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Abstract. We study the subgraph counting problem in data streams.
We provide the first non-trivial estimator for approximately counting the
number of occurrences of an arbitrary subgraph H of constant size in a
(large) graph G. Our estimator works in the turnstile model, i.e., can
handle both edge-insertions and edge-deletions, and is applicable in a
distributed setting. Prior to this work, only for a few non-regular graphs
estimators were known in case of edge-insertions, leaving the problem of
counting general subgraphs in the turnstile model wide open. We further
demonstrate the applicability of our estimator by analyzing its concen-
tration for several graphs H and the case where G is a power law graph.
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1 Introduction

Counting (small) subgraphs in massive graphs is one of the fundamental tasks
in algorithm design and has various applications, including analyzing the con-
nectivity of networks, uncovering the structural information of large graphs, and
indexing graph databases. The current best known algorithm for the simplest
non-trivial version of the problem, counting the number of triangles, is based on
matrix multiplication, and is infeasible for massive graphs. To overcome this, we
consider the problem in the data streaming setting, where the edges come se-
quentially and the algorithm is required to approximate the number of subgraphs
without storing the whole graph.

Formally in this problem, we are given a set of items s1, s2, . . . in a data stream.
These items arrive sequentially and represent edges of an underlying graph G =
(V,E). Two standard models [14] in this context are the Cash Register Model
and the Turnstile Model. In the cash register model, each item si represents one
edge and these arrived items form a graph G with edge set E :=

⋃{si}, where
E = ∅ initially. The turnstile model generalizes the cash register model and is
applicable to dynamic situations. Specifically, each item si in the turnstile model
is of the form (ei, signi), where ei is an edge of G and signi ∈ {+,−} indicates
that ei is inserted to or deleted from G. That is, after reading the ith item,
E ← E ∪ {ei} if signi = +, and E ← E \ {ei} otherwise.
� This material is based upon work supported by the National Science Foundation
under Award No. 1103688.
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In a more general distributed setting, there are k distributed sites, each re-
ceiving a stream Si of elements over time, and every Si is processed by a local
host. When the number of subgraphs is asked for, these k hosts cooperate to
give an approximation for the underlying graph formed by

⋃k
i=1 Si.

Our Results & Techniques. We present the first sketch for counting arbitrary sub-
graphs of constant size in data streams. While most of the previous algorithms
are based on sampling techniques and cannot be extended to count subgraphs
with complex structures, our algorithm can approximately count arbitrary (pos-
sibly directed) subgraphs. Moreover, our algorithm runs in the turnstile model
and is applicable in the distributed setting.

More formally, for any fixed subgraph H of constant size, we present an algo-
rithm that (1± ε)-approximates the number of occurrences of H in G, denoted
by #H . That is, for any constant 0 < ε < 1, with probability at least 2/3 the
output Z of our algorithm satisfies Z ∈ [(1− ε) ·#H, (1 + ε) ·#H ]. For several
families of graphs G and H , our algorithm achieves a (1± ε)-approximation for
the number of subgraphs H in G within sublinear space. Our result generalizes
previous work which can only count cycles in the turnstile model [10, 11], and
answers the 11th open problem in the 2006 IITK Workshop on Algorithms for
Data Steams [12].

We further consider counting stars in power law graphs, which include many
practical networks. We show that O

(
1
ε2 · logn

)
bits suffice to get a (1 ± ε)-

approximation for counting stars Sk, while the exact counting needs n · logn bits
of space. Our main results are summarized in Table 1.

Our sketch relies on a novel approach of designing random vectors that are
based on different combinations of complex numbers. By using different roots of
unity and random mappings from vertices in G to complex numbers, we obtain
an unbiased estimator for #H . This partially answers Problem 4 of the survey
by Muthukrishnan [14], which asks for suitable applications of complex-valued
hash functions in data streaming algorithms. Apart from counting subgraphs in
streams, we believe that our new approach will have more applications.

