Heat Kernels in Graphs:

A Journey from Random Walks to Geometry, and Back

He Sun

University of Bristol

Let G be an undirected d-regular graph with n vertices.

Let G be an undirected d-regular graph with n vertices.

Laplacian Matrix

The normalised Laplacian matrix of G is defined by

$$\mathcal{L} \triangleq \mathbf{I} - \frac{1}{d} \cdot \mathbf{A},$$

where \mathbf{A} is the adjacency matrix of G.

Let G be an undirected d-regular graph with n vertices.

The normalised Laplacian matrix of G is defined by

$$\mathcal{L} \triangleq \mathbf{I} - \frac{1}{d} \cdot \mathbf{A},$$

where \mathbf{A} is the adjacency matrix of G.

Laplacian Matrix

Example:

$$\mathcal{L}_G = \begin{pmatrix} 1 & -1/3 & -1/3 & -1/3 \\ -1/3 & 1 & -1/3 & -1/3 \\ -1/3 & -1/3 & 1 & -1/3 \\ -1/3 & -1/3 & 1 & -1/3 \\ -1/3 & -1/3 & -1/3 & 1 \end{pmatrix}$$

Let G be an undirected *d*-regular graph with n vertices.

The normalised Laplacian matrix of G is defined by

$$\mathcal{L} \triangleq \mathbf{I} - \frac{1}{d} \cdot \mathbf{A},$$

where \mathbf{A} is the adjacency matrix of G.

Laplacian Matrix

Example:

$$\mathcal{L}_G = \begin{pmatrix} 1 & -1/3 & -1/3 & -1/3 \\ -1/3 & 1 & -1/3 & -1/3 \\ -1/3 & -1/3 & 1 & -1/3 \\ -1/3 & -1/3 & 1 & -1/3 \\ -1/3 & -1/3 & -1/3 & 1 \end{pmatrix}$$

Matrix \mathcal{L} has eigenvalues $0 = \lambda_1 \leq \ldots \leq \lambda_n$ with corresponding eigenvectors

 $f_1,\ldots,f_n.$

Let \mathcal{M} be a compact Riemannian manifold, and

 $u: \mathcal{M} \times [0,\infty) \to \mathbb{R}$

be a smooth function describing the temperature at a point in \mathcal{M} and time *t*.

Let \mathcal{M} be a compact Riemannian manifold, and

 $u: \mathcal{M} \times [0, \infty) \to \mathbb{R}$

be a smooth function describing the temperature at a point in \mathcal{M} and time *t*.

Heat Kernel Let \mathcal{M} be a compact Riemannian manifold and Δ the Laplacian operator. Then the heat kernel is the fundament solution of the following PDE: $\frac{\partial u}{\partial t} + \Delta u = 0.$

Let \mathcal{M} be a compact Riemannian manifold, and

 $u: \mathcal{M} \times [0, \infty) \to \mathbb{R}$

be a smooth function describing the temperature at a point in \mathcal{M} and time *t*.

Heat KernelLet \mathcal{M} be a compact Riemannian manifold and Δ the Laplacian operator. Then
the heat kernel is the fundament solution of the following PDE: $\frac{\partial u}{\partial t} + \Delta u = 0.$

Heat Kernel in Graphs -----

When Δ is the Laplacian matrix ${\cal L}$ of graph G, for any $t\geq 0$ the heat kernel of G can be written as

$$\mathbf{H}_t = \mathrm{e}^{-t\mathcal{L}} = \sum_{k=0}^{\infty} \frac{t^k \mathrm{e}^{-t}}{k!} \mathbf{P}^k,$$

where \mathbf{P} is the random walk matrix of G.

Heat kernel defines a continuous-time random walk:

- Vertices choose a neighbour according to P;
- Jumps occur after Poison(1) waiting times.

Heat kernel defines a continuous-time random walk:

- Vertices choose a neighbour according to P;
- Jumps occur after Poison(1) waiting times.

Continuous-time Random Walks \approx Discrete-time Random Walks!

Heat kernel defines a continuous-time random walk:

- Vertices choose a neighbour according to P;
- Jumps occur after Poison(1) waiting times.

Continuous-time Random Walks \approx Discrete-time Random Walks!

