
Greedy Construction of 2-Approximation

Minimum Manhattan Network ⋆

Zeyu Guo1, He Sun1, Hong Zhu2

1Fudan University, China
2East China Normal University, China

Abstract. Given a set T of n points in IR2, a Manhattan Network G

is a network with all its edges horizontal or vertical segments, such that
for all p, q ∈ T , in G there exists a path (named a Manhattan path) of
the length exactly the Manhattan distance between p and q. The Mini-
mum Manhattan Network problem is to find a Manhattan network of the
minimum length, i.e., the total length of the segments of the network is
to be minimized. In this paper we present a 2-approximation algorithm
with time complexity O(n log n), which improves the 2-approximation
algorithm with time complexity O(n2). Moreover, compared with other
2-approximation algorithms employing linear programming or dynamic
programming technique, it was first discovered that only greedy strategy
suffices to get 2-approximation network.

Key words: Minimum Manhattan Network, approximation algorithm,
greedy strategy

1 Introduction

A rectilinear path between two points p, q ∈ IR2 is a path connecting p and q
with all its edges horizontal or vertical segments. Furthermore, a Manhattan
path between p and q is a rectilinear path with its length exactly dist(p, q) :=
|p.x − q.x| + |p.y − q.y|, i.e., the Manhattan distance between p and q.

Given a set T of n points in IR2, a network G is said to be a Manhattan
network on T , if for all p, q ∈ T there exists a Manhattan path between p and q
with all its segments in G. For the given network G, let the length of G, denoted
by L(G), be the total length of all segments of G. For the given point set T , the
Minimum Manhattan Network (MMN) Problem is to find a Manhattan network
G on T with minimum L(G).

From the problem description, it is easy to show that there is a close relation-
ship between the MMN problem and planar t-spanners. For t ≥ 1, if there exists
a planar graph G such that for all p, q ∈ T , there exists a path in G connecting
p and q of length at most t times the distance between p and q, G is said to be

⋆ This work is supported by Shanghai Leading Academic Discipline Project(Project
Number:B412), National Natural Science Fund (grant #60496321), and the
ChunTsung Undergraduate Research Endowment. Correspondence author: He Sun

a t-spanner of T . The MMN Problem for T is exactly the problem to compute
the 1-spanner of T under the L1-norm.

Related works: Due to the numerous applications in city planning, network
layout, distributed algorithms, and VLSI circuit design, the MMN problem was
first introduced by Gudmundsson, Levcopoulos et al. [5], and until now, it is
open whether this problem belongs to the complexity class P. Gudmundsson et
al. [5] proposed an O(n3)-time 4-approximation algorithm, and an O(n log n)-
time 8-approximation algorithm. Kato, Imai et al. [7] presented an O(n3)-time
2-approximation algorithm. However, the proof of their algorithm correctness
is incomplete [3]. In spite of that, their paper still provided a valuable idea,
that it suffices for G to be a Manhattan network if for each of O(n) certain
pairs there exists a Manhattan path connecting its two points. Thus it is not
necessary to enumerate all the pairs in T × T . Following this idea, Benkert,
Wolff et al. [1, 2] proposed an O(n log n)-time 3-approximation algorithm. They
also described a mixed-integer programming (MIP) formulation of the MMN
problem. After that, Chepoi, Nouioua et al. [3] proposed a 2-approximation
rounding algorithm by solving the linear programming relaxation of the MIP. In
this paper, the notions Pareto Envelope and a nice strip-staircase decomposition
has been proposed first of all. In K. Nouioua’s Ph.D thesis [8], the primal-dual
based algorithm with 2-approximation and running time O(n log n) has been
presented. After these works, it was Z. Guo et al. [6] who observed that the
same approximation ratio can also be achieved using combinatorial construction.
In their paper, the dynamic programming speed-up technique of quadrangle
inequality was first used in this problem and, therefore the time complexity O(n2)
has been achieved. In [9], S. Seibert and W. Unger proposed a 1.5-approximation
algorithm. However, their proof is incorrect and 2-approximation is, to our best
knowledge, the lowest ratio for this problem.