Discussion. To demonstrate that for a large family of graphs G our algorithm
achieves a (1 ± ε)-approximation within sublinear space, we consider Erdös-
Rényi random graphs G = G(n, p), where each edge is placed independently
with a fixed probability p � (1 + ε) · ln(n)/n. Random graphs are of interest for
the performance of our algorithm, as the independent appearance of the edges
in G = G(n, p) reduces the number of particular patterns. In other words, if
our algorithm has low space complexity for counting a subgraph H in G(n, p),
then the space complexity is even lower for counting a more frequently occurring
subgraph in a real-world graph G which has the same density as G(n, p).

Regarding the space complexity of our algorithm on random graphs, assume
for instance that the subgraph H is a P3 or S3 (i.e., a path or a star with three
edges). The expected number of occurrences of such a graph is of order n4p3 � 1.
It can be shown by standard techniques (cf. [1, Section 4.4]) that the number of
occurrences is also of this order with probability 1− o(1) as n→∞. Assuming
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Table 1. Space requirement for (1 ± ε)-approximately counting an undirected and
connected graph H with k = O(1) edges. Here δ and Δ denote the minimum and
maximum degree, respectively. Space complexity is measured in terms of bits.

Conditions Space Complexity Reference

any graph G
O
(

1
ε2
· mk·Δ(G)k

(#H)2
· log n

)
Theorem 7

any graph H

any graph G
O
(

1
ε2
· mk

(#H)2
· log n

)
Theorem 7

H with δ(H) � 2

any graph G
O
(

n1−1/(2k)

ε2
·
(

n3/2−1/(2k)·Δ(G)2k

(#Sk)
2 + 1

)
· log n

)
Theorem 8

stars Sk

Power law graph G
O
(

1
ε2
· log n) Theorem 9

stars Sk

that this event occurs, Theorem 7 along with the facts that m = Θ(n2p) and
Δ(G) = Θ(np) implies a (1 ± ε)-approximation algorithm for P3 (or S3) with
space complexity O( 1

ε2 ·n·log n). For stars Sk with any constant k, the result from
Theorem 8 yields a (1± ε)-approximation algorithm in space O

(
1
ε2 ·
√
n · logn).

Finally, for any cycle with k = O(1) edges, Theorem 7 gives an algorithm with
space complexity O( 1

ε2 ·p−k · logn), which is sublinear for sufficiently large values

of p, e.g., p = ω(n−1/k).

Related Work. Bar-Yossef, Kumar and Sivakumar were the first to study the sub-
graph counting problem in data streams and presented an algorithm for count-
ing triangles [3]. After that, the problem of counting triangles in data streams
was studied extensively [4, 6, 10, 16]. The problem of counting other subgraphs
was also addressed in the literature. Buriol et al. [7] considered the problem of
estimating clustering indexes in data streams. Bordino et al. [5] extended the
technique of counting triangles [6] to all subgraphs on three and four vertices.
Manjunath et al. [11] presented an algorithm for counting cycles of constant size
in data streams. Among these results, only two algorithms [10, 11] work in the
turnstile model and these only hold for cycles.

Apart from designing algorithms in the streaming model, the subgraph count-
ing problem has been studied extensively. Alon et al. [2] presented an algorithm
for counting given-length cycles. Gonen et al. [9] showed how to count stars and
other small subgraphs in sublinear time. In particular, several small subgraphs
in a network, named network motifs, have been identified as the simple building
blocks of complex biological networks and the distribution of their occurrences
could reveal answers to many important biological questions [13, 17].

Notation. Let G = (V,E) be an undirected graph without self-loops and mul-
tiple edges. The set of vertices and edges are represented by V [G] and E[G],
respectively. We will assume that V [G] = {1, . . . , n} and n is known in advance.
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For any vertex u ∈ V [G], the degree of u is denoted by deg(u). The maximum
and minimum degree of G are denoted by Δ(G) and δ(G), respectively.

