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Abstract

We present the first almost-linear time algorithm for constructing linear-sized spectral sparsification for graphs.
This improves all previous constructions of linear-sized spectral sparsification, which requires Ω(n2) time [1],
[2], [3].

A key ingredient in our algorithm is a novel combination of two techniques used in literature for constructing
spectral sparsification: Random sampling by effective resistance [4], and adaptive constructions based on barrier
functions [1], [3].
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I. INTRODUCTION

Graph sparsification is the procedure of approximating a graph G by a sparse graph G′ such that certain
quantities between G and G′ are preserved. For instance, spanners are defined between two graphs in which the
distances between any pair of vertices in these two graphs are approximately the same [5]; cut sparsifiers are
reweighted sparse graphs of the original graphs such that the weights of every cut between the sparsifiers and
the original graphs are approximatedly the same [6]. Since both storing and processing large-scale graphs are
expensive, graph sparsification is one of the most fundamental building blocks in designing fast graph algorithms,
including solving Laplacian systems [7], [8], [9], [10], [11], [12], designing approximation algorithms for the
maximum flow problem [6], [13], [14], and solving streaming problems [15], [16]. Beyond graph problems,
techniques developed for spectral sparsification are widely used in randomized linear algebra [17], [18], [19],
sparsifying linear programs [20], and various pure mathematics problems [21], [22], [23], [24].

In this work, we study spectral sparsification introduced by Spielman and Teng [25]: A spectral sparsifier
is a reweighted sparse subgraph of the original graph such that, for all real vectors, the Laplacian quadratic
forms between that subgraph and the original graph are approximately the same. Formally, for any undirected
and weighted graph G = (V,E,w) with n vertices and m edges, we call a subgraph G′ of G, with proper
reweighting of the edges, is a (1 + ε)−spectral sparsifier if it holds for any x ∈ Rn that

(1− ε)xᵀLGx ≤ xᵀLG′x ≤ (1 + ε)xᵀLGx,

where LG and LG′ are the respective graph Laplacian matrices of G and G′.
Spielman and Teng [25] presented the first algorithm for constructing spectral sparsification. For any undirected

graph G of n vertices, their algorithm runs in O(n logc n/ε2) time, for some big constant c, and produces a
spectral sparsifier with O(n logc

′
n/ε2) edges for some c′ ≥ 2. Since then, there has been a wealth of work

on spectral sparsification. For instance, Spielman and Srivastava [4] presented a nearly-linear time algorithm
for constructing a spectral sparsifier of O(n log n/ε2) edges. Batson, Spielman and Srivastava [1] presented an
algorithm for constructing spectral sparsifiers with O(n/ε2) edges, which is optimal up to a constant. However,



all previous constructions either require Ω
(
n2+ε

)
time in order to produce linear-sized sparsifiers [1], [2], [3],

or O(n logO(1) n/ε2) time but the number of edges in the sparsifiers is sub-optimal.
In this paper we present the first almost-linear time algorithm for constructing linear-sized spectral sparsification

for graphs. Our result is summarized as follows:

Theorem I.1. Given any integer q ≥ 10 and 0 < ε ≤ 1/120. Let G = (V,E,w) be an undirected and weighted
graph with n vertices and m edges. Then, there is an algorithm that outputs a (1 + ε)-spectral sparsifier of G
with O

( qn
ε2

)
edges. The algorithm runs in Õ

(
q·m·n5/q

ε4+4/q

)
time.

Graph sparsification is known as a special case of sparsifying sums of rank-1 positive semi-definite (PSD)
matrices [1], [4], and our algorithm works in this general setting as well. Our result is summarized as follows:

Theorem I.2. Given any integer q ≥ 10 and 0 < ε ≤ 1/120. Let I =
∑m

i=1 viv
ᵀ
i be the sum of m rank-1 PSD

matrices. Then, there is an algorithm that outputs scalers {si}mi=1 with |{si : si 6= 0}| = O
( qn
ε2

)
such that

(1− ε) · I �
m∑
i=1

siviv
ᵀ
i � (1 + ε) · I.

The algorithm runs in Õ
(
q·m·nω−1+3/q

ε2

)
time, where ω is the matrix-multiplication constant.

A key ingredient in our algorithm is a novel combination of two techniques used in literature for constructing
spectral sparsification: Random sampling by effective resistance of edges [4], and adaptive construction based on
barrier functions [1], [3]. We will present an overview of the algorithm, and the intuitions behind it in Section II.

Preliminaries: Let G = (V,E,w) be a connected, undirected and weighted graph with n vertices and m
edges, and weight function w : V × V → R≥0. The Laplacian matrix of G is an n by n matrix L defined by

LG(u, v) =


−w(u, v) if u ∼ v,

deg(u) if u = v,

0 otherwise,

where deg(u) =
∑

v∼uw(u, v). It is easy to see that

xᵀLGx =
∑
u∼v

wu,v(xu − xv)2 ≥ 0,

for any x ∈ Rn.
For any matrix A, let λmax(A) and λmin(A) be the maximum and minimum eigenvalues of A. The condition

number of matrix A is defined by λmax(A)/λmin(A). For any two matrices A and B, we write A � B to represent
B−A is positive semi-definite (PSD), and A ≺ B to represent B−A is positive definite. For any two matrices
A and B of equal dimensions, let A •B , tr (AᵀB). For any function f , we write Õ(f) , O(f · logO(1) f). For
matrices A and B, we write A ≈ε B if (1− ε) ·A � B � (1 + ε)A.

II. ALGORITHM

We study the algorithm of sparsifying the sum of rank-1 PSD matrices in this section. Our goal is to, for any
vectors v1, · · · vm with

∑m
i=1 viv

ᵀ
i = I , find scalars {si}mi=1 satisfying

|{si : si 6= 0}| = O
(qn
ε2

)
,

such that

(1− ε) · I �
m∑
i=1

siviv
ᵀ
i � (1 + ε) · I.

We will use this algorithm to construct graph sparsifiers in Section III.



A. Overview of Our Approach

Our construction is based on a probabilistic view of the algorithm presented in Batson et al. [1]. We refer their
algorithm BSS for short, and give a brief overview of the BSS algorithm at first.

