Γ(v) = {u|u ∼ v} be the set of neighbours of v. For any S ⊂ V , let

Γ(S) =
⋃
v∈S

Γ(v).

We further call λ = maxi≥2 |1− λi| the spectral expansion of G.

4.1 Vertex Expansion

Definition 4.1 (vertex expansion). For any graph G with n vertices, we say that G
has vertex expansion (K,A) if it holds for any S ⊂ V with |S| ≤ K that

|Γ(S)| ≥ A · |S|.

When K = n/2, we call G an A-expander.

Theorem 4.2 (spectral expansion⇒ vertex expansion). If a d-regular G has spectral
expansion λ, then for all α, G has vertex expansion

(
αn, 1

(1−α)λ2+α

)
.

Before showing the proof, we introduce some notations at first. For any x ∈ Rn, we
say that x is a probability distribution if xi ≥ 0 for any i, and

∑n
i=1 xi = 1. For

any probability distribution x, the support of x is defined by support(x) = {i : xi > 0}.

Definition 4.3. Given a probability distribution x, the collision probability of x is
defined by CP(x) =

∑n
i=1 x

2
i .
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Lemma 4.4. For every probability distribution x ∈ [0, 1]n, we have

1. CP(x) = ∥x∥2 = ∥x− π∥2 + ∥π∥2.

2. CP(x) ≥ 1/|support(x)|.

Proof. (1) We write x as x = π + (x− π) where π⊥(x− π). Thus

CP(x) = ∥x∥2 = ∥x− π∥2 + ∥π∥2.

(2) By Cauchy-Schwarz inequality, we get

1 =
∑

u∈support(x)

xu ≤
√

|support(x)| ·
√∑

u

x2
u

and CP(x) =
∑

u x
2
u ≥ 1/|support(x)|.

Proof of Theorem 4.2. Let |S| ≤ αn. Choose a probability distribution y that is
uniform on S and 0 on the S. Then, it holds that CP(y) = 1/|S|, and

CP(My) ≥ 1/|support(My)| = 1/|Γ(S)|,

where M = (1/d) · A. Therefore 1/|Γ(S)| − 1/n ≤ λ2(1/|S| − 1/n). Combining the
formula above and |S| ≤ αn, we get

|Γ(S)| ≥ |S|
(1− α)λ2 + α

.

Theorem 4.5 (vertex expansion ⇒ spectral expansion). For every δ > 0 and d > 0,
there is γ > 0 such that if G is a d-regular (1 + δ)-expander, then it is also (1 − γ)
spectral expander. Specifically, we can take γ = Ω(δ2/d).

4.2 Expander Graphs

From the discussions above, we know that a small value of λ shows that the underlying
graph behaves more like a random graph. So a natural question is to study a lower
bound of λ. Alon and Boppana showed that, for any constant ε > 0, every sufficiently
large d-regular graph has λ ≥ 2

√
d− 1/d−ε. We call a d-regular graph G Ramanujan

if λ(G) ≤ 2
√
d− 1/d.

For any fixed constant d, constructing an infinite family of d-regular Ramanujan
graph is one of the most challenging questions in algorithmic spectral graph theory.
On the other side, it is not difficult to show that a random d-regular graph has good
expansion. Here, we show that a random bipartite graph has good vertex expansion.

Let Gd,n be the set of bipartite graphs with bipartite sets L,R of size n and left
degree d. We have the following result:
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Theorem 4.6. For any d, there exists an α(d) > 0, such that for all n

P[G is an (αn, d− 2)-expander ] ≥ 1/2,

where G is chosen uniformly from Gd,n.

Proof. Let pk be the probability that there is set S ⊂ L of size k such that |Γ(S)| <
(d− 2)|S|. Hence, G is not an (αn, d− 2)-expander iff

∑
k pk > 0.

Assume that there is a set S of size k and |Γ(S)| < (d− 2)|S|. Then there are at
least 2k repeats among all the neighbours of vertices in S. By direct calculation it
holds that the probability

P[at least 2k repeats among all the neighbors of vertices in S] ≤
(
dk

2k

)(
dk

n

)2k

.

Therefore

pk ≤
(
n

k

)(
dk

2k

)(
dk

n

)2k

≤
(ne
k

)k
·
(
dke

2k

)2k

·
(
dk

n

)2k

=

(
cd4k

n

)k

where c = e3. By setting α = 1/(cd4) and k ≤ αn, we know that pk ≤ 4−k and

P[G is not an (αn, d− 2)-expander] ≤
αn∑
k=1

pk ≤
αn∑
k=1

4−k ≤ 1/2.

Theorem 4.7. For any fixed d ≥ 3, with high probability a random d-regular graph is
an (Ω(n), d− 1.01)-expander. Moreover, this probability tends to 1 as n → ∞.

4.3 Expander Mixing Lemma

Theorem 4.8 (Expander Mixing Lemma). Let G be a graph, and X, Y ⊂ V be sets
of vertices. Then, it holds that∣∣∣∣|E(X, Y )| − volX · volY

volG

∣∣∣∣ ≤ λ ·
√
volX volY , (4.1)

where λ = maxi≥2 |1− λi|, and vol X̄ = vol(V \X).
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Notice that volX · volY/ volG is the expected value of |E(X, Y )| in a random
graph of edge density volG/n2. Hence, the left side of (4.1) is the difference between
|E(X, Y )| and its expected value in a random graph. So, a smaller value of λ shows
that the graph is more close to be a random graph. Before proving the expander mixing
lemma, we look at its applications in analysing combinatorial properties of a graph.

Corollary 4.9. The volume of any independent set in G is at most λ · volG.

Proof. Let X = Y be an independent set of G. Then |E(X,X)| = 0. We apply
Theorem 4.8 and obtain that ∣∣∣∣(volX)2

volG

∣∣∣∣ ≤ λ · volX,

which implies that volX ≤ λ · volG. Hence, the number of any independent set in
G is at most λ · volG. For the case of regular graphs, the number of vertices in an
independent set is at most λ · n.

Corollary 4.10. Let G be a regular graph. Then the chromatic number of G is at
least 1/λ.

Proof. Let c : V → {1, . . . , k} be a colouring of G. Then, for every 1 ≤ i ≤ k, c−1(i) is
an independent set. Since the number of vertices in an independent set is at most λn,
the chromatic number if at least 1/λ.

Theorem 4.11 (Expander Mixing Lemma, Stronger Version). Let G be a graph, and
X, Y ⊂ V be sets of vertices. Then, it holds that∣∣∣∣|E(X, Y )| − volX · volY

volG

∣∣∣∣ ≤ λ ·
√
volX vol X̄ volY vol Ȳ

vol(G)
,

where λ = maxi≥2 |1− λi|, and vol X̄ = vol(V \X).

Proof. For any set S ⊂ V , let χS be the indicator vector of set S, i.e. χS(u) = 1 if
u ∈ S, and χS(u) = 0 otherwise. Then, we have that

|E(X, Y )| = ⟨χX , AχY ⟩ = χ⊺
XD

1/2(I − L)D1/2χY .

Without loss of generality, we write

D1/2χX =
n∑

i=1

aifi

and

D1/2χY =
n∑

i=1

bifi,
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where f1, . . . , fn are orthonormal eigenvectors of L, and f0 = D1/21/
√
volG. Hence,

we have that a1 = volX/
√
volG and b1 = volY/

√
volG. With this, it holds that∣∣∣∣|E(X, Y )| − volX · volY

volG

∣∣∣∣ = ∣∣χ⊺
XD

1/2(I − L)D1/2χY − a1b1
∣∣

=

∣∣∣∣∣
(

n∑
i=1

aifi

)
(I − L)

(
n∑

i=1

bifi

)
− a1b1

∣∣∣∣∣
=

∣∣∣∣∣
n∑

i=2

(1− λi) · aibi

∣∣∣∣∣
≤ λ

√√√√ n∑
i=2

a2i

√√√√ n∑
i=2

b2i

≤ λ ·
√
volX vol X̄ volY vol Ȳ

vol(G)
,

where the second last inequality follows by the Cauchy-Schwarz inequality, and the
last inequality follows by the fact that

n∑
i=1

a2i =

(
n∑

i=1

aif
⊺
i

)(
n∑

i=1

aifi

)
= ⟨χ⊺

XD
1/2, D1/2χX⟩ = volX,

and
n∑

i=2

a2i = volX − (volX)2

volG
= volX vol X̄/ volG.



Lecture 5

Random Walks

A random walk in a graph is a sequence of vertices

v0, v1, · · · , vℓ, . . . ,

where v0 is fixed and every vi is chosen uniformly at random from the neighbours of
vi−1 for any i ≥ 1. This basic random process arises in modelling many problems in
mathematics and physics, and has numerous applications in computer science. The
classical theory of random walks studies the behaviours of this random process in
infinite graphs. For example, Pólya proved the following result in 1921:

Theorem 5.1. Consider a random walk on an infinite D-dimensional grid. If D = 2,
then with probability 1, the walk returns to the starting point an infinite number of
times. If D > 2, with probability 1, the walk returns to the starting point only a finite
number of times.

There are also a lot of studies focusing on the random walks in finite graphs, and the
results developed there have many applications in studying computational complexity
and designing fast randomised and distributed algorithms.