Given two directed graphs H1 and H2, we say that H1 is homomorphic to
H2 if there is a mapping ϕ : V [H1] → V [H2] such that (u, v) ∈ E[H1] implies
(ϕ(u), ϕ(v)) ∈ E[H2]. Graphs H1 and H2 are said to be isomorphic if there is a
bijection ϕ : V [H1] → V [H2] such that (u, v) ∈ E[H1] iff (ϕ(u), ϕ(v)) ∈ E[H2].
Let auto(H) be the number of automorphisms of graph H .

For any graph H , we call a subgraph H1 of G that is not necessarily induced
an occurrence of H , if H1 is isomorphic to H . Let #(H,G) be the number of
occurrences of H in G. When reference to G is clear, we may also write #H .
A kth root of unity is any number of the form e2πi·j/k, where 0 � j < k. For

p, q ∈ IN define
(
e2πi·j/k

)p/q
as e2πi·(jp)/(kq).

2 An Unbiased Estimator for Counting Subgraphs

We present a framework for counting general subgraphs. Suppose that H is a
fixed graph with t vertices and k edges, and we want to count the number of
occurrences of H in G. For the notation, we denote vertices of H by a, b and c,
and vertices of G by u, v and w, respectively. Let the degree of vertex a in H
be degH(a). We equip the edges of H with an arbitrary orientation, as this is
necessary for the further analysis. Therefore, each edge in H together with its

orientation can be expressed as
−→
ab for some a, b ∈ V [H ]. For simplicity and with

slight abuse of notation we will use H to denote such an oriented graph.
At a high level, our estimator maintains k complex-valued variables Z−→

ab
(G),

where
−→
ab ∈ E[H ], and these variables are set to be zero initially. For every

arriving edge {u, v} ∈ E[G] we update each Z−→
ab
(G) according to

Z−→
ab
(G)← Z−→

ab
(G) +M−→

ab
(u, v) +M−→

ab
(v, u) ,

where M−→
ab

: V [G] × V [G] → C is defined with respect to edge
−→
ab ∈ E[H ] and

can be computed in constant time. Hence

Z−→
ab
(G) =

∑

{u,v}∈E[G]

M−→
ab
(u, v) +M−→

ab
(v, u) .

Intuitively M−→
ab
(u, v) gives {u, v} the orientation −→uv and maps −→uv to

−→
ab, and

M−→
ab
(u, v) +M−→

ab
(v, u) is used to express two different orientations of edge

{u, v}. For every query for #(H,G), the estimator simply outputs the real
part of α · ∏−→

ab∈E[H]
Z−→
ab
(G), where α ∈ IR+ is a scaling factor. For any k

edges (u1, v1), . . . , (uk, vk) in G and k edges
−−→
a1b1, . . . ,

−−−→
ak, bk in H , we want

α ·∏k
i=1M−−→

aibi
(ui, vi) to be one if these edges (u1, v1), . . . , (uk, vk) form an oc-

currence of H , and zero otherwise.
More formally, each M−→

ab
(u, v) is defined according to the degree of vertices

a, b in graph H and consists of the product of three types of random variables
Q,Xc(w) and Y (w), where c ∈ V [H ] and w ∈ V [G]:
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– Variable Q is a random τth root of unity, where τ := 2t − 1.
– For vertex c ∈ V [H ] and w ∈ V [G], function Xc(w) is a random degH(c)th

root of unity, and for each vertex c ∈ V [H ], Xc : V [G] → C is chosen inde-
pendently and uniformly at random from a family of 4k-wise independent
hash functions. VariablesQ andXc(·) for c ∈ V [H ] are chosen independently.

– For everyw ∈ V [G], Y (w) is a random element from S :=
{
1, 2, 4, 8, . . . , 2t−1

}

as part of a 4k-wise independent hash function. VariablesXc(·) for c ∈ V [H ],
Y (·) and Q are chosen independently.

Given the notations above, we define each functionM−→
ab

as

M−→
ab
(u, v) := Xa(u) Xb(v) Q

Y (u)
degH (a) Q

Y (v)
degH (b) .

Estimator 1 gives the formal description of the update and query procedures.

