
Tight Bounds for Randomized Load Balancing on Arbitrary Network Topologies

Thomas Sauerwald∗ and He Sun∗†
∗ Max Planck Institute for Informatics

Saarbrücken 66123, Germany
† Institute of Modern Mathematics and Physics, Fudan University

Shanghai 200433, China
Email: {sauerwal, hsun}@mpi-inf.mpg.de

Abstract—We consider the problem of balancing load items
(tokens) on networks. Starting with an arbitrary load distri-
bution, we allow in each round nodes to exchange tokens with
their neighbors. The goal is to achieve a distribution where all
nodes have nearly the same number of tokens.

For the continuous case where tokens are arbitrarily divisi-
ble, most load balancing schemes correspond to Markov chains
whose convergence is fairly well-understood in terms of their
spectral gap. However, in many applications load items cannot
be divided arbitrarily and we need to deal with the discrete
case where the load is composed of indivisible tokens. This
discretization entails a non-linear behavior due to its rounding
errors, which makes the analysis much harder than in the
continuous case. Therefore, it has been a major open problem
to understand the limitations of discrete load balancing and its
relation to the continuous case.

We investigate several randomized protocols for different
communication models in the discrete case. Our results demon-
strate that there is almost no difference between the discrete
and continuous case. For instance, for any regular network
in the matching model, all nodes have the same load up to
an additive constant in (asymptotically) the same number of
rounds required in the continuous case. This generalizes and
tightens the previous best result, which only holds for expander
graphs.

Keywords-randomized algorithms; parallel and distributed
algorithms; graph expansion; Markov chains; load balancing.

1. INTRODUCTION

Consider an application running on a parallel network

with n processors. Every processor has initially a certain

amount of tokens (tasks) and the processors are connected

by an arbitrary graph. The goal of load balancing is to

reallocate the tokens by transferring them along the edges so

that eventually every processor has almost the same number

of tokens.

Load balancing is a well-studied problem in distributed

systems and has manifold applications in scheduling [30],

hashing [20], routing [9], numerical computation such as

solving partial differential equations [29, 31, 32] and sim-

ulating dynamics [7]. This trend has been reinforced by

the flattening of processor speeds leading to an increasing

usage of multi-core processors [4, 18] and the emergence of

large decentralized networks like P2P networks [1, 16, 30].

Especially for large-scale networks, it is desirable to use

local and iterative load balancing protocols, where every

processor only needs to know its current and the neighboring

processors’ loads and based on this decides how many

tokens should be sent (or received).

A widely used approach is the so-called diffusion (i.e., the

first-order-diffusion scheme [9, 24]), where the amount of

load sent along each edge in each round is proportional to the

load difference between the incident nodes. The alternative is

the matching model where in each round there is a matching

and only those edges can be used for averaging the load.

We measure the smoothness of the load distribution by the

so-called discrepancy which is the difference between the

maximum and minimum load among all nodes. In view of

more complex scenarios where jobs are eventually removed

or new jobs are generated, the discrepancy seems to be a

more appropriate measure than the makespan, which only

considers the maximum load.

Many studies on load balancing assume that the load

is arbitrarily divisible. In this so-called continuous case,

the diffusion scheme corresponds to a Markov chain on

the graph and one can resort to a battery of established

techniques to analyze the convergence speed [6, 14, 24]. In

particular, the spectral gap captures the time to reach a small

discrepancy quite accurately [27, 28]. This relation continues

to hold for the matching model, even if the matchings are

generated randomly, which might be necessary for graphs

with no canonical matching [8, 23].

However, in many applications a processor’s load may

consist of tasks which are not further divisible, which is

why the continuous case is also referred to as “idealized

case” [27]. A common way to model indivisible tasks is the

unit-size token model where one assumes a smallest load

entity, the unit-size token, and load is always represented

by a multiple of this smallest entity. In the following, we

will refer to the unit-size token model as the discrete case. In

view of the close relation between continuous load balancing

and Markov chains, many authors [14, 19, 23, 24, 27, 29]

asked for a characterization of the convergence speed of

discrete load balancing, or alternatively, a quantification of

the deviation between the discrete and the continuous case.

Unfortunately, the discrete case is much harder to analyze

due to its nonlinearity caused by the roundings to whole

tokens in each round.

2012 IEEE 53rd Annual Symposium on Foundations of Computer Science

0272-5428/12 $26.00 © 2012 IEEE

DOI 10.1109/FOCS.2012.86

341

Muthukrishnan et al. [24] proved the first rigorous result

for the discrete case in the diffusion model. They assume

that the load amount sent along each edge is obtained by

rounding down the load amount that would be sent in the

continuous case. Using this approach, they showed that the

discrepancy is at most O
(

dn
1−λ

)
after O

(log(Kn)
1−λ

)
rounds,

where d is the degree of the graph, K is the discrepancy

of the initial load vector, and 1 − λ is the spectral gap of

the diffusion matrix. Similar results for the matching model

were shown by Muthukrishnan and Ghosh [23].

Further progress was made by Rabani et al. [27] who

introduced the so-called local divergence, which is a natural

parameter that essentially aggregates the sum of load dif-

ferences over all edges in all rounds. For both the diffusion

and matching model, they proved that the local divergence

yields an upper bound on the maximum deviation between

the continuous and discrete case for the aforementioned

rounding down approach. They also computed the local

divergence for torus graphs and proved a general upper

bound which implies a discrepancy bound of O
(
d logn
1−λ

)
after

O
(log(Kn)

1−λ

)
rounds for any d-regular graph.

While always rounding down may lead to a quick stabi-

lization, the discrepancy could be quite large, i.e., as large

as the diameter of the graph (in case of diffusion, it could be

even the diameter times the degree). Therefore, Rabani et al.

[27] also suggested to use randomized rounding in order to

get closer to the continuous case. Herlihy and Tirthapura [15]

analyzed such a protocol for the hypercube in the matching

model and proved a discrepancy bound of O(
√
log n) af-

ter log2 n rounds. This result was later improved in [21]

who showed a discrepancy bound of log2 log2 n + Θ(1)
after log2 n rounds and a constant discrepancy bound after

2 log2 n rounds. Friedrich and Sauerwald [12] presented the

first general analysis of this randomized protocol in the

matching model. By analyzing the �2-version of the local

divergence, the so-called local 2-divergence, they proved

that on many networks, the randomized protocol yields

a square root improvement in the achieved discrepancy

compared to the deterministic protocol from [27].