The goal of this lecture is to give a basic introduction to random walk theory. For
simplicity we assume that G = (V,E) is an undirected, unweighted, and d-regular
graph. Recall that M = (1/d) · A is the normalised adjacency matrix which will
be transition matrix of the random walk on G. Also, notice that the orthonormal
eigenvectors f1, . . . , fn of L are the eigenvectors of M , and the eigenvalue associated
with the eigenvector fi of M is 1− λi.
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5.1 Mixing Time of a Random Walk

Definition 5.2 (Mixing Time). The mixing time of a graph G with n vertices is the
minimum t such that for any starting probability distribution x, it holds that

∥M tx− π∥∞ ≤ 1

2n
,

where π ∈ Rn is the stationary distribution, i.e., πv = dv/ vol(G).

Lemma 5.3. The mixing time of a random walk in G is at most

t = O

(
log n

log(1/λ)

)
= O

(
log n

1− λ

)
,

where λ is the spectral expansion of G.

Proof. By definition, we have that π = 1√
n
· f1, and we can write x as

x =
n∑

i=1

αifi.

Since x is a probability vector and all fi, i ≥ 2 are orthogonal to π, it holds that
α1 = 1/

√
n, and

∥Mx− π∥2 =

∥∥∥∥∥M
(

n∑
i=1

αifi

)
− π

∥∥∥∥∥
2

=

∥∥∥∥∥π +
n∑

i=2

αi(1− λi)fi − π

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=2

αi(1− λi)fi

∥∥∥∥∥
2

=
n∑

i=2

∥αi(1− λi)fi∥2

≤ λ2

n∑
i=2

∥αifi∥2

= λ2

∥∥∥∥∥
n∑

i=2

αifi

∥∥∥∥∥
2

= λ2 ∥x− π∥2 ,
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where the first inequality follows by the definition of λ. Hence, it holds that

∥Mx− π∥ ≤ λ ∥x− π∥ ,

and by induction we have that∥∥M tx− π
∥∥ =

∥∥M(M t−1x)− π
∥∥ ≤ λ

∥∥M t−1x− π
∥∥ ≤ λt ∥x− π∥ .

Finally, we have that∥∥M tx− π
∥∥ ≤ λt · ∥x− π∥ ≤ λt · ∥x∥ ≤ λt · ∥x∥1 = λt,

where the first inequality follows by

∥x− π∥2 + ∥π∥2 = ∥x∥2 ,

since x− π and π are orthogonal, which immediately implies ∥x− π∥ ≤ ∥x∥. Then,
the statement follows by the fact that∥∥M tx− π

∥∥
∞ ≤

∥∥M tx− π
∥∥ ≤ λt ≤ 1

2n

when t = O
(
logn
1−λ

)
.

5.2 Hitting Time and Cover Time

The mixing time of a random walk measures the minimum number of steps needed
so that a random walk visits every vertex with approximately the same probability.
Now we analyse the expected time of a random walk to visit a fixed vertex, or all
the vertices of an underlying graph. We will show several combinatorial and spectral
bounds on these parameters.

Definition 5.4 (Hitting Time). For any vertices u, v, the hitting time of u, v, denoted
by hu,v, is the expected number of steps before vertex v is visited, if the random walk
starts from vertex u.

Theorem 5.5. Let G be an undirected graph. Then, it holds for any vertex u that
hu,u = 2m/du.

Definition 5.6 (Cover Time). For any vertex u, the cover time of u, denoted by Cov(u)
is the expected number of steps to visit all the vertices, if the random walk starts from
vertex u. Moreover, let

CovG = max
u∈V

Cov(u).

Lemma 5.7. There are regular graphs for which hu,v ̸= hv,u.
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u v

Figure 5.1: Illustration of the graph with an edge u ∼ v such that Hitting(u, v) = O(1), but
Hitting(v, u) = Ω(n). The ellipse on the right hand side represents a 3-regular graph with
Ω(n) vertices, where the dashed edge has been removed.

Proof. Consider the graph in Figure 5.1 where an edge u ∼ v connects a left graph
with 5 vertices to a right graph with n − 5 vertices. Then, hu,v = O(1), since from
every vertex in the left graph there is a path of constant length to reach v. On the
other hand,

n = hu,u =
1

3
·
∑
w∈∂u

(hw,u + 1) =
1

3
· (2 · (O(1) + 1) + hv,u + 1) ,

from which it follows that hv,u = Ω(n).

Theorem 5.8. It holds that

CovG ≤ 2 · (n− 1) · 2|E| ≤ 2n · (n− 1)2.

Proof. We first observe that for any edge u ∼ v that hu,v < 2|E|, since hu,u = n implies

n = hu,u =
1

du

∑
w∈∂u

(hw,u + 1) .

Now let T be any spanning tree of G. Consider a traversal of T = (v0, v1, . . . , v2n−2 = v0)
such that every vertex is visited at least once and every edge is traversed at most twice.
Then, the cover time is bounded by the expected time needed for this traversal of T :

CovG ≤
2n−3∑
i=0

hvi,vi+1
≤ (2n− 2) · 2|E|.

An example for a graph with a cover time of Ω(n3) is the so-called Lollipop graph
which consists of a clique of (2/3)n vertices and a path of length n/3 attached to it. In
fact, it can be shown that for this graph the cover time is (4/27+o(1))n3 and moreover,
the cover time is also always upper bounded by this value.

The next theorem connects the maximum hitting time to the cover time. It implies
that the maximum hitting time approximates the cover time up to logarithmic factors.
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Theorem 5.9. For any graph G, it holds that

CovG = 6max
u,v

hu,v · log n+ 2n.

Proof. We divide the random walk of length 6maxu,v hu,v log n into 3 lnn epochs each
of length 2 ·maxu,v hu,v. By Markov’s inequality, the probability that a fixed vertex is
not visited within one epoch is at most 1/2. Hence the probability that a vertex is not
visited after 3 lnn epochs is 2−3 logn = n−3. Taking the union bound, it follows that all
vertices are visited with probability at least 1− 1/n2. If this does not happen, then we
use our upper bound of 4|V | · |E| ≤ 2n3 from Theorem 5.8. Hence, the expected total
time to cover all vertices is upper bounded by

6max
u,v

hu,v · log n+
1

n2
· 2n3 = 6max

u,v
hu,v · log n+ 2n.

Lemma 5.10. Let u, v be two vertices in a graph of arbitrary degree sequences. Then
any shortest path P = (v0 = u, v1, . . . , vℓ = v) between u and v satisfies

ℓ−1∑
i=0

dvi ≤ 3n.

Proof. Let P be any shortest path between u and v. Every vertex w not lying on the
shortest path can only be adjacent to at most three (consecutive) vertices on P . Hence,

ℓ−1∑
i=0

dvi ≤ ℓ · 2 + (n− ℓ) · 3 ≤ 3n.

Theorem 5.11. For any regular graph G = (V,E),

max
u,v

hu,v ≤ 9n2.

Consequently, CovG = O(n2 log n).

Proof. Fix two arbitrary vertices u, v and consider a shortest path P = (v0 =
u, v1, . . . , vℓ = v) from u and v. Consider two consecutive vertices x and y on P.
Let h⋆

x,x be the expected time to return to x conditioned on the event that the random
walk does not move to y in the first step. Then,

n = hx,x ≥ d− 1

d
·
(
h⋆
x,x + 1

)
,

and hence,
h⋆
x,x ≤ 2n.
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Using this and the fact that the random walk at x moves to y with probability 1/d, we
have that

hx,y ≤
(
1 + h⋆

x,x

)
· d ≤ 3n · d.

Thus by the triangle inequality,

hu,v ≤
ℓ−1∑
i=0

hvi,vi+1
≤

ℓ−1∑
i=0

2n · d ≤ 3n · 3n = 9n2.

Theorem 5.12. For any two vertices u, v ∈ V ,

hu,v = n ·
n∑

k=2

1

λk

·
(
f 2
k (v)− fk(u)fk(v)

)
Based on the theorem above, we will present the following well-known Random

Target Lemma.

Theorem 5.13 (Random Target Lemma). For any vertex u ∈ V ,

∑
v∈V

hu,v =
n∑

k=2

n

λk

.

Notice that the right-hand side of the formula above is independent of the starting
vertex u.

Proof. By Theorem 5.12, we have that

∑
v∈V

hu,v = n ·
∑
v∈V

n∑
k=2

1

λk

(
f 2
k (v)− fk(u)fk(v)

)
=

n∑
k=2

n

λk

·

(∑
v∈V

f 2
k (v)−

∑
v∈V

fk(u)fk(v)

)

=
n∑

k=2

n

λk

,

which finishes the proof.



Lecture 6

Construction of Expander Graphs

The main focus of this lecture is expander graphs, a family of sparse graphs with high
expansion properties. Since the sparsity corresponds to the practical construction cost
and high expansion implies high connectivity, expander graphs are originally applied
to construct low-cost communication networks. However, over the past two decades
expander graphs have been applied in many fields of computer science, including coding
theory, distributed computing, randomised algorithms, and computational complexity.

We will present explicit constructions of expander graphs in the lecture. We
call a family {Gj}j≥1 of d-regular expander graphs explicitly constructible if the
construction satisfies the following properties:

1. Every graph Gj can be constructed in time polynomial in the number of vertices
nj in Gj.

2. For any vertex v and index i ∈ {1, · · · , d}, the i-th neighbor of v can be computed
in time poly(log nj, log d).

3. For any vertices v and u, whether u and v are adjacent can be determined in
time poly(log nj).

We first introduce some notations. Throughout the lecture, we study d-regular
graphs, and say G is an (n, d, λ)-graph, if G has n vertices, and maxi≥2{|1− λi|} ≤ λ.
We will work with the normalised adjacency matrix M . Recall that M = I −L if G is
d-regular. It is easy to check that maxi≥2{|1− λi|} ≤ λ is equivalent to say that all
the non-trivial eigenvalues of M belong to [−λ, λ].

