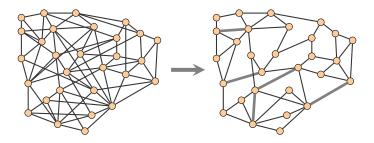
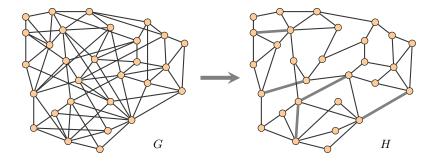
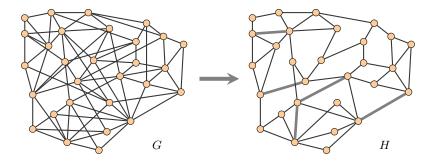
Spectral Sparsification: Constructions and Applications

He Sun

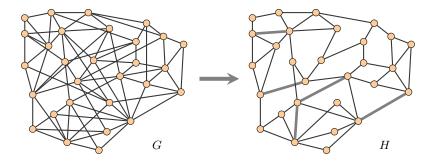
University of Bristol





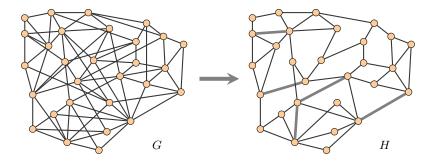


Why do we need graph sparsification?



Why do we need graph sparsification?

• It is more space-efficient to store sparse graphs.



Why do we need graph sparsification?

- It is more space-efficient to store sparse graphs.
- Many algorithms run faster on sparse graphs.

Laplacian matrix

For any undirected graph G with n vertices and weight $w : V \times V \to \mathbb{R}_{\geq 0}$, the Laplacian matrix of G is defined by

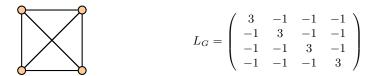
$$L_G(u,v) = \begin{cases} -w(u,v) & \text{if } u \neq v, \\ \sum_{u \sim z} w(u,z) & \text{if } u = v. \end{cases}$$

Laplacian matrix

For any undirected graph G with n vertices and weight $w : V \times V \to \mathbb{R}_{\geq 0}$, the Laplacian matrix of G is defined by

$$L_G(u,v) = \begin{cases} -w(u,v) & \text{if } u \neq v, \\ \sum_{u \sim z} w(u,z) & \text{if } u = v. \end{cases}$$

Example:

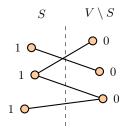


Example: Let $S \subset V$, and define $x \in \{0, 1\}^n$ where

$$x_u = \begin{cases} 1 & \text{if } u \in S, \\ 0 & \text{otherwise.} \end{cases}$$

Example: Let $S \subset V$, and define $x \in \{0, 1\}^n$ where

$$x_u = \begin{cases} 1 & \text{if } u \in S, \\ 0 & \text{otherwise.} \end{cases}$$

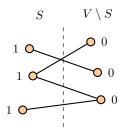


Example: Let $S \subset V$, and define $x \in \{0, 1\}^n$ where

 $x_u = \begin{cases} 1 & \text{if } u \in S, \\ 0 & \text{otherwise.} \end{cases}$

Then,

$$x^{\mathsf{T}}L_G x = \sum_{u \sim v} w(u, v)(x_u - x_v)^2 = w(S, V \setminus S)$$

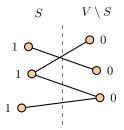


Example: Let $S \subset V$, and define $x \in \{0, 1\}^n$ where

 $x_u = \begin{cases} 1 & \text{if } u \in S, \\ 0 & \text{otherwise.} \end{cases}$

Then,

$$x^{\mathsf{T}}L_G x = \sum_{u \sim v} w(u, v)(x_u - x_v)^2 = w(S, V \setminus S)$$



Spectral sparsification

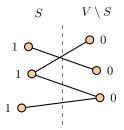
$$0.9 \cdot x^{\mathsf{T}} L_H x \leq x^{\mathsf{T}} L_G x \leq 1.1 \cdot x^{\mathsf{T}} L_H x.$$

Example: Let $S \subset V$, and define $x \in \{0, 1\}^n$ where

 $x_u = \begin{cases} 1 & \text{if } u \in S, \\ 0 & \text{otherwise.} \end{cases}$