Estimator 1. Counting #(H,G)

Step 1 (Update): When an edge e = {u, v} ∈ E[G] arrives, update each Z−→
ab

w.r.t.

Z−→
ab
(G)←Z−→

ab
(G) +M−→

ab
(u, v) +M−→

ab
(v, u). (1)

Step 2 (Query): When #(H,G) is required, output the real part of

tt

t! · auto(H)
· ZH(G) , (2)

where ZH is defined by

ZH(G) :=
∏

−→
ab∈E[H]

Z−→
ab
(G) . (3)

Estimator 1 is applicable in a quite general setting: First, the estimator runs in
the turnstile model. For simplicity the update procedure above is only described
for the edge-insertion case. For every item of the stream that represents an edge-
deletion, we replace “+” by “−” in (1). Second, our estimator also works in the

distributed setting, where every local host maintains variables Z−→
ab

for
−→
ab ∈ E[H ],

and does the update for every arriving item in the local stream. When the output
is required, these variables located at different hosts are summed up and we
return the estimated value according to (3). Third, the estimator above can be
revised easily to count the number of directed subgraphs in a directed graphs.
Since in this case we need to change the constant of (2) accordingly, in the rest
of our paper we only focus on the case of counting undirected graphs.

3 Analysis of the Estimator

Let us first explain the intuition behind our estimator. By definition we have

ZH(G) =
∏

−→
ab∈E[H]

Z−→
ab
(G) =

∏

−→
ab∈E[H]

∑

{u,v}∈E[G]

(

M−→
ab
(u, v) +M−→

ab
(v, u)

)

.
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Since H has k edges, ZH(G) is a product of k terms and each term is a sum
over all edges of G each with two possible orientations. Hence, in the expansion
of ZH(G) any k-tuple (e1, . . . , ek) ∈ Ek[G] contributes 2k different terms to
ZH(G) and each term corresponds to a certain orientation of (e1, . . . , ek). Let−→
T = (−→e1 , . . . ,−→ek) be an arbitrary orientation of (e1, . . . , ek) and G−→

T
be the

directed graph induced from
−→
T .

At a high level, we use three types of variables to test if G−→
T

is isomorphic
to H . These variables play different roles, as described below. (i) For c ∈ V [H ]
and w ∈ V [G], we have E

[
X i

c(w)
] 
= 0 (1 � i � degH(c)) iff i = degH(c).

Random variables Xc(w) guarantee that G−→
T

contributes to E[ZH(G)] only if
G−→

T
is homomorphic to H . (ii) Through function Y : V [G] → S every vertex

u ∈ V−→
T

maps to one element Y (u) in S randomly. If |V−→
T
| = |S| = t, then with

constant probability, vertices in V−→
T

map to different t numbers in S. Otherwise,
|V−→

T
| < t and vertices in V−→

T
cannot map to different t elements. Since Q is a

random τth root of unity, E
[
Qi

] 
= 0 (1 � i � τ) iff i = τ , where τ =
∑

�∈S 
.
The combination of Q and Y guarantees that G−→

T
contributes to E[ZH(G)] only

if graph H and G−→
T

have the same number of vertices. Combining (i) and (ii),
only subgraphs isomorphic to H contribute to E[ZH(G)].

Lemma 1 ([8]). For any c ∈ V [H ] let Xc be a randomly chosen degH(c)th root
of unity. Then for any 1 � i � degH(c), it holds that

E[X i
c] =

{
1, i = degH(c) ,

0, 1 � i < degH(c) .

In particular, E[Xc] = 1 if degH(c) = 1.

Lemma 2. Let R be a primitive τ th root of unity and k ∈ N. Then

τ−1∑

�=0

(Rk)� =

{
τ, τ | k ,

0, τ � k .

Lemma 3. Let xi ∈ ZZ�0 and
∑t−1

i=0 xi = t. Then 2t − 1 | ∑t−1
i=0 2

i · xi if and
only if x0 = · · · = xt−1 = 1.

