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Graph sparsification

Why do we need graph sparsification?

= It is more space-efficient to store sparse graphs.
= Many algorithms run faster on sparse graphs.
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Laplacian matrices

Laplacian matrix

For any undirected graph G with n vertices and weight w : V- x V' — Ry,
the Laplacian matrix of G is defined by

—w(u,v) if u# v,

> s w(u, 2) if u=n.

La(u,v) = {
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Laplacian matrices

Laplacian matrix
For any undirected graph G with n vertices and weight w : V- x V' — Ry,
the Laplacian matrix of G is defined by

—w(u,v) if u# v,

Le(u,v) = {Zuwz w(u, z) if u=uv.

Example:

3 -1 -1 -1
-1 3 -1 -1
-1 -1 3 -1
-1 -1 -1 3

Lg =
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Spectral sparsification

Example: Let S C V, and define = € {0,1}"

where
1 ifues,
Ly = .
0 otherwise.
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Spectral sparsification

Example: Let S C V, and define = € {0,1}"

where
1 ifues,
Ly = .
0 otherwise.

Then,

2" Lex = Z W, V) (@y — )2 = w(S,V\ 9)

u~v

S
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Spectral sparsification

Example: Let S C V, and define = € {0,1}"

where S VS
1 ifue S, I
Ty = . ‘ 0
0 otherwise. 1 !
Then, 1 | 0
2" Lex = Zw(u,v)(a:u—acv)2 =w(S,V\S) 0

u~v

Spectral sparsification

For any undirected graph G, we call a sparse subgraph H of G a spectral
sparsifier of G, if it holds for any x € R™ that

09 -2'Lyx <z'Lgx <1.1-z"Lyz.

Algorithms for Data Science He Sun



Spectral sparsification

Example: Let S C V, and define = € {0,1}"

where S VS
1 ifue S, I
Ty = . ‘ 0
0 otherwise. 1 !
Then, 1 | 0
2" Lex = Zw(u,v)(a:u—1:1,)2 =w(S,V\S) 0

u~v

Spectral sparsification
For any undirected graph G, we call a sparse subgraph H of G a spectral
sparsifier of G, if it holds for any x € R™ that

09 -2'Lyx <z'Lgx <1.1-z"Lyz. \

[O.Q-LHngjl.l-LH]
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Spectral sparsification

Example: Let S C V, and define = € {0,1}"

where S VS
1 ifue S, I
Ty = . ‘ 0
0 otherwise. 1 !
Then, 1 | 0
2" Lex = lej(u,v)(a:u—1:1,)2 =w(S,V\S) 0

u~v

Spectral sparsification
For any undirected graph G, we call a sparse subgraph H of G a spectral
sparsifier of G, if it holds for any x € R™ that

09 -2'Lyx <z'Lgx <1.1-z"Lyz. \

[O.Q-LHngjl.l-LH]

A spectral sparsifier preserves all cut values!
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Spectral sparsification

Spectral sparsification

For any undirected graph G, we call a sparse subgraph H of G a spectral
sparsifier of G, if it holds for any x € R" that

09 -2"Lyx<z"Lgx <11 -2"Lgzx.
= All cut values between GG and H are preserved.

= All eigenvalues between L¢ and Ly are preserved.

= Random walks in G and H have approximately the same mixing and
cover time.

Key questions:
= How sparse could H be?

= How fast can we construct H?
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Spectral sparsification

Spectral sparsification
For any undirected graph G, we call a sparse subgraph H of G a spectral
sparsifier of G, if it holds for any x € R" that

09 -2"Lyx<z"Lgx <11 -2"Lgzx.

= All cut values between GG and H are preserved.
= All eigenvalues between L¢ and Ly are preserved.

= Random walks in G and H have approximately the same mixing and
cover time.

; Algorithm’s runtime
Key questions:
= How sparse could H be?

= How fast can we construct H?

S

number of edges in H
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Spectral sparsification

Spectral sparsification
For any undirected graph G, we call a sparse subgraph H of G a spectral
sparsifier of G, if it holds for any x € R" that

09 -2"Lyx<z"Lgx <11 -2"Lgzx.

= All cut values between GG and H are preserved.
= All eigenvalues between L¢ and Ly are preserved.

= Random walks in G and H have approximately the same mixing and
cover time.