We also use the rotation map to express a graph: for any v ∈ V , we label the
edges adjacent to v, and let v[i] be the i-th edge of v. Then the rotation map is the
function

RotG : V × [d] → V × [d],



34 Construction of Expander Graphs

where RotG(v, i) = (u, j) if v is the j-th neighbour of u and u is the i-th neighbour of
v.

Exercise 6.1. For the graph shown in Figure 6.1, we have Rot(a, 3) = (h, 1).

1

1
1

1

1

1

1

1

2
2

2

2

2
2

2

2

3

3

3

3

33

3

3

Figure 6.1: Rotation Map

Lemma 6.2. Let G be an (n, d, λ)-graph. Then Gk, the k-th power of the adjacency
matrix of G, is an (n, dk, λk)-graph.

Lemma 6.3. Let G be a d-regular graph with rotation map RotG. Then Gk is a
dk-regular graph whose rotation map is given by

RotGk(v0, (a1, · · · , ak)) = (vk, (bk, · · · , b1)),

where the values b1, · · · , bk and vk are computed via the rule (vi, bi) = RotG(vi−1, ai).

6.1 Replacement Product

Let G be a d-regular graph with n vertices, and H be a d′-regular graph with d
vertices. Then, the replacement product between G and H, denoted by G⃝r H
is a (d′ + 1)-regular graph with n · d vertices, and each vertex in G is replaced by a
graph H, called a cloud. Formally, we have RotG⃝r H((u, k), i) = ((v, ℓ), j) if and only
if u = v and RotH(k, i) = (ℓ, j), or i = j = d+ 1 and RotG(u, k) = (v, ℓ). Figure 6.2
shows an example of the replacement product.

Notice that, given a large (n, d, λ)-graph G and a small (d, d′, λ′)-graph H, the
degree of G⃝r H only depends on the degree of the smaller graph H, so replacement
product is used to reduce the degree of a graph without losing a graph’s connectivity.
Hence, the replacement product is sometimes used to show that, for some problems
studied in graph theory, it is sufficient to solve the problem for a 3-regular connected
graph.
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Figure 6.2: An example of the replacement produce.

6.2 Zig-Zag Product

Based on rotation maps, the zig-zag product is defined as follows:

Definition 6.4. If G is a D-regular graph on [N ] with rotation map RotG and H is a
d-regular graph on [D] with rotation map RotH , then their zig-zag product G⃝z H is
defined to be the d2-regular graph on [N ]×[D] whose rotation map RotG⃝z H is as follows:
(1) Let (a′, i′) = RotH(a, i); (2) Let (w, b′) = RotG(v, a

′); (3) Let (b, j′) = RotH(b
′, j);

(4) Output ((w, b), (j′, i′)) as the value of RotG⃝z H((v, a), (i, j)).

Exercise 6.5. Let G and H be two graphs shown in Figure 6.3. Then

RotG⃝z H((C, z), (1, 2)) = ((F, z), (1, 2)).
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(C,z)

A

B

F

E

C D

Figure 6.3: An example of the zig-zag product

Notice that, comparing with the replacement product, the label of each edge in
RotG⃝z H is a pair of the edge labels in the small graph. Moreover, taking a zig-zig
product of a large graph with a small graph, the resulting graph roughly inherits its
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size from the large graph, its degree from the small graph, and its expansion properties
from the both graphs. This will be the key to build an arbitrary large graph with
bounded degree and good expansion properties.

Before we formally analyse the zig-zag product, let us look at the meaning behind
this definition: the zig-zag product corresponds to 3-step walks on the replacement
product graph, where the first and the last steps are in the inner-cloud edges and the
middle step is an inter-cloud edge, and each vertex in the cloud corresponds to an edge
starting from the vertex which the cloud represents, see Figure 6.4 for example.

u v

Figure 6.4: The meaning behind the zig-zag product

Theorem 6.6. Suppose that G is an (N1, d1, λ1)-expander and H is a (d1, d2, λ2)-
expander. Then G⃝z H is an (N1d1, d

2
2, f(λ1, λ2))-expander, where

f(λ1, λ2) ≤ λ1 + λ2 + λ2
2.

Proof. The number of vertices and degree of G⃝z H are obtained directly from the
definition of the zig-zag product so we only need to analyse the spectral expansion of
G⃝z H. Let M be the normalised adjacency matrix of G⃝z H. It suffices to show that
for any α ⊥ 1N1d1 , α ∈ RN1d1 , there holds that

|⟨Mα,α⟩| ≤ f(λ1, λ2) · |⟨α, α⟩|.

Let α ∈ RN1d1 with the property that α ⊥ 1N1d1 . For any vertex v ∈ [N1], define
αv ∈ Rd1 by (αv)k = αvk. Also, let C : RN1d1 → RN1 be a linear mapping such that
(Cα)v =

∑d1
k=1 αvk. Then we can express α as

α =
∑

v∈[N1]

ev ⊗ αv.

Let αv = α
∥
v + α⊥

v where α⊥
v ⊥ 1d1 . Then

α =
∑
v

(
ev ⊗ α∥

v

)
+
∑
v

(
ev ⊗ α⊥

v

)
:= α∥ + α⊥.
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Let A and B be the normalised adjacency matrices of G and H, respectively.
Let B̃ = IN1 ⊗ B and Ã be the permutation matrix corresponding to RotG, i.e., an
N1d1 ×N1d1 matrix where

Ã(u,k)(v,ℓ) =

{
1 if RotG(u, k) = RotG(v, ℓ)

0 otherwise.

Then M = B̃ÃB̃. Since B̃ is real symmetric, we have

⟨Mα,α⟩ =
〈
B̃ÃB̃α, α

〉
=
〈
ÃB̃α, B̃α

〉
.

On the other hand, we have B̃α = B̃(α∥ + α⊥) = α∥ + B̃α⊥. Thus

⟨Mα,α⟩ =
〈
Ã
(
α∥ + B̃α⊥

)
,
(
α∥ + B̃α⊥

)〉
=
〈
Ãα∥, α∥

〉
+
〈
Ãα∥, B̃α⊥

〉
+
〈
ÃB̃α⊥, α∥

〉
+
〈
ÃB̃α⊥, B̃α⊥

〉
and

|⟨Mα,α⟩|

≤
∣∣∣〈Ãα∥, α∥

〉∣∣∣+ ∥∥∥Ãα∥
∥∥∥ · ∥∥∥B̃α⊥

∥∥∥+ ∥∥∥ÃB̃α⊥
∥∥∥ · ∥∥α∥∥∥+ ∥∥∥ÃB̃α⊥

∥∥∥ · ∥∥∥B̃α⊥
∥∥∥

=
∣∣∣〈Ãα∥, α∥

〉∣∣∣+ 2
∥∥α∥∥∥ · ∥∥∥B̃α⊥

∥∥∥+ ∥B̃α⊥∥2,

(6.1)

where the last equality holds as Ã is a permutation and ∥Ãx∥ = ∥x∥ for any x ∈ NN1d1 .
Notice that

∥B̃α⊥∥2 =

∥∥∥∥∥B̃
(∑

v

ev ⊗ α⊥
v

)∥∥∥∥∥
2

=

∥∥∥∥∥∑
v

ev ⊗Bα⊥
v

∥∥∥∥∥
2

=
∑
v

∥∥Bα⊥
v

∥∥2
≤
∑
v

λ2
2

∥∥α⊥
v

∥∥2
≤ λ2

2

∥∥α⊥∥∥2 .

(6.2)

So we only need to bound
∣∣∣〈Ãα∥, α∥

〉∣∣∣. Direct calculation gives us that〈
Ãα∥, α∥

〉
=
〈
Ãα∥, Cα⊗ 1d1

〉
/d1 =

〈
CÃα∥, Cα

〉
/d1 = ⟨ACα,Cα⟩ /d1
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and ∣∣∣〈Ãα∥, α∥
〉∣∣∣ ≤ λ1⟨Cα,Cα⟩/d1

= λ1⟨Cα⊗ 1d1 , Cα⊗ 1d1⟩/d21
= λ1 · ⟨α∥, α∥⟩

= λ1

∥∥α∥∥∥2 .
(6.3)

Combining (6.2) and (6.3), we have

|⟨Mα,α⟩| ≤ λ1

∥∥α∥∥∥2 + 2λ2

∥∥α∥∥∥ · ∥∥α⊥∥∥+ λ2
2

∥∥α⊥∥∥2 .
By taking p = ∥α∥∥

∥α∥ and q = ∥α⊥∥
∥α∥ , we have p2 + q2 = 1. Therefore

|⟨Mα,α⟩|
|⟨α, α⟩|

≤ λ1p
2 + 2λ2pq + λ2

2q
2

≤ λ1 + λ2 + λ2
2,

which completed the proof.

6.3 Construction of Expanders

Finally, we use the the zig-zag product to construct expander graphs. Our contribution
is based on iterations, and in each iteration we construct a graph based on a combination
of graph powering and the zig-zag product.

Theorem 6.7. Let H be a (d4, d, λ0) graph for some λ0 ≤ 1/5. Define G1 = H2 and
Gt+1 = G2

t ⃝z H for t ≥ 1. Then for all t, Gt is a (d4t, d2, λ)-expander with λ ≤ 2/5.

Proof. We prove the theorem by induction. When t = 1, it is straightforward to see
that G1 is a (d4, d2, λ2

0)-expander. Assume that Gt−1 is a (d4(t−1), d2, λ)-expander for
λ ≤ 2/5. By Definition 6.4, the number of vertices in Gt is d4t. So it suffices to show
the spectral expansion of Gt. By Theorem 6.6, the spectral expansion of Gt is

λ(Gt) ≤ λ(G2
t−1) + λ(H) + λ(H2) =

(
2

5

)2

+
1

5
+

1

25
=

2

5
,

which finishes the proof.