At a high level, the BSS algorithm proceeds by iterations, and adds a rank-1 matrix c ·vivᵀi with some scaling
factor c to the currently constructed matrix Aj in iteration j. To control the spectral properties of matrix Aj , the
algorithm maintains two barrier values uj and `j , and initially u0 > 0, `0 < 0. It was proven that one can always
find a vector in {vi}mi=1 and update uj , `j in a proper manner in each iteration, such that the invariant

`jI ≺ Aj ≺ ujI (1)

always holds, [1]. To guarantee this, Batson et al. [1] introduces a potential function

Φu,`(A) , tr(uI −A)−1 + tr(A− `I)−1 (2)

to measure “how far the eigenvalues of A are from the barriers u and `”, since a small value of Φu,`(A) implies
that no eigenvalue of A is close to u or `. With the help of the potential function, it was proven that, after
k = Θ

(
n/ε2

)
iterations, it holds that `k ≥ cuk for some constant c, implying that the resulting matrix Ak is a

linear-sized and Ak ≈O(ε) I .
The original BSS algorithm is deterministic, and in each iteration the algorithm finds a rank-1 matrix which

maximizes certain quantities. To informally explain our algorithm, let us look at the following randomized variant
of the BSS algorithm: In each iteration, we choose a vector vi with probability pi, and add a rank-1 matrix

∆A ,
ε

t
· 1

pi
· vivᵀi

to the current matrix A. See Algorithm 1 for formal description.

Algorithm 1 Randomized BSS algorithm
1: j = 0;
2: `0 = −8n/ε, u0 = 8n/ε;
3: A0 = 0;
4: while uj − `j < 8n/ε do
5: Let t = tr (ujI −Aj)−1 + tr (Aj − `jI)−1;
6: Sample a vector vi with probability pi ,

(
vᵀi (ujI −Aj)−1 vi + vᵀi (Aj − `jI)−1 vi

)
/t;

7: Aj+1 = Aj + ε
t ·

1
pi
· vivᵀi ;

8: uj+1 = uj + ε
t·(1−ε) and `j+1 = `j + ε

t·(1+ε) ;
9: j ← j + 1;

10: Return Aj ;

Let us look at any fixed iteration j, and analyze how the added ∆A impacts the potential function. We drop the
subscript representing the iteration j for simplicity. After adding ∆A, the first-order approximation of Φu,`(A)
gives that

Φu,`(A+ ∆A) ∼ Φu,`(A) + (uI −A)−2 •∆A − (A− `I)−2 •∆A. (3)

Since

E [∆A] =
∑m

i=1 pi ·
(
ε
t ·

1
pi
· vivᵀi

)
= ε

t ·
∑m

i=1 viv
ᵀ
i = ε

t · I,



we have that

E [Φu,`(A+ ∆A)] ∼ Φu,`(A) +
ε

t
· (uI −A)−2 • I − ε

t
· (A− `I)−2 • I

= Φu,`(A) +
ε

t
· tr (uI −A)−2 − ε

t
· tr (A− `I)−2

= Φu,`(A)− ε

t
· d

du
Φu,`(A)− ε

t
· d

d`
Φu,`(A).

Notice that if we increase u by ε
t and ` by ε

t , Φu,` approximately increases by

ε

t
· d

du
Φu,`(A) +

ε

t
· d

d`
Φu,`(A).

Hence, comparing Φu+ε/t,`+ε/t(A+∆A) with Φu,`(A), the increase of the potential function due to the change of
barrier values is approximately compensated by the drop of the potential function by the effect of ∆A. For a more
rigorous analysis, we need to look at the higher-order terms and increase u slightly more than ` to compensate
that. Batson et al. [1] gives the following estimate:

Lemma II.1 ([1], proof of Lemma 3.3 and 3.4). Let A ∈ Rn×n, and u, ` be parameters satisfying `I ≺ A ≺ uI .
Suppose that w ∈ Rn satisfies wwᵀ � δ(uI −A) and wwᵀ � δ(A− `I) for some 0 < δ < 1. Then, it holds that

Φu,`(A+ wwᵀ) ≤ Φu,`(A) +
wᵀ(uI −A)−2w

1− δ
− wᵀ(A− `I)−2w

1 + δ
.

The estimate above shows that the first-order approximation (3) is good if wwᵀ � δ(uI − A) and wwᵀ �
δ(A − `I) for small δ. It is easy to check that, by setting δ = ε, the added matrix ∆A satisfies these two
conditions, since

ε

t
· 1

pi
· vivᵀi =

ε · vivᵀi
vᵀi (uI −A)−1 vi + vᵀi (A− `I)−1 vi

�
ε · vivᵀi

vᵀi (uI −A)−1 vi
� ε (uI −A) ,

where we used the fact that vvᵀ � (vᵀB−1v)B for any vector v and PSD matrix B. Similarly, we have that

ε

t
· 1

pi
· vivᵀi � ε(A− `I).

Hence, if Φu,`(A) is small initially, our crude calculations above gives a good approximation and Φu,`(A) is
small throughout the executions of the whole algorithm. Up to a constant factor, this gives the same result as
[1], and therefore Algorithm 1 constructs an Θ(n/ε2)-sized (1 +O(ε))-spectral sparsifier.

Our algorithm follows the same framework as Algorithm 1. However, to construct a spectral sparsifier in almost-
linear time, we expect that the sampling probability {pi}mi=1 of vectors (i) can be approximately computed fast,
and (ii) can be further “reused” for a few iterations.

For fast approximation of the sampling probabilities, we adopt the idea proposed in [3]: Instead of defining
the potential function by (2), we define the potential function by

Φu,`(A) , tr(uI −A)−q + tr(A− `I)−q.

Since q is a large constant, the value of the potential function becomes larger when some eigenvalue of A is
close to u or `. Hence, a bounded value of Φu,`(A) insures that the eigenvalues of A never get too close to u or
`, which further allows us to compute the sampling probabilities {pi}mi=1 efficiently simply by Taylor expansion.
Moreover, by defining the potential function based on tr(·)−q, one can prove a similar result as Lemma II.1. This
gives an alternative analysis of the algorithm presented in [3], which is the first almost-quadratic time algorithm
for constructing linear-sized spectral sparsifiers.