; Algorithm’s runtime
Key questions:

A

= How sparse could H be?

= How fast can we construct H? Q(m) I

S

Q(n) number of edges in'H
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Progress on constructing spectral sparsifiers

Spielman-Teng, 2004

For any undirected graph G, there is a spectral sparsifier of G with
O (npoly logn) edges that can be constructed in O(m poly logn) time.

Algorithm’s runtime 4

Q(m)

S

Q(n) number of edg'es in H
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Progress on constructing spectral sparsifiers

Spielman-Teng, 2004

For any undirected graph G, there is a spectral sparsifier of G with
O (npoly logn) edges that can be constructed in O(m poly logn) time.

Algorithm’s runtime 4

O(mpolylogn) } Spielman-Teng, 2004
Q(m) )

NN S

Q(n) O(n poly logn) number of edges in H
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Progress on constructing spectral sparsifiers

Spielman-Teng, 2004

For any undirected graph G, there is a spectral sparsifier of G with
O (npoly logn) edges that can be constructed in O(m poly logn) time.

Algorithm’s runtime

O(m poly logn)
Q(m)

Spielman-Teng, 2004

S

O(n poly logn) number of edges in H

Note: A constant-degree expander with O(n) edges is a spectral sparsifier of a clique!
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Progress on constructing spectral sparsifiers

Spielman-Teng, 2004

For any undirected graph G, there is a spectral sparsifier of G with
O (npoly logn) edges that can be constructed in O(m poly logn) time.

Algorithm’s runtime 4
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Progress on constructing spectral sparsifiers

Spielman-Teng, 2004

For any undirected graph G, there is a spectral sparsifier of G with
O (npoly logn) edges that can be constructed in O(m poly logn) time.

Algorithm’s runtime 4
0o (n®) Batson-Spielman-Srivastava, 2012
O (m21) % Allen Zhu-Liao-Orecchia, 2015
O(m poly log n) Spielman-Teng, 2004
Q(m)

Q(n) O(n poly logn) number of edges in H

Note: A constant-degree expander with O(n) edges is a spectral sparsifier of a clique!
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Progress on constructing spectral sparsifiers

Spielman-Teng, 2004

For any undirected graph G, there is a spectral sparsifier of G with
O (npoly logn) edges that can be constructed in O(m poly logn) time.

Algorithm’s runtime 4

0O(n®) — —e Batson-Spielman-Srivastava, 2012

O (m21) $ Allen Zhu-Liao-Orecchia, 2015

| Lee-sun, 2017

O(m poly logn)

Spielman-Teng, 2004
Q(m)

S

Q(n) O(n poly logn) number of edges in H

Note: A constant-degree expander with O(n) edges is a spectral sparsifier of a clique!
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Equivalent definition of spectral sparsification

For every edge e = {u, v}, we define

be = (0,...,0,1,0,...0,—1,0,...,0)7

uth coordinate vth coordinate
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For every edge e = {u, v}, we define

be = (0,...,0,1,0,...0,—1,0,...,0)7

. uth coordinate vth coordinate
Then we can write

Lo = Z w(u, v)bebl

e={u,v}€E
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Equivalent definition of spectral sparsification

For every edge e = {u, v}, we define

be = (0,...,0,1,0,...0,—1,0,...,0)T

. uth coordinate vth coordinate
Then we can write

Lg = Z w(u, v)bebl
e={u,v}€E
Spectral sparsification for graphs

Given a graph G with the Lapla-
cian matrix

Lg = Z webebL
ecE
find coefficients {c.} with O(n)
non-zeros, such that

Lo~ Ly =Y cebebl.

ecE
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Equivalent definition of spectral sparsification

For every edge e = {u, v}, we define

be = (0,...,0,1,0,...0,—1,0,...,0)7

. uth coordinate vth coordinate
Then we can write

Lg = Z w(u, v)bebl

e={u,v}€E
Spectral sparsification for graphs Matrix sparsification
Given a graph G with the Lapla- Given m vectors v1,- -, v that
cian matrix satisfy
Lg = Z webebY, I = Zvivg,
ecE i
find coefficients {c.} with O(n) find coefficients {c;};~, with O(n)
non-zeros, such that non-zeros, such that
Lo~ Lyg= Z cebebl. I~ Zcivivg.
ecE 7
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Geometric interpretation of spectral sparsification

( Any positive definite matrix A defines )
an ellipsoid

In

ellip(4) = {z e R" : 2TA 'z < 1}.
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Geometric interpretation of spectral sparsification

Any positive definite matrix A defines

an ellipsoid
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ellip(A)

= Eigenvectors of A define n

orthogonal directions of ellip(A);
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Geometric interpretation of spectral sparsification

an ellipsoid

Any positive definite matrix A defines

ellip(4) = {z e R" : 2TA 'z < 1}.