Recently, Berenbrink et al. [5] extended some of the re-

sults from [12] to the diffusion model. One general challenge

in the diffusion model is that nodes may receive too many

(or too few) tokens in a single round, since all neighbors

have to make their decisions locally and independent of

each other. This might explain why most discrepancy bounds

for diffusion depend on the degree of the network and are

therefore weaker than the bounds for the matching model.

Closely related to our work are balancing networks [3],

which are siblings of sorting networks with comparators

replaced by balancers. Klugerman and Plaxton [17] gave the

first construction of a balancing network of depth O(log n)
which achieves a discrepancy of one. Their network relies

on the famous AKS sorting network [2]. Rabani et al. [27]

derived results for other networks, but these involve a much

larger depth. All of these results [3, 17, 27] require each

balancer to be initialized in a special way, while our ran-

domized protocols do not require any specific initialization.

There are also studies in which the nodes are equipped

with additional abilities compared to our model. For in-

stance, Even-Dar and Mansour [11] analyzed a load bal-

ancing model where every node knows the average load.

Elsässer and Sauerwald [10] analyzed an algorithm which

uses random-walk based routing of positive and negative

tokens to minimize the makespan.

Our Results: We analyze several natural randomized

protocols for indivisible tokens. All protocols have in com-

mon that randomized rounding is used to “imitate” the

behavior of the continuous case in each round. Our main

result for the matching model is as follows:

Theorem 1.1 (Main Theorem). Let G be any regular graph
with n nodes, and K be the discrepancy of the initial load
vector. There exists a constant c > 0 independent of G and
K, so that with probability 1−e−(logn)Ω(1)

, the discrepancy
is at most c after O

(log(Kn)
1−λ(P)

)
rounds in the random matching

model. This also holds after O
(log(Kn)
1−λ(M)

)
rounds in the

balancing circuit model if d is constant. 1

The two bounds on the runtime in Theorem 1.1 match

the ones from the continuous case up to a constant factor,

see (2.1). The previous best result for this protocol holds

only for expander graphs and the number of rounds is a

factor (log log n)3 larger than ours [12]. For expander graphs

and K = poly(n), our algorithm needs only Θ(log n) =
Θ(diam(G)) rounds, which would be even necessary for

any centralized algorithm. For general graphs, all previous

bounds on the discrepancy include the spectral gap 1 − λ.

Therefore, especially for graphs with small expansion like

Torus graphs, our main result represents a vast improvement

(see Table I).

Our result for non-regular graphs in the matching model

(see Theorem 3.7) is almost tight, since the discrepancy

is O(log log n) and the runtime is only an O(log log n)
factor larger than in the continuous case. Together with

Theorem 1.1, these results show that for arbitrary networks,

there is almost no difference between the discrete and

continuous case.

Finally, we also study two natural diffusion-based proto-

cols in the discrete case [5, 13]. Our discrepancy bounds

there depend only polynomially on the maximum degree Δ
and logarithmically on n, while again all previous results

include the spectral gap or are restricted to special graph

classes [5, 13, 24, 27]. Due to space limitations, we refer to

the concrete results.

1For precise definitions of both models, λ(P), λ(M) and d, we refer to
Section 2.

342

Graph Family Rounds Discrepancy Model Reference

Constant-Degree
Expander Graphs

O(log(Kn))

O(logn) det. (BC) [27]

O(log logn) rand. (BC & RM) [12]

Θ(1) rand. (BC & RM) Theorem 1.1

r-dim.
Torus Graphs

O
(
log(Kn)n2/r

)
O(n1/r) det. (BC) [27]

O(n1/(2r)
√
logn) rand. (BC) [12]

O(n1/(2r) logn) rand. (RM) [12]

Θ(1) rand. (BC & RM) Theorem 1.1

Regular Graphs O
(

log(Kn)
1−λ

)
O

(
d logn
1−λ

)
det. (BC) [27]

O
(√

d logn
1−λ

)
rand. (BC) [12]

Θ(1) rand. (BC, d = Θ(1)) Theorem 1.1

O

(√
(logn)3

1−λ

)
rand. (RM) [12]

Θ(1) rand. (RM) Theorem 1.1

Arbitrary Graphs
O

(
d·log(Kn)

1−λ

) O
(

d·logn
1−λ

)
det. (BC) [27]

O
(√

d·logn
1−λ

)
rand. (BC) [12]

O(τcont(K,n−2)) O((logn)ε), ε > 0 any constant rand. (BC & RM) Theorem 3.7

O(τcont(K,n−2) · (log logn)) O(log logn) rand. (BC & RM) Theorem 3.7

Table I: Comparison of the results for the matching model with the previously best results. The initial discrepancy is denoted by K, and 1− λ denotes the spectral gap. Here,
det. and rand. refer to the deterministic and randomized orientation, respectively. BC (RM) stands for the balancing circuit (random matching) model, respectively. Note that
τcont(K,n−2) is the time for the continuous process to reach a discrepancy of n−2 starting from an initial discrepancy of at most K with probability 1− n−1.

Our Techniques: Our main results are based on the

combination of two novel techniques which may have further

applications to other problems. First, instead of analyzing the

rounding errors for each edge directly [5, 12, 23, 24, 27],

we adopt a token-based viewpoint and relate the movement

of tokens to independent random walks. This establishes a

nice analogy between the distribution of tokens and the well-

studied balls-and-bins model (see Corollary 3.4). Secondly,

we employ potential functions to reduce the task of balanc-

ing an arbitrary load vector to the task of balancing a sparse
load vector, i.e., a load vector that contains much fewer

tokens than n. Especially for these sparse load vectors, the

token-based viewpoint yields much stronger concentration

inequalities than the ones from previous work.

All of our discrepancy bounds make use of the so-called

local 2-divergence, which has been one of the most impor-

tant tools to quantify the deviation between the continuous

and the discrete case [5, 12, 27]. We prove that for any graph

and any sequence of matchings, the local 2-divergence is

between 1 and
√
2, while all previous bounds on the local

divergence include graph parameters such as the spectral gap

or the (maximum) degree.

Notations: We assume that G = (V,E) is an undi-

rected, connected graph with n nodes, indexed from 1 to

n. For any node u, let d(u) be the degree of node u. The

maximum degree of G is Δ := maxu d(u). We use [u : v]

to express an edge {u, v} ∈ E with u < v. For any vector

x = (x1, . . . , xn), the p-norm of x is defined by ‖x‖p :=
(
∑n

i=1 |xi|p)1/p. In particular, ‖x‖∞ := max1�i�n |xi|. The

discrepancy of vector x is defined by disc(x) = maxi,j |xi−
xj |. For any n by n real and symmetric matrix M, let

λ1(M) � . . . � λn(M) be the n eigenvalues of matrix M.