Then,

$$x^{\mathsf{T}}L_G x = \sum_{u \sim v} w(u, v)(x_u - x_v)^2 = w(S, V \setminus S)$$



Spectral sparsification

$$0.9 \cdot x^{\mathsf{T}} L_H x \leq x^{\mathsf{T}} L_G x \leq 1.1 \cdot x^{\mathsf{T}} L_H x.$$

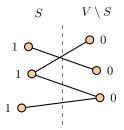
$$0.9 \cdot L_H \leq L_G \leq 1.1 \cdot L_H$$

Example: Let $S \subset V$, and define $x \in \{0, 1\}^n$ where

 $x_u = \begin{cases} 1 & \text{if } u \in S, \\ 0 & \text{otherwise.} \end{cases}$

Then,

$$x^{\mathsf{T}}L_G x = \sum_{u \sim v} w(u, v)(x_u - x_v)^2 = w(S, V \setminus S)$$



Spectral sparsification

For any undirected graph G, we call a sparse subgraph H of G a spectral sparsifier of G, if it holds for any $x \in \mathbb{R}^n$ that

$$0.9 \cdot x^{\mathsf{T}} L_H x \le x^{\mathsf{T}} L_G x \le 1.1 \cdot x^{\mathsf{T}} L_H x.$$

 $0.9 \cdot L_H \preceq L_G \preceq 1.1 \cdot L_H$

A spectral sparsifier preserves all cut values!

Spectral sparsification

For any undirected graph G, we call a sparse subgraph H of G a spectral sparsifier of G, if it holds for any $x \in \mathbb{R}^n$ that

$$0.9 \cdot x^{\mathsf{T}} L_H x \le x^{\mathsf{T}} L_G x \le 1.1 \cdot x^{\mathsf{T}} L_H x.$$

• All cut values between G and H are preserved.

Spectral sparsification

```
0.9 \cdot x^{\mathsf{T}} L_H x \leq x^{\mathsf{T}} L_G x \leq 1.1 \cdot x^{\mathsf{T}} L_H x.
```

- All cut values between *G* and *H* are preserved.
- All eigenvalues between L_G and L_H are preserved.

Spectral sparsification

```
0.9 \cdot x^{\mathsf{T}} L_H x \leq x^{\mathsf{T}} L_G x \leq 1.1 \cdot x^{\mathsf{T}} L_H x.
```

- All cut values between *G* and *H* are preserved.
- All eigenvalues between L_G and L_H are preserved.

Spectral sparsification

```
0.9 \cdot x^{\mathsf{T}} L_H x \leq x^{\mathsf{T}} L_G x \leq 1.1 \cdot x^{\mathsf{T}} L_H x.
```

- All cut values between G and H are preserved.
- All eigenvalues between L_G and L_H are preserved.
- Random walks in *G* and *H* have approximately the same mixing and cover time.

Spectral sparsification

For any undirected graph G, we call a sparse subgraph H of G a spectral sparsifier of G, if it holds for any $x \in \mathbb{R}^n$ that

```
0.9 \cdot x^{\mathsf{T}} L_H x \leq x^{\mathsf{T}} L_G x \leq 1.1 \cdot x^{\mathsf{T}} L_H x.
```

- All cut values between G and H are preserved.
- All eigenvalues between L_G and L_H are preserved.
- Random walks in *G* and *H* have approximately the same mixing and cover time.

Key questions:

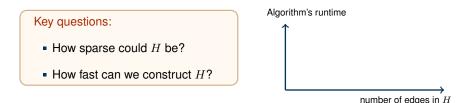
- How sparse could H be?
- How fast can we construct H?

Spectral sparsification

For any undirected graph G, we call a sparse subgraph H of G a spectral sparsifier of G, if it holds for any $x \in \mathbb{R}^n$ that

 $0.9 \cdot x^{\mathsf{T}} L_H x \leq x^{\mathsf{T}} L_G x \leq 1.1 \cdot x^{\mathsf{T}} L_H x.$

- All cut values between G and H are preserved.
- All eigenvalues between L_G and L_H are preserved.
- Random walks in *G* and *H* have approximately the same mixing and cover time.