To “reuse” the sampling probabilities, we re-compute {pi}mi=1 after every Θ
(
n1−1/q

)
iterations: We show that



as long as the sampling probability satisfies

pi ≥ C ·
vᵀi (uI −A)−1 vi + vᵀi (A− `I)−1 vi∑m

i=1

(
vᵀi (uI −A)−1 vi + vᵀi (A− `I)−1 vi

)
for some constant C > 0, we can still sample vi with probability pi and get the same guarantee on the potential
function. The reason is as follows: Assume that ∆A =

∑T
i=1 ∆A,i is the sum of the sampled matrices within

T = O
(
n1−1/q

)
iterations. If a randomly chosen matrix ∆A,i satisfies ∆A,i � 1

Cq (uI −A), then by the matrix
Chernoff bound ∆A � 1

2 (uI −A) holds with high probability. By scaling every sampled rank-1 matrix q times
smaller, the sampling probability only changes by a constant factor within T iterations. Since we choose Θ(n/ε2)
vectors in total, our algorithm only recomputes the sampling probabilities Θ

(
n1/q/ε2

)
times. Hence, our algorithm

runs in almost-linear time if q is a large constant.

B. Algorithm Description

The algorithm follows the same framework as Algorithm 1, and proceeds by iterations. Initially, the algorithm
sets

u0 , (2n)1/q, `0 , −(2n)1/q, A0 , 0.

After iteration j the algorithm updates uj , `j by ∆u,j ,∆`,j respectively, i.e.,

uj+1 , uj + ∆u,j , `j+1 , `j + ∆`,j ,

and updates Aj with respect to the chosen matrix in iteration j. The choice of ∆u,j and ∆`,j insures that

`jI ≺ Aj ≺ ujI

holds for any j. In iteration j, the algorithm computes the relative effective resistance of vectors {vi}mi=1 defined
by

Ri (Aj , uj , `j) , vᵀi (ujI −Aj)−1 vi + vᵀi (Aj − `jI)−1 vi,

and samples Nj vectors independently with replacement, where vector vi is chosen with probability proportional
to Ri(Aj , uj , `j), and

Nj ,
1

n2/q

(
m∑
i=1

Ri(Aj , uj , `j)

)
min {λmin(ujI −Aj), λmin(Aj − `jI)} .

The algorithm sets Aj+1 to be the sum of Aj and sampled viv
ᵀ
i with proper reweighting. For technical reasons,

we define ∆u,j and ∆`,j by

∆u,j , (1 + 2ε) · ε ·Nj

q ·
∑m

i=1Ri(Aj , uj , `j)
, ∆`,j , (1− 2ε) · ε ·Nj

q ·
∑m

i=1Ri(Aj , uj , `j)
.

See Algorithm 2 for formal description.
We remark that, although exact values of Nj and relative effective resistances are difficult to compute in

almost-linear time, we can use approximated values of Ri and Nj instead. It is easy to see that in each iteration
an over estimate of Ri, and an under estimate of Nj with constant-factor approximation suffice for our purpose.

III. ANALYSIS

We analyze Algorithm 2 in this section. To make the calculation less messy, we assume the following:

Assumption III.1. We always assume that 0 < ε ≤ 1/120, and q is an integer satisfying q ≥ 10.



Algorithm 2 Algorithm for constructing spectral sparsifiers
Require: ε ≤ 1/120, q ≥ 10

1: j = 0;
2: `0 = −(2n)1/q, u0 = (2n)1/q, A0 = 0;
3: while uj − `j < 4 · (2n)1/q do
4: Wj = 0;
5: Compute Ri(Aj , uj , `j) for all vectors vi;
6: Sample Nj vectors independently with replacement, where every vi is chosen with probability proportional

to Ri(Aj , uj , `j). For every sampled v, add ε/q · (Ri(Aj , uj , `j))−1 · vvᵀ to Wj ;
7: Aj+1 = Aj +Wj ;
8: uj+1 = uj + ∆u,j , `j+1 = `j + ∆`,j ;
9: j = j + 1;

10: Return Aj ;

Our analysis is based on a potential function Φu,` with barrier values u, ` ∈ R. Formally, for a symmetric
matrix A ∈ Rn×n with eigenvalues λ1 ≤ · · · ≤ λn and parameters u, ` satisfying `I ≺ A ≺ uI , let

Φu,`(A) , tr(uI −A)−q + tr(A− `I)−q

=

n∑
i=1

(
1

u− λi

)q
+

n∑
i=1

(
1

λi − `

)q
. (4)

We will show how the potential function evolves after each iteration in Section III-A. Combing this with the
ending condition of the algorithm, we will prove in Section III-B that the algorithm outputs a linear-sized spectral
sparsifier. We will prove Theorem I.1 and Theorem I.2 in Section III-C.

A. Analysis of a Single Iteration

We analyze the sampling scheme within a single iteration, and drop the subscript representing the iteration j
for simplicity. Recall that in each iteration the algorithm samples N vectors independently from V = {vi}mi=1

satisfying
∑m

i=1 viv
ᵀ
i = I , where every vector vi is sampled with probability Ri(A,u,`)∑m

j=1Rj(A,u,`)
. We use v1, · · · , vN

to denote these N sampled vectors, and define the reweighted vectors by

wi ,
√

ε

q ·Ri(A, u, `)
· vi,

for any 1 ≤ i ≤ N . Let

W ,
N∑
i=1

wiw
ᵀ
i ,

and we use W ∼ D(A, u, `) to represent that W is sampled in this way with parameters A, u and `. We will
show that with high probability matrix W satisfies 0 � W � 1

2(uI − A). We first recall the following Matrix
Chernoff Bound.

Lemma III.2 (Matrix Chernoff Bound, [26]). Let {Xk} be a finite sequence of independent, random, and self-
adjoint matrices with dimension n. Assume that each random matrix satisfies Xk � 0, and λmax(Xk) ≤ D. Let
µ ≥ λmax (

∑
k E [Xk ]). Then, it holds for any δ ≥ 0 that

P

[
λmax

(∑
k

Xk

)
≥ (1 + δ)µ

]
≤ n ·

(
eδ

(1 + δ)1+δ

)µ/D
.



Lemma III.3. Assume that the number of samples satisfies

N <
2

n2/q

(
m∑
i=1

Ri(A, u, `)

)
· λmin(uI −A).

Then, it holds that
E [W ] =

ε

q
· N∑m

i=1Ri(A, u, `)
· I,

and

P
[
0 �W � 1

2
· (uI −A)

]
≥ 1− ε2

100qn
.

Proof: By the description of the sampling procedure, it holds that

E [wiw
ᵀ
i ] =

m∑
j=1

Rj(A, u, `)∑m
t=1Rt(A, u, `)

· ε
q
·

vjv
ᵀ
j

Rj(A, u, `)
=
ε

q
· 1∑m

t=1Rt(A, u, `)
· I,

and

E [W ] = E

[
N∑
i=1

wiw
ᵀ
i

]
=
ε

q
· N∑m

i=1Ri(A, u, `)
· I,

which proves the first statement.
Now for the second statement. Let

zi = (uI −A)−1/2wi.

