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Notation

Let G be an undirected d-regular graph with n vertices.

The normalised Laplacian matrix of G is defined by

L , I− 1

d
·A,

where A is the adjacency matrix of G.

Laplacian Matrix

Example:

LG =


1 −1/3 −1/3 −1/3
−1/3 1 −1/3 −1/3
−1/3 −1/3 1 −1/3
−1/3 −1/3 −1/3 1


Matrix L has eigenvalues 0 = λ1 ≤ . . . ≤ λn with corresponding eigenvectors

f1, . . . , fn.
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Heat Kernel: a Fundamental Solution of a PDE

LetM be a compact Riemannian manifold, and

u :M× [0,∞)→ R

be a smooth function describing the temperature at a point inM and time t.

LetM be a compact Riemannian manifold and ∆ the Laplacian operator. Then
the heat kernel is the fundament solution of the following PDE:

∂u

∂t
+ ∆u = 0.

Heat Kernel
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Heat Kernel Defines a Continuous-Time Random Walk

When ∆ is the Laplacian matrix L of graph G, for any t ≥ 0 the heat kernel of
G can be written as

Ht = e−tL =
∞∑
k=0

tke−t

k!
Pk,

where P is the random walk matrix of G.

Heat Kernel in Graphs

Heat kernel defines a continuous-time random walk:

Vertices choose a neighbour according to P;

Jumps occur after Poison(1) waiting times.

Continuous-time Random Walks ≈ Discrete-time Random Walks!

The heat kernel defines a semi-group, i.e.,

Ht+s = Ht ·Hs,∀t, s ≥ 0 and lim
t→0

Ht = I.
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Heat Kernel in Graphs: Towards a Geometric Interpretation

For any time-step t ≥ 0, define an embedding ψt : V 7→ Rn by

ψt(v) =
(

e−tλ1f1(v), e−tλ2f2(v), . . . , e−tλnfn(v)
)
.

Let the heat kernel distance between vertices u and v be

dt(u, v) = ‖ψt(u)− ψt(v)‖2.

A simple calculation shows that dt(u, v) =
∑
w∈V (Ht(w, u)−Ht(w, v))2.
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Heat Kernel Distance: From Geometry to Random Walks

Meaning of the heat kernel distance, with a proper choice of t:

dt(u, v) =
∑
w∈V

(Ht(w, u)−Ht(w, v))2

w
u v

edge {u, v} is along a sparse cut

One of the two walks needs to
go across a sparse cut.

For any vertex w, the value of
(Ht(w, u)−Ht(w, v))2 is big.

Hence, dt(u, v) is big.

u

v

w

w′

edge {u, v} is at one side a sparse cut

The values of two Ht(w, .)s are
close to each other.

Hence, (Ht(w, u)−Ht(w, v))2

is small for any vertex w.

Hence, dt(u, v) is small.
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Key Questions

Are our intuitions based on random walks correct?

How do we apply these intuitions to design algorithms?

Do PDEs lead to an entirely new technique to design algorithms for large
datasets?

PDEs for Large Data He Sun 7



Key Questions

Are our intuitions based on random walks correct?

How do we apply these intuitions to design algorithms?

Do PDEs lead to an entirely new technique to design algorithms for large
datasets?

PDEs for Large Data He Sun 7



Key Questions

Are our intuitions based on random walks correct?

How do we apply these intuitions to design algorithms?

Do PDEs lead to an entirely new technique to design algorithms for large
datasets?

PDEs for Large Data He Sun 7



Graph Clustering

Applications in clustering:
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Graph Conductance

The conductance of a set S is defined by

φG(S) ,
|E(S, V \ S)|

d · |S| .

The conductance of a graph G is defined by

φG , min
S:|S|≤|V |/2

φG(S).

λ2

2
≤ φG ≤

√
2λ2.

Cheeger’s Inequality

φG(S) = 2
4·6 = 1

12
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k-Way Expansion

The k-way expansion constant is defined by

ρ(k) = min
partition A1,...,Ak

max
1≤i≤k

φG(Ai).

λk
2
≤ ρ(k) ≤ O(k3)

√
λk.

Higher-Order Cheeger’s Inequality

A large gap between λk+1 and ρ(k) implies that

existence of a k-way partition with bounded ρ(k).

any (k + 1)-way partition contains a set with conductance at least λk+1/2.

Graph G has exactly k clusters.

The key parameter: Υ ,
λk+1

ρ(k)
.
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The Structure Theorem

Let G be a d-regular graph with k disjoint
components S1, . . . , Sk.