Our contributions: In this paper, we present a very simple 2-approximation
algorithm for constructing Manhattan network with running time O(n log n).
Compared with the simple 3-approximation algorithm with running time O(n log n)
proposed recently [4] and the previous 2-approximation result [6] relying on dy-
namic programming speed-up technique, a highlight in our paper is that, except
Pareto Envelope which is widely used in the previous literatures, it is proven
simply greedy strategy is enough for constructing 2-approximation Minimum
Manhattan Network.

Outline of our approach: From a high-level overview, our algorithm is
as follows: partition the input into several blocks (ortho-convex regions) that
can be solved independently of each other. For the blocks, some can be trivially
solved optimally, whereas only one type of blocks is difficult to solve. For such
a non-trivial block there are some horizontal and vertical strips which can be
solved by horizontal and vertical nice covers plus switch segments to connect
neighboring points in the same strip. In such manner, we divide each block into
several staircases. In order to connect the points in each staircase, simple greedy
strategy has been used.

2 Preliminaries

Basic notations: For p = (p.x, p.y) ∈ IR2, let Qk(p) denote the k-th closed
quadrant with respect to the origin p, e.g., Q1(p) := {q ∈ IR2 | p.x ≤ q.x, p.y ≤
q.y}.

Define R(p, q) as a closed rectangle (possibly degenerate) where p, q ∈ IR2 are
its two opposite corners. BV (p, q) is defined as the vertical closed band bounded
by p, q, whereas BH(p, q) denotes the horizontal closed band bounded by p, q.

For the given point set T , let Γ be the union of vertical and horizontal lines
which pass through some point in T . In addition, we use [c, d] to represent the
vertical or horizontal segment with endpoints c and d, as Fig. 1 shows.

a

b

c d

e

Fig. 1. T = {a, b, c, d, e}. The vertical and horizontal lines compose Γ .

Pareto envelope: The Pareto envelope, originally proposed by Chepoi et
al. [3], plays an important role in our algorithm and we give a brief introduction.

Given the set of points T , a point p is said to be dominated by q if
(

∀t ∈ T :

dist(q, t) ≤ dist(p, t)
)

∧
(

∃t ∈ T : dist(q, t) < dist(p, t)
)

. A point is said to be
an efficient point if it is not dominated by any point in the plane. The Pareto
envelope of T is the set of all efficient points, denoted by P(T). Fig. 2 shows
an example of P(T). It is not hard to prove that P(T) =

⋂

u∈T

⋃

v∈T R(u, v).
For |T | = n, P(T) can be built in O(n log n) time. [3] also presented some other
properties of P(T). In particular, P(T) is ortho-convex, i.e., the intersection of
P(T) with any vertical or horizontal line is continuous, which is equivalent to
the fact that for any two points p, q ∈ P(T), there exists a Manhattan path in
P(T) between p and q.

In [3] Chepoi et al. also showed that the Pareto envelope is the union of
some ortho-convex (possibly degenerate) rectilinear polygons (called blocks).
Two blocks can overlap at only one point which is called a cut vertex. We denote
by C the set of cut vertices, and let T + := T ∪C. For a block B, denote by HB

and WB its height and width respectively. Let TB := T +∩B. We say B is trivial
if B is a rectangle (or degenerate to a segment) such that |TB| = 2. It is known
that the two points in TB must be two opposite corners of B when it is trivial.
In Fig. 2, C = {a, b, c, d} and only the block between c and d is non-trivial.

Chepoi et al. [3] proved that an MMN on T + is also an MMN on T , and to
obtain an MMN on T +, it suffices to build an MMN on TB for each B ⊆ P(T).
The MMN in any trivial block B can be built by simply connecting the two
points in TB using a Manhattan path. So we have reduced the MMN problem
on T to MMN on non-trivial blocks.