Further, let λ(M) := max{λ2(M), |λn(M)|}. By log(·) we

denote the natural logarithm.

2. THE MATCHING MODEL

In the matching model (sometimes also called dimen-
sion exchange model), every two matched nodes in round

t balance their load as evenly as possible. This can be

expressed by a symmetric n by n matching matrix M(t),

where with slight abuse of notation we use the same symbol

for the matching and the corresponding matching matrix.

Matrix M(t) is defined by M
(t)
u,u := 1/2, M

(t)
v,v := 1/2

and M
(t)
u,v = M

(t)
v,u := 1/2 if {u, v} ∈ M(t) ⊆ E, and

M
(t)
u,u = 1, M

(t)
u,v = 0 (u �= v) if u is not matched. We will

often consider the product of consecutive matching matrices

and denote this by M[t1,t2] :=
∏t2

s=t1
M(s) for two rounds

t1 � t2. If t1 � t2 + 1, then M[t1,t2] is defined as the n by

n identity matrix.

Balancing Circuit & Random Matching Model: In the

balancing circuit model, a certain sequence of matchings is

applied periodically. More precisely, let M(1), . . . ,M(d) be

343

a sequence of d matching matrices 2. Then in round t � 1,

we apply the matching matrix M(t) := M(((t−1)mod d)+1).

Following [27], we define the round matrix by M :=∏d
s=1 M

(s). We always assume that λ(M) < 1 which is

equivalent to the matrix M being ergodic. A natural choice

for the d matching matrices is given by an edge coloring

of G. There are various efficient distributed edge coloring

algorithms, e.g. [25, 26].

The alternative is the random matching model, in which a

random matching is generated in each round. There are sev-

eral simple and distributed randomized protocols to generate

such matchings in constant time, e.g. [8, 23]. These protocols

have two natural properties in common which are sufficient

for our analysis. First, we have pmin = Ω(1/Δ), where

pmin := mint∈Nmin{u,v}∈E Pr
[
{u, v} ∈M(t)

]
. Second-

ly, matchings generated in different rounds are mutually

independent.

The Continuous Case: In the continuous case, load

is arbitrarily divisible. Let ξ(0) ∈ R
n be the initial load

vector and in every round two matched nodes balance

their load perfectly. It is easy to see that this process

corresponds to a linear system and the load vector ξ(t),
t ∈ N, can be expressed as ξ(t) = ξ(t−1) M(t), which

results in ξ(t) = ξ(0) M[1,t]. Besides the initial load vector,

the convergence in the continuous case depends only on the

randomly chosen matchings in the random matching model,

while it is “deterministic” in the balancing circuit model.

Definition 2.1. Let G be any graph. Fix any pair (K, ε)
with K � ε > 0. For any pair of integers t1 < t2, we call a
time-interval [t1, t2] associated with a sequence of matchings
〈M(t1+1), . . . ,M(t2)〉 (K, ε)–smoothing if for any ξ(t1) ∈
R

n, disc
(
ξ(t1)

)
� K implies disc

(
ξ(t2)

)
� ε.

• For the balancing circuit model, define τcont(K, ε) :=
min {t ∈ N : [0, t] is (K, ε)–smoothing}. That is,
τcont(K, ε) is the minimum number of rounds in the
continuous case to reach discrepancy ε for any initial
vector ξ(0) with discrepancy at most K.

• For the random matching model, define τcont(K, ε) :=
min{t ∈ N : Pr [[0, t] is (K, ε)–smoothing] � 1 −
n−1}. That is, τcont(K, ε) is the minimum number of
rounds in the continuous case so that with probability
at least 1− n−1, we reach a discrepancy of ε for any
initial vector ξ(0) with discrepancy at most K.

For the balancing circuit model with matching matrices

M(1), . . . ,M(d), Rabani et al. [27] presented a natural

bound on τcont(K, ε) based on the spectral gap of the round

matrix M. More precisely, it holds for any ε > 0 that

τcont(K, ε) � d · 8

1− λ(M)
· log

(
Kn2

ε

)
.

2In this context, the number of matchings is usually denoted by d [12,
27]. Note that d may be different from the maximum degree of the graph.

For the random matching model, the convergence depends

on pmin and the spectral gap of the diffusion matrix P,

defined as Pu,v := 1
2Δ if {u, v} ∈ E, Pu,v := 1 − d(u)

2Δ
if v = u, and Pu,v := 0 otherwise. It follows from [23,

Theorem 1] that for any d-regular graph and any ε > 0,

τcont(K, ε) � 8

d · pmin
· 1

1− λ(P)
· log

(
Kn

ε/2

)
. (2.1)

Hence for pmin = Θ(1/d), we obtain essentially the same

convergence as for the first-order-diffusion scheme (cf. [27,

Theorem 1]), although the communication is restricted to

a single matching in each round (see [8, Theorem 5] for a

result for non-regular graphs). As in previous works [24, 27],

we adopt the view that the continuous case (τcont(K, ε)) is

well-understood, and we focus on the discrete case.

The Discrete Case: Let us now turn to the discrete

case with indivisible, unit-size tokens. Let x(0) ∈ Z
n be the

initial load vector with average load x :=
∑

w∈V x
(0)
w /n,

and x(t) be the load vector at the end of round t. For the case

where the sum of tokens of two matched is odd, we employ

the so-called random orientation [12, 27] in the spirit of

randomized rounding. More precisely, for any two matched

nodes u and v in round t, node u gets either
⌈x(t−1)

u +x(t−1)
v

2

⌉
or
⌊x(t−1)

u +x(t−1)
v

2

⌋
tokens, with probability 1/2 each. The

remaining tokens are assigned to node v. We can also think

of this as first assigning
⌊x(t−1)

u +x(t−1)
v

2

⌋
tokens to both u and

v and then assigning the excess token (if there is one) to u
or v with probability 1/2 each. We use a uniform random

variable Φ
(t)
u,v ∈ {−1, 1} to specify the orientation of edge

{u, v} in M(t) indicating where the excess token (if any) is

assigned to. If Φ
(t)
u,v = 1, then the excess token is assigned

to u, otherwise the excess token is assigned to v. Note that

Φ
(t)
u,v = −Φ(t)

v,u. Moreover, we point out that the deterministic
orientation of [27] corresponds to Φ

(t)
u,v = 1 if x

(t−1)
u �

x
(t−1)
v and Φ

(t)
u,v = −1 otherwise.