Lecture 7

The Power Method for Computing the Eigenvalues

In this lecture we study efficient algorithms for computing the eigenvalues. Throughout
the lecture, we assume that the matrix M ∈ Rn×n is PSD. The eigenvalues of M are
λ1 ≥ . . . ≥ λn, with the associated eigenvectors f1, . . . , fn.

7.1 Computing the Largest Eigenvalue

Algorithm 2 Power Method for Approximating the Largest Eigenvalue
1: Input: a PSD symmetric matrix M ∈ Rn×n, and positive integer t
2: Choose uniformly at random x0 ∼ {−1, 1}n.
3: for i = 1 to t do
4: xi = Mxi−1

5: return xt

Notice that the algorithm performs O(t · (n+m)) arithmetic operations, where m
is the number of non-zero entries of the matrix M .
Theorem 7.1. For every positive and semi-definite matrix M , positive integer t and
parameter ε > 0, with probability 4/5 over the initial choices of x0, Algorithm 2 outputs
a vector xt such that

x⊺
tMxt

x⊺
txt

≥ (1− ε) · λ1 ·
1

1 + 4n(1− ε)2t
.

In particular, when setting t = O(log n/ε), we have that

x⊺
tMxt

x⊺
txt

≥ (1−O(ε))λ1.
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The proof is based on the following two lemmas.

Lemma 7.2. Let v ∈ Rn such that ∥v∥ = 1. Sample uniformly x ∈ {−1, 1}n. Then it
holds that

P
[
|⟨x, v⟩| ≥ 1

2

]
≥ 3

16
.

Lemma 7.3. Let x ∈ Rn be a vector such that |⟨x, f1⟩| ≥ 1/2. Then, for every positive
integer t and positive ε > 0, if we define y = M tx, then we have that

y⊺My

y⊺y
≥ (1− ε) · λ1 ·

1

1 + 4∥x∥2(1− ε)2t
.

Proof of Theorem 7.1. By Lemma 7.2, with constant probability, a randomly sampled
x ∈ {−1, 1}n satisfies |⟨x, v⟩| ≥ 1/2 for any ∥v∥ = 1. Conditioning on this event,
Lemma 7.3 states that

y⊺My

y⊺y
≥ (1− ε) · λ1 ·

1

1 + 4∥x∥2(1− ε)2t
.

Then, the theorem holds by the fact that ∥x∥2 = n.

Proof of Lemma 7.2. Define a random variable S = ⟨x, v⟩. Then, it holds that E[S] = 0,
E [S2] = 1, and

E
[
S4
]
= 3∥v∥2 − 2∥v∥24 ≤ 3.

Recall that the Paley-Zygmund inequality states that if Z is a non-negative random
variable with finite variance, then it holds for every 0 ≤ δ ≤ 1 that

P [Z ≥ δ · EZ] ≥ (1− δ)2 · (EZ)
2

E[Z2]
,

which follows by noticing that

E[Z] = E [Z · 1Z<δEZ ] + E [Z · 1Z≥δEZ ]

≤ δEZ +
√
EZ2 ·

√
E1Z≥δEZ

= δEZ +
√
EZ2 ·

√
P [Z ≥ δEZ].

We apply the Paley-Zygmund inequality to the case Z = S2 and δ = 1/4 and have that

P
[
S2 ≥ 1

4

]
≥
(
3

4

)2

· 1
3
=

3

16
.

Notice that the proof above works even if the seeding vector x is selected according to
a 4-wise independent distribution. This means that the algorithm can be derandomised
in polynomial time.
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Proof of Lemma 7.3. We write x as a linear combination of the eigenvectors

x = a1f1 + · · ·+ anfn

where the coefficients can be computed as ai = ⟨x, fi⟩. Then, we have that

y = a1λ
t
1f1 + · · ·+ anλ

t
nfn,

and therefore

y⊺My =
n∑

i=1

a2iλ
2t+1
i ,

as well as

y⊺y =
n∑

i=1

a2iλ
2t
i .

Without loss of generality let k be the number of eigenvalues larger than λ1 · (1− ε).
Then, it holds that

y⊺My ≥
k∑

i=1

a2iλ
2t+1
i ≥ λ1(1− ε)

k∑
i=1

a2iλ
2t
i .

We also see that
n∑

i=k+1

a2iλ
2t
i ≤ λ2t

1 · (1− ε)2t
n∑

i=k+1

a2i

≤ λ2t
1 · (1− ε)2t∥x∥2

≤ 4a21λ
2t
1 · (1− ε)2t∥x∥2

≤ 4∥x∥2(1− ε)2t
k∑

i=1

a2iλ
2t
i .

Hence, we have that

y⊺y ≤
(
1 + 4∥x∥2(1− ε)2t

)
·

k∑
i=1

a2iλ
2t
i ,

which implies
y⊺My

y⊺y
≥ λ1 · (1− ε) · 1

1 + 4∥x∥2(1− ε)2t
.
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7.2 Computing the Second Largest Eigenvalue

If M is a PSD matrix and if we know a unit-length eigenvector f1 of the largest
eigenvalue of M , we can approximately find the second eigenvalue with the following
adaption of the algorithm from the previous section.

Algorithm 3 Power Method for Approximating the Second Largest Eigenvalue
1: Input: a PSD symmetric matrix M ∈ Rn×n, and positive integer t
2: Choose uniformly at random x ∼ {−1, 1}n.
3: Let x0 = x− ⟨f1, x⟩ · f1
4: for i = 1 to t do
5: xi = Mxi−1

6: return xt

If f1, . . . , fn is an orthonormal basis of the eigenvectors for the eigenvalues λ1 ≥
. . . ≥ λn of M , then we can write the picked random vector initially as

x = a1f1 + · · ·+ anfn,

and with constant probability it holds that |a2| ≥ 1/2. Then, x0 is the projection of x
on the subspace orthogonal to f1, i.e.,

x0 = a2f2 + · · ·+ anfn.

Notice that ∥x0∥ ≤ n. Moreover, the output vector xt can be written as

xt = a2λ
t
2f2 + · · ·+ anλ

t
nfn.

Then, we can apply the same analysis as before, and obtain the following result:

Theorem 7.4. For every PSD matrix M , positive integer t and parameter ε > 0, with
probability 4/5 over the choices of x, Algorithm 3 outputs a vector y ⊥ f1 such that

y⊺My

y⊺y
≥ λ2 · (1− ε) · 1

1 + 4n(1− ε)2t
,

where λ2 is the second largest eigenvalue of M , counting multiplicities.

Finally, we study the applications of the power methods in computing the second
smallest eigenvalue of L = I −D−1/2AD−1/2 for an undirected graph. It is easy to see
that any eigenvector fi of L with eigenvalue λi is the eigenvector of I +D−1/2AD−1/2

with eigenvalue 2− λi, and therefore I +D−1/2AD−1/2 is PSD as well. Since f1 of L is
known and only depends on the degree sequence, the second smallest eigenvalue of L
can be computed by the power method as well.



Lecture 8

Graph Clustering

In this lecture we study graph clustering algorithms for the k-way partitioning problem.
We call subsets of vertices (i.e. clusters) A1, . . . , Ak a k-way partition of G if Ai∩Aj = ∅
for different i and j, and

⋃k
i=1 Ai = V . The k-way partitioning problem asks for a

k-way partition of G such that the conductance of any Ai in the partition is at most
the k-way expansion constant, defined by

ρ(k) ≜ min
partition A1,...,Ak

max
1≤i≤k

hG(Ai). (8.1)

Clusters of low conductance in networks appearing in practice usually capture the notion
of community, and algorithms for finding these subsets have applications in various
domains such as community detection and network analysis. In computer vision, most
image segmentation procedures are based on region-based merge and split, which in turn
rely on partitioning graphs into multiple subsets. On a theoretical side, decomposing
vertex/edge sets into multiple disjoint subsets is used in designing approximation
algorithms for Unique Games, and efficient algorithms for graph problems.

To capture a structure of clusters in graphs, we look at the following higher-order
Cheeger inequality:

λk

2
≤ ρ(k) ≤ O(k2)

√
λk. (8.2)

Informally, the higher-order Cheeger inequality shows that graph G has a k-way
partition with low ρ(k) if and only if λk is small. Indeed, (8.2) implies that a large
gap between λk+1 and ρ(k) guarantees (i) existence of a k-way partition {Si}ki=1 with
bounded hG(Si) ≤ ρ(k), and (ii) any (k + 1)-way partition of G contains a subset with
significantly higher conductance ρ(k + 1) ≥ λk+1/2 compared with ρ(k). Hence, a
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suitable lower bound on the gap Υ(k) for some k, defined by

Υ(k) ≜
λk+1

ρ(k)
, (8.3)

implies the existence of a k-way partition for which every cluster has low conductance,
and that G is a well-clustered graph.