Based on the three lemmas above, we prove that ZH(G) is an unbiased estimator
for #(H,G).

Theorem 4. Let H be a graph with t vertices and k edges. Assume that variables
Xc(w), Y (w) for c ∈ V [H ], w ∈ V [G] and Q are as defined above. Then

E[ZH(G)] =
t! · auto(H)

tt
·#(H,G) .

Proof. Let (e1, . . . , ek) ∈ Ek(G) and
−→
T = (−→e1 , . . . ,−→ek) be an arbitrary orienta-

tion of (e1, . . . , ek), where
−→ei = −−→uivi. Consider the expansion of ZH(G) below:

ZH(G) =
∏

−→
ab∈E[H]

Z−→
ab
(G) =

∏

−→
ab∈E[H]

∑

{u,v}∈E[G]

(

M−→
ab
(u, v) +M−→

ab
(v, u)

)

.
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The term corresponding to (−→e1 , . . . ,−→ek) in the expansion of ZH(G) is

k∏

i=1

M−−→
aibi

(ui, vi) =

k∏

i=1

Xai(ui) Xbi(vi) Q
Y (ui)

degH (ai) Q
Y (vi)

degH (bi) , (4)

where
−−→
aibi is the ith edge of H (where we assume any order) and −−→uivi is the ith

edge in
−→
T . We show that the expectation of (4) is non-zero if and only if the

graph induced by
−→
T is an occurrence of H in G. Moreover, if the expectation of

(4) is non-zero, then its value is a constant.
For any vertex w of G and any vertex c of H , let

θ−→
T
(c, w) :=

∣
∣
{
i : (ui = w and ai = c) or (vi = w and bi = c)

}∣
∣

be the number of edges in
−→
T with head (or tail) w mapping to the edges in H

with head (or tail) c. Since every vertex c of H is incident to degH(c) edges, for
any c ∈ V [H ] it holds that

∑
w∈V−→

T
θ−→
T
(c, w) = degH(c). By the definition of θ−→

T
,

we can rewrite (4) as

⎛

⎝
∏

c∈V [H]

∏

w∈V−→
T

X
θ−→
T
(c,w)

c (w)

⎞

⎠ ·
⎛

⎝
∏

c∈V [H]

∏

w∈V−→
T

Q
θ−→
T

(c,w)Y (w)

degH (c)

⎞

⎠ .

Therefore ZH(G) is equal to

∑

e1,...,ek
ei∈E[G]

∑

−→
T =(−→e1,...,−→ek)

⎛

⎝
∏

c∈V [H]

∏

w∈V−→
T

X
θ−→
T
(c,w)

c (w)

⎞

⎠ ·
⎛

⎝
∏

c∈V [H]

∏

w∈V−→
T

Q
θ−→
T

(c,w)Y (w)

degH (c)

⎞

⎠ ,

where the first summation is over all k-tuples of edges in E[G] and the second
summation is over all their possible orientations. By linearity of expectations of
these random variables and the assumption that Xc(·) for c ∈ V [H ], Y (·), and
Q have sufficient independence, we have

E[ZH(G)]

=
∑

e1,...,ek
ei∈E[G]

∑

−→
T =(−→e1,...,−→ek)

⎛

⎝
∏

c∈V [H]

E

⎡

⎣
∏

w∈V−→
T

X
θ−→
T
(c,w)

c (w)

⎤

⎦

⎞

⎠ · E

⎡

⎢
⎢
⎣

∏

c∈V [H]
w∈V−→

T

Q
θ−→
T

(c,w)Y (w)

degH (c)

⎤

⎥
⎥
⎦ .

Let

α−→
T
:=

⎛

⎝
∏

c∈V [H]

E

⎡

⎣
∏

w∈V−→
T

X
θ−→
T
(c,w)

c (w)

⎤

⎦

⎞

⎠

︸ ︷︷ ︸
A

·E
⎡

⎣
∏

c∈V [H]

∏

w∈V−→
T

Q
θ−→
T

(c,w)Y (w)

degH (c)

⎤

⎦

︸ ︷︷ ︸
B

.
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We will next show that α−→
T

is either zero or a nonzero constant independent of
−→
T . The latter is the case if and only if GT , the undirected graph induced from

the edge set
−→
T , is an occurrence of H in G.