For every edge {u, v} ∈ M(t) and round t, let the

corresponding error term be

e(t)u,v :=
1

2
Odd(x(t−1)

u + x(t−1)
v) · Φ(t)

u,v,

where Odd(x) := xmod2. Moreover, for any round t we

define the error vector e(t) as e
(t)
u :=

∑
v : {u,v}∈M(t) e

(t)
u,v .

With this notation, the load vector in round t is x(t) =
x(t−1)M(t) + e(t). Solving this recursion we get

x(t) = x(0)M[1,t] +

t∑
s=1

e(s)M[s+1,t]

= ξ(t) +
t∑

s=1

e(s)M[s+1,t],

where ξ(t) is the corresponding load vector in the continuous

case initialized with ξ(0) = x(0). Hence, for any w ∈ V the

344

deviation between the discrete and continuous case is

x(t)
w − ξ(t)w

=

t∑
s=1

∑
u∈V

∑
v : {u,v}∈M(s)

e(s)u,vM
[s+1,t]
u,w

=
t∑

s=1

∑
[u:v]∈M(s)

e(s)u,v

(
M[s+1,t]

u,w −M[s+1,t]
v,w

)
, (2.2)

where the last equality used e
(s)
u,v = −e(s)v,u.

Occasionally it will be convenient to assume that the load

vector satisfies x ∈ [0, 1) by subtracting the same number

of tokens at each node. Although this may lead to negative

entries in the load vector, the above formulas still hold.

Observation 2.2. Fix a sequence of matchings M =

〈M(1),M(2), . . .〉 and orientations Φ(t)
u,v for every [u : v] ∈

M(t), t ∈ N. Consider two executions of the discrete load
balancing protocol with the same matchings and orienta-
tions, but with different initial load vectors, x(0) and x̃(0).

1) If x̃(0) = x(0) + α · 1 for some α ∈ Z, then x̃(t) =
x(t) + α · 1 for all t ∈ N.

2) If x̃(0)
u � x

(0)
u for all u ∈ V , then x̃

(t)
u � x

(t)
u for all

u ∈ V and t ∈ N.

The next lemma shows that upper bounding the maxi-

mum load is essentially equivalent to lower bounding the

minimum load.

Lemma 2.3. Fix a sequence of matchings M =
〈M(1),M(2), . . .〉. For any triple of non-negative integers
K, α with 1 � α � K, and t, we have

max
y∈Zn :

disc(y)�K

{
Pr
[
x(t)
max � 	x
+ α

∣∣∣x(0) = y
]}

� max
y∈Zn :

disc(y)�K

{
Pr
[
x
(t)
min � 	x
 − α+ 3

∣∣∣x(0) = y
]}

,

and similarly,

max
y∈Zn :

disc(y)�K

{
Pr
[
x
(t)
min � 	x
 − α

∣∣∣x(0) = y
]}

� max
y∈Zn :

disc(y)�K

{
Pr
[
x(t)
max � 	x
+ α− 3

∣∣∣x(0) = y
]}

.

Local Divergence & Discrepancy: In order to

bound the discrepancy in the discrete case, we study

maxw∈V |x(t)
w −ξ

(t)
w |, i.e., the deviation between the discrete

and continuous case. This leads to the following definition.

Definition 2.4 (Local p-Divergence for Matchings). For any
graph G, p ∈ N and an arbitrary sequence of matchings

M = 〈M(1),M(2), . . .〉, the local p-divergence is

Ψp(M)

:= max
w∈V

(
sup
t∈N

t∑
s=1

∑
[u:v]∈M(s)

∣∣∣M[s+1,t]
w,u −M[s+1,t]

w,v

∣∣∣p)1/p

.

Comparing Definition 2.4 with (2.2), one can see that

Ψ1(M) is a natural quantity that measures the sum of load
differences across all edges in the network, aggregated over
time [27] and Ψp(M) is the “pth-norm version” of Ψ1(M).
We now upper bound the local 2-divergence.

Theorem 2.5. For any graph G and sequence of matchings
M = 〈M(1),M(2), . . .〉, Ψ2(M) �

√
2− 2/n. Further,

if there is a matching M(t) in M with M(t) �= ∅, then
Ψ2(M) � 1, otherwise Ψ2(M) = 0.

Proof: We prove the upper bound only. Fix any pair of

node w ∈ V and round t. For any 1 � s � t, define the

potential function as Γ(s) :=
∑

u∈V
(
M

[s+1,t]
w,u − 1

n

)2
. Hence

Γ(t) = 1− 1
n . Consider now any round 1 � s � t, and let u, v

be nodes with [u : v] ∈M(s). Let yu :=M
[s+1,t]
w,u and yv :=

M
[s+1,t]
w,v . Then M

[s,t]
w,u =

∑
k∈V M

[s,s]
w,k ·M

[s+1,t]
k,u = yu+yv

2 ,

and similarly, M
[s,t]
w,v = yu+yv

2 . Therefore, the contribution

of u and v to Γ(s) − Γ(s−1) is(
yu −

1

n

)2

+

(
yv −

1

n

)2

− 2 ·
(
yu + yv

2
− 1

n

)2

= y2u + y2v −
y2u + 2yuyv + y2v

2
=
1

2
· (yu − yv)

2
.

If a node is not matched in round s, then its contribution to

Γ(s)−Γ(s−1) equals zero. Accumulating the contribution of

all nodes yields

Γ(s) − Γ(s−1) =
∑

[u:v]∈M(s)

1

2
·
(
M[s+1,t]

w,u −M[s+1,t]
w,v

)2
.

Summing over t rounds gives

t∑
s=1

∑
[u:v]∈M(s)

1

2
·
(
M[s+1,t]

w,u −M[s+1,t]
w,v

)2
=

t∑
s=1

(
Γ(s) − Γ(s−1)

)
= Γ(t) − Γ(0) � 1− 1

n
.

While all previous upper bounds on Ψ2(M) are functions

of the expansion, the degree or the number of nodes [5,

12, 27], Theorem 2.5 establishes that Ψ2(M) is essentially

independent of any graph parameter.

We now present the following Chernoff-type inequalities

which can be obtained by applying Azuma’s inequality for

martingales to (2.2). While similar bounds have been derived

in previous works, our result on Ψ2(M) leads to a much

better concentration.

345

Lemma 2.6. Fix an arbitrary load vector x(0). Consider
two rounds t1 � t2, and assume that the time-interval [0, t1]
is (K, 1/(2n))–smoothing. Then for any node k ∈ V and
δ > 1/n, it holds that

Pr

[∣∣∣∣∣∑
w∈V

x(t1)
w ·M[t1+1,t2]

w,k − x

∣∣∣∣∣ � δ

]

� 2 · exp

⎛⎜⎝− (δ − 1/(2n))2

4
∑

w∈V

(
M

[t1+1,t2]
w,k − 1/n

)2
⎞⎟⎠ .