8.1 The Structure Theorem

We first study the relations between the multiple cuts of a graph and the eigenvectors of
the graph’s normalized Laplacian matrix. Given clusters S1 . . . Sk, define the indicator
vector of cluster Si by

gi(u) =

{
1 if u ∈ Si,
0 if u ̸∈ Si,

(8.4)

and define the corresponding normalized indicator vector by

gi =
D1/2gi
∥D1/2gi∥

. (8.5)

We know that G has k connected components if and only if the k smallest eigenvalues
are 0, implying that the spaces spanned by f1, · · · , fk and ḡ1, · · · , ḡk are the same.
Generalising this result, we expect that these two spaces would be still similar if these
k components of G are loosely connected, in the sense that (i) every eigenvector fi can
be approximately expressed by a linear combination of {gi}ki=1, and (ii) every indicator
vector ḡi can be approximately expressed by a linear combination of {fi}ki=1. This
leads to our structure theorem, which is illustrated in Figure 8.1.

fi

f̂i

ĝi

ḡi

f̂i = a linear
combination of {fj}
with coefficients α

(i)
j

ĝi = a linear
combination of {ḡj}
with coefficients β

(i)
j

Part 1
∥f̂i − gi∥2 ≤ 1/Υ

Part 2
∥fi − ĝi∥2 ≤ 1.1k/Υ

Figure 8.1: Relations among {f̂i}, {fi}, {ḡi}, and {ĝi} given in Theorem 8.1.

Theorem 8.1 (The Structure Theorem). Let Υ = Ω(k2), and 1 ≤ i ≤ k. Then, the
following statements hold:

1. There is a linear combination of the eigenvectors f1, . . . , fk with coefficients α
(i)
j :

f̂i = α
(i)
1 f1 + · · ·+ α

(i)
k fk, such that

∥∥∥gi − f̂i

∥∥∥2 ≤ 1/Υ.
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2. There is a linear combination of the vectors ḡ1, . . . , ḡk with coefficients β
(i)
j :

ĝi = β
(i)
1 ḡ1 + · · ·+ β

(i)
k ḡk, such that ∥fi − ĝi∥2 ≤ 1.1k/Υ.

Part 1 of Theorem 8.1 shows that the normalized indicator vectors ḡi of every
cluster Si can be approximated by a linear combination of the first k eigenvectors, with
respect to the value of Υ. The proof follows from the fact that if ḡi has small Rayleigh
quotient, then the inner product between ḡi and the eigenvectors corresponding to
larger eigenvalues must be small.

Proof of Part 1 of Theorem 8.1. We write gi as a linear combination of the eigenvectors
of L, i.e.

gi = α
(i)
1 f1 + · · ·+ α(i)

n fn

and let the vector f̂i be the projection of vector ḡi on the subspace spanned by {fi}ki=1,
i.e.

f̂i = α
(i)
1 f1 + · · ·+ α

(i)
k fk.

By the definition of Rayleigh quotients, we have that

R(gi) =
(
α
(i)
1 f1 + · · ·+ α(i)

n fn

)⊺
L
(
α
(i)
1 f1 + · · ·+ α(i)

n fn

)
=
(
α
(i)
1

)2
λ1 + · · ·+

(
α(i)
n

)2
λn

≥
(
α
(i)
2

)2
λ2 + · · ·+

(
α
(i)
k

)2
λk +

(
1− α′ −

(
α
(i)
1

)2)
λk+1,

where α′ ≜
(
α
(i)
2

)2
+ · · ·+

(
α
(i)
k

)2
. Therefore, we have that

1− α′ −
(
α
(i)
1

)2
≤ R(gi)/λk+1 ≤ 1/Υ,

and
∥gi − f̂i∥2 =

(
α
(i)
k+1

)2
+ · · ·+

(
α(i)
n

)2
= 1− α′ −

(
α
(i)
1

)2
≤ 1/Υ,

which finishes the proof.

Part 2 of Theorem 8.1 is more interesting, and shows that the opposite direction
holds as well, i.e., any fi (1 ≤ i ≤ k) can be approximated by a linear combination
of the normalized indicator vectors {gi}ki=1. To sketch the proof, note that if we
could write every gi exactly as a linear combination of {fi}ki=1, then we could write
every fi (1 ≤ i ≤ k) as a linear combination of {gi}ki=1. This is because both of
{fi}ki=1 and {gi}ki=1 are sets of linearly independent vectors of the same dimension
and span {g1, . . . , gk} ⊆ span {f1, . . . , fk}. However, the gi’s are only close to a linear
combination of the first k eigenvectors, as shown in Part 1. We will denote this
combination as f̂i, and use the fact that the errors of approximation are small to show
that these {f̂i}ki=1 are almost orthogonal between each other. This allows us to show
that span {f̂1, . . . , f̂k} = span {f1, . . . , fk}, which implies Part 2.
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Embed vertex u into Rk:
F (u) = 1√

du

(
f1(u), . . . , fk(u)

)⊺

R3

Apply a k-means algorithm Partition V into k clusters

Figure 8.2: The three steps of a spectral clustering algorithm: (1) embed each vertex u to a
point in Rk based on the top or bottom k eigenvectors of a matrix representing the graph;
(2) apply a k-means algorithm to group the embedded points into k clusters; (3) return the
corresponding partition of the vertex set as output.

The structure theorem shows a close connection between the first k eigenvectors
and the indicator vectors of the clusters. We leverage this and the fact that the {ĝi}’s
are almost orthogonal between each other to show that, for any two different clusters Si

and Sj , there exists an eigenvector having reasonably different values on the coordinates
which correspond to Si and Sj. The proof is essentially based on direct calculations.

Lemma 8.2. Let Υ = Ω(k3). For any 1 ≤ i ≤ k, let ĝi = β
(i)
1 g1 + · · ·+ β

(i)
k gk be such

that ∥fi − ĝi∥ ≤ 1.1k/Υ. Then, for any ℓ ̸= j, there exists i ∈ {1, . . . , k} such that∣∣∣β(i)
ℓ − β

(i)
j

∣∣∣ ≥ ζ ≜
1

10
√
k
. (8.6)

8.2 Spectral Clustering

Spectral clustering is one of the most popular algorithms for graph clustering. The
general framework of spectral clustering consists in (1) computing an embedding of
the vertices in a low dimensional Euclidean space using the eigenvectors of a matrix
representing the graph; (2) partition these points using a geometric clustering algorithm;
(3) output a corresponding partition of the graph, see Figure 8.2 for illustration.

To formally describe a spectral clustering algorithm, let us assume that we are given
a graph G = (V,E,w) with normalised Laplacian LG, and f1, . . . , fk be the bottom k
eigenvectors of L. The spectral embedding F : V → Rk maps any vertex u ∈ V to a
point

F (u) =
1√
du

(f1(u), . . . , fk(u))
⊺ . (8.7)



8.2 Spectral Clustering 47

The second step of a spectral clustering algorithm is to cluster the embedded points
through a k-means algorithm. For any partition X1, · · · ,Xk of the set X ⊂ Rd, we
define the cost function as

COST(X1, . . . ,Xk) ≜ min
c1,...,ck∈Rd

k∑
i=1

∑
x∈Xi

∥x− ci∥2,

i.e., the COST function is the total ℓ22-distance between the points in X and their
individually closest centre ci, where c1, . . . , ck ∈ Rd are chosen to minimise this distance.
We further define the optimal clustering cost as

∆2
k(X ) ≜ min

partition X1,...,Xk

COST(X1, . . . ,Xk), (8.8)

that is, the minimum COST of a k-way partition of X . The problem of finding
an optimal k-means solution is NP-hard even when all the points belongs to R2.
So we say that an algorithm for k-means achieves an APT-approximation ratio if,
for any set of points X ⊆ Rd, it outputs a partition {A1, . . . , Ak} of X such that
COST(A1, . . . , Ak) ≤ APT ·∆2

k(X ).
Now we analyse the spectral clustering algorithm. We first define k points p(i) ∈

Rk (1 ≤ i ≤ k), where

p(i) ≜
1√

vol (Si)

(
β
(1)
i , . . . , β

(k)
i

)⊺
(8.9)

and the parameters {β(j)
i }kj=1 are defined in Theorem 8.1. We will show in Lemma 8.3

that all embedded points Xi ≜ {F (u) : u ∈ Si} (1 ≤ i ≤ k) are concentrated around
p(i). Moreover, we bound the total ℓ22-distance between points in Xi and p(i), which is
proportional to 1/Υ: the bigger the value of Υ, the higher concentration the points
within the same cluster have. Notice that we do not claim that p(i) is the actual center
of Xi. However, these approximated points p(i)’s suffice for our analysis.

Lemma 8.3. It holds that

k∑
i=1

∑
u∈Si

du
∥∥F (u)− p(i)

∥∥2 ≤ 1.1k2/Υ.

The next lemma shows that the ℓ22-norm of p(i) is inversely proportional to the
volume of Si. This implies that embedded points from a big cluster are close to the
origin, while embedded points from a small cluster are far from the origin. The proof
can be essentially obtained by direct calculation.

Lemma 8.4. It holds for every 1 ≤ i ≤ k that

99

100 vol(Si)
≤
∥∥p(i)∥∥2 ≤ 101

100 vol(Si)
.
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We will further show in Lemma 8.5 that these points p(i)(1 ≤ i ≤ k) exhibit another
excellent property: the distance between p(i) and p(j) is inversely proportional to the
volume of the smaller cluster between Si and Sj. Therefore, points in Si of smaller
vol(Si) are far from points in Sj of bigger vol(Sj). Notice that, if this were not the
case, a misclassification of a small fraction of points in Sj could introduce a large error
to Si.

Lemma 8.5. For every i ̸= j, it holds that

∥∥p(i) − p(j)
∥∥2 ≥ ζ2

10min {vol(Si), vol(Sj)}
,

where ζ is defined in (8.6).