(a)

a b

c

d

(b)

Fig. 2. An example of a Pareto envelope. The black points in (a) are the set T . The
two separate grey regions in (b) are non-degenerate blocks, whereas the black lines are
degenerate blocks. All these blocks form the Pareto envelope P(T).

For a non-trivial block B denote its border by ∂B and let ΓB := Γ ∩ B. We
call a corner p in ∂B a convex corner if the interior angle at p equals to π/2,
otherwise p is called a concave corner.

Lemma 1. [3] For any non-trivial block B and any convex corner p in ∂B, it
holds that p ∈ TB.

Lemma 2. [3] For any non-trivial block B, there exists an MMN GB on TB

such that GB ⊆ ΓB. Furthermore, any MMN GB ⊆ ΓB on TB contains ∂B.

Strips and staircase components: Informally, for p, q ∈ TB, p.y < q.y, we
call R(p, q) a vertical strip if it does not contain any point of TB in the region
BV (p, q) except the vertical lines {(x, y)|x = p.x, y ≤ p.y} and {(x, y)|x =
q.x, y ≥ q.y}. Similarly, for the points p, q ∈ TB, p.x < q.x, we call R(p, q) a
horizontal strip if it does not contain any point in the region BH(p, q) except
the horizontal lines {(x, y)|x ≤ p.x, y = p.y} and {(x, y)|x ≥ q.x, y = q.y}.
Especially, we say a vertical or horizontal strip R(p, q) is degenerate if p.x = q.x
or p.y = q.y. Fig. 3 gives an example of a horizontal strip.

p q tR(p, q)

Fig. 3. The rectangle is a horizontal strip. Any point in TB within BH(p, q) can only
be placed on the dashed lines, e.g., the point t.

The other notion which plays a critical role in our algorithm is the staircase
component. There are four kinds of staircase components specified by four quad-
rants, and without loss of generality we only describe the one with respect to the
third quadrant. Suppose R(p, q) is a vertical strip and R(p′, q′) is a horizontal
strip, such that q ∈ Q1(p), q′ ∈ Q1(p

′), p, q ∈ BV (p′, q′), p′, q′ ∈ BH(p, q), i.e.,
they cross in the way as Fig. 4 shows. Denote by Tpp′|qq′ the set of any point
v ∈ TB such that v.x > q.x, v.y > q′.y, where p is the leftmost point and p′ is the

topmost point in Q3(v) besides v. A non-empty Tpp′|qq′ is said to be a staircase
component (see Fig. 4). In this figure, no point in TB is located in the dark grey
area and the two light grey unbounded regions except those in Tpp′|qq′ .

For a strip R(p, q), (p, q) is called a strip pair. For each staircase component
Tpp′|qq′ and each point v in Tpp′|qq′ , (v, p) (also (v, p′)) is called a staircase pair.

Theorem 1. [3] A network GB is a Manhattan network on TB if and only if
for any strip pair or staircase pair (p, q), p, q ∈ TB, there exists a Manhattan
path in GB connecting p and q.

3 Algorithm Description

Following the approach of [1], a union of vertical segments CV is said to be a
vertical cover if for any horizontal line ℓ and any vertical strip R that ℓ intersects,
it holds that ℓ ∩ R ∩ CV 6= ∅. Similarly, a union of horizontal segments CH is
said to be a horizontal cover if for any vertical line ℓ and any horizontal strip
R that ℓ intersects, it holds that ℓ ∩ R ∩ CH 6= ∅. Furthermore, a nice vertical
cover (NVC) is a vertical cover such that any of its segments contains at least
one point of TB. A nice horizontal cover (NHC) is defined symmetrically. Fig. 5
shows an NVC.