For any time-step $t \geq 0$, define an embedding $\psi_t : V \mapsto \mathbb{R}^n$ by

$$\psi_t(v) = \left(\mathrm{e}^{-t\lambda_1} f_1(v), \mathrm{e}^{-t\lambda_2} f_2(v), \dots, \mathrm{e}^{-t\lambda_n} f_n(v)\right).$$

For any time-step $t \ge 0$, define an embedding $\psi_t : V \mapsto \mathbb{R}^n$ by

$$\psi_t(v) = \left(e^{-t\lambda_1} f_1(v), e^{-t\lambda_2} f_2(v), \dots, e^{-t\lambda_n} f_n(v) \right).$$

Let the heat kernel distance between vertices u and v be

 $d_t(u, v) = \|\psi_t(u) - \psi_t(v)\|^2.$

For any time-step $t \ge 0$, define an embedding $\psi_t : V \mapsto \mathbb{R}^n$ by

$$\psi_t(v) = \left(\mathrm{e}^{-t\lambda_1} f_1(v), \mathrm{e}^{-t\lambda_2} f_2(v), \dots, \mathrm{e}^{-t\lambda_n} f_n(v) \right).$$

Let the heat kernel distance between vertices u and v be

 $d_t(u, v) = \|\psi_t(u) - \psi_t(v)\|^2.$

A simple calculation shows that $d_t(u, v) = \sum_{w \in V} (\mathbf{H}_t(w, u) - \mathbf{H}_t(w, v))^2$.

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u,v) = \sum_{w \in V} \left(\mathbf{H}_t(w,u) - \mathbf{H}_t(w,v) \right)^2$$

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u,v) = \sum_{w \in V} \left(\mathbf{H}_t(w,u) - \mathbf{H}_t(w,v) \right)^2$$

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u,v) = \sum_{w \in V} \left(\mathbf{H}_t(w,u) - \mathbf{H}_t(w,v) \right)^2$$

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u,v) = \sum_{w \in V} \left(\mathbf{H}_t(w,u) - \mathbf{H}_t(w,v) \right)^2$$

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u,v) = \sum_{w \in V} \left(\mathbf{H}_t(w,u) - \mathbf{H}_t(w,v) \right)^2$$

edge $\{u,v\}$ is along a sparse cut

 One of the two walks needs to go across a sparse cut.

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u,v) = \sum_{w \in V} \left(\mathbf{H}_t(w,u) - \mathbf{H}_t(w,v) \right)^2$$

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $(\mathbf{H}_t(w, u) \mathbf{H}_t(w, v))^2$ is big.

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u,v) = \sum_{w \in V} \left(\mathbf{H}_t(w,u) - \mathbf{H}_t(w,v) \right)^2$$

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of (H_t(w, u) - H_t(w, v))² is big.
- Hence, $d_t(u, v)$ is big.

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u,v) = \sum_{w \in V} \left(\mathbf{H}_t(w,u) - \mathbf{H}_t(w,v) \right)^2$$

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $(\mathbf{H}_t(w, u) \mathbf{H}_t(w, v))^2$ is big.
- Hence, $d_t(u, v)$ is big.

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u,v) = \sum_{w \in V} \left(\mathbf{H}_t(w,u) - \mathbf{H}_t(w,v) \right)^2$$

edge $\{u, v\}$ is along a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $(\mathbf{H}_t(w, u) \mathbf{H}_t(w, v))^2$ is big.
- Hence, $d_t(u, v)$ is big.

edge $\{u,v\}$ is at one side a sparse cut

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u,v) = \sum_{w \in V} \left(\mathbf{H}_t(w,u) - \mathbf{H}_t(w,v) \right)^2$$

edge $\{u, v\}$ is along a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $(\mathbf{H}_t(w, u) \mathbf{H}_t(w, v))^2$ is big.
- Hence, $d_t(u, v)$ is big.

edge $\{u, v\}$ is at one side a sparse cut

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u,v) = \sum_{w \in V} \left(\mathbf{H}_t(w,u) - \mathbf{H}_t(w,v) \right)^2$$

edge $\{u, v\}$ is along a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $(\mathbf{H}_t(w, u) \mathbf{H}_t(w, v))^2$ is big.
- Hence, $d_t(u, v)$ is big.

edge $\{u,v\}$ is at one side a sparse cut

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u, v) = \sum_{w \in V} \left(\mathbf{H}_t(w, u) - \mathbf{H}_t(w, v) \right)^2$$

edge $\{u, v\}$ is along a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $(\mathbf{H}_t(w, u) \mathbf{H}_t(w, v))^2$ is big.
- Hence, $d_t(u, v)$ is big.

edge $\{u,v\}$ is at one side a sparse cut

The values of two H_t(w, .)s are close to each other.