In particular, for any node w ∈ V and δ > 1/n, we have

Pr
[∣∣∣x(t1)

w − x
∣∣∣ � δ

]
� 2 · exp

(
−
(
δ − 1

2n

)2/
4

)
.

Applying Lemma 2.6 and taking a union bound over all

nodes yield the following result.

Theorem 2.7. Let G be any graph. In the balancing circuit
model, the discrepancy is at most 12

√
log n + 1 after

τcont(K, 1) = O
(
d· log(Kn)

1−λ(M)

)
rounds with probability at least

1 − 2n−2. In the random matching model, the discrepancy
is at most 12

√
log n + 1 after τcont(K, 1) rounds with

probability at least 1− 2n−1.

Although the discrepancy bounds in Theorem 2.7 will

be significantly improved by a refined analysis later, they

already supersede previous bounds for general graphs, which

all include the expansion of the graph [5, 12, 23, 24, 27].

3. TOKEN-BASED ANALYSIS VIA RANDOM WALKS

In this section, we first relate the movement of the tokens

through the network to independent random walks. Then, we

use this relation to derive upper bounds on the discrepancy.

All results in this section hold for the balancing circuit and

the random matching model, and will be used in proving

our main result in Section 4.

Analyzing the Load via Random Walks: We now

present our new approach that allows us to upper bound

the load of a node by assuming that the tokens perform

independent random walks in every round. Throughout this

part, we assume that the load vector is non-negative.

Let T := {1, . . . , ‖x(0)‖1} be the set of all tokens,

which are assumed to be distinguishable for the sake of

the analysis. The tokens may change their location via

matching edges according to the following rule: If two nodes

u and v are matched in round t, then the x
(t−1)
u + x

(t−1)
v

tokens located at node u or v at the end of round t − 1
are placed in a single urn. After that, if Φ

(t)
u,v = 1, then

u draws
⌈x(t−1)

u +x(t−1)
v

2

⌉
tokens from the urn uniformly at

random without replacement and v receives the remaining

tokens. Otherwise, Φ
(t)
u,v = −1, and u draws

⌊x(t−1)
u +x(t−1)

v

2

⌋
tokens from the urn and v receives the remaining tokens. We

observe that this token-based process performs exactly in the

same way as the original protocol introduced in Section 2.

We now prove that every token viewed individually per-

forms a random walk with respect to the matching matrices.

Henceforth we use w
(t)
i to represent the location (the node)

of token i ∈ T at the end of round t. We also use the

notation that for any n by n matrix M, any node u ∈ V
and subset D ⊆ V , Mu,D :=

∑
v∈D Mu,v .

Lemma 3.1. Fix any non-negative load vector at the end
of round t1 and consider a token i ∈ T located at node
u = w

(t1)
i at the end of round t1. Then for any t2 � t1,

Pr
[
w

(t2)
i = v

]
=M[t1+1,t2]

u,v ,

and more generally, for any set D ⊆ V ,

Pr
[
w

(t2)
i ∈ D

]
=M

[t1+1,t2]
u,D .

The next lemma is the crux of our token-based analysis.

It shows that the probability that a certain set of tokens

will be located on a set of nodes D at the end of round t2
is at most the product of the individual probabilities. This

negative correlation will enable us to derive a strong version

of the Chernoff bound (Lemma 3.3).

Lemma 3.2. Fix a non-negative load vector at the end of
round t1 and let B ⊆ T be an arbitrary subset of tokens.
Then for any subset of nodes D ⊆ V and round t2 > t1, it
holds that

Pr

[∧
i∈B

(
w

(t2)
i ∈ D

)]
�
∏
i∈B

Pr
[
w

(t2)
i ∈ D

]
=
∏
i∈B

M
[t1+1,t+2]

w
(t1)
i ,D

.

While previous analyses [5, 12, 15, 27] are based on

bounding certain sums of rounding errors (cf. Lemma 2.6),

we can use Lemma 3.2 to analyze the load of a subset

D via a sum of indicator random variables of all tokens,

reminiscent of the balls-and-bins model (Corollary 3.4).

Concretely, we obtain the following strong version of the

Chernoff bound:

Lemma 3.3. Fix any non-negative load vector at the end of
round t1. Let D ⊆ V be any subset and t2 > t1. Then for
Z :=

∑
i∈T 1

w
(t2)
i ∈D =

∑
u∈D x

(t2)
u , it holds for any δ > 0

that

Pr [Z � (1 + δ)E [Z]] �
(

eδ

(1 + δ)1+δ

)E[Z]

.

For an illustration of the power of Lemma 3.3, we can

think of the allocation of the ‖x(0)‖1 tokens in terms of the

classic balls-and-bins model [22]. If we run our randomized

protocol for sufficiently many rounds, say τcont(K,n−1)
rounds, then every token (corresponding to a ball) is located

at any node (corresponding to a bin) with almost the same

346

probability. While in the standard balls-and-bins model,

the allocations of different balls are mutually independent,

Lemma 3.2 established that in our model these allocations

are negatively correlated. Therefore, as in the classic balls-

and-bins model, we obtain a constant maximum load if the

number of tokens is at most n1−ε, highlighting the intuition

that it is “easy” to balance sparse load vectors.

Corollary 3.4. Let x(0) be any non-negative load vector
with ‖x(0)‖1 � n1−ε, where ε > 0 is any constant. Then
the discrepancy after τcont(1, n

−1) rounds is at most 9/ε
with probability at least 1− 2 · n−1.

The next technical lemma provides a tail bound which is

not only exponential in the deviation from the mean but also

exponential in the “sparsity” of the load vector. Moreover,

the tail bound holds for an arbitrary convex combination of

the load vector.

Lemma 3.5. Fix any non-negative load vector x(t1) with
‖x(t1)‖1 � n · e−(logn)σ for some constant σ ∈ (0, 1).
Moreover, consider a round t2 > t1 so that [t1, t2] is
(n, n−3)–smoothing. Let Z :=

∑
v∈V yvx

(t2)
v , where y is

any non-negative vector with ‖y‖1 = 1. Then for any δ > 0,

Pr
[
Z � e−

1
5 (logn)σ + 8‖y‖∞ · (log n)δ

]
� e−(logn)δ+σ/6.

Bounding the Discrepancy in Arbitrary Graphs:
Throughout this part, we assume without loss of generality

that x(0) ∈ Z
n is any initial load vector with x ∈ [0, 1). For

any ε > 0 not necessarily constant, define the following set

of vectors E� (� � 1) by

E� :=
{
x ∈ Z

n :
∑
u∈V

max {xu − 8� · �(log n)ε − �, 0}

� 4n · e− 1
4 ·(logn)�ε

}
.