= Eigenvectors of A define n
orthogonal directions of ellip(A);

= The semi-length distances along

the ith direction is 1/v/);.
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Geometric interpretation of spectral sparsification

Any positive definite matrix A defines
an ellipsoid I
SEaa
SN ..\\
SERLN
S350

T
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NRUeSS

ellip(4) = {z e R" : 2TA 'z < 1}.

NS

18
A
AW
A\

AN

= Eigenvectors of A define n
orthogonal directions of ellip(A);

= The semi-length distances along
the ith direction is 1/v/);.

ellip(A) is close to be a sphere iff A~ ¢ I.

He Sun

Algorithms for Data Science



Geometric interpretation of spectral sparsification

Any positive definite matrix A defines
an ellipsoid

fn
ellip(4) = {z e R" : 2TA 'z < 1}.

2
I/

%%
S5
S
eves!
X
74

= Eigenvectors of A define n
orthogonal directions of ellip(A);

Y
<2
L7

55

SN
Sasse2sy
=as2s27)
Pty
27
= The semi-length distances along f g
the sth direction is 1/v/);.

ellip(A) is close to be a sphereiff A~ c- I.

Geometric interpretation of spectral sparsification: Choose and re-weight
O(n) vectors, such that the corresponding ellipsoid is close to be a sphere.
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Overview of our approach

General approach to construct a linear-sized spectral sparsifier

= The algorithm proceeds by iterations, and maintains two spheres ¢; - I
and u; - I in each iteration j;

[Batson et al. ’12, Allen Zhu et al. '15, Lee-S. ’15, Lee-S. ’17]
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Overview of our approach

General approach to construct a linear-sized spectral sparsifier

= The algorithm proceeds by iterations, and maintains two spheres ¢; - I
and u; - I in each iteration j;
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@

Iteration j lteration j + 1
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General approach to construct a linear-sized spectral sparsifier

= The algorithm proceeds by iterations, and maintains two spheres ¢; - I
and u; - I in each iteration j;

= The constructed ellipsoid A; always satisfies ¢; - I < A; < u; - I;
= After T iterations, {7 ~ ur implies that Ar ~ I.
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Overview of our approach

General approach to construct a linear-sized spectral sparsifier

= The algorithm proceeds by iterations, and maintains two spheres ¢; - I
and u; - I in each iteration j;

= The constructed ellipsoid A; always satisfies ¢; - I < A; < u; - I;
= After T iterations, {7 ~ ur implies that Ar ~ I.
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Overview of our approach

General approach to construct a linear-sized spectral sparsifier

= The algorithm proceeds by iterations, and maintains two spheres ¢; - I
and u; - I in each iteration j;

= The constructed ellipsoid A; always satisfies ¢; - I < A; < u; - I;
= After T iterations, {7 ~ ur implies that Ar ~ I.
[Batson et al. 12, Allen Zhu et al. '15, Lee-S. '15, Lee-S. '17]

C
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Key issues of the approach

Iteration j lteration j + 1 Final iteration T"

Q: Control the shape of ellipsoid A
A: by potential function ®,, ((A) = trexp(ul — A)~! 4 trexp(A — £I)~!
Bounded @, ¢(A) ensures /I < A < ul
Q: Choose a correct set of vectors in each iteration
A: Solve a specific SDP in O(m - poly log n) time
Q: Bound the number of iterations T

A : T = O(poly log n) iterations suffice
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Our algorithm

Algorithm for constructing a linear-sized sparsifier

1: j = 0, set the initial matrix A = 0;
2: (= —1/4,u=1/4;
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Our algorithm

Algorithm for constructing a linear-sized sparsifier

1: j = 0, set the initial matrix A = 0;
2: 0= —1/4,u=1/4;
3: whileu — /¢ < 1
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Our algorithm