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u, v) = \sum_{w \in V} \left(\mathbf{H}_t(w, u) - \mathbf{H}_t(w, v) \right)^2$$

edge $\{u, v\}$ is along a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $(\mathbf{H}_t(w, u) \mathbf{H}_t(w, v))^2$ is big.
- Hence, $d_t(u, v)$ is big.

edge $\{u, v\}$ is at one side a sparse cut

- The values of two H_t(w, .)s are close to each other.
- Hence, (H_t(w, u) H_t(w, v))² is small for any vertex w.

Meaning of the heat kernel distance, with a proper choice of *t*:

$$d_t(u, v) = \sum_{w \in V} \left(\mathbf{H}_t(w, u) - \mathbf{H}_t(w, v) \right)^2$$

edge $\{u, v\}$ is along a sparse cut

- One of the two walks needs to go across a sparse cut.
- For any vertex w, the value of $(\mathbf{H}_t(w, u) \mathbf{H}_t(w, v))^2$ is big.
- Hence, $d_t(u, v)$ is big.

edge $\{u, v\}$ is at one side a sparse cut

- The values of two H_t(w, .)s are close to each other.
- Hence, $(\mathbf{H}_t(w, u) \mathbf{H}_t(w, v))^2$ is small for any vertex w.
- Hence, $d_t(u, v)$ is small.

Are our intuitions based on random walks correct?

- Are our intuitions based on random walks correct?
- How do we apply these intuitions to design algorithms?

- Are our intuitions based on random walks correct?
- How do we apply these intuitions to design algorithms?
- Do PDEs lead to an entirely new technique to design algorithms for large datasets?

Applications in clustering:

Applications in clustering:

Applications in clustering:

The conductance of a set ${\cal S}$ is defined by

$$\phi_G(S) \triangleq \frac{|E(S, V \setminus S)|}{d \cdot |S|}.$$
The conductance of a set ${\cal S}$ is defined by

$$\phi_G(S) \triangleq \frac{|E(S, V \setminus S)|}{d \cdot |S|}.$$

$$\phi_G(S) = \frac{2}{4 \cdot 6} = \frac{1}{12}$$

The conductance of a set ${\cal S}$ is defined by

 $\phi_G(S) \triangleq \frac{|E(S, V \setminus S)|}{d \cdot |S|}.$

The conductance of a graph G is defined by

$$\phi_G \triangleq \min_{S:|S| \le |V|/2} \phi_G(S).$$

$$\phi_G(S) = \frac{2}{4 \cdot 6} = \frac{1}{12}$$

The conductance of a set ${\cal S}$ is defined by

$$\phi_G(S) \triangleq \frac{|E(S, V \setminus S)|}{d \cdot |S|}.$$

The conductance of a graph G is defined by

$$\phi_G \triangleq \min_{S:|S| \le |V|/2} \phi_G(S).$$

$$\label{eq:cheeger's Inequality} \frac{\lambda_2}{2} \leq \phi_G \leq \sqrt{2\lambda_2}.$$

$$\phi_G(S) = \frac{2}{4 \cdot 6} = \frac{1}{12}$$

The k-way expansion constant is defined by

$$\rho(k) = \min_{\text{partition } A_1, \dots, A_k} \max_{1 \le i \le k} \phi_G(A_i).$$

The k-way expansion constant is defined by

$$\rho(k) = \min_{\text{partition } A_1, \dots, A_k} \max_{1 \le i \le k} \phi_G(A_i).$$

- Higher-Order Cheeger's Inequality

$$\frac{\lambda_k}{2} \le \rho(k) \le O(k^3) \sqrt{\lambda_k}.$$

The k-way expansion constant is defined by

$$\rho(k) = \min_{\text{partition } A_1, \dots, A_k} \max_{1 \le i \le k} \phi_G(A_i).$$

Higher-Order Cheeger's Inequality

$$\frac{\lambda_k}{2} \le \rho(k) \le O(k^3) \sqrt{\lambda_k}.$$

A large gap between λ_{k+1} and $\rho(k)$ implies that

• existence of a k-way partition with bounded $\rho(k)$.