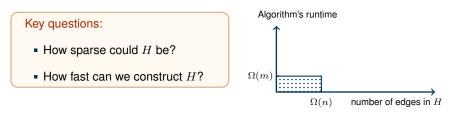


Spectral sparsification

For any undirected graph G, we call a sparse subgraph H of G a spectral sparsifier of G, if it holds for any $x \in \mathbb{R}^n$ that

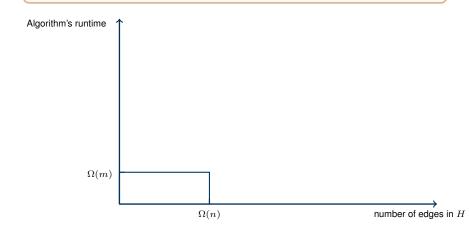
 $0.9 \cdot x^{\mathsf{T}} L_H x \leq x^{\mathsf{T}} L_G x \leq 1.1 \cdot x^{\mathsf{T}} L_H x.$

- All cut values between G and H are preserved.
- All eigenvalues between L_G and L_H are preserved.
- Random walks in *G* and *H* have approximately the same mixing and cover time.



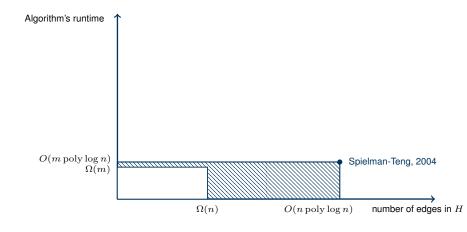
Spielman-Teng, 2004

For any undirected graph G, there is a spectral sparsifier of G with $O(n \operatorname{poly} \log n)$ edges that can be constructed in $O(m \operatorname{poly} \log n)$ time.



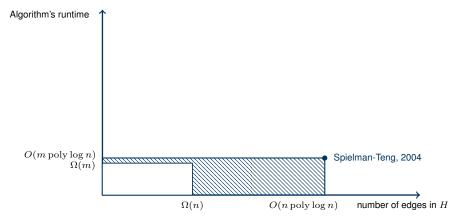
Spielman-Teng, 2004

For any undirected graph G, there is a spectral sparsifier of G with $O(n \operatorname{poly} \log n)$ edges that can be constructed in $O(m \operatorname{poly} \log n)$ time.



Spielman-Teng, 2004

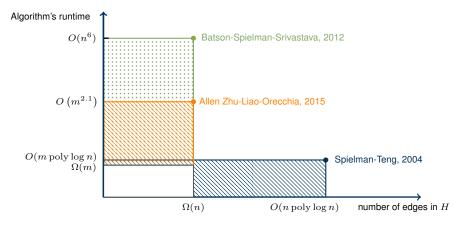
For any undirected graph G, there is a spectral sparsifier of G with $O(n \operatorname{poly} \log n)$ edges that can be constructed in $O(m \operatorname{poly} \log n)$ time.



Spielman-Teng, 2004 For any undirected graph G, there is a spectral sparsifier of G with $O(n \operatorname{poly} \log n)$ edges that can be constructed in $O(m \operatorname{poly} \log n)$ time. Algorithm's runtime $O(n^6)$ Batson-Spielman-Srivastava, 2012 $O(m \operatorname{poly} \log n)$ Spielman-Teng, 2004 $\Omega(m)$ $O(n \operatorname{poly} \log n)$ number of edges in H $\Omega(n)$

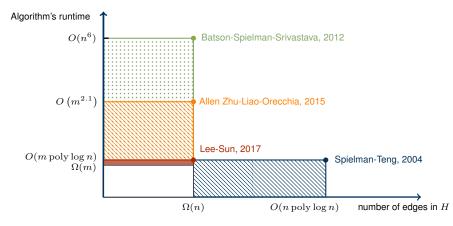
Spielman-Teng, 2004

For any undirected graph G, there is a spectral sparsifier of G with $O(n \operatorname{poly} \log n)$ edges that can be constructed in $O(m \operatorname{poly} \log n)$ time.



Spielman-Teng, 2004

For any undirected graph G, there is a spectral sparsifier of G with $O(n \operatorname{poly} \log n)$ edges that can be constructed in $O(m \operatorname{poly} \log n)$ time.