Roughly speaking, E� consists of all load vectors where the

number of tokens above the threshold 8� · �(log n)ε+ � is

not too large. In particular, if x ∈ E�, � � �2/ε, then the

maximum load of x is at most 8�·�(log n)ε+�. Lemma 3.6

shows that if we start with a load vector in E�−1, then the

load vector after τcont(1, n
−2) rounds will be in E� with high

probability.

Lemma 3.6. For any integer � � 2, t ∈ N, ε �
16/(log log n) and any vector x ∈ E�−1, we have

Pr
[
x(t+κ) ∈ E� | x(t) = x

]
� 1− e−

1
4 (logn)�ε − n−1,

where κ := τcont(1, n
−2). Furthermore, Pr

[
x(κ) ∈ E1

]
�

1− e−
1
4 (logn)ε − 3n−1, where κ := τcont(K, 1/(2n)).

Let us briefly describe the key steps in proving Lem-

ma 3.6. The proof that the load vector is in E1 with high

probability applies the second statement of Lemma 2.6,

which in turn is based on our upper bound on the local 2-

divergence. The proof that the load vector is in E� with high

probability uses our new concentration inequality (Lem-

ma 3.3).

Iterating Lemma 3.6 reveals an interesting tradeoff, which

is formalized in the theorem below.

Theorem 3.7. Let G be any graph and consider the random
matching or balancing circuit model.
• Let ε > 0 be an arbitrarily small constant. Then

after O(τcont(K,n−2)) rounds, the discrepancy is
O((log n)ε) with probability 1− e−(logn)Ω(1)

.
• After O(τcont(K,n−2) · log logn) rounds, the discrep-

ancy is O(log log n) with probability 1− 1
logn .

For regular graphs, Theorem 3.7 is superseded by our

main theorem. However, the first statement of Theorem 3.7

is required for the proof of the main theorem.

4. PROOF OUTLINE OF THE MAIN THEOREM

In this section we sketch the proof of Theorem 1.1. For

the ease of the analysis we “subtract” the same number of

tokens from every node such that the resulting load vector

x satisfies x ∈ [0, 1). As illustrated in Figure 1, our proof

consists of three main steps.

1) Reducing the Discrepancy to (log n)εd . We first

use Theorem 3.7 which says that in round t1 :=
O
(
τcont(K,n−2)

)
= O

(log(Kn)
1−λ

)
the discrepancy is

at most (log n)εd , where εd > 0 is an arbitrarily small

constant.

2) Sparsification of the Load Vector. Since our goal is

to achieve a constant discrepancy, we fix a constant

C > 0 and only consider nodes with more than C
tokens. We prove in Theorem 4.1 that the number of

tokens above the threshold C on these nodes is at most

n·e−(logn)1−ε

in round t2 := t1+O
(
logn
1−λ

)
. The proof

of this step is based on a polynomial potential function

and exploits that the load vector in round t1 has small

discrepancy, i.e., (log n)εd .

3) Reducing the Discrepancy to a Constant. Now we

only need to analyze the n · e−(logn)1−ε

tokens above

the threshold C. Hence it suffices to analyze a non-

negative, sparse load vector with at most n·e−(logn)1−ε

tokens (Observation 2.2). We prove in Theorem 4.4

that in round t3 := t2 + O
(
logn
1−λ

)
, there is no token

above the threshold C + 1, using the token-based

analysis via random walks (Section 3). This upper

bounds the maximum load; a corresponding lower

bound on the minimum load follows by symmetry.

These two bounds together imply that the discrepancy

in round t3 is at most 2C + 5.

All results in this section will hold for the balancing

circuit model (with constant d) and the random matching

model as described in Section 2. In the analysis, one round

in the random matching model corresponds to d consecutive

347

K

(log n)εd

C + 1

0

x
(t)
max

t
t1 t2 t3

O
(

log(Kn)
1−λ

)
O
(

logn
1−λ

)
O
(

logn
1−λ

)

Theorem 3.7

x
(0)
max � K
⇓

x
(t1)
max � (log n)εd

Theorem 4.1

x
(t1)
max � (log n)εd

⇓∑
u∈V

max{x(t2)
u − C, 0}

� ne−(logn)1−ε

Theorem 4.4∑
u∈V

max{x(t2)
u − C, 0}

� ne−(logn)1−ε

⇓
x
(t3)
max � C + 1

Figure 1: The above diagram illustrates how Theorem 3.7, Theorem 4.1 and Theorem 4.4 are combined to obtain Theorem 1.1. We assume without loss of generality that
x ∈ [0, 1) and consider only the drop of the maximum load.

rounds in the balancing circuit model, which ensures smooth

convergence as we periodically apply the same sequence of

d matchings. In fact, many of the complications in the proof

come from the random matching model, as some nodes may

not be part of any matching for a long period of rounds.

Sparsification of the Load Vector: By Theorem 3.7,

the maximum load in round t1 is at most (log n)εd . We now

show that after additional O
(
logn
1−λ

)
rounds, there are only a

small number of tokens above the threshold C.

Theorem 4.1. Let ε > 0 be any constant, and t2 := t1 +
O
(
logn
1−λ

)
. There are constants εd(ε) > 0 and C = C(ε) >

0 such that for any load vector x(t1) with discrepancy at
most (log n)εd and x(t1) ∈ [0, 1), it holds with probability
1− e−(logn)Ω(1)

that∑
u∈V

max
{
x(t2)
u − C, 0

}
� n · e−(logn)1−ε

.

Let us outline the proof of Theorem 4.1. To bound the

number of tokens above the threshold C, we consider the

potential function Γ(x) :=
∑

u∈V : xu�11

(
xu

)8
for any

x ∈ Z
n. We prove in Lemma 4.2 (first statement) that

after τ := O
(
logn
1−λ

)
rounds, the potential Γ

(
x(t1+τ)

)
is

smaller than n. By the definition of Γ, the number of

tokens above the threshold 10 on all nodes is smaller than

n. Now define a new load vector x̃(t1+τ) by x̃
(t1+τ)
u :=

max{x(t1+τ)
u − 10, 0}. Since xu and x̃u differ by at most

10 for any node u, it suffices to consider this “sparse”

load vector x̃. Spending another τ rounds, we can apply

the tail bound in Lemma 3.5 which is also exponential in

the “sparsity” of the load vector. Therefore we obtain a

much smaller upper bound on Γ
(
x̃
(t1+2·τ)
u

)
in comparison

to Γ
(
x̃
(t1+τ)
u

)
(second statement of Lemma 4.2). Finally,

we obtain Theorem 4.1 by iterating the above argument a

constant number of times.