It holds that

tr (ziz
ᵀ
i ) = tr

(
(uI −A)−1/2wiw

ᵀ
i (uI −A)−1/2

)
=
ε

q
·

tr
(
(uI −A)−1/2viv

ᵀ
i (uI −A)−1/2

)
Ri(A, u, `)

≤ ε

q
·

vᵀi (uI −A)−1vi
vᵀi (uI −A)−1vi + vᵀi (A− `I)−1vi

≤ ε

q
,

and λmax(ziz
ᵀ
i ) ≤ ε

q . Moreover, it holds that

E

[
N∑
i=1

ziz
ᵀ
i

]
=
ε

q
· N∑m

t=1Rt(A, u, `)
· (uI −A)−1

� ε

q
· N∑m

t=1Rt(A, u, `)
· λmax

(
1

uI −A

)
· I. (5)

This implies that

λmax

(
E

[
N∑
i=1

ziz
ᵀ
i

])
≤ ε

q
· N∑m

t=1Rt(A, u, `)
· λmax

(
1

uI −A

)
.

By setting

µ =
ε

q
· N∑m

i=1Ri(A, u, `)
· λmax

(
1

uI −A

)
,



it holds by the Matrix Chernoff Bound (cf. Lemma III.2) that

P

[
λmax

(
N∑
i=1

ziz
ᵀ
i

)
≥ (1 + δ)µ

]
≤ n ·

(
eδ

(1 + δ)1+δ

)µ·q/ε
.

Set the value of 1 + δ to be

1 + δ =
1

2µ
=

q

2εN
·

 m∑
j=1

Rj(A, u, `)

 · 1

λmax

(
1

uI−A

)
=

q

2εN
·

 m∑
j=1

Rj(A, u, `)

 · λmin(uI −A)

≥ q

4ε
· n2/q,

where the last inequality follows from the condition on N . Hence, with probability at least

1− n ·
(

eδ

(1 + δ)1+δ

)µ·q/ε
≥ 1− n ·

(
e

1 + δ

)(1+δ)·µ·q/ε
≥ 1− n

(
e

1 + δ

) q

2ε

≥ 1− ε2

100qn
,

we have that

λmax

(
N∑
i=1

ziz
ᵀ
i

)
≤ (1 + δ) · µ =

1

2
,

which implies that 0 �
∑N

i=1 ziz
ᵀ
i �

1
2 · I and 0 �W � 1

2 · (uI −A).
Now we analyze the change of the potential function after each iteration, and show that the expected value of

the potential function decreases over time. By Lemma III.3, with probability at least 1− ε2

100qn , it holds that

0 �W � 1

2
(uI −A).

We define

Ẽ [f(W )] ,
∑

W∼D(A,u,`)

P
[
W is chosen and W � 1

2
(uI −A)

]
· f (W ) .

Lemma III.4 below shows how the potential function changes after each iteration, and plays a key role in our
analysis. This lemma was first proved in [1] for the case of q = 1, and was extended in [3] to general values of
q. For completeness, we include the proof of the lemma in the appendix.

Lemma III.4 ([3]). Let q ≥ 10 and ε ≤ 1/10. Suppose that wᵀ(uI − A)−1w ≤ ε
q and wᵀ(A− `I)−1w ≤ ε

q . It
holds that

tr(A+ wwᵀ − `I)−q ≤ tr(A− `I)−q − q(1− ε) wᵀ(A− `I)−(q+1)w,

and
tr(uI −A− wwᵀ)−q ≤ tr(uI −A)−q + q(1 + ε) wᵀ(uI −A)−(q+1)w.

Lemma III.5. Let j be any iteration. It holds that

Ẽ
[

Φuj+1,`j+1
(Aj+1)

]
≤ Φuj ,`j (Aj).



Proof: Let w1w
ᵀ
1 , · · · , wNjw

ᵀ
Nj

be the matrices picked in iteration j, and define for any 0 ≤ i ≤ Nj that

Bi = Aj +

i∑
t=1

wtw
ᵀ
t .

We study the change of the potential function after adding a rank-1 matrix within each iteration. For this reason,
we use

∆u =
∆u,j

Nj
= (1 + 2ε) · ε

q ·
∑m

t=1Rt(Aj , uj , `j)
,

and
∆` =

∆`,j

Nj
= (1− 2ε) · ε

q ·
∑m

t=1Rt(Aj , uj , `j)

to express the average change of the barrier values ∆u,j and ∆`,j . We further define for 0 ≤ j ≤ Nj that

ûi = uj + i ·∆u, ˆ̀
i = `j + i ·∆`.

Assuming 0 �Wj � 1
2(ujI −Aj), we claim that

wiw
ᵀ
i �

2ε

q
· (ûiI −Bi−1) and wiw

ᵀ
i �

2ε

q
·
(
Bi−1 − ˆ̀

iI
)
, (6)

for any 1 ≤ i ≤ Nj . Based on this, we apply Lemma III.4 and get that

Ẽ
[

Φûi,ˆ̀i
(Bi−1 + wiw

ᵀ
i )
]
≤ Φûi,ˆ̀i

(Bi−1) + q(1 + 2ε)tr
(

(ûiI −Bi−1)−(q+1)E [wiw
ᵀ
i ]
)

− q(1− 2ε)tr

((
Bi−1 − ˆ̀

iI
)−(q+1)

E [wiw
ᵀ
i ]

)
= Φûi,ˆ̀i

(Bi−1) + q ·∆u · tr
(

(ûiI −Bi−1)−(q+1)
)

− q ·∆` · tr
(

(Bi−1 − ˆ̀
iI)−(q+1)

)
. (7)

We define a function fi by

fi(t) = tr
((
ûi−1 + t ·∆u

)
I −Bi−1

)−q
+ tr

(
Bi−1 −

(
ˆ̀
i−1 + t ·∆`

)
I
)−q

.

Notice that
dfi(t)

dt
= −q ·∆u · tr

((
ûi−1 + t ·∆u

)
I −Bi−1

)−(q+1)
+ q ·∆` · tr

(
Bi−1 −

(
ˆ̀
i−1 + t ·∆`

)
I
)−(q+1)

.