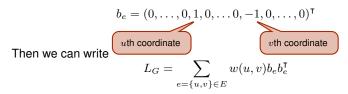


For every edge $e = \{u, v\}$, we define

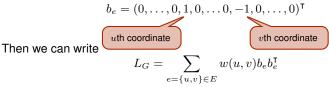
$$b_e = (0, \dots, 0, 1, 0, \dots 0, -1, 0, \dots, 0)^{\mathsf{T}}$$

uth coordinate

For every edge $e = \{u, v\}$, we define



For every edge $e = \{u, v\}$, we define



- Spectral sparsification for graphs -

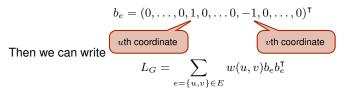
Given a graph G with the Laplacian matrix

$$L_G = \sum_{e \in E} w_e b_e b_e^{\mathsf{T}},$$

find coefficients $\{c_e\}$ with O(n) non-zeros, such that

$$L_G \approx L_H = \sum_{e \in E} c_e b_e b_e^{\mathsf{T}}.$$

For every edge $e = \{u, v\}$, we define



Spectral sparsification for graphs -

Given a graph G with the Laplacian matrix

$$L_G = \sum_{e \in E} w_e b_e b_e^{\mathsf{T}},$$

find coefficients $\{c_e\}$ with O(n) non-zeros, such that

$$L_G \approx L_H = \sum_{e \in E} c_e b_e b_e^{\mathsf{T}}.$$

Matrix sparsification

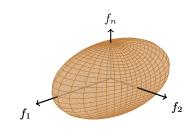
Given m vectors v_1, \cdots, v_m that satisfy

$$I = \sum_{i} v_i v_i^{\mathsf{T}},$$

find coefficients $\{c_i\}_{i=1}^m$ with O(n) non-zeros, such that

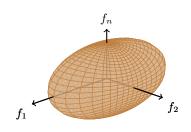
$$I \approx \sum_{i} c_i v_i v_i^{\mathsf{T}}.$$

$$\mathsf{ellip}(A) = \{ x \in \mathbb{R}^n : x^\mathsf{T} A^{-1} x \le 1 \}.$$



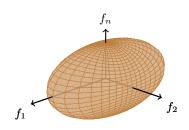
$$\mathsf{ellip}(A) = \left\{ x \in \mathbb{R}^n : x^\mathsf{T} A^{-1} x \le 1 \right\}.$$

 Eigenvectors of A define n orthogonal directions of ellip(A);



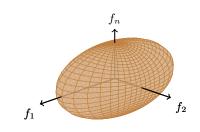
$$\mathsf{ellip}(A) = \left\{ x \in \mathbb{R}^n : x^\mathsf{T} A^{-1} x \le 1 \right\}.$$

- Eigenvectors of A define n orthogonal directions of ellip(A);
- The semi-length distances along the *i*th direction is $1/\sqrt{\lambda_i}$.



$$\mathsf{ellip}(A) = \left\{ x \in \mathbb{R}^n : x^\mathsf{T} A^{-1} x \le 1 \right\}.$$

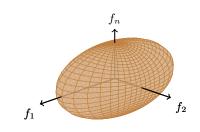
- Eigenvectors of A define n orthogonal directions of ellip(A);
- The semi-length distances along the *i*th direction is $1/\sqrt{\lambda_i}$.



ellip(A) is close to be a sphere iff $A \approx c \cdot I$.

$$\mathsf{ellip}(A) = \left\{ x \in \mathbb{R}^n : x^\mathsf{T} A^{-1} x \le 1 \right\}.$$

- Eigenvectors of A define n orthogonal directions of ellip(A);
- The semi-length distances along the *i*th direction is $1/\sqrt{\lambda_i}$.



ellip(A) is close to be a sphere iff $A \approx c \cdot I$.

Geometric interpretation of spectral sparsification: Choose and re-weight O(n) vectors, such that the corresponding ellipsoid is close to be a sphere.