For an NVC CV , obviously [p, q] ⊆ CV for every degenerate vertical strip
R(p, q). Assume R(p, q) is a non-degenerate vertical strip where p.y < q.y, then
there exists vertical segments [p, p′] and [q, q′] in CV where p′.y ≥ q′.y (it is
possible that p = p′ or q = q′), as Fig. 6 shows. Obviously, a Manhattan path
connecting p and q can be built by adding a horizontal segment [u, v] where
u.x = p.x, v.x = q.x, q′.y ≤ u.y = v.y ≤ p′.y. Such a segment [u, v] is said to be a
switch segment of R(p, q). The same concept for NHC is defined symmetrically.

p

q

Tpp′|qq′

p′
q′

Fig. 4. A staircase component
Fig. 5. An NVC consisting of
black lines

p

q

u v

p′

q′

Fig. 6. A switch
segment

Now we present an iterative algorithm CreateNVC to construct an NVC. In
the initialization step, let CV be the union of segments [p, q] for each degenerate
vertical strip R(p, q), whereas N is the set of non-degenerate ones. In addition, let
the set X be TB. The main part of the procedure consists of two loops. Regarding
the first loop, a vertical segment of ∂B in some R(p, q) ∈ N is chosen in each
round. Lemma 1 and the definition of strips guarantee that such segments must
be connected to some point in X . Let the segment lying in the non-degenerate
strip R(p, q) be [p, p′], as Fig. 7 shows. Then p′ is added to X , and [p, p′] is
added to CV . And by invoking Update(p′), N is updated to be the set of non-
degenerate strips when the new set X is considered as the input point set. Define
⋃

N :=
⋃

R(p,q)∈N R(p, q). It is easy to see that the part of
⋃

N adjacent to [p, p′]

is eliminated in each round, which turns out that
⋃

N becomes smaller. It can
be demonstrated that [p, p′] is the unique vertical segment excluded from

⋃

N
in ∂B. We repeat the operations above until all the vertical segments initially
falling in ∂B ∩

⋃

N are excluded from
⋃

N and added to CV .
In the second loop, we choose R(p, q) ∈ N arbitrarily and both its left and

right edges are added to CV . Two points (p.x, q.y), (q.x, p.y) are added to X .
And N is updated in the similar manner as Fig. 8 shows. The formal description
is as follows.

Input: TB

CV ←
S

[p, q] where R(p, q) is a degenerate vertical strip;1

X ← TB ;2

N ← {R(p, q) | R(p, q) is a non-degenerate vertical strip};3

while there exists a vertical segment [p, p′] ⊆ ∂B ∩R(p, q), where R(p, q) ∈ N4

do

X ← X ∪ {p′};5

CV ← CV ∪ [p, p′];6

Update(p′);7

end8

while N 6= ∅ do9

Let R(p, q) be an arbitrary vertical strip in N ;10

p′ ← (p.x, q.y); q′ ← (q.x, p.y);11

X ← X ∪ {p′, q′};12

CV ← CV ∪ [p, p′] ∪ [q, q′];13

Update(p′); Update(q′);14

end15

Algorithm 1: CreateNVC

Lemma 3. CreateNVC takes O(n) time to output an NVC CV .

Proof. Since CV initially contains [p, q] for any degenerate vertical strip R(p, q),
a horizontal line ℓ that crosses R(p, q) always intersects CV . Therefore we only
need to consider non-degenerate vertical strips.

Input: v

for each R(p, q) ∈ N such that v.x = p.x, [p, v] ∩R(p, q) 6= {p} do1

N ← N\{R(p, q)};2

if v ∈ R(p, q) and v.y 6= q.y then N ← N ∪ {R(v, q)};3

end4

Algorithm 2: Update

pp

qq

∂B∂B

p′
p′

Fig. 7. The change in the first loop

pp

qq p′

q′

Fig. 8. The change in the second loop

We prove the following invariant maintains: let R(p, q) be a vertical strip in
the original N and ℓ be a horizontal line that intersects R(p, q), then at any
stage of the algorithm, either ℓ ∩ R(p, q) ∩ CV 6= ∅ or ℓ ∩ R(p, q) ⊆

⋃

N holds.