Algorithm for constructing a linear-sized sparsifier

: j = 0, set the initial matrix A = 0;
cl=—1/4,u=1/4;

:whileu —¢< 1

Choose vectors v1, . . ., v, by solving an SDP

A W N =
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Our algorithm

Algorithm for constructing a linear-sized sparsifier

: j = 0, set the initial matrix A = 0;
cl=—1/4,u=1/4;

:whileu —¢< 1

Choose vectors v1, . . ., v, by solving an SDP
A= 25:1 CACHY

Qs wN 2
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Our algorithm

Algorithm for constructing a linear-sized sparsifier

: j = 0, set the initial matrix A = 0;
cl=—1/4,u=1/4;

:whileu —¢< 1

Choose vectors v1, . . ., v, by solving an SDP
A=Y w)T

A=A+ A

Qg R wn
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Our algorithm

Algorithm for constructing a linear-sized sparsifier

1: j = 0, set the initial matrix A = 0;

2 0= —1/4,u=1/4

3: whileu—¢< 1

4: Choose vectors v1, . . ., v, by solving an SDP
5: A=Yt w7

6: A=A+A

7:

increase the value of v and ¢
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Our algorithm

Algorithm for constructing a linear-sized sparsifier

1: j = 0, set the initial matrix A = 0;

2 0= —1/4,u=1/4;

3: whileu—¢< 1

4: Choose vectors v1, . . ., v, by solving an SDP
5: A=Yt w7

6: A=A+A

7 increase the value of v and ¢

8: return A
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Our algorithm

Algorithm for constructing a linear-sized sparsifier

1: j = 0, set the initial matrix A = 0;

2 0= —1/4,u=1/4;

3: whileu —¢< 1

4: Choose vectors v1, . . ., v, by solving an SDP
5: A=Yt w7

6: A=A+A

7 increase the value of v and ¢

8: return A

Lee-S., STOC'17

A linear-sized spectral sparsifier can be constructed in nearly-linear time.
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Application of spectral sparsification in clustering

Applications in clustering:
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Application of spectral sparsification in clustering

Applications in clustering:

0 20 N0 40 S0

Distributed clustering: The dataset is allocated among s remote sites.
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Application of spectral sparsification in clustering

Setup: Edges of graph G are allocated at s sites in an arbitrary way.
Objective: Design a communication-efficient algorithm for clustering.
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Application of spectral sparsification in clustering

Setup: Edges of graph G are allocated at s sites in an arbitrary way.
Objective: Design a communication-efficient algorithm for clustering.

A naive approach:

= Every site sends all the maintained edges
to the host;

® The host runs a clustering algorithm;
= Communication cost = © (m log® n) bits.
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Application of spectral sparsification in clustering

Setup: Edges of graph G are allocated at s sites in an arbitrary way.
Objective: Design a communication-efficient algorithm for clustering.

A naive approach: Our proposed approach:

= Every site sends all the maintained edges = Every site sends a spectral sparsifier of
to the host; the subgraph it maintains to the host;
® The host runs a clustering algorithm; ® The host runs a clustering algorithm;
= Communication cost = © (m log® n) bits. = Communication cost = ©(ns log® n) bits.
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Distributed clustering based on spectral sparsification

Lower bound: Any algorithm with o(ns) bits of communication cannot re-
cover a constant fraction of a single cluster.  [Chen-S.-Woodruff-Zhang, NIPS'16]

]
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Distributed clustering based on spectral sparsification

Lower bound: Any algorithm with o(ns) bits of communication cannot re-
cover a constant fraction of a single cluster.  [Chen-S.-Woodruff-Zhang, NIPS'16]

]

= Qur proposed algorithm based on sparsification is communication optimal.
= Approx. ratio of our algorithm is the same as the best one in the centralised setting.
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Original data; a corresponding graph has 70 million edges.
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Distributed clustering based on spectral sparsification

Lower bound: Any algorithm with o(ns) bits of communication cannot re-
cover a constant fraction of a single cluster.  [Chen-S.-Woodruff-Zhang, NIPS'16]

= Our proposed algorithm based on sparsification is communication optimal.
= Approx. ratio of our algorithm is the same as the best one in the centralised setting.

Original data; a corresponding graph has 70 million edges.

Clustering result in a centralised setting

Output of our algorithm with 6%
of the edges communicated

Thank you!
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