Since f is convex, we have that

dfi(t)

dt

∣∣∣
t=1
≥ fi(1)− fi(0) = Φûi,ˆ̀i

(Bi−1)− Φûi−1,ˆ̀i−1
(Bi−1). (8)

Putting (7) and (8) together, we have that

Ẽ
[

Φûi,ˆ̀i
(Bi)

]
≤ Φûi,ˆ̀i

(Bi−1)−
dfi(t)

dt

∣∣∣
t=1
≤ Φûi−1,ˆ̀i−1

(Bi−1).

Repeat this argument, we have that

Ẽ
[

Φuj+1,`j+1
(Aj+1)

]
= Ẽ

[
ΦûNj ,

ˆ̀
Nj

(
BNj

) ]
≤ Φû0,ˆ̀0

(B0) = Φuj ,`j (Aj),

which proves the statement.
So, it suffices to prove the claim (6). Since vvᵀ � (vᵀB−1v)B for any vector v and PSD matrix B, we have



that
viv

ᵀ
i

Ri(Aj , uj , `j)
�

viv
ᵀ
i

vᵀi (ujI −Aj)−1vi
� ujI −Aj .

By the assumption of Wj � 1
2(ujI −Aj), it holds that

wiw
ᵀ
i =

ε

qRi(Aj , uj , `j)
viv

ᵀ
i �

ε

q
(ujI −Aj) �

2ε

q
(ûiI −Bi−1) .

This proves the first statement of the claim.
For the second statement, notice that

`j+1 − `j = ∆`,j ≤
εNj

q
∑m

t=1Rt(Aj , uj , `j)
≤ 1

2
· λmin(Aj − `jI)

and hence
wiw

ᵀ
i �

ε

q
(Aj − `jI) � 2ε

q

(
Aj − ˆ̀

iI
)
� 2ε

q

(
Bi−1 − ˆ̀

iI
)
.

B. Analysis of the Approximation Guarantee

In this subsection we will prove that the algorithm produces a linear-sized (1 + O(ε))-spectral sparsifier. We
assume that the algorithm finishes after k iterations, and will prove that the output Ak is a (1 + O(ε))-spectral
sparsifier. It suffices to show that the condition number of Ak is small, which follows directly from our setting
of parameters.

Lemma III.6. The output matrix Ak has condition number at most 1 +O(ε).

Proof: Since the condition number of Ak is at most

uk
`k

=

(
1− uk − `k

uk

)−1
,

it suffices to prove that (uk − `k)/uk = O(ε).
Since the increase rate of ∆u,j −∆`,j with respect to ∆u,j for any iteration j is

∆u,j −∆`,j

∆u,j
=

(1 + 2ε)− (1− 2ε)

1 + 2ε
=

4ε

1 + 2ε
≤ 4ε,

we have that

uk − `k
uk

=
2 · (2n)1/q +

∑k−1
j=0 (∆u,j −∆`,j)

(2n)1/q +
∑k−1

j=0 ∆u,j

≤
2 · (2n)1/q +

∑k−1
j=0 (∆u,j −∆`,j)

(2n)1/q + (4ε)−1
∑k−1

j=0 (∆u,j −∆`,j)
.

By the ending condition of the algorithm, it holds that uk − `k ≥ 4 · (2n)1/q, i.e.

k−1∑
j=0

(∆u,j −∆`,j) ≥ 2 · (2n)1/q.

Hence, it holds that
uk − `k
uk

≤ 2 · (2n)1/q + 2 · (2n)1/q

(2n)1/q + (4ε)−1 2 · (2n)1/q
≤ 8ε,



which finishes the proof.
Now we prove that the algorithm finishes in O

(
qn3/q

ε2

)
iterations, and picks O

( qn
ε2

)
vectors in total.

Lemma III.7. The following statements hold:
• With probability at least 4/5, the algorithm finishes in 10qn3/q

ε2 iterations.
• With probability at least 4/5, the algorithm chooses at most 10qn

ε2 vectors.

Proof: Notice that after iteration j the barrier gap uj − `j is increased by

∆u,j −∆`,j =
4ε2

q

Nj∑m
i=1Ri(Aj , uj , `j)

=
4ε2

q

1

n2/q
·min {λmin(ujI −Aj), λmin(Aj − `jI)}

≥ 4ε2

q

1

n2/q
·
(
Φuj ,`j (Aj)

)−1/q
.

Since the algorithm finishes within k iterations if
k−1∑
j=0

(∆u,j −∆`,j) ≥ 2 · (2n)1/q,

it holds that

P [ algorithm finishes within k iterations ] ≥ P

 k−1∑
j=0

(∆u,j −∆`,j) ≥ 2 · (2n)1/q


≥ P

 k−1∑
j=0

4ε2

qn2/q
·
(
Φuj ,`j (Aj)

)−1/q ≥ 2 · (2n)1/q


= P

 k−1∑
j=0

(
Φuj ,`j (Aj)

)−1/q ≥ q

2ε2
·
(
2n3
)1/q 

≥ P

 k−1∑
j=0

(
Φuj ,`j (Aj)

)1/q ≤ 2 · k
2ε2

q
·
(

1

2n3

)1/q
 ,

where the last inequality follows from the fact thatk−1∑
j=0

(
Φuj ,`j (Aj)

)−1/q ·
k−1∑
j=0

(
Φuj ,`j (Aj)

)1/q ≥ k2.
By Lemma III.3, every picked matrix Wj in iteration j satisfies

0 �Wj �
1

2
· (ujI −A)

with probability at least 1 − ε2

100qn , and with probability 9/10 all matrices picked in k = 10qn
ε2 iterations satisfy

the condition above. Also, by Lemma III.5 we have that

Ẽ

 k−1∑
j=0

(Φuj ,`j (Aj))
1/q

 =

k−1∑
j=0

Ẽ
[

(Φuj ,`j (Aj))
1/q
]
≤

k−1∑
j=0

(
Ẽ
[

Φuj ,`j (Aj)
])1/q

≤ k, (9)



since the initial value of the potential function is at most 1. Therefore, it holds that

P [ algorithm finishes in more than k iterations ]

≤ P

 k−1∑
j=0

(
Φuj ,`j (Aj)

)1/q ≥ 2 · k
2ε2

q
·
(

1

2n3

)1/q


≤ P

 k−1∑
j=0

(
Φuj ,`j (Aj)

)1/q ≥ 2 · k
2ε2

q
·
(

1

2n3

)1/q

and ∀j : Wj �
1

2
(ujI −Aj)


+ P

[
∃j : Wj 6�

1

2
(ujI −Aj)

]
≤ q

2 · kε2
·
(
2n3
)1/q

+ 1/10 ≤ 1/5,

where the second last inequity follows from Markov’s inequality and (9), and the last inequality follows by our
choice of k. This proves the first statement.