Overview of our approach

General approach to construct a linear-sized spectral sparsifier

 The algorithm proceeds by iterations, and maintains two spheres l_j · I and u_j · I in each iteration j;

[Batson et al. '12, Allen Zhu et al. '15, Lee-S. '15, Lee-S. '17]

General approach to construct a linear-sized spectral sparsifier

 The algorithm proceeds by iterations, and maintains two spheres l_j · I and u_j · I in each iteration j;

[Batson et al. '12, Allen Zhu et al. '15, Lee-S. '15, Lee-S. '17]

Iteration j

General approach to construct a linear-sized spectral sparsifier

- The algorithm proceeds by iterations, and maintains two spheres l_j · I and u_j · I in each iteration j;
- The constructed ellipsoid A_j always satisfies $\ell_j \cdot I \prec A_j \prec u_j \cdot I$;

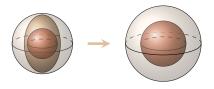
[Batson et al. '12, Allen Zhu et al. '15, Lee-S. '15, Lee-S. '17]

Iteration j

General approach to construct a linear-sized spectral sparsifier

- The algorithm proceeds by iterations, and maintains two spheres l_j · I and u_j · I in each iteration j;
- The constructed ellipsoid A_j always satisfies $\ell_j \cdot I \prec A_j \prec u_j \cdot I$;

[Batson et al. '12, Allen Zhu et al. '15, Lee-S. '15, Lee-S. '17]



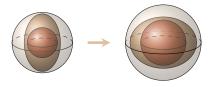
Iteration j

Iteration j + 1

General approach to construct a linear-sized spectral sparsifier

- The algorithm proceeds by iterations, and maintains two spheres l_j · I and u_j · I in each iteration j;
- The constructed ellipsoid A_j always satisfies $\ell_j \cdot I \prec A_j \prec u_j \cdot I$;

[Batson et al. '12, Allen Zhu et al. '15, Lee-S. '15, Lee-S. '17]



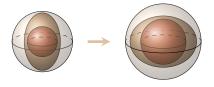
Iteration j

Iteration j + 1

General approach to construct a linear-sized spectral sparsifier

- The algorithm proceeds by iterations, and maintains two spheres l_j · I and u_j · I in each iteration j;
- The constructed ellipsoid A_j always satisfies $\ell_j \cdot I \prec A_j \prec u_j \cdot I$;
- After T iterations, $\ell_T \approx u_T$ implies that $A_T \approx I$.

[Batson et al. '12, Allen Zhu et al. '15, Lee-S. '15, Lee-S. '17]

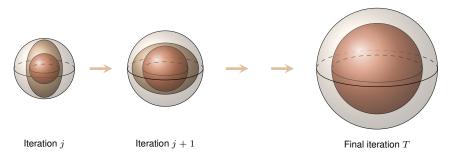


Iteration j

General approach to construct a linear-sized spectral sparsifier

- The algorithm proceeds by iterations, and maintains two spheres l_j · I and u_j · I in each iteration j;
- The constructed ellipsoid A_j always satisfies $\ell_j \cdot I \prec A_j \prec u_j \cdot I$;
- After T iterations, $\ell_T \approx u_T$ implies that $A_T \approx I$.

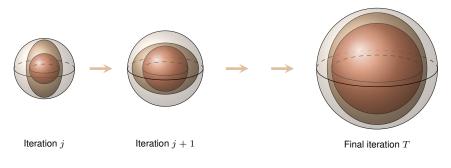
[Batson et al. '12, Allen Zhu et al. '15, Lee-S. '15, Lee-S. '17]

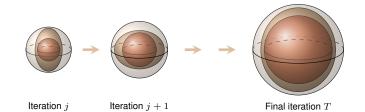


General approach to construct a linear-sized spectral sparsifier

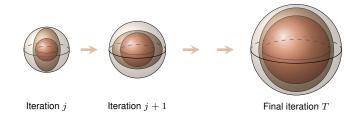
- The algorithm proceeds by iterations, and maintains two spheres l_j · I and u_j · I in each iteration j;
- The constructed ellipsoid A_j always satisfies $\ell_j \cdot I \prec A_j \prec u_j \cdot I$;
- After T iterations, $\ell_T \approx u_T$ implies that $A_T \approx I$.

[Batson et al. '12, Allen Zhu et al. '15, Lee-S. '15, Lee-S. '17]

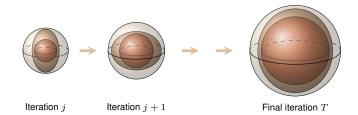




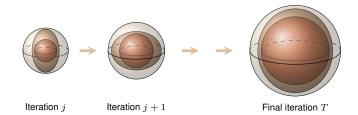
(



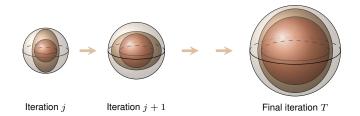
Q: Control the shape of ellipsoid A



Q: Control the shape of ellipsoid A Q: Choose a correct set of vectors in each iteration