Putting Lemma 8.3, Lemma 8.4, and Lemma 8.5 together, we can show that the
volume of misclassified vertices in each cluster is small, since otherwise a significant
amount of misclassified vertices in any cluster will significantly increase the value
of
∑k

i=1

∑
u∈Si

du∥F (u) − p(i)∥2, which contradicts Lemma 8.3. With some more
combinatorial analysis for all possible correspondences between the returned k clusters
and the optimal clusters, we have the following result:

Theorem 8.6. Let G be a graph such that Υ(k) = λk+1/ρ(k) = Ω(k3), and k ∈ N. Let
F : V [G] → Rk be the embedding defined in (8.7). Let {Ai}ki=1 be a k-way partition
by any k-means algorithm running in Rk that achieves an approximation ratio APT.
Then, the following statements hold: (i) vol(Ai△Si) = O (APT · k3/Υ(k)) vol(Si), and
(ii) ϕG(Ai) = 1.1 · ϕG(Si) +O (APT · k3/Υ(k)).

8.3 Linear Time Spectral Clustering Algorithm

Now we present a nearly-linear time algorithm for partitioning well-clustered graphs,
which achieves basically the same approximation guarantee as a spectral clustering
algorithm. At a high level, our algorithm follows the general framework of k-means
algorithms, and consists of two steps: the seeding step, and the grouping step. The
seeding step chooses k candidate centers such that each one is close to the actual
center of a different cluster. The grouping step assigns the remaining vertices to their
individual closest candidate centers.

All the discussions for the seeding and grouping steps assume that we have an
embedding {x(u)}u∈V [G] such that(

1− 1

10 log n

)
· ∥F (u)∥2 ≤∥x(u)∥2 ≤ ∥F (u)∥2 + 1

n5
, (8.10)(

1− 1

10 log n

)
· ∥F (u)− F (v)∥2 ≤∥x(u)− x(v)∥2 ≤ ∥F (u)− F (v)∥2 + 1

n5
(8.11)
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Notice that these two conditions hold trivially if {x(u)}u∈V [G] is the spectral embed-
ding {F (u)}u∈V [G], or any embedding produced by good approximations of the first k
eigenvectors. However, obtaining such embedding becomes non-trivial for a large value
of k, as directly computing the first k eigenvectors takes super-linear time. We will
present a nearly-linear time algorithm that computes an embedding satisfying (8.10)
and (8.11). By using standard dimensionality reduction techniques, we can always
assume that the dimension of the embedding {x(u)}u∈V [G] is d = O(log3 n).

The Seeding Step. We showed that the approximate center p(i) for every 1 ≤ i ≤ k
satisfies

99

100 vol(Si)
≤
∥∥p(i)∥∥2 ≤ 101

100 vol(Si)
,

and most embedded points F (u) are close to their approximate centers. Together
with (8.10) and (8.11), these two properties imply that, when sampling points x(u)
with probability proportional to du · ∥x(u)∥2, vertices from different clusters will be
approximately sampled with the same probability. Hence, when sampling Θ(k log k)
points in this way, with constant probability there is at least one point sampled from
each cluster.

In the next step we remove the sampled points which are close to each other, and
call this resulting set C⋆. It is easy to show that with constant probability there is
exactly one point in C⋆ from a cluster. Algorithm 4 below gives a formal description
of the seeding step.

Algorithm 4 SeedAndTrim(k, {x(u)}u∈V [G])

1: Input: the number of clusters k, and the embedding {x(u)}u∈V [G]

2: Let K = Θ(k log k)
3: for i = 1, . . . , K do
4: Set ci = u with probability proportional to du∥x(u)∥2.
5: for i = 2, . . . , K do
6: Delete all cj with j < i such that ∥x(ci)− x(cj)∥2 < ∥x(ci)∥2

2·104k .
7: return the remaining sampled vertices.

The Grouping Step. After the seeding step, with constant probability we obtain a
set of k vertices C⋆ = {c1, · · · , ck}, and these k vertices belong to k different clusters.
Now we assign each remaining vertex u to a cluster Si if, comparing with all other points
x(cj) with cj ∈ C⋆, x(u) is closer to x(ci). To speed it up, we apply ε-approximate
nearest neighbor data structures (ε-NNS), whose formal description is as follows:

Problem 8.1 (ε-approximate nearest neighbor problem). Given a set of point P ⊂ Rd

and a point q ∈ Rd, find a point p ∈ P such that, for all p′ ∈ P , ∥p−q∥ ≤ (1+ε)∥p′−q∥.



50 Graph Clustering

Theorem 8.7. Given a set P of points in Rd, there is an algorithm that solves the
ε-approximate nearest neighbor problem with Õ

(
|P |1+

1
1+ε + d · |P |

)
preprocessing time

and Õ
(
d · |P |

1
1+ε

)
query time.

Now we set P = {x(c1), . . . , x(ck)}, and apply the above ε-approximate nearest
neighbor data structures to assign the remaining vertices to k clusters A1, · · · , Ak. By
Theorem 8.7 and setting ε = log k−1, this step can be finished with Õ(k) preprocessing
time and Õ(1) query time for each query. Hence, the runtime of the grouping step is
Õ(n).

Fast Computation of the Required Embedding. So far we assumed the exis-
tence of the embedding {x(u)}u∈V [G] satisfying (8.10) and (8.11), and analyzed the
performance of the seeding and grouping steps. Now we give a sketch of the algorithm
for computing all the required distances used in the seeding and grouping steps. Our
algorithm is based on the so-called heat kernal of a graph.

Formally, the heat kernel of G with parameter t ≥ 0 is defined by

Ht ≜ e−tL =
n∑

i=1

e−tλifif
⊺
i . (8.12)

We view the heat kernel as a geometric embedding from V [G] to Rn defined by

xt(u) ≜
1√
du

·
(
e−t·λ1f1(u), · · · , e−t·λnfn(u)

)
, (8.13)

and define the ℓ22-distance between the points xt(u) and xt(v) by

ηt(u, v) ≜ ∥xt(u)− xt(v)∥2. (8.14)

The following lemma shows that, when k = Ω(log n) and Υ = Ω(k3), the values of
ηt(u, v) for all edges {u, v} ∈ E[G] can be approximately computed in Õ(m) time.

Lemma 8.8. Let k = Ω(log n) and Υ = Ω(k3). Then, there is t = O(poly(n)) such
that the embedding {xt(u)}u∈V [G] defined in (8.13) satisfies (8.10) and (8.11). Moreover,
the values of ηt(u, v) for all {u, v} ∈ E[G] can be approximately computed in Õ(m)
time, such that with high probability the conditions (8.10) and (8.11) hold for all edges
u ∼ v.

The Main Algorithm. We proved in Section 8.3 that if k = Ω(log n) and Υ = Ω(k3),
there is a

t ∈
(
10 log n

λk+1

,
1

20 · λk · log n

)
(8.15)

such that {xt(u)}u∈V [G] satisfies the conditions (8.10) and (8.11). Moreover, the values
of ∥xt(u)− xt(v)∥ for {u, v} ∈ E[G] can be approximately computed in nearly-linear



8.3 Linear Time Spectral Clustering Algorithm 51

time. However, it is unclear how to approximate λk, and without this approximation,
obtaining the desired embedding {x(u)}u∈V [G] becomes highly non-trivial.

To overcome this, we run the seeding and grouping steps for all possible t of the
form 2i, where t ∈ N≥0, as it allows us to run the seeding and grouping steps with
the right values of t at some point. However, by (8.14) the distance between any
pair of embedded vertices decreases when we increase the value of t. Moreover, all
these embedded points {xt(u)}u∈V [G] tend to “concentrate” around a single point for
an arbitrary large value of t. To avoid this situation, for every possible t we compute
the value of

∑
v∈V [G] dv∥xt(v)∥2, and the algorithm only moves to the next iteration if

∑
v∈V [G]

dv∥xt(v)∥2 ≥ k

(
1− 2

log n

)
. (8.16)

See Algorithm 5 for the formal description of our final algorithm.

Algorithm 5 A nearly-linear time graph clustering algorithm, k = Ω(log n)

1: input: the input graph G, and the number of clusters k
2: Let t = 2.
3: repeat
4: Let (c1, . . . , ck) = SeedAndTrim

(
k, {xt(u)}u∈V [G]

)
.

5: if SeedAndTrim returns exactly k points then
6: Compute a partition A1, . . . , Ak of V [G]: for every v ∈ V [G] assign v to its

nearest center ci using the ε-NNS algorithm with ε = log k − 1.
7: Let t = 2t
8: until t > n10 or

∑
v∈V [G] dv∥xt∥2 < k

(
1− 2

logn

)
.

9: return (A1, · · · , Ak).



Lecture 9

Spectral Sparsification

A sparse graph is one whose number of edges is reasonably viewed as being proportional
to the number of vertices. Since most algorithms run faster on sparse instances of
graphs and it is more space-efficient to store sparse graphs, it is useful to obtain a sparse
representation H of G so that certain properties between G and H are preserved, see
Figure 9.1 for an illustration. Over the past three decades, different notions of graph
sparsification have been proposed and widely used to design approximation algorithms.
For instance, a spanner H of a graph G is a subgraph of G so that the shortest path
distance between any pair of vertices is approximately preserved. Benczúr and Karger
defined a cut sparsifier of a graph G to be a sparse subgraph H such that the value of
any cut between G and H are approximately the same.