We consider the product A at first. Assume that A 
= 0. Using the same
technique as [11], we construct a homomorphism from H to G−→

T
. Remember

that: (i) For any c ∈ V [H ] and w ∈ V−→
T
, we have θ−→

T
(c, w) � degH(c), and (ii)

E
[
X i

c(w)
] 
= 0 iff i ∈ {0, degH(c)}. Therefore for any fixed

−→
T and c ∈ V [H ],

it holds that E

[∏
w∈V−→

T
X

θ−→
T
(c,w)

c (w)
]

= 0 iff θ−→

T
(c, w) ∈ {0, degH(c)} for all

w. Now assume that E

[∏
w∈V−→

T
X

θ−→
T
(c,w)

c (w)
]

= 0 for every c ∈ V [H ]. Then

θ−→
T
(c, w) ∈ {0, degH(c)} for all c ∈ V [H ] and w ∈ V [G]. Since

∑
w θ−→

T
(c, w) =

degH(c) for any c ∈ V [H ], there is a unique vertex w ∈ V−→
T

such that θ−→
T
(c, w) =

degH(c). Define ϕ : V [H ] → V−→
T

as ϕ(c) = w for the vertex w satisfying
θ−→
T
(c, w) = degH(c). Then ϕ is a homomorphism, i.e. (a, b) ∈ E[H ] implies

(ϕ(a), ϕ(b)) ∈ E[G−→
T
]. Hence A 
= 0 implies H is homomorphic to G−→

T
, and

∏

c∈V [H]

E

⎡

⎣
∏

w∈V−→
T

X
θ−→
T
(c,w)

c (w)

⎤

⎦ =
∏

c∈V [H]

E

[
XdegH(c)

c (ϕ(c))
]
= 1 . (5)

Second we consider the product B. Our task is to show that, under the condition
A 
= 0, G−→

T
is an occurrence of H if and only if B 
= 0. Observe that

E

⎡

⎣
∏

c∈V [H]

∏

w∈V−→
T

Q
θ−→
T

(c,w)Y (w)

degH (c)

⎤

⎦ = E

[

Q
∑

c∈V [H]

∑
w∈V−→

T

θ−→
T

(c,w)Y (w)

degH (c)

]

.

Case 1: Assume that G−→
T

is an occurrence of H in G. Then |V−→
T
| = |V [H ]| and

the function ϕ constructed above is a bijection, which implies that

∑

c∈V [H]

∑

w∈V−→
T

θ−→
T
(c, w)Y (w)

degH(c)
=

∑

c∈V [H]

Y (ϕ(c)) =
∑

w∈V−→
T

Y (w) .

Without loss of generality, let V−→
T

= {w1, . . . , wt}. By considering all possible
choices for Y (w1), . . . , Y (wt), denoted by y(w1), . . . , y(wt) ∈ S, and indepen-
dence between Q and Y (w), where w ∈ V [G], we have

B =

τ−1∑

j=0

∑

y(w1),...,y(wt)∈S

1

τ

(
t∏

i=1

Pr [Y (wi) = y(wi) ]

)

· exp
(
2πij

τ

t∑

�=1

y(w�)

)

=

τ−1∑

j=0

∑

y(w1),...,y(wt)∈S
ϑ:=y(w1)+···+y(wt),τ |ϑ

1

τ

(
1

t

)t

exp

(
2πi

τ
· ϑ · j

)

+

τ−1∑

j=0

∑

y(w1),...,y(wt)∈S
ϑ:=y(w1)+···+y(wt),τ �ϑ

1

τ

(
1

t

)t

exp

(
2πi

τ
· ϑ · j

)

.
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Applying Lemma 2 with R = exp
(
2πi
τ

)
, the second summation is zero. Hence

by Lemma 3 we have

B =
∑

y(w1),...,y(wt)∈S
τ |y(w1)+···+y(wt)

(
1

t

)t

=
∑

y(w1),...,y(wt)∈S
y(w1)+···+y(wt)=τ

(
1

t

)t

=

(
1

t

)t

· t! = t!

tt
.