Q: Control the shape of ellipsoid A Q: Choose a correct set of vectors in each iteration Q: Bound the number of iterations T

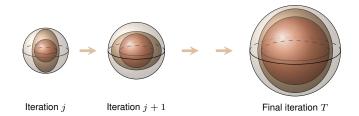


Q: Control the shape of ellipsoid A

A: by potential function $\Phi_{u,\ell}(A) = \operatorname{tr} \exp(uI - A)^{-1} + \operatorname{tr} \exp(A - \ell I)^{-1}$

Q: Choose a correct set of vectors in each iteration

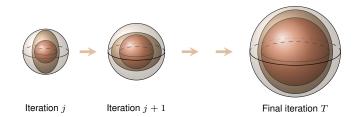
Q: Bound the number of iterations T



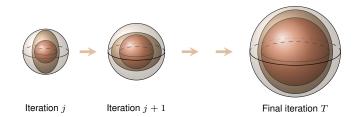
Q: Control the shape of ellipsoid A A: by potential function $\Phi_{u,\ell}(A) = \operatorname{trexp}(uI - A)^{-1} + \operatorname{trexp}(A - \ell I)^{-1}$ Bounded $\Phi_{u,\ell}(A)$ ensures $\ell I \prec A \prec uI$

Q: Choose a correct set of vectors in each iteration

Q: Bound the number of iterations T



Q: Control the shape of ellipsoid A A: by potential function $\Phi_{u,\ell}(A) = \operatorname{tr} \exp(uI - A)^{-1} + \operatorname{tr} \exp(A - \ell I)^{-1}$ Bounded $\Phi_{u,\ell}(A)$ ensures $\ell I \prec A \prec uI$ Q: Choose a correct set of vectors in each iteration A: Solve a specific SDP in $O(m \cdot \operatorname{poly} \log n)$ time Q: Bound the number of iterations T

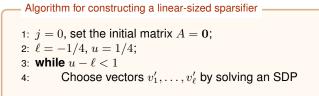


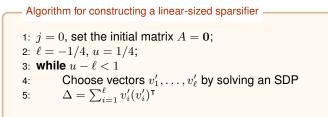
Q: Control the shape of ellipsoid A A: by potential function $\Phi_{u,\ell}(A) = \operatorname{tr} \exp(uI - A)^{-1} + \operatorname{tr} \exp(A - \ell I)^{-1}$ Bounded $\Phi_{u,\ell}(A)$ ensures $\ell I \prec A \prec uI$ *Q: Choose a correct set of vectors in each iteration* A: Solve a specific SDP in $O(m \cdot \operatorname{poly} \log n)$ time *Q: Bound the number of iterations* T $A: T = O(\operatorname{poly} \log n)$ iterations suffice

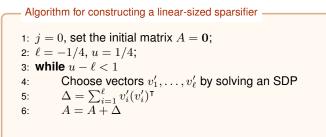
Algorithm for constructing a linear-sized sparsifier -

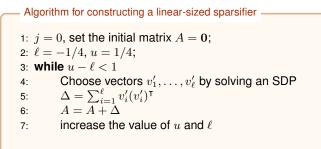
1: j = 0, set the initial matrix A = 0; 2: $\ell = -1/4$, u = 1/4;

```
Algorithm for constructing a linear-sized sparsifier –
1: j = 0, set the initial matrix A = 0;
2: ℓ = −1/4, u = 1/4;
3: while u − ℓ < 1</li>
```









```
Algorithm for constructing a linear-sized sparsifier

1: j = 0, set the initial matrix A = 0;

2: \ell = -1/4, u = 1/4;

3: while u - \ell < 1

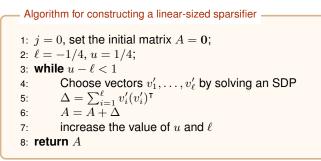
4: Choose vectors v'_1, \dots, v'_\ell by solving an SDP

5: \Delta = \sum_{i=1}^{\ell} v'_i (v'_i)^{\mathsf{T}}

6: A = A + \Delta

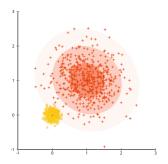
7: increase the value of u and \ell

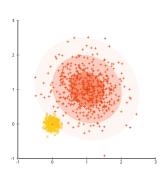
8: return A
```

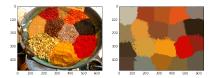


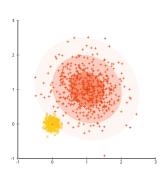
Lee-S., STOC'17

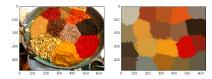
A linear-sized spectral sparsifier can be constructed in nearly-linear time.