In this lecture we study efficient constructions of a spectral sparsifer, which is a
sparse subgraph H of an undirected graph G such that many spectral properties of
the Laplacian matrices between G and H are approximately preserved. Formally, for
any undirected graph G with n vertices and m edges, we call a subgraph H of G, with
proper reweighting of the edges, a (1 + ε)-spectral sparsifier if

(1− ε)x⊺LGx ≤ x⊺LHx ≤ (1 + ε)x⊺LGx

holds for any x ∈ Rn, where LG and LH are the respective Laplacian matrices of G and
H. Our goal is to construct a spectral sparisfier with fewer edges as fast as possible.
The main result we will present in this lecture is as follows:

Theorem 9.1. There is a randomised algorithm that, given a graph G and an approx-
imation parameter ε > 0, constructs a spectral sparsifier H of O(n log n/ε2) edges in
Õ(m log(1/ε)) time with constant probability. Here, the notation Õ hides the term of
poly log n.
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Figure 9.1: The graph sparsification is a reweighted subgraph H of an original graph G such
that certain properties are preserved. These subgraphs are sparse, and are more space-efficient
to be stored than the original graphs. The picture above uses the thickness of edges in H to
represent their weights.

9.1 Electrical Networks

For an undirected graph G with n vertices and m edges, the incidence matrix of G is
the matrix B ∈ Rm×n, where the rows and columns of B are indexed by the edges and
vertices of graph G. Formally, for any edge e ∈ E[G] and vertex v, we have that

Be,v =


1 if v is e’s head

−1 if v is e’s tail
0 otherwise,

where the orientation of edge e is chosen arbitrarily. We also define the diagonal matrix
W , where We,e equals to the weight of edge e.

Lemma 9.2. Let G be a graph with (arbitrarily chosen) incidence matrix B and
Laplacian L. Then, it holds that L = B⊺WB.

Now we associate an electrical network to G. We replace edge edge u ∼ v with a
resistor of value 1/w(u, v). To make this the setup intersting, we need to add power
sources to its vertices. Suppose iext ∈ Rn is a vector which indicates how much current
is going in at each vertex. This will induce voltages at each vertex and a current across
each edge. We capture these by vectors v ∈ Rn and i ∈ Rm respectively. Kirchoff’s law
states that, for every vertex, the difference of the outgoing current and the incoming
current on the edges adjacent to it equals to the external current input at that vertex.
Hence, we have that

B⊺i = iext.

On the other hand, Ohm’s law states that the current in an edge equals the potential
difference across its ends times its conductance:

i = WBv.
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Combining these two facts, we have that

iext = B⊺WBv = Lv.

If iext ⊥ span(1) = ker(L), i.e., the total amount of current injected is equal to the
total amount extracted, then we can write

v = L†iext.

The effective resistance between two vertices u and v is defined as the potential
difference induced between them when a unit current is injected at one vertex and
extracted at the other. Let us derive an algebraic expression for the effective resistance
in terms of L†. To inject and extract a unit current across the endpoints of an edge
u ∼ v, we set iext = (δu − δv), where δu ∈ {0, 1}n is the indicator vector of vertex u.
Then the potentials induced by iext at the vertices are given by L†iext. To measure the
potential difference across u ∼ v, we simply multiply by (δu − δv)

⊺ on the left, hence
the effective resistance Reff(u, v) of edge u ∼ v can be written as

Reff(u, v) = (δu − δv)
⊺L†(δu − δv).

9.2 Spielman-Srivastava Algorithm

The Spielman-Srivastava algorithm constructs a spectral sparsifier of G by sampling
edges with probability proportional to their effective resistances. The formal description
of the algorithm is shown in Algorithm 6:

Algorithm 6 Algorithm for constructing a spectral sparsifier
1: for every edge u ∼ v do
2: let qu,v = w(u, v) · Reff(u, v)
3: let pu,v = min{1, C · (log n)qu,v/ε2} for some constant C

4: t = 0;
5: H = (V, ∅)
6: while t ≤ O(n log n/ε2) do
7: t = t+ 1
8: Sample an edge u ∼ v with probability pu,v
9: Add the sampled edge u ∼ v into graph H with weight w(u, v)/pu,v.

10: return graph H

Before analysing Algorithm 6, we first explain the reweighting scheme. We define

Lu∼v = (δu − δv)(δu − δv)
⊺.

Then, the Laplacian matrix of graph G can be written as LG =
∑

u∼v w(u, v) · Lu∼v.
Assuming that every edge u ∼ v is sampled with probability pu,v and, once u ∼ v is
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sampled, we add u ∼ v with new weight w(u, v)/pu,v into the new graph. Then we
have that

E [LH ] =
∑
u,v

pu,v ·
w(u, v)

pu,v
· Lu,v = LG,

i.e., in expectation the sampled H equals to G. So the key is to analyse the concentration
properties.

9.3 Analysis of the Algorithm

Why do we sample edges based on their effective resistances? We first
discuss why we sample edges with probability proportional to their effective resistance.
Notice that ∑

u∼v

qu,v =
∑
u∼v

w(u, v)Reff(u, v)

=
∑
u∼v

w(u, v)(δu − δv)
⊺L†(δu − δv)

=
∑
u∼v

w(u, v) tr(L†(δu − δv)(δu − δv)
⊺)

= tr

(
L†
∑
u∼v

w(u, v)(δu − δv)(δu − δv)
⊺

)
= tr

(
L†L

)
= n− 1.

The fact above can be also explained in a combinatorial way. Notice that qu,v is the
probability that edge u ∼ v appears in a random spanning tree of G when we sample
spanning trees with probability proportional to the product of their edge weights. Since
every spanning tree has n− 1 edges, the sum of these probabilities is n− 1.

Sparsity of graph H. It is easy to see that the expected number of edges in H can
be bounded by∑

u∼v

pu,v =
∑
u∼v

min
{
1, C · (log n)qu,v/ε2

}
≤
∑
u∼v

C · (log n)qu,v/ε2 ≤ Cn log n/ε2.

By Chernoff bound, it is exponentially unlikely that the number of edges in H is more
than a small multiplicity factor of the expected value.

Why H is a spectra sparsifier? Now we prove that the sampled graph H is indeed
a spectral sparsifier of G. First we notice that, for any positive definite matrices A
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and B, it holds that A ⪯ B iff

B−1/2AB−1/2 ⪯ I.

Similarly, we have that LH ⪯ LG iff

L
†/2
G LHL

†/2
G ⪯ L

†/2
G LGL

†/2
G ,

where L
†/2
G is the square root of the pseudo-inverse of LG. Let

Π = L
†/2
G LGL

†/2
G

be the projection onto the range of LG. Then, by linearity of expectation it holds that

E
[
L
†/2
G LHL

†/2
G

]
= L

†/2
G E [LH ]L

†/2
G = L

†/2
G LGL

†/2
G = Π.

Now let us define a random matrix Xu,v, where

Xu,v =


wu,v

pu,v
· L†/2

G Lu∼vL
†/2
G with probability pu,v

0 otherwise.

Hence, it holds that
L
†/2
G LHL

†/2
G =

∑
u∼v

Xu,v.

Notice that proving that H is a spectral sparsifier is equivalent to show that
∑

u∼v Xu,v

is close to Π with high probability. By direct calculation, we have that

∥Xu,v∥ = (wu,v/pu,v) ·
∥∥∥L†/2

G Lu∼vL
†/2
G

∥∥∥
= (wu,v/pu,v) ·

∥∥∥L†/2
G (δu − δv)(δu − δv)

⊺L
†/2
G

∥∥∥
= (wu,v/pu,v) · tr

(
L
†/2
G (δu − δv)(δu − δv)

⊺L
†/2
G

)
= (wu,v/pu,v) · tr

(
(δu − δv)

⊺L
†/2
G L

†/2
G (δu − δv)

)
= (wu,v/pu,v) · tr

(
(δu − δv)

⊺L†
G(δu − δv)

)
= (wu,v/pu,v) · Reff(u, v).

By the definition of pu,v, it holds that

∥Xu,v∥ ≤ ε2

C · log n
.
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Notice that the upper bound above is independent of edge u ∼ v. By Theorem 9.3, it
holds that

P

[
λmax

(∑
u∼v

Xu,v

)
≥ (1 + ε)λmax(Π)

]
≤ n−(C/3)+1,

which is small for C > 3.

Fast computation of the effective resistances. So far we showed the constructed
H has O(n log n/ε2) edges, and is indeed a (1 + ε)-spectral sparsifier. To prove
Theorem 9.1, it remains to analyse the runtime of the algorithm. Spielman and
Srivastava show that the values {Reff(u, v)}u∼v with good approximation can be
computed in Õ(m/ε2) time. Due to time limit, we drop their algorithm for computing
effective resistances here.

9.4 Useful Facts

Theorem 9.3 (Matrix Chernoff Bound). Let X1, . . . , Xm ∈ Rn×n be independent
random PSD such that ∥Xi∥ ≤ R almost surely. Let X =

∑m
i=1 Xi, and let µmin and

µmax be the minimum and maximum eigenvalues of

E[X] =
m∑
i=1

E[Xi].

Then,

P

[
λmin

(
m∑
i=1

Xi

)
≤ (1− ε)µmin

]
≤ n

(
e−ε

(1− ε)1−ε

)µmin/R

for 0 < ε < 1, and

P

[
λmax

(
m∑
i=1

Xi

)
≤ (1− ε)µmax

]
≥ n

(
e−ε

(1− ε)1−ε

)µmax/R

for ε > 0.



Lecture 10

Linear-Sized Spectral Sparsifiers

In the last lecture we have seen a nearly-linear time algorithm for constructing a
(1 + ε)-spectral sparsifier of O(n log n/ε2) edges. In this lecture, we will see that, for
any undirected graph G, a (1 + ε)-spectral sparsifier of G with O(n) edges exists, and
can be constructed in Õ(m) time as well.

Without loss of generality, we study the algorithm of sparsifying the sum of rank-1
PSD matrices. Our goal is to, for any vectors v1, · · · vm with

∑m
i=1 viv

⊺
i = I, find scalars

{ci}mi=1 satisfying
|{ci : ci ̸= 0}| = O

( n

ε2

)
,

such that

(1− ε) · I ⪯
m∑
i=1

civiv
⊺
i ⪯ (1 + ε) · I.