Lemma 4.2 (Sparsification Lemma). Fix a constant σ ∈
(0, 1) and let τ := O

(
logn
1−λ

)
. Then for sufficiently small

constant εd = εd(σ) ∈ (0, 1), the following two statements
hold.
• For any load vector x(t) at the end of round t with

discrepancy at most (log n)εd , it holds with probability
1− e−(logn)Ω(1)

that Γ
(
x(t+τ)

)
� n · e−(logn)1/24 .

• If the load vector x(t) is non-negative, has discrepancy
at most (log n)εd and satisfies ‖x(t)‖1 � n · e−(logn)σ ,
then it holds with probability 1− e−(logn)Ω(1)

that

Γ
(
x(t+τ)

)
� n · exp

(
−(log n)1−11εd− 38

39 (1−11εd−σ)
)
.

Let us now present a proof sketch of Lemma 4.2. We

consider two groups of nodes, one consisting of the nodes

with at least 11 tokens and the other containing the nodes

with at most 9 tokens. We are interested in the number

of times two nodes of different groups are connected by

a matching edge, as this implies a reduction of Γ.

To cope with the problem that the set of nodes with least

11 tokens (or equivalently, with at most 9 tokens) change

over time, we use the concept of canonical paths to keep

track of these nodes.

Definition 4.3 ([12]). The sequence Pv = (P(t1)
v =

v,P(t1+1)
v , . . .) is called the canonical path of v from round

t1 if for all rounds t with t > t1 the following holds. If
vt := P(t)

v is unmatched in M(t+1), then vt+1 = vt and
P(t+1)
v := vt+1. Otherwise, let u ∈ V be the node such that

348

{vt, u} ∈M(t+1).

• If x(t)
vt � x

(t)
u and Φ

(t+1)
vt,u = 1, then vt+1 = vt.

• If x(t)
vt � x

(t)
u and Φ

(t+1)
vt,u = −1, then vt+1 = u.

• If x(t)
vt < x

(t)
u and Φ

(t+1)
vt,u = 1, then vt+1 = u.

• If x(t)
vt < x

(t)
u and Φ

(t+1)
vt,u = −1, then vt+1 = vt.

Note that canonical paths are defined so that if two of

them are connected by a matching edge, then they evolve

in a way so that the change of the load (in absolute value)

along each of the two paths is minimized. That is, depending

on the orientation and the load of the two matched nodes,

the canonical paths either switch or stay at their respective

nodes. Combining expansion properties of small sets with

the fact that two canonical paths perform independent ran-

dom walks (as long as they have not been connected by a

matching edge), we are able to relate the number of times

that two nodes from different groups are connected by a

matching edge to the number of collisions between random

walks. This establishes a drop on the potential Γ and yields

Lemma 4.2.
Reducing the Discrepancy to a Constant: After apply-

ing Theorem 4.1, we are left with the task of analyzing

the n · e−(logn)1−ε

tokens in x(t2) above the threshold C.

For bounding the maximum load by a constant, it suffices

to analyze the non-negative load vector x̃(t2) defined by

x̃
(t2)
u := max{x(t2)

u −C, 0} for any u ∈ V . This load vector

has at most n · e−(logn)1−ε

tokens. Although this bound

on the number of tokens is not small enough to complete

the proof by a direct argument like in Corollary 3.4, it is

sufficient for Theorem 4.4.

Theorem 4.4. Let ε > 0 be a sufficiently small constant,
and let x̃(t2) be a non-negative load vector with ‖x̃(t2)‖1 �
n · e−(logn)1−ε

. Then with probability at least 1 − 5n−1, it
holds that ‖x̃(t3)‖∞ � 1, where t3 := t2 +O

(
logn
1−λ

)
.

To show Theorem 4.4, we employ an exponential potential

function that runs over all nodes having at least two tokens.

Exploiting the sparsity of x̃(t2), we show that after O
(
logn
1−λ

)
rounds, the value of the potential is at most n2. In order to

show that the potential drops, we make a case distinction

depending on the degree of G.

Sparse Graphs (d � e(logn)1/2): Using the fact that

the degree is not too large, it follows that for any node

u in the graph, the total number of tokens located at all

nodes with distance at most 2β from u is small, for some

properly chosen value of β = o(logn
1−λ). This allows us to

derive an upper bound on the collision probability of any

two of these tokens using the techniques from Section 3. We

establish that after β rounds, the potential is reduced by a

factor of eΩ(β·(1−λ)), i.e., the amortized drop of the potential

function is exponential after O
(

1
1−λ

)
rounds. Iterating this,

we conclude that after O
(
logn
1−λ

)
rounds the potential is zero,

which implies that the maximum load in x̃(t3) is at most one.

Dense Graphs (d � e(logn)1/2): Now the neighbor-

hoods around the nodes are too large to derive a good upper

bound on the total number of tokens in the neighborhood

anymore. However, since d is large, after O(logn
1−λ) additional

rounds, it holds for every node u that most of u’s neighbors

have load zero. Hence, a single round suffices to decrease

the exponential potential by a constant factor. Consequently,

O(log n) additional rounds ensure that the value of the

exponential potential is zero, which implies that there is no

node with more than one token.
Proof of Theorem 1.1: Let ε > 0 be the small constant

required for Theorem 4.4, which in turns gives us a constant

εd = εd(ε) > 0 required for Theorem 4.1. By Theorem 3.7,

the discrepancy is at most (log n)εd with probability at least

1 − e−(logn)Ω(1)

in round t1 := O
(log(Kn)

1−λ

)
. Then Theo-

rem 4.1 implies that with probability at least 1−e−(logn)Ω(1)

,

the load vector x(t2) in round t2 := t1 + O
(
logn
1−λ

)
satisfies∑

w∈V max
{
x
(t2)
w − C, 0

}
� n · e−(logn)1−ε

. Now define

for any round s � t2 a new vector x̃(s) by x̃
(s)
u :=

max
{
x
(s)
u −C, 0

}
for any u ∈ V . Since by Observation 2.2,

x
(s)
u � x̃

(s)
u + C for every s � t2, it suffices to bound

the maximum load of the non-negative vector x̃(s) for an

upper bound on the maximum load of x(s). Since ‖x̃(t2)‖1 �
n · e−(logn)1−ε

, we apply Theorem 4.4 to conclude that

‖x̃(t3)‖∞ � 1 holds with probability at least 1−5n−1, where

t3 := t2 + O
(
logn
1−λ

)
. Hence by the union bound and the

relation between x̃(t3) and x(t3), the maximum load of x(t3)

is at most C+1 with probability at least 1−e−(logn)Ω(1)

. The

corresponding lower bound on the minimum load follows by

Lemma 2.3.