Now for the second statement. Notice that for every vector chosen in iteration j, the barrier gap ∆u,j −∆`,j

is increased on average by
∆u,j −∆`,j

Nj
=

4ε2

q
∑m

i=1Ri(Aj , uj , `j)
.

To bound Ri(Aj , uj , `j), let the eigenvalues of matrix Aj be λ1, · · · , λn. Then, it holds that
m∑
i=1

Ri(Aj , uj , `j) =

m∑
i=1

vᵀi (ujI −Aj)−1vi +

m∑
i=1

vᵀi (Aj − `jI)−1vi

=

n∑
i=1

1

uj − λi
+

n∑
i=1

1

λi − `j

≤

(
n∑
i=1

(uj − λi)−q +

n∑
i=1

(λi − `j)−q
)1/q

(2n)1−1/q

=
(
Φuj ,`j (Aj)

)1/q · (2n)1−1/q.

Therefore, we have that

∆u,j −∆`,j

Nj
≥ 4ε2

q
· 1

(2n)1−1/q · (Φuj ,`j (Aj))
1/q

. (10)

Let v1, · · · , vz be the vectors sampled by the algorithm, and vj is picked in iteration τj , where 1 ≤ j ≤ z. We
first assume that the algorithm could check the ending condition after adding every single vector. In such case,
it holds that

P [ algorithm finishes after choosing z vectors ] ≥ P

 z∑
j=1

4ε2

q
· 1

(2n)1−1/q · (Φuτj ,`τj
(Aτj ))

1/q
≥ 2 · (2n)1/q


= P

 z∑
j=1

(Φuτj ,`τj
(Aτj ))

−1/q ≥ qn/ε2
 .

Following the same proof as the first part and noticing that in the final iteration the algorithm chooses at most
O(n) extra vectors, we obtain the second statement.



C. Proof of the Main Results

Now we analyze the runtime of the algorithm, and prove the main results. We first analyze the algorithm for
sparsifying sums of rank-1 PSD matrices, and prove Theorem I.2.

Proof of Theorem I.2: By Lemma III.7, with probability at least 4/5 the algorithm chooses at most 10qn
ε2

vectors, and by Lemma III.6 the condition number of Ak is at most 1 +O(ε), implying that the matrix Ak is a
(1 +O(ε))-approximation of I . These two results together prove that Ak is a linear-sized spectral sparsifier.

For the runtime, Lemma III.7 proves that the algorithm finishes in 10qn3/q

ε2 iterations, and it is easy to see that
all the required quantities in each iteration can be approximately computed in Õ(m ·nω−1) time using fast matrix
multiplication. Therefore, the total runtime of the algorithm is Õ

( q·m
ε2 · n

ω−1+3/q
)
.

Next we show how to apply our algorithm in the graph setting, and prove Theorem I.1. Let L =
∑m

i=1 uiu
ᵀ
i

be the Laplacian matrix of an undirected graph G, where uiu
ᵀ
i is the Laplacian matrix of the graph consisting

of a single edge ei. By setting
vi = L−1/2ui

for 1 ≤ i ≤ m, it is easy to see that constructing a spectral sparsifier of G is equivalent to sparsifing the matrix∑m
i=1 viv

ᵀ
i . We will present in the appendix almost-linear time algorithms to approximate the required quantities

λmin (ujI −Aj) , λmin (Aj − `jI) , vᵀi (ujI −Aj)−1 vi, and vᵀi (Aj − `jI)−1 vi

in each iteration, and this gives Theorem I.1.
Proof of Theorem I.1: By applying the same analysis as in the proof of Theorem I.2, we know that the

output matrix Ak is a linear-sized spectral sparsifier, and it suffices to analyze the runtime of the algorithm.
By Lemma III.3 and the Union Bound, with probability at least 9/10 all the matrices picked in k = 10qn3/q

ε2

iterations satisfy

Wj �
1

2
(ujI −Aj).

Conditioning on the event, with constant probability E
[

Φuj ,`j (Aj)
]
≤ 2 for all iterations j, and by Markov’s

inequality with high probability it holds that Φuj ,`j (Aj) = O
( qn
ε2

)
for all iterations j.

On the other hand, notice that it holds for any 1 ≤ j ≤ n that

(u− λj)−q ≤
n∑
i=1

(u− λi)−q < Φu,`(A),

which implies that λj < u− (Φu,`(A))−1/q. Similarly, it holds that λj > `+ (Φu,`(A))−1/q for any 1 ≤ j ≤ n.
Therefore, we have that (

`j +O

((
ε2

qn

)1/q
))

I ≺ Aj ≺

(
uj −O

((
ε2

qn

)1/q
))

I.

Since both of uj and `j are of the order O(n1/q), we set η = O
(
(ε/n)2/q

)
and obtain that

(`j + |`j |η)I ≺ Aj ≺ (1− η)ujI.

Hence, we apply Lemma A.5 and Lemma A.6 to compute all required quantities in each iteration up to constant
approximation in time

Õ

(
m

ε2 · η

)
= Õ

(
m · n2/q

ε2+2/q

)
.

Since by Lemma III.7 the algorithm finishes in 10qn3/q

ε2 iterations with probability at least 4/5, the total runtime



of the algorithm is

Õ

(
q ·m · n5/q

ε4+4/q

)
.
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APPENDIX

A. Estimates of the Potential Functions

In this subsection we prove Lemma III.4. We first list the following two lemmas, which will be used in our
proof.



Lemma A.1 (Sherman-Morrison Formula). Let A ∈ Rn×n be an invertible matrix, and u, v ∈ Rn. Suppose that
1 + vᵀA−1u 6= 0. Then it holds that

(A+ uvᵀ)−1 = A−1 − A−1uvᵀA−1

1 + vᵀA−1u
.

Lemma A.2 (Lieb Thirring Inequality, [27]). Let A and B be positive definite matrices, and q ≥ 1. Then it holds
that

tr(BAB)q ≤ tr(BqAqBq).