Exercise 10.1. Show that any algorithm for solving the problem above gives an algo-
rithm for constructing a (1 + ε)-spectral sparsifier of graphs that consists of O(n/ε2)
edges.

For simplicity, we treat ε = O(1) in the lecture, and our goal is to prove the
following theorem:

Theorem 10.2. Let v1, . . . , vm be vectors in Rn such that
∑m

i=1 viv
⊺
i = I. Then, for

every ε > 0 there exists a set S along with scaling factors ci such that

(1−O(1)) · I ⪯
∑
i∈S

civiv
⊺
i ⪯ (1 +O(1)) · I,

and |S| ≤ ⌈n/ε2⌉. Moreover, this set S can be found in polynomial-time.
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10.1 Overview of the Algorithm

Given the correspondence between PSD matrices and ellipsoids, the problem essentially
asks to use O(n) vectors from S to construct an ellipsoid, whose shape is close to be a
sphere. To construct such an ellipsoid with desired shape, our algorithm proceeds by
iterations: in each iteration j the algorithm chooses a vector v, and adds ∆j ≜ vv⊺

to the currently constructed matrix by setting Aj = Aj−1 +∆j. To control the shape
of the constructed ellipsoid, two barrier values, the upper barrier uj and the lower
barrier ℓj, are maintained such that the constructed ellipsoid Ellip(Aj) is sandwiched
between the outer sphere uj · I and the inner sphere ℓj · I for any iteration j. That is,
the following invariant always maintains:

ℓj · I ≺ Aj ≺ uj · I. (10.1)

To ensure (10.1) holds, two barrier values ℓj and uj are increased properly after each
iteration, i.e.,

uj+1 = uj +∆u, ℓj+1 = ℓj +∆ℓ

for some positive values ∆u and ∆ℓ. We will continue this process, until after T
iterations Ellip(AT ) is close to be a sphere. This implies that AT approximates the
identity matrix, see Figure 10.1 for an illustration.

To insure that that the invariant (10.1) always holds, we introduce the following
potential functions: for any symmetric matrix A ∈ Rn×n with eigenvalues λ1 ≤ . . . ≤ λn,
we call u ∈ R an upper bound of A if u > λn. Given an upper bound u, we define the
upper barrier function of A by

Φu(A) =
n∑

i=1

1

u− λi

= tr(uI − A)−1.

Similarly, for a lower bound ℓ < λ1, we define the lower barrier function of A by

Φℓ(A) =
n∑

i=1

1

λi − ℓ
= tr(A− ℓI)−1.

10.2 The Changes of the Potential Functions

Given the intuitions above, what we need is to choose a proper vector v ∈ Rn, and
update the barrier values u, ℓ ∈ R accordingly, so that the invariant always holds. Let
us first look at the change of the potential functions when we add matrix cvv⊺ for some
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Iteration j Iteration j + 1 Final iteration T

Figure 10.1: Illustration of the algorithms for constructing a linear-sized spectral sparsifier.
Here, the light grey ball and the red ball in iteration j represent the spheres uj · I and
ℓj · I, and the blue ellipsoid sandwiched between the two balls corresponds to the constructed
ellipsoid in iteration j. After each iteration j, the algorithm increases the value of ℓj and
uj by some ∆ℓ and ∆u so that the invariant (10.1) holds in iteration j + 1. This process is
repeated for T iterations, so that the final constructed ellipsoid is close to be a sphere.

c ∈ R. By the Sherman-Morrison formula (Lemma 10.7), it holds that

Φu (A+ cvv⊺) = tr (uI − A− cvv⊺)−1

= tr(uI − A)−1 + c · tr ((uI − A)−1vv⊺(uI − A)−1)

1− cv⊺(uI − A)−1v

= Φu(A) + c · tr (v
⊺(uI − A)−1(uI − A)−1v)

1− cv⊺(uI − A)−1v

= Φu(A) + c · v⊺(uI − A)−2v

1− cv⊺(uI − A)−1v
.

When we increase u by ∆u, by setting u′ = u+∆u we have that

Φu′
(A+ cvv⊺) = Φu′

(A) + c · v⊺(u′I − A)−2v

1− cv⊺(u′I − A)−1v

= Φu(A)−
(
Φu(A)− Φu′

(A)
)
+ c · v⊺(u′I − A)−2v

1− cv⊺(u′I − A)−1v
.

Remember that our goal is to make the barrier functions bounded after each iteration.
To achieve it, let us assume that

Φu′
(A+ cvv⊺) ≤ Φu(A),

which is equivalent to say that(
Φu(A)− Φu′

(A)
)
≥ c · v⊺(u′I − A)−2v

1− cv⊺(u′I − A)−1v
,
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i.e.,
1

c
≥ v⊺(u′I − A)−2v

Φu(A)− Φu′(A)
+ v⊺(u′I − A)−1v.

Let us define
UA =

(u′I − A)−2

Φu − Φu′(A)
+ (u′I − A)−1.

Lemma 10.3. If 1/c ≥ v⊺UAv, then it holds that

Φu′
(A+ cvv⊺) ≤ Φu(A).

By the same analysis, we can analyse the change of Φℓ. We set ℓ′ = ℓ+∆, and

LA =
(A− ℓ′I)−1

Φℓ′(A)− Φℓ(A)
− (A− ℓ′I)−1.

We have the following result.

Lemma 10.4. If 1/c ≤ v⊺LAv, then it holds that

Φℓ′ (A+ cvv⊺) ≤ Φℓ(A).

It remains to show that there exits a vector v and a scaling factor c such that

Φu′
(A+ cvv⊺) ≤ Φu(A),

and
Φℓ′(A+ cvv⊺) ≤ Φℓ(A).

That is, we need to show the existence of c ∈ R such that

v⊺i UAvi ≤ 1/c ≤ v⊺i LAvi

Lemma 10.5. It holds that
m∑
i=1

v⊺i UAvi ≤
1

∆u
+ Φu(A).

Proof. Notice that

m∑
i=1

v⊺i UAvi = tr(UA) = tr

(
(u′I − A)−2

Φu − Φu′(A)

)
+ tr

(
(u′I − A)−1

)
.

For the second term, notice that

tr
(
(u′I − A)−1

)
= Φu′

(A) ≤ Φu(u). (10.2)
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Now we analyse the first term. It holds that

∂

∂u
Φu(A) =

∂

∂u

n∑
i=1

1

u− λi

= −
n∑

i=1

(
1

u− λi

)2

= − tr
(
(uI − A)−2

)
.

Since Φu(A) is convex in u, we have that

Φu(A)− Φu+∆u(A) ≥ −∆u · ∂

∂u
Φu(A) = ∆u · tr

(
(uI − A)−2

)
. (10.3)

Combining (10.2) with (10.3) proves the claimed statement.

The analysis for
∑m

i=1 v
⊺
i LAvi is similar, and we have the following result.

Lemma 10.6. It holds that
m∑
i=1

v⊺i LAvi ≥
1

∆ℓ
− 1

1/Φℓ(A)−∆ℓ
.

Now, if we further assume that

1

∆u
+ Φu(A) ≤ 1

∆ℓ
− 1

1/Φℓ(A)−∆ℓ
,

then by Lemma 10.5 and Lemma 10.6 we know the existence of some i such that

v⊺i UAvi ≤ v⊺i LAvi,

and the existence of some c ∈ R such that

v⊺i UAvi ≤
1

c
≤ v⊺i LAvi.

Hence, in each iteration we can always find some vector vi ∈ Rn and some scaling
factor c ∈ R such that the potential functions are always bounded during the execution
of the algorithm.

10.3 Implementation of the Algorithm

The choice of parameters. We set the initial value of u and ℓ by

ℓ = −n, u = n.

After each iteration, the values of u and ℓ will be increased by 2 and 1/3 respectively.
Hence, after 6n iteration, the condition number of our constructed matrix is upper
bounded by

n+ 2 · 6n
−n+ 6n/3

= 13,
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which implies that the constructed matrix approximates the identity matrix.

Runtime analysis. The algorithm takes O(n) iterations. In each iteration, the
algorithm needs to compute ((u + ∆u)I − A)−1, ((u + ∆u)I − A)−2, and the same
matrices for the lower potential functions. This quantities can be computed in time
O(n3). We also need to decided which edge to add in each iteration by computing
UAvi and LAvi for each edge, which can be computed in time O(n2m). Since we need
to run for O(n) iterations, the total time of the algorithm is O(n3m).

10.4 Recent Progress

There have been several important results for fast constructions of linear-sized spectral
sparsifers. Recently, Lee and Sun showed that a linear-sized spectral sparsifier can be
constructed in nearly-linear time. At a very high-level, their algorithm successfully
breaks the runtime barriers of the algorithm discussed above:

• Lee-Sun algorithm runs for O(poly log n) iterations, instead of Ω(n) iterations
discussed above.

• In each iteration, Lee-Sun algorithm picks O(n/poly log n) vectors by solving a
SDP program.

• Through a refined potential function, they showed that the constructed matrix is
never close to the barrier values. Hence, many quantities can be computed in
linearly-time through Taylor expansion of matrices.

10.5 Useful Facts

Lemma 10.7 (Sherman-Morrison). Let A be a nonsingular symmetric matrix, v be a
vector and let c ∈ R. Then, it holds that

(A− cvv⊺)−1 = A−1 + c · A−1vv⊺A−1

1− cv⊺A−1v
.
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