REFERENCES

[1] M. Adler, E. Halperin, R. M. Karp, and V. V. Vazirani.

A stochastic process on the hypercube with application-

s to peer-to-peer networks. In Proceedings of the 35th
Symposium on Theory of Computing (STOC), pages

575–584, 2003.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in

c log n parallel steps. Combinatorica, 3:1–19, 1983.

[3] J. Aspnes, M. Herlihy, and N. Shavit. Counting

networks and multi-processor coordination. Journal of
the ACM, 41:1020–1048, 1994.

[4] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacre-

nier. Starpu: a unified platform for task scheduling on

heterogeneous multicore architectures. Concurrency
and Computation: Practice and Experience, 23(2):

187–198, 2011.

[5] P. Berenbrink, C. Cooper, T. Friedetzky, T. Friedrich,

and T. Sauerwald. Randomized diffusion for indivisible

loads. In Proceedings of the 22nd Symposium on
Discrete Algorithms (SODA), pages 429–439, 2011.

[6] J. Boillat. Load balancing and poisson equation in a

349

graph. Concurrency - Practice and Experience, 2:289–

313, 1990.

[7] J. Boillat, F. Bruge, and P. Kropf. A dynamic load

balancing algorithm for molecular dynamics simulation

on multiprocessor systems. Journal of Computational
Physics, 96(1):1–14, 1991.

[8] S. P. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.

Randomized gossip algorithms. IEEE Transactions on
Information Theory, 14(6):2508–2530, 2006.

[9] G. Cybenko. Load balancing for distributed memory

multiprocessors. Journal of Parallel and Distributed
Computing, 7:279–301, 1989.

[10] R. Elsässer and T. Sauerwald. Discrete load balancing

is (almost) as easy as continuous load balancing. In

Proceedings of the 29th Symposium on Principles of
Distributed Computing (PODC), pages 346–354, 2010.

[11] E. Even-Dar and Y. Mansour. Fast convergence of self-

ish rerouting. In Proceedings of the 16th Symposium
on Discrete Algorithms (SODA), pages 772–781, 2005.

[12] T. Friedrich and T. Sauerwald. Near-perfect load

balancing by randomized rounding. In Proceedings of
the 41st Symposium on Theory of Computing (STOC),
pages 121–130, 2009.

[13] T. Friedrich, M. Gairing, and T. Sauerwald. Quasir-

andom load balancing. In Proceedings of the 21st
Symposium on Discrete Algorithms (SODA), pages

1620–1629, 2010.

[14] B. Ghosh, F. T. Leighton, B. M. Maggs, S. Muthukr-

ishnan, C. G. Plaxton, R. Rajaraman, A. W. Richa,

R. E. Tarjan, and D. Zuckerman. Tight analyses of

two local load balancing algorithms. SIAM Journal on
Computing, 29(1):29–64, 1999.

[15] M. Herlihy and S. Tirthapura. Randomized smoothing

networks. Journal of Parallel and Distributed Comput-
ing, 66:626–632, 2006.

[16] D. R. Karger and M. Ruhl. Simple efficient load

balancing algorithms for peer-to-peer systems. In

Proceedings of the 16th Symposium on Parallelism
in Algorithms and Architectures (SPAA), pages 36–43,

2004.

[17] M. Klugerman and C. G. Plaxton. Small-depth count-

ing networks. In Proceedings of the 24th Symposium on
Theory of Computing (STOC), pages 417–428, 1992.

[18] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating

tasks in multi-core processor based parallel system. In

IFIP International Conference on Network and Parallel
Computing Workshops, pages 748–753, 2007.

[19] L. Lovász and P. Winkler. Mixing of random walks and

other diffusions on a graph. Surveys in Combinatorics,

pages 119–154, 1995.

[20] G. S. Manku. Balanced binary trees for ID manage-

ment and load balance in distributed hash tables. In

Proceedings of the 23rd Symposium on Principles of
Distributed Computing (PODC), pages 197–205, 2004.

[21] M. Mavronicolas and T. Sauerwald. The impact of

randomization in smoothing networks. Distributed
Computing, 22(5-6):381–411, 2010.

[22] M. Mitzenmacher. The Power of Two Choices in
Randomized Load Balancing. PhD thesis, University

of California, Berkeley, 1996.

[23] S. Muthukrishnan and B. Ghosh. Dynamic load bal-

ancing by random matchings. Journal of Computer and
System Sciences, 53:357–370, 1996.

[24] S. Muthukrishnan, B. Ghosh, and M. H. Schultz. First-

and second-order diffusive methods for rapid, coarse,

distributed load balancing. Theory of Computing Sys-
tems, 31(4):331–354, 1998.

[25] A. Panconesi and A. Srinivasan. Improved distributed

algorithms for coloring and network decomposition

problems. In Proceedings of the 24th Symposium on
Theory of Computing (STOC), pages 581–592, 1992.

[26] A. Panconesi and A. Srinivasan. Randomized distribut-

ed edge coloring via an extension of the Chernoff-

Hoeffding bounds. SIAM Journal on Computing, 26

(2):350–368, 1997.

[27] Y. Rabani, A. Sinclair, and R. Wanka. Local divergence

of Markov chains and the analysis of iterative load bal-

ancing schemes. In Proceedings of the 39th Symposium
on Foundations of Computer Science (FOCS), pages

694–705, 1998.

[28] A. Sinclair and M. Jerrum. Approximate counting, un-

inform generation and rapidly mixing markov chains.

Information and Computation, 82(1):93–133, 1989.

[29] R. Subramanian and I. D. Scherson. An analysis of

diffusive load-balancing. In Proceedings of the 6th
Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA), pages 220–225, 1994.

[30] S. Surana, B. Godfrey, K. Lakshminarayanan, R. Karp,

and I. Stoica. Load balancing in dynamic structured

peer-to-peer systems. Performance Evaluation, 63(3):

217–240, 2006.

[31] R. D. Williams. Performance of dynamic load bal-

ancing algorithms for unstructured mesh calculations.

Concurrency: Practice and Experience, 3(5):457–481,

1991.

[32] D. Zhanga, C. Jianga, and S. Li. A fast adaptive load

balancing method for parallel particle-based simula-

tions. Simulation Modelling Practice and Theory, 17

(6):1032–1042, 2009.

350