At the beginning obviously ℓ ∩ R(p, q) ⊆
⋃

N holds. Each time when N is
updated, the part of R(p, q) eliminated from

⋃

N (if existing) must be adjacent to
some segment which is added to CV , so either ℓ∩R(p, q)∩CV 6= ∅ or ℓ∩R(p, q) ⊆
⋃

N still holds for the updated N . The set N will be updated iteratively until
⋃

N = N = ∅, which implies ℓ ∩ R(p, q) ∩ CV 6= ∅.

Secondly, we consider the running time of the procedure.

Line 1 takes O(n) time since O(n) degenerate vertical strips exist. Initially
N contains O(n) non-degenerate vertical strips and

⋃

N contains O(n) vertical
segments of ∂B. The first loop reduces one such vertical segment in each round,
whereas the second loop eliminates at least one strip in N in each round. More-
over, each invoking of the procedure Update takes O(1) time since when a point
is added to X , O(1) strips need to be removed or replaced. Therefore the overall
time complexity is O(n). ⊓⊔

After invoking CreateNVC, we add the topmost and bottommost switch seg-
ments for each non-degenerate vertical strip, as Fig. 9 shows. Then for each
vertical strip R(p, q), at least one Manhattan path between p and q is built.
Symmetrically, we can use the algorithm CreateNHC to compute an NHC. Fur-
thermore, for each horizontal strip, the leftmost and the rightmost switch seg-
ments are added. All these procedures guarantee that the Manhattan paths for
all the strip pairs have been constructed.

Now we turn to the discussion of staircases. For simplicity, we only describe
the definition of the staircase with respect to the third quadrant. The other cases
are symmetric.

Definition 1 (staircase). For a staircase component Tpp′|qq′ with respect to
the third quadrant, assume R(p, q) is a vertical strip and R(p′, q′) is a horizontal
strip. Let Mpq be the Manhattan path between p and q which passes through the
bottommost switch segment. Let Mp′q′ be the Manhattan path between p′ and q′

which passes through the leftmost switch segment. The part of
⋃

v∈T
pp′|qq′

Q3(v)

bounded by Mpq and Mp′q′ , excluding Mpq, Mp′q′ , CV , CH is said to be a staircase,
denoted by Spp′|qq′ .

Fig. 10 gives an example of staircase.

Fig. 9. Adding
switch segments

pp

qq

Spp′|qq′

Mpq

Mp′q′

p′p′

q′q′

Fig. 10. The definition of the staircase Spp′|qq′ . The dotted lines in
the right picture is not included in Spp′|qq′ .

Lemma 4. There exists a procedure CreateStaircasePath such that for the
given staircase Spp′|qq′ with the staircase component Tpp′|qq′ ,

∣

∣Tpp′|qq′

∣

∣ = n, the
procedure takes O(n log n) time to construct a network Gpp′|qq′ ⊆ Spp′|qq′ such
that Gpp′|qq′ ∪ CH ∪ CV connects each point in Tpp′|qq′ to either Mpq or Mp′q′ .

Proof. Without loss of generality, assume R(p, q) is a vertical strip and R(p′, q′)
is a horizontal strip where q ∈ Q1(p), q′ ∈ Q1(p

′), as Fig. 10 shows. Let t0 :=
q, tn+1 := q′. Express the points in Tpp′|qq′ as t1, t2, · · · , tn in the order from the
topmost and leftmost one to the bottommost and rightmost one.

For 1 ≤ i ≤ n, define the horizontal segment hi := {(x, y) | y = ti.y}∩Spp′|qq′

and the vertical segment vi := {(x, y) | x = ti.x} ∩ Spp′|qq′ , as Fig 11 shows. We
use Righti(Spp′|qq′) to represent the staircase polygon on the right of vi whereas
Topi(Spp′|qq′) represents the one on the top of hi. Note that Righti(Spp′|qq′) and
Topi(Spp′|qq′) are all smaller staircase polygons. Assume S is a general staircase
polygon in Spp′|qq′ . Let hS

i := hi∩S, vS
i := vi∩S. It can be observed that 〈hS

i 〉 is
ascending whereas 〈vS

i 〉 is descending. Define Righti(S) and Topi(S) in a similar
way. The partial network Gpp′|qq′ ∩ S is constructed in a recursive manner.