Proof of Lemma III.4: Let Y = A− `I . By the Sherman-Morrison Formula (Lemma A.1), it holds that

tr(Y + wwᵀ)−q = tr

(
Y −1 − Y −1wwᵀY −1

1 + wᵀY −1w

)q
. (11)

By the assumption of wᵀY −1w ≤ ε
q , we have that

tr(Y + wwᵀ)−q ≤ tr

(
Y −1 − Y −1wwᵀY −1

1 + ε/q

)q
(12)

= tr

(
Y −1/2

(
I − Y −1/2wwᵀY −1/2

1 + ε/q

)
Y −1/2

)q
≤ tr

(
Y −q/2

(
I − Y −1/2wwᵀY −1/2

1 + ε/q

)q
Y −q/2

)
(13)

= tr

(
Y −q

(
I − Y −1/2wwᵀY −1/2

1 + ε/q

)q)
, (14)

where (12) uses the fact that A � B implies that tr (Aq) ≤ tr (Bq), (13) follows from the Lieb-Thirring inequality
(Lemma A.2), and (14) uses the fact that the trace is invariant under cyclic permutations.

Let

D =
Y −1/2wwᵀY −1/2

1 + ε/q
.

Note that 0 � D � ε
q · I , and

(I −D)q � I − qD +
q(q − 1)

2
D2

� I −
(
q − ε(q − 1)

2

)
D

Therefore, we have that(
I − Y −1/2wwᵀY −1/2

1 + ε/q

)q
� I −

(
q − ε(q − 1)

2

)
Y −1/2wwᵀY −1/2

1 + ε/q

� I −
(
q − ε(q − 1)

2

)(
1− ε

q

)
Y −1/2wwᵀY −1/2

� I − q
(

1− ε(q + 1)

2q

)
Y −1/2wwᵀY −1/2

� I − q (1− ε)Y −1/2wwᵀY −1/2.



This implies that

tr(Y + wwᵀ)−q ≤ tr
(
Y −q

(
I − q(1− ε)Y −1/2wwᵀY −1/2

))
≤ tr

(
Y −q

)
− q(1− ε) wᵀY −(q+1)w,

which proves the first statement.
Now for the second inequality. Let Z = uI − A. By the Sherman-Morrison Formula (Lemma A.1), it holds

that

tr(Z − wwᵀ)−q = tr

(
Z−1 +

Z−1wwᵀZ−1

1− wᵀZ−1w

)q
. (15)

By the assumption of wᵀZ−1w ≤ ε
q , it holds that

tr(Z − wwᵀ)−q ≤ tr

(
Z−1 +

Z−1wwᵀZ−1

1− ε/q

)q
(16)

= tr

(
Z−1/2

(
I +

Z−1/2wwᵀZ−1/2

1− ε/q

)
Z−1/2

)q
≤ tr

(
Z−q/2

(
I +

Z−1/2wwᵀZ−1/2

1− ε/q

)q
Z−q/2

)
(17)

= tr

(
Z−q

(
I +

Z−1/2wwᵀZ−1/2

1− ε/q

)q)
, (18)

where (16) uses the fact that A � B implies that tr (Aq) ≤ tr (Bq), (17) follows from the Lieb-Thirring inequality
(Lemma A.2), and (18) uses the fact that the trace is invariant under cyclic permutations.

Let
E = Z−1/2wwᵀZ−1/2.

Combing E � ε
q · I with the assumption that q ≥ 10 and ε ≤ 1/10, we have that(

I +
E

1− ε/q

)q
� I +

qE

1− ε/q
+
q(q − 1)

2

(
1 +

ε/q

1− ε/q

)q−2( E

1− ε/q

)2

� I + q

(
1 + 1.1

ε

q

)
E + 1.4

q(q − 1)

2
E2

� I + q (1 + 0.3ε)E + 0.7εqE

� I + q (1 + ε)E.

Therefore, we have that
tr(Z − wwᵀ)−q ≤ tr

(
Z−q

)
+ q(1 + ε) wᵀZ−(q+1)w,

which proves the second statement.

B. Implementation of the Algorithm

In this section, we show that the algorithm for constructing graph sparsification runs in almost-linear time.
Based on previous discussion, we only need to prove that, for any iteration j, the number of samples Nj and
{Ri(Aj , uj , `j)}mi=1 can be approximately computed in almost-linear time. By definition, it suffices to compute
λmin (ujI −Aj), λmin (Aj − `jI), vᵀi (ujI −Aj)−1 vi, and vᵀi (Aj − `jI)−1 vi for all i. For simplicity we drop
the subscript j expressing the iterations in this subsection. We will assume that the following assumption holds
on A. We remark that an almost-linear time algorithm for computing similar quantities was shown in [3].

Assumption A.3. Let L and L̃ be the Laplacian matrices of graph G and its subgraph after reweighting. Let



A = L−1/2L̃L−1/2, and assume that

(`+ |`|η) · I ≺ A ≺ (1− η)u · I

holds for some 0 < η < 1.

Lemma A.4. Under Assumption A.3, the following statements hold:
• We can construct a matrix Su such that

Su ≈ε/10 (uI −A)−1/2,

and Su = p(A) for a polynomial p of degree O
(
log(1/εη)

η

)
.

• We can construct a matrix S` such that

S` ≈ε/10 (A− `I)−1/2.

Moreover, S` is of the form (A′)−1/2q((A′)−1),where q is a polynomial of degree O
(
log(1/εη)

η

)
and A′ =

L−1/2L′L−1/2 for some Laplacian matrix L′.

Proof: By Taylor expansion, it holds that

(1− x)−1/2 = 1 +

∞∑
k=1

k−1∏
j=0

(
j +

1

2

)
xk

k!
.

We define for any T ∈ N that

pT (x) = 1 +

T∑
k=1

k−1∏
j=0

(
j +

1

2

)
xk

k!
.

Then, it holds for any 0 < x < 1− η that

pT (x) ≤ (1− x)−1/2 = pT (x) +

∞∑
k=T+1

k−1∏
j=0

(
j +

1

2

)
xk

k!

≤ pT (x) +

∞∑
k=T+1

xk

≤ pT (x) +
(1− η)T+1

η
.

Hence, it holds that
(uI −A)−1/2 = u−1/2(I − u−1A)−1/2 � u−1/2pT (u−1A),

and

(uI −A)−1/2 � u−1/2
(
pT (u−1A) +

(1− η)T+1

η
· I
)
,

since u−1A � (1− η)I . Notice that u−1/2I � (uI −A)−1/2, and therefore

(uI −A)−1/2 � u−1/2pT (u−1A) +
(1− η)T+1

η
· (uI −A)−1/2.