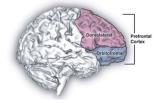


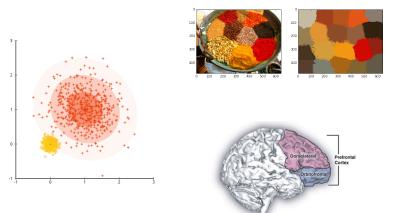












Distributed clustering: The dataset is allocated among *s* remote sites.

Application of spectral sparsification in clustering

Setup: Edges of graph G are allocated at s sites in an arbitrary way. Objective: Design a communication-efficient algorithm for clustering.

Application of spectral sparsification in clustering

Setup: Edges of graph G are allocated at s sites in an arbitrary way. Objective: Design a communication-efficient algorithm for clustering.

A naive approach:

- Every site sends all the maintained edges to the host;
- The host runs a clustering algorithm;
- Communication $cost = \Theta(m \log^c n)$ bits.

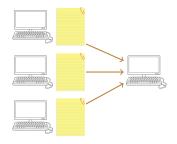
Application of spectral sparsification in clustering

Setup: Edges of graph G are allocated at s sites in an arbitrary way. Objective: Design a communication-efficient algorithm for clustering.

A naive approach:

- Every site sends all the maintained edges to the host;
- The host runs a clustering algorithm;
- Communication $cost = \Theta(m \log^c n)$ bits.

Our proposed approach:



- Every site sends a spectral sparsifier of the subgraph it maintains to the host;
- The host runs a clustering algorithm;
- Communication $cost = \Theta(ns \log^c n)$ bits.

Lower bound: Any algorithm with o(ns) bits of communication cannot recover a constant fraction of a single cluster. [Chen-S.-Woodruff-Zhang, NIPS'16]

Lower bound: Any algorithm with o(ns) bits of communication cannot recover a constant fraction of a single cluster. [Chen-S.-Woodruff-Zhang, NIPS'16]

- Our proposed algorithm based on sparsification is communication optimal.
- Approx. ratio of our algorithm is the same as the best one in the centralised setting.

Lower bound: Any algorithm with o(ns) bits of communication cannot recover a constant fraction of a single cluster. [Chen-S.-Woodruff-Zhang, NIPS'16]

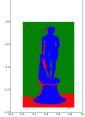
- Our proposed algorithm based on sparsification is communication optimal.
- Approx. ratio of our algorithm is the same as the best one in the centralised setting.

Original data; a corresponding graph has 70 million edges.

Lower bound: Any algorithm with o(ns) bits of communication cannot recover a constant fraction of a single cluster. [Chen-S.-Woodruff-Zhang, NIPS'16]

- Our proposed algorithm based on sparsification is communication optimal.
- Approx. ratio of our algorithm is the same as the best one in the centralised setting.

Original data; a corresponding graph has 70 million edges.

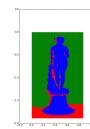


Clustering result in a centralised setting

Lower bound: Any algorithm with o(ns) bits of communication cannot recover a constant fraction of a single cluster. [Chen-S.-Woodruff-Zhang, NIPS'16]

- Our proposed algorithm based on sparsification is communication optimal.
- Approx. ratio of our algorithm is the same as the best one in the centralised setting.

Original data; a corresponding graph has 70 million edges.



Clustering result in a centralised setting

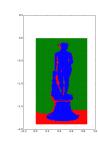
Output of our algorithm with 6% of the edges communicated

-2.0

Lower bound: Any algorithm with o(ns) bits of communication cannot recover a constant fraction of a single cluster. [Chen-S.-Woodruff-Zhang, NIPS'16]

- Our proposed algorithm based on sparsification is communication optimal.
- Approx. ratio of our algorithm is the same as the best one in the centralised setting.

Original data; a corresponding graph has 70 million edges.



Clustering result in a centralised setting

Output of our algorithm with 6% of the edges communicated

Thank you!

-2.0