Initially we invoke CreateStaircasePath(Spp′|qq′). For any non-empty S one
of the three branches is chosen. In the third case, binary search guarantees the

Input: S

if S = ∅ then return ∅;1

else if L
�
hS

1

�
≥ L

�
vS
1

�
then return vS

1 ∪ CreateStaircasePath(Right1(S));2

else if L
�
hS

n

�
≤ L

�
vS

n

�
then return hS

n∪ CreateStaircasePath(Topn(S));3

else4

Choose k such that L
�
hS

k

�
≤ L

�
vS

k

�
and L

�
hS

k+1

�
≥ L

�
vS

k+1

�
;5

return hS
k ∪ vS

k+1∪ CreateStaircasePath(Topk (S))∪6

CreateStaircasePath(Rightk+1(S));
end7

Algorithm 3: CreateStaircasePath

proper k can be obtained with running time O(log n) whereas the procedure is
invoked recursively at most O(n) times, which results in the total running time
O(n log n).

The correctness proof simply follows from the induction method. ⊓⊔

ti

hi

vi

Topi(S)

Righti(S)

Fig. 11. The definition
of hi and vi

tktktk

tk+1tk+1tk+1

Fig. 12. One of the three connections for tk and tk+1 is optimal

In the following, we present the global algorithm CreateMMN.

Theorem 2. For the given point set T of size n, CreateMMN takes O(n log n)
time to compute a Manhattan network G on T .

Proof. For any non-trivial block, NVC, NHC and switch segments form the
Manhattan paths for strip pairs, whereas some segments are added in staircases
such that there exist Manhattan paths for staircase pairs. By Theorem 1, the
final network is a Manhattan network.

Regarding the running time, it is well-known that computing the Pareto
envelope and constructing the networks in staircases can be implemented in
O(n log n) time, and the time required for decomposing each block into stair-
cases and strips is also O(n log n) using the method similar to [1]. The other
steps, including computing NVC, NHC and adding switch segments, can be im-
plemented in linear time. Thus the overall time complexity is O(n log n). ⊓⊔

Input: T

Compute P(T).1

for each trivial block B ⊆ P(T) do2

connect the two points in TB with a Manhattan path.3

for each non-trivial block B ⊆ P(T) do4

CreateNVC;5

for each vertical strip R(p, q) do6

add the topmost and bottommost switch segments of R(p, q);7

CreateNHC;8

for each horizontal strip R(p, q) do9

add the leftmost and rightmost switch segments of R(p, q);10

for each staircase Spp′|qq′ do CreateStaircasePath(Spp′ |qq′);11

end12

Algorithm 4: CreateMMN

4 Approximation Analysis

The rest of this paper is devoted to the approximation analysis of this problem.
Let G denote the Manhattan network constructed by our algorithm, whereas
G⋆ is the optimal one demonstrated by Lemma 2 with the property that ∂B ⊆
G⋆ ∩ B ⊆ ΓB for every non-trivial block B. For any block B, let GB := G ∩ B
and G⋆

B := G⋆ ∩ B.
Let B be a non-trivial block. Denote by GS the switch segments our algo-

rithm adds when computing GB. Let S :=
⋃

Spp′|qq′ , GU := GB ∩ S. From the
algorithm description obviously GB := CV ∪ CH ∪ GS ∪ GU .

Let G⋆
C := G⋆

B ∩ (CV ∪ CH), whereas G⋆
U := G⋆

B ∩ S.

Lemma 5. L(CV ∪ CH) ≤ 2L(G⋆
C) − 2HB − 2WB.

Proof. We divide CV ∪CH into two parts: let C1 be the set of segments for each
degenerate vertical and horizontal strip, as well as the segments added in the
first loop of procedures CreateNVC and CreateNHC. Let C2 represent the union
of the segments added in the second loop. In addition, denote C⋆

1 := G⋆
C ∩ C1,

and C⋆
2 := G⋆

C ∩ C2.