The k-way expansion constant is defined by

$$\rho(k) = \min_{\text{partition } A_1, \dots, A_k} \max_{1 \le i \le k} \phi_G(A_i).$$

Higher-Order Cheeger's Inequality

$$\frac{\lambda_k}{2} \le \rho(k) \le O(k^3) \sqrt{\lambda_k}.$$

A large gap between λ_{k+1} and $\rho(k)$ implies that

- existence of a k-way partition with bounded $\rho(k)$.
- any (k + 1)-way partition contains a set with conductance at least $\lambda_{k+1}/2$.

The k-way expansion constant is defined by

$$\rho(k) = \min_{\text{partition } A_1, \dots, A_k} \max_{1 \le i \le k} \phi_G(A_i).$$

Higher-Order Cheeger's Inequality

$$\frac{\lambda_k}{2} \le \rho(k) \le O(k^3) \sqrt{\lambda_k}.$$

A large gap between λ_{k+1} and $\rho(k)$ implies that

- existence of a k-way partition with bounded $\rho(k)$.
- any (k + 1)-way partition contains a set with conductance at least $\lambda_{k+1}/2$.
- Graph *G* has exactly *k* clusters.

The k-way expansion constant is defined by

$$\rho(k) = \min_{\text{partition } A_1, \dots, A_k} \max_{1 \le i \le k} \phi_G(A_i).$$

Higher-Order Cheeger's Inequality

$$\frac{\lambda_k}{2} \le \rho(k) \le O(k^3) \sqrt{\lambda_k}.$$

A large gap between λ_{k+1} and $\rho(k)$ implies that

- existence of a k-way partition with bounded $\rho(k)$.
- any (k + 1)-way partition contains a set with conductance at least $\lambda_{k+1}/2$.
- Graph *G* has exactly *k* clusters.

The key parameter: 1

$$\Upsilon \triangleq \frac{\lambda_{k+1}}{\rho(k)}.$$

Let *G* be a *d*-regular graph with k disjoint components S_1, \ldots, S_k .

Let *G* be a *d*-regular graph with k disjoint components S_1, \ldots, S_k . For any $1 \le i \le k$ let

$$\chi_i(v) = \begin{cases} 1 & \quad \text{if } v \in S_i, \\ 0 & \quad \text{otherwise.} \end{cases}$$

Let *G* be a *d*-regular graph with *k* disjoint components S_1, \ldots, S_k . For any $1 \le i \le k$ let

$$\chi_i(v) = \begin{cases} 1 & \text{ if } v \in S_i, \\ 0 & \text{ otherwise.} \end{cases}$$

Then

 $\operatorname{span} \{f_1, \ldots, f_k\} = \operatorname{span} \{\chi_1, \ldots, \chi_k\}.$

Let G be a d-regular graph with k disjoint components S_1, \ldots, S_k . For any $1 \le i \le k$ let

$$\chi_i(v) = \begin{cases} 1 & \quad \text{if } v \in S_i, \\ 0 & \quad \text{otherwise.} \end{cases}$$

Then

 $\operatorname{span} \{f_1, \ldots, f_k\} = \operatorname{span} \{\chi_1, \ldots, \chi_k\}.$

Lemma (Peng-S.-Zanetti, 2017)

 $\Upsilon = \Omega(k)$ implies that span $\{f_1, \ldots, f_k\} \approx \text{span} \{\chi_1, \ldots, \chi_k\}.$

Let *G* be a *d*-regular graph with k disjoint components S_1, \ldots, S_k . For any $1 \le i \le k$ let

$$\chi_i(v) = \begin{cases} 1 & \quad \text{if } v \in S_i, \\ 0 & \quad \text{otherwise.} \end{cases}$$

Then

 $\operatorname{span} \{f_1, \ldots, f_k\} = \operatorname{span} \{\chi_1, \ldots, \chi_k\}.$

 $\Upsilon = \Omega(k) \text{ implies that span } \{f_1, \dots, f_k\} \approx \text{span } \{\chi_1, \dots, \chi_k\}.$

Define $F(v) = (f_1(v), ..., f_k(v)).$

Let *G* be a *d*-regular graph with k disjoint components S_1, \ldots, S_k . For any $1 \le i \le k$ let

$$\chi_i(v) = \begin{cases} 1 & \quad \text{if } v \in S_i, \\ 0 & \quad \text{otherwise.} \end{cases}$$

Then

 $\operatorname{span} \{f_1, \ldots, f_k\} = \operatorname{span} \{\chi_1, \ldots, \chi_k\}.$

Lemma (Peng-S.-Zanetti, 2017) $\Upsilon = \Omega(k)$ implies that span $\{f_1, \dots, f_k\} \approx \text{span} \{\chi_1, \dots, \chi_k\}.$

Define $F(v) = (f_1(v), ..., f_k(v)).$

There are points $p^{(1)}, \ldots, p^{(k)}$, s.t. cluster S_i is concentrated around $p^{(i)}$.