Setting T = c log(1/(εη))
η for some constant c and defining Su = u−1/2pT (u−1A) gives us that

Su ≈ε/10 (uI −A)−1/2.



Now for the second statement. Our construction of S` is based on the case distinction (` > 0, and ` ≤ 0).
Case (1): ` > 0. Notice that

(A− `I)−1/2 = A−1/2(I − `A−1)−1/2,

and

pT (`A−1) �
(
I − `A−1

)−1/2 � pT (`A−1)+
(1− η/2)T+1

η/2
· I.

Using the same analysis as before, we have that

A−1/2(I − `A−1)−1/2 ≈ε/10 A−1/2pT (`A−1).

By defining S` = A−1/2pT (`A−1), i.e., A′ = A and q
(
(A′)−1

)
= pT (`A−1), we have that

S` ≈ε/10 (A− `I)−1/2.

Case (2): ` ≤ 0. We look at the matrix

A− `I = L−1/2L̃L−1/2 − `I = L−1/2(L̃− `L)L−1/2.

Notice that L̃− `L is a Laplacian matrix, and hence this reduces to the case of ` = 0, for which we simply set
S` = (A− `I)−1/2. Therefore, we can write S` as a desired form, where A′ = A− `I and polynomial q = 1.

Lemma A.5 below shows how to estimate vᵀi (uI − A)−1vi, and vᵀi (A − `I)−1vi, for all vi in nearly-linear
time.

Lemma A.5. Let A =
∑m

i=1 viv
ᵀ
i , and suppose that A satisfies Assumption A.3. Then, we can compute {ri}mi=1

and {ti}mi=1 in Õ
(
m
ε2η

)
time such that

(1− ε)ri ≤ vᵀi (uI −A)−1vi ≤ (1 + ε)ri,

and
(1− ε)ti ≤ vᵀi (A− `I)−1vi ≤ (1 + ε)ti.

Proof: Define ui = L1/2vi for any 1 ≤ i ≤ m. By Lemma A.4, we have that

vᵀi (uI −A)−1vi ≈3ε/10 ‖p(A)vi‖2

=
∥∥∥p(L−1/2L̃L−1/2)L−1/2ui∥∥∥2

=
∥∥∥L1/2p

(
L−1L̃

)
L−1ui

∥∥∥2 .
Let L = BᵀB for some B ∈ Rm×n. Then, it holds that

vᵀi (uI −A)−1vi ≈3ε/10

∥∥∥Bp(L−1L̃)L−1ui∥∥∥2 .
We invoke the Johnson-Lindenstrauss Lemma and find a random matrix Q ∈ RO(logn/ε2)×m: With high proba-
bility, it holds that

vᵀi (uI −A)−1vi ≈4ε/10

∥∥∥QBp(L−1L̃)L−1ui∥∥∥2 .
We apply a nearly-linear time Laplacian solver to compute

∥∥∥QBp(L−1L̃)L−1ui∥∥∥2 for all {ui}mi=1 up to (1±

ε/10)-multiplicative error in time Õ
(
m
ε2η

)
. This gives the desired {ri}mi=1.



The computation for {ti}mi=1 is similar. By Lemma A.4, it holds for any 1 ≤ i ≤ m that

vᵀi (A− `I)−1vi ≈3ε/10

∥∥∥(A′)−1/2q((A′)−1)vi

∥∥∥2
=
∥∥∥(A′)−1/2q

(
L1/2(L′)−1L1/2

)
L−1/2ui

∥∥∥2
=
∥∥∥(A′)−1/2L−1/2q(L(L′)−1)ui

∥∥∥2 .
Let L′ = (B′)ᵀ(B′) for some B′ ∈ Rm×n. Then, it holds that

vᵀi (A− `I)−1vi ≈3ε/10

∥∥∥(L′)−1/2q
(
L(L′)−1

)
ui

∥∥∥2
=
∥∥∥(L′)1/2(L′)−1q

(
L(L′)−1

)
ui

∥∥∥2
=
∥∥B′(L′)−1q (L(L′)−1

)
ui
∥∥2 .

We invoke the Johnson-Lindenstrauss Lemma and a nearly-linear time Laplacian solver as before to obtain
required {ti}mi=1. The total runtime is Õ

(
m
ηε2

)
.

Lemma A.6 shows that how to approximate λmin(uI −A) and λmin(A− `I) in nearly-linear time.

Lemma A.6. Under Assumption A.3, we can compute values α, β in Õ
(
m
ηε3

)
time such that

(1− ε)α ≤ λmin(uI −A) ≤ (1 + ε)α

and
(1− ε)β ≤ λmin(A− `I) ≤ (1 + ε)β.

Proof: By Lemma A.4, we have that Su ≈ε/10 (uI − A)−1/2. Hence, λmax(Su)−2 ≈3ε/10 λmin(uI − A),
and it suffices to estimate λmax(Su). Since

λmax(Su) ≤
(

tr
(
S2k
u

))1/2k
≤ n1/2kλmax(Su),

by picking k = log n/ε we have that
(
tr(S2k

u )
)1/2k ≈ε/2 λmax(Su). Notice that

tr
(
S2k
u

)
= tr

(
p2k
(
L−1/2L̃L−1/2

))
= tr

(
p2k
(
L−1L̃

))
.

Set L̃ = B̃ᵀB̃ for some matrix B̃ ∈ Rm×n, and we have that tr
(
S2k
u

)
= tr

(
p2k
(
B̃L−1B̃ᵀ

))
. Since we can

apply pk
(
B̃L−1B̃ᵀ

)
to vectors in Õ

(
m
ηε

)
time, we invoke the Johnson-Lindenstrauss Lemma and approximate

tr
(
S2k
u

)
in Õ

(
m
ηε3

)
time.

We approximate λmin(A− `I) in a similar way. Notice that

tr
(
S4k
`

)
= tr

(
(A′)−1/2q((A′)−1)

)4k
= tr

(
q((A′)−1)(A′)−1q((A′)−1)

)2k
.

Let z be a polynomial defined by z(x) = xq2(x) and L′ = (B′)ᵀ(B′). Then, we have that

tr(S4k
` ) = tr

(
z2k((A′)−1)

)
= tr

(
z2k
(
L1/2(L′)−1L1/2

))
.

Applying the same analysis as before, we can estimate the trace in Õ
(
m
ηε3

)
time.