Observing that C1 is the union of the segments in degenerate strips and ∂B,
it is easy to show that ∂B ⊆ C1 = C⋆

1 . Therefore L(C1) ≤ 2L(C⋆
1) − L(∂B) =

2L(C⋆
1) − 2HB − 2WB.

On the other hand, let us consider the second loop of the procedure CreateNVC
and CreateNHC. By symmetric property, we only analyze the procedure CreateNVC.
In a round, two segments [p, p′], [q, q′] of length ℓ are added into CV . By our algo-
rithm, R(p, q) is contained in some vertical strip R(s, t). Since G⋆

B is a Manhattan
network, C⋆

2 ∩ ([p, p′]∪ [q, q′]) contains segments of length at least ℓ to connect s
and t. Since the relation holds for each round and also the procedure CreateNHC,
we obtain L(C2) ≤ 2L(C⋆

2).
Combining the two inequalities above, we obtain the lemma. ⊓⊔

For any staircase Spp′|qq′ , let G⋆
pp′|qq′ := G⋆

U ∩ Spp′|qq′ .

Lemma 6. For any staircase Spp′|qq′ , it holds L(Gpp′|qq′) ≤ 2L(G⋆
pp′|qq′) .

Proof. Without loss of generality, let Spp′|qq′ be a staircase with respect to
the third quadrant, as Fig. 10 shows. Let S be a staircase polygon in Spp′|qq′

such that CreateStaircasePath(S) is invoked. We will prove L
(

Gpp′|qq′ ∩ S
)

≤

2L
(

G⋆
pp′|qq′ ∩ S

)

using induction.

The inequality obviously holds in the trivial case S = ∅. Assume the relation
holds for smaller staircase polygons in S. For the case L

(

hS
1

)

≥ L
(

vS
1

)

, t1
is connected down and the original problem is reduced to the small one with
region Right1(S). Let SR := S\Right1(S). By assumption, we only need to prove
L

(

Gpp′|qq′ ∩ SR

)

≤ 2L
(

G⋆
pp′|qq′∩SR

)

. Note that L
(

Gpp′|qq′ ∩ SR

)

= L
(

vS
1

)

, and

in Gpp′|qq′ ∩ SR segments of length min
{

L
(

hS
1

)

, L
(

vS
1

)}

= L
(

vS
1

)

is necessary
to connect t1 to either the left or the bottom boundary of S. Thus the relation
holds. The analysis for the case L

(

hS
n

)

≤ L
(

vS
n

)

is analogous.

Regarding the last case, let SR := S\
(

Topk(S)∪Rightk+1(S)
)

. We only need

to prove L
(

Gpp′|qq′ ∩ SR

)

≤ 2L
(

G⋆
pp′|qq′ ∩ SR

)

. As Fig. 12 shows, segments of

length at least min
{

L
(

vS
k

)

, L
(

hS
k+1

)

, L
(

hS
k

)

+ L
(

vS
k+1

)}

are necessary to con-
nect tk and tk+1 to either the left or the bottom boundary. By monotonic-
ity, L

(

vS
k+1

)

≤ L
(

vS
k

)

and L
(

hS
k

)

≤ L
(

hS
k+1

)

. By the choice of k, we ob-

tain L
(

vS
k+1

)

≤ L
(

hS
k

)

and L
(

hS
k

)

≤ L
(

vS
k+1

)

. Therefore L
(

Gpp′|qq′ ∩ SR

)

=

L
(

hS
k

)

+ L
(

vS
k+1

)

≤ 2L
(

G⋆
pp′|qq′ ∩ SR

)

. ⊓⊔

Now we estimate L(GU). Note that it is possible that some segments of G⋆
U

lie in two different staircases. Let G⋆
D denote the union of these segments. Fig.

13 illustrates this special condition.

Fig. 13. The segment lying in two different staircases

Lemma 7. L(GU) ≤ 2L(G⋆
U) + 2L(G⋆

D).