Case 2: Assume that G−→
T

is not an occurrence of H in G and let V−→
T

=
{w1, . . . , wt′}, where t′ < t. Then there is a vertex w ∈ V−→

T
and different

b, c ∈ V [H ], such that ϕ(b) = ϕ(c) = w. As before we have

∑

c∈V [H]

∑

w∈V−→
T

θ−→
T
(c, w)Y (w)

degH(c)
=

∑

c∈V [H]

Y (ϕ(c)) .

By Lemma 3, τ �
∑

c∈V [H] Y (ϕ(c)). Hence

B =

τ−1∑

j=0

∑

y(w1),...,y(wt′ )∈S
ϑ:=

∑
c∈V [H] y(ϕ(c))

1

τ

(
1

t

)t′

exp

(
2πi

τ
· ϑ · j

)

= 0 ,

where the last equality follows from Lemma 2 with R = exp
(
2πi
τ

)
.

Let 1G−→
T
≡H be the indicator variable that is one if G−→

T
and H are isomorphic

and zero otherwise. By the definition of graph automorphism and (5),

E[ZH(G)] =
∑

e1,...,ek
ei∈E[G]

∑

−→
T =(−→e1,...,−→ek)

t!

tt
·
(
1G−→

T
≡H

)
=

t! · auto(H)

tt
·#(H,G) . ��

We can use a similar technique to analyze the variance of ZH(G) and apply
Chebyshev’s inequality on complex-valued random variables to upper bound the
number of trials required for a (1± ε)-approximation. Since ZH(G) is complex-
valued, we need to upper bound ZH(G) · ZH(G), which relies on the number of
subgraphs of 2k edges in G with certain properties.

Lemma 5. Let G be a graph with m edges and H be any graph with k edges (pos-
sibly with multiple edges), where k is a constant. The following statements hold:
(i) If δ(H) � 2, then #(H,G) = O

(
mk/2

)
; (ii) If every connected component of

H contains at least two edges, then #(H,G) = O
(
mk/2 · (Δ(G))k/2

)
.

Lemma 6. Let G be any graph with m edges, H be any graph with k edges for
a constant k. Random variables Xc(w) (c ∈ V [H ], w ∈ V [G]) and Q are defined
as above. Then the following statements hold:

1. If δ(H) � 2, then E

[
ZH(G) · ZH(G)

]
= O

(
mk

)
.

2. Let H be a connected graph with k � 2 edges and H be the set of all sub-
graphs H ′ in G with the following properties: (i) H ′ has 2k edges, and
(ii) every connected component of H ′ contains at least two edges. Then

E

[
ZH(G) · ZH(G)

]
= O (|H|).
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By using Chebyshev’s inequality, we can get a (1± ε)-approximation by running
independent copies of our estimator in parallel and returning the average of the
output of these copies. This leads to our main result for counting the number of
occurrences of H .

Theorem 7. Let G be any graph with m edges and H be any graph with k =
O(1) edges. For any constant 0 < ε < 1, there is an algorithm to (1 ± ε)-

approximate #(H,G) using (i) O
(

1
ε2 · mk

(#H)2 · logn
)
bits if δ(H) � 2, or (ii)

using O
(

1
ε2 · m

k·(Δ(G))k

(#H)2 · logn) bits for any H.

Discussion. Statement (i) of Theorem 7 extends the main result of [11, Theo-
rem 1] which requires H to be a cycle. Note that a näıve sampling-based ap-
proach would choose a random k-tuple of edges and require mk/(#H) space.
Theorem 7 improves upon this approach, in particular if the graph G is sparse
and the number of occurrences of H is a growing function in n.

