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Graph sparsification

G H

Why do we need graph sparsification?

It is more space-efficient to store sparse graphs.

Many algorithms run faster on sparse graphs.
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Laplacian matrices

For any undirected graph G with n vertices and weight w : V × V → R≥0,
the Laplacian matrix of G is defined by

LG(u, v) =

{
−w(u, v) if u 6= v,∑

u∼z w(u, z) if u = v.

Laplacian matrix

Example:

LG =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3
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Spectral sparsification

Example: Let S ⊂ V , and define x ∈ {0, 1}n
where

xu =

{
1 if u ∈ S,
0 otherwise.

Then,

xᵀLGx =
∑
u∼v

w(u, v)(xu − xv)2 = w(S, V \ S)
1

1

1

0

0

0

S V \ S

For any undirected graph G, we call a sparse subgraph H of G a spectral
sparsifier of G, if it holds for any x ∈ Rn that

0.9 · xᵀLHx ≤ xᵀLGx ≤ 1.1 · xᵀLHx.

Spectral sparsification

0.9 · LH � LG � 1.1 · LH

A spectral sparsifier preserves all cut values!
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Spectral sparsification

For any undirected graph G, we call a sparse subgraph H of G a spectral
sparsifier of G, if it holds for any x ∈ Rn that

0.9 · xᵀLHx ≤ xᵀLGx ≤ 1.1 · xᵀLHx.

Spectral sparsification

All cut values between G and H are preserved.

All eigenvalues between LG and LH are preserved.

Random walks in G and H have approximately the same mixing and
cover time.

Key questions:

How sparse could H be?

How fast can we construct H?

number of edges in H

Algorithm’s runtime

Ω(n)

Ω(m)
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Progress on constructing spectral sparsifiers

For any undirected graph G, there is a spectral sparsifier of G with
O (npoly logn) edges that can be constructed in O(mpoly logn) time.

Spielman-Teng, 2004

number of edges in H

Algorithm’s runtime

Ω(n)

Ω(m)

O(n poly log n)

O(m poly log n) Spielman-Teng, 2004

O(n6) Batson-Spielman-Srivastava, 2012

O
(
m2.1

)
Allen Zhu-Liao-Orecchia, 2015

Lee-Sun, 2017

Note: A constant-degree expander with O(n) edges is a spectral sparsifier of a clique!
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Equivalent definition of spectral sparsification

For every edge e = {u, v}, we define

be = (0, . . . , 0, 1, 0, . . . 0,−1, 0, . . . , 0)ᵀ

uth coordinate vth coordinate

Then we can write
LG =

∑
e={u,v}∈E

w(u, v)beb
ᵀ
e

Given a graph G with the Lapla-
cian matrix

LG =
∑
e∈E

webeb
ᵀ
e ,

find coefficients {ce} with O(n)
non-zeros, such that

LG ≈ LH =
∑
e∈E

cebeb
ᵀ
e .

Spectral sparsification for graphs

Given m vectors v1, · · · , vm that
satisfy

I =
∑
i

viv
ᵀ
i ,

find coefficients {ci}mi=1 with O(n)
non-zeros, such that

I ≈
∑
i

civiv
ᵀ
i .

Matrix sparsification
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Geometric interpretation of spectral sparsification

Any positive definite matrix A defines
an ellipsoid

ellip(A) =
{
x ∈ Rn : xᵀA−1x ≤ 1

}
.

Eigenvectors of A define n
orthogonal directions of ellip(A);

The semi-length distances along
the ith direction is 1/

√
λi.

fn

f1f1
f2f2

ellip(A) is close to be a sphere iff A ≈ c · I.

Geometric interpretation of spectral sparsification: Choose and re-weight
O(n) vectors, such that the corresponding ellipsoid is close to be a sphere.
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Overview of our approach

The algorithm proceeds by iterations, and maintains two spheres `j · I
and uj · I in each iteration j;

The constructed ellipsoid Aj always satisfies `j · I ≺ Aj ≺ uj · I;

After T iterations, `T ≈ uT implies that AT ≈ I.

[Batson et al. ’12, Allen Zhu et al. ’15, Lee-S. ’15, Lee-S. ’17]

General approach to construct a linear-sized spectral sparsifier

Iteration j Iteration j + 1 Final iteration T
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Key issues of the approach

Iteration j Iteration j + 1 Final iteration T

Q: Control the shape of ellipsoid A
A: by potential function Φu,`(A) = tr exp(uI −A)−1 + tr exp(A− `I)−1

Bounded Φu,`(A) ensures `I ≺ A ≺ uI
Q: Choose a correct set of vectors in each iteration

A: Solve a specific SDP in O(m · poly logn) time
Q: Bound the number of iterations T

A : T = O(poly logn) iterations suffice
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Our algorithm

1: j = 0, set the initial matrix A = 0;
2: ` = −1/4, u = 1/4;

3: while u− ` < 1
4: Choose vectors v′1, . . . , v′` by solving an SDP
5: ∆ =

∑`
i=1 v

′
i(v
′
i)

ᵀ

6: A = A+ ∆
7: increase the value of u and `
8: return A

Algorithm for constructing a linear-sized sparsifier

A linear-sized spectral sparsifier can be constructed in nearly-linear time.

Lee-S., STOC’17
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Application of spectral sparsification in clustering

Applications in clustering:

Distributed clustering: The dataset is allocated among s remote sites.
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Application of spectral sparsification in clustering

Setup: Edges of graph G are allocated at s sites in an arbitrary way.
Objective: Design a communication-efficient algorithm for clustering.

A naive approach:

Every site sends all the maintained edges
to the host;

The host runs a clustering algorithm;

Communication cost = Θ(m logc n) bits.

Our proposed approach:

Every site sends a spectral sparsifier of
the subgraph it maintains to the host;

The host runs a clustering algorithm;

Communication cost = Θ(ns logc n) bits.
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Distributed clustering based on spectral sparsification

Lower bound: Any algorithm with o(ns) bits of communication cannot re-
cover a constant fraction of a single cluster. [Chen-S.-Woodruff-Zhang, NIPS’16]

Our proposed algorithm based on sparsification is communication optimal.
Approx. ratio of our algorithm is the same as the best one in the centralised setting.

Original data; a corresponding graph has 70 million edges.

Clustering result in a centralised setting

Output of our algorithm with 6%
of the edges communicated

Thank you!
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