Proof. Since the segments of G⋆
D are counted twice, we obtain that L(GU) ≤

∑

L(Gpp′|qq′) ≤ 2
∑

L(G⋆
pp′|qq′) ≤ 2L(G⋆

U) + 2L(G⋆
D). ⊓⊔

Lemma 8. 2L(G⋆
D) + L(GS) ≤ 2HB + 2WB.

Proof. The lemma can be obtained by the following fact: let ℓ be a vertical or
horizontal line such that ℓ 6⊆ Γ , then ℓ may cross at most one segment in G⋆

D,
and at most two segments in GS . Furthermore, due to the definitions of strips
and staircase components, ℓ cannot intersect both of G⋆

D and GS . We omit the
details here. ⊓⊔

Theorem 3. For any block B, L(GB) ≤ 2L(G⋆
B).

Proof. For any trivial block B, the relation obviously holds since L(GB) = HB +
WB . Let B be a non-trivial block, L(GB) ≤ L(CV ∩ CH) + L(GS) + L(GU) ≤
2L(G⋆

C) + 2L(G⋆
U) + 2L(G⋆

D) + L(GS) − 2HB − 2WB ≤ 2L(G⋆
C) + 2L(G⋆

U).
Recall that G⋆

C = G⋆
B ∩ (CV ∪ CH), G⋆

U = G⋆
B ∩ SU . By the definition of

staircases, it holds that (CV ∪ CH) ∩ SU = ∅. This means G⋆
C and G⋆

U are
disjoint parts of G⋆

B . Therefore L(GB) ≤ 2L(G⋆
C) + 2L(G⋆

U) ≤ 2L(G⋆
B). ⊓⊔

Corollary 1. L(G) ≤ 2L(G⋆). ⊓⊔

References

1. M. Benkert, A. Wolff and F. Widmann. The minimum Manhattan network prob-
lem: a fast factor-3 approximation. Technical Report 2004-16, Fakultät für Infor-
matik, Universität Karlsruhe. A short version appeared in Proceedings of the 8th

Japanese Conference on Discrete and Computational Geometry, 2005, pages 16-28.
2. M. Benkert, T. Shirabe, and A. Wolff. The minimum Manhattan network problem:

approximations and exact solution. In Proceedings of the 20th European Workshop

on Computational Geometry, 2004, pages 209-212.
3. V. Chepoi, K. Nouioua, and Y. Vaxès. A rounding algorithm for approximating

minimum Manhattan networks. Theoretical Computer Science, 390(2008):56-69.
Preliminary version appeared in Proceedings of the 8th International Workshop

on Approximation Algorithms for Combinatorial Optimization, 2005, pages 40-51.
4. B. Fuchs and A.Schulze. A simple 3-approximation of minimum Manhattan net-

works. Technical Report, 2008. Available at
http://www.zaik.uni-koeln.de/~paper/unzip.html?file=zaik2008-570.pdf

5. J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Approximating a minimum
Manhattan network. Nordic Journal of Computing, 8(2001):219-232. Preliminary
version appeared in Proceedings of the 2nd International Workshop on Approxi-

mation Algorithms for Combinatorial Optimization, 1999, pages 28-37.
6. Z. Guo, H. Sun, and H. Zhu. A fast 2-approximation algorithm for the minimum

Manhattan network Problem. In Proceedings of 4th International Conference on

Algorithmic Aspect in Information Management, pages 212-223, 2008.
7. R. Kato, K. Imai, and T. Asano. An improved algorithm for the minimum Man-

hattan network problem. In Proceedings of the 13th International Symposium on

Algorithms and Computation, 2002, pages 344-356.
8. K. Nouioua. Enveloppes de Pareto et Réseaux de Manhattan: Caractérisations et

algorithmes, Ph.D. thesis, Université de la Méditerranée, 2005.
9. S. Seibert and W. Unger. A 1.5-approximation of the minimal Manhattan network

problem. In Proceedings of the 16th International Symposium on Algorithms and

Computation, 2005, pages 246-255.