4 Extensions

We have developed a general framework for counting arbitrary subgraphs of
constant size. For several typical applications we can further improve the space
complexity by grouping the sketches or using certain properties of the underlying
graph G. For the ease of the discussion we only focus on counting stars.

Grouping Sketches. The space complexity in Theorem 7 relies on the number
of edges that the sketch reads. To reduce the variance, a natural way is to
use multiple copies of the sketches, and every sketch is only responsible for the
updates of the edges from a certain subgraph.

To formulate this intuition, we partition V = {1, . . . , n} into g := n1−1/(2k)

subsets V1, . . . ,Vg, and Vi :=
{
j : (i− 1) · n1/(2k) + 1 � j � i · n1/(2k)

}
. Without

loss of generality we assume that n1/(2k) ∈ N. Associated with every Vi, we
maintain a sketch Ci, whose description is shown in Estimator 2. For every
arriving edge e = {u, v} in the stream, we update sketch Ci if u ∈ Vi or v ∈ Vi.
Since (i) the central vertex of every occurrence of Sk is in exactly one subset Vi,
and (ii) every edge adjacent to one vertex in Vi is taken into account by sketch
Ci, every occurrence of Sk in G is only counted by one sketch Ci.

Estimator 2. Counting #(Sk, G|Vi), update procedure

Step 1 (Update): When an edge e = {u, v} ∈ E[G] arrives, update each variable Z−→
ab
:

(a) If u ∈ Vi and v ∈ Vi, then
Z−→

ab
(G)←Z−→

ab
(G) +M−→

ab
(u, v) +M−→

ab
(v, u).

(b) If u ∈ Vi and v ∈ ∂Vi, then Z−→
ab
(G)← Z−→

ab
(G) +M−→

ab
(u, v).

(c) If u ∈ ∂Vi and v ∈ Vi, then Z−→
ab
(G)← Z−→

ab
(G) +M−→

ab
(v, u).
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More formally, let #̃(Sk, G|Vi) be the number of Sk whose central vertex is

in Vi. It holds that #(Sk, G) =
∑g

i=1 #̃(Sk, G|Vi). This indicates that if every

Ci is unbiased for #̃(Sk, G|Vi), then we can use the sum of returned values from
different Ci’s to approximate #(Sk, G).

Theorem 8. Let G be a graph with n vertices. For any constants 0 < ε < 1 and
k, there is an algorithm to (1± ε)-approximate #(Sk, G) with space complexity

O

(
n1−1/(2k)

ε2
·
(
n3/2−1/(2k) ·Δ(G)2k

(#Sk)2
+ 1

)

· logn
)

.

Let us consider graphs G with Δ(G)/δ(G) = o(n1/(4k)) and δ(G) � k. Since
#(Sk, G) = Ω

(
n · δ(G)k

)
, Theorem 8 implies that o

(
1
ε2 · n · logn

)
bits suffice

to give a (1± ε)-approximation.

Counting on Power Law Graphs. Besides organizing the sketches into groups, the
space complexity can be also reduced by using the structural information of the
underlying graph G. One important property shared by many biological, social
or technological networks is the so-called Power Law degree distribution, i.e.,
the number of vertices with degree d, denoted by f(d) := |{v ∈ V : deg(v) = d}|,
satisfies f(d) ∼ d−β , where β > 0 is the power law exponent. For many networks,
experimental studies indicate that β is between 2 and 3, see [15].

Formally, we use the following model based on the cumulative degree distri-
bution. For given constants σ � 1 and dmin ∈ IN, we say that G has an approx-
imate power law degree distribution with exponent β ∈ (2, 3), if

∑n−1
d=k f(d) ∈[�σ−1 · n · k−β+1�, σ · n · k−β+1

]
for any k � dmin. Our result on counting stars

on power law graphs is as follows.

Theorem 9. Assume that G has an approximate power law degree distribution
with exponent β ∈ (2, 3). Then, for any two constants 0 < ε < 1 and k, we can
(1± ε)-approximate #(Sk, G) using O

(
1
ε2 · logn

)
bits.
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