For any 1 ≤ i ≤ k let

χi(v) =

{
1 if v ∈ Si,
0 otherwise.

Then

span {f1, . . . , fk} = span {χ1, . . . , χk} .

Υ = Ω(k) implies that span {f1, . . . , fk} ≈ span {χ1, . . . , χk}.

Lemma (Peng-S.-Zanetti, 2017)
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Well-Separation Property of the Embedding

R3

p(1)

p(2)

p(3)

Distance between different clusters inversely ≈ the smaller cluster.

k∑
i=1

∑
u∈Si

∥∥∥F (u)− p(i)
∥∥∥2 ≤ k2/Υ.

Points from Si concentrate around p(i)s.

∥∥∥p(i)∥∥∥2 ∈ ( 9

10
,

11

10

)
· 1

|Si|

“Bigger” clusters are closer to the origin.

∥∥∥p(i) − p(j)∥∥∥2 ≥ 1

kmin{|Si|, |Sj |}
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A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

for i = 1 to K = Θ(k log k) do
set ci = v with prob. proportional to ‖F (v)‖2.

return C , {c1, . . . , cK}.

Algorithm

With const. prob., each Si has at least one vertex sampled.

2. Delete points in C “close” to each other, until |C| = k.

With const. prob., each Si has exactly one vertex remaining in C.

3. The other n− k vertices find their closest neighbours in C.

apply approximate nearest neighbour data structures.

Runtime is O(n · poly logn), even for a large value of k!
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Obtaining the Pairwise Distances via Heat Kernels

Recall the two embeddings discussed so far:

F (v) = (f1(v), . . . , fk(v))

ψt(v) =
(
e−tλ1f1(v), . . . , e−tλnfn(v)

)

We can compute in O
(
nd · log10 n

)
time an embedding such that, with hight

probability, it holds that

(1− ε)‖F (u)− F (v)‖2 ≤ ‖ψt(u)− ψt(v)‖2 ≤ ‖F (u)− F (v)‖2 + n−10.

Lemma (Peng-S.-Zanetti, 2017)

Johnson-Lindenstrauss transformation

Algorithm for approximating matrix exponential.

Proof Sketch
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Main Result

There is a linear-time algorithm that, for a graph G with k clusters S1, . . . , Sk
and Υ = Ω(k3), outputs a partition A1, . . . , Ak such that

|Ai 4 Si| = O(k3 ·Υ−1 · |Si|).

Theorem (Peng-S.-Zanetti, 2017)

The heat kernel distances

dt(u, v) =
∑
w

(Ht(w, u)−Ht(w, v))2

do behave differently among edges inside a cluster and edges crossing
different clusters.

This gives us the first linear-time algorithm for graph clustering.

Our intuitions are from random walk theory, but our analysis is based on
geometry.

A direct proof based on random walks?
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Beyond Graph Clustering

What is the limit of this technique?
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Revisit the Graph Expansion Problem

Given a d-regular graphG = (V,E) as input, find a set S ⊆ V of size |S| ≤ n/2
of minimum conductance, i.e.,

φG(S) = min
S′:|S′|≤n/2

φG(S′).

Graph Expansion

This is the simplified version of graph clustering (k = 2 clusters).

NP-hard to approximate, and there is no constant-factor approximation
algorithms assuming the small-set expansion conjecture holds.

The current best approximation algorithm is based on SDP + geometric
embedding. Arora-Rao-Vazirani, JACM, 2009

Improve the state-of-the-art algorithm by heat kernels?
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Grid Graphs

We define a family of graphs {G}n as follows:

Every Gn has 3n vertices, which form a grid of size
√
n× 3

√
n.

The weight of every edge in the middle row has weight 1/
√
n, and all the

other edges have weight 1.

3
√
n columns

√
n rows

the sparest cut

the Cheeger’s cut
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Heat Kernel Distances in the Grid Graphs

3
√
n coloums

√
n rows the sparest cut
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Summary

Heat kernel is a basic notion in PDEs.

We studied its connections to random walks and geometry, which allows us to
design the first linear-time algorithm for graph clustering.

This leaves us a number of interesting questions, including the powers and
limits of PDEs for processing large datasets.

THANK YOU!

Reference: Richard Peng, He Sun, and Luca Zanetti: Partitioning Well-Clustered Graphs: Spectral

Clustering Works! SIAM Journal on Computing, 46(2):710-743, 2017.
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