Well-Separation Property of the Embedding

$$\sum_{i=1}^k \sum_{u \in S_i} \left\| F(u) - p^{(i)} \right\|^2 \le k^2 / \Upsilon.$$

Points from S_i concentrate around $p^{(i)}s$.

Well-Separation Property of the Embedding

$$\sum_{i=1}^{k} \sum_{u \in S_i} \left\| F(u) - p^{(i)} \right\|^2 \le k^2 / \Upsilon.$$

Points from S_i concentrate around $p^{(i)}s$.

$$\left\|p^{(i)}\right\|^2 \in \left(\frac{9}{10}, \frac{11}{10}\right) \cdot \frac{1}{|S_i|}$$

"Bigger" clusters are closer to the origin.

Well-Separation Property of the Embedding

$$\sum_{i=1}^{k} \sum_{u \in S_i} \left\| F(u) - p^{(i)} \right\|^2 \le k^2 / \Upsilon.$$

Points from S_i concentrate around $p^{(i)}s$.

$$\left\|p^{(i)}\right\|^2 \in \left(\frac{9}{10}, \frac{11}{10}\right) \cdot \frac{1}{|S_i|}$$

"Bigger" clusters are closer to the origin.

$$\left\|p^{(i)} - p^{(j)}\right\|^2 \ge \frac{1}{k\min\{|S_i|, |S_j|\}}$$

Distance between different clusters inversely \approx the smaller cluster.

A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

Algorithm

for i = 1 to $K = \Theta(k \log k)$ do set $c_i = v$ with prob. proportional to $||F(v)||^2$. return $C \triangleq \{c_1, \ldots, c_K\}$.

A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

Algorithm

for i = 1 to $K = \Theta(k \log k)$ do set $c_i = v$ with prob. proportional to $||F(v)||^2$. return $C \triangleq \{c_1, \ldots, c_K\}$.

With const. prob., each S_i has at least one vertex sampled.

A Simple Algorithm For Graph Clustering

ASSUME we know the pairwise distances of the points for free!

1. Obtain a set C of candidate centres.

Algorithm

for i = 1 to $K = \Theta(k \log k)$ do set $c_i = v$ with prob. proportional to $||F(v)||^2$. return $C \triangleq \{c_1, \ldots, c_K\}$.

With const. prob., each S_i has at least one vertex sampled.

2. Delete points in C "close" to each other, until |C| = k.

1. Obtain a set ${\cal C}$ of candidate centres.

Algorithm

for i = 1 to $K = \Theta(k \log k)$ do set $c_i = v$ with prob. proportional to $||F(v)||^2$. return $C \triangleq \{c_1, \ldots, c_K\}$.

With const. prob., each S_i has at least one vertex sampled.

2. Delete points in C "close" to each other, until |C| = k.

With const. prob., each S_i has exactly one vertex remaining in C.

1. Obtain a set C of candidate centres.

Algorithm

for i = 1 to $K = \Theta(k \log k)$ do set $c_i = v$ with prob. proportional to $||F(v)||^2$. return $C \triangleq \{c_1, \ldots, c_K\}$.

With const. prob., each S_i has at least one vertex sampled.

2. Delete points in C "close" to each other, until |C| = k.

With const. prob., each S_i has exactly one vertex remaining in C.

3. The other n - k vertices find their closest neighbours in C.

1. Obtain a set C of candidate centres.

Algorithm

for i = 1 to $K = \Theta(k \log k)$ do set $c_i = v$ with prob. proportional to $||F(v)||^2$. return $C \triangleq \{c_1, \ldots, c_K\}$.

With const. prob., each S_i has at least one vertex sampled.

2. Delete points in C "close" to each other, until |C| = k.

With const. prob., each S_i has exactly one vertex remaining in C.

3. The other n - k vertices find their closest neighbours in C.

apply approximate nearest neighbour data structures.

1. Obtain a set C of candidate centres.

Algorithm

for i = 1 to $K = \Theta(k \log k)$ do set $c_i = v$ with prob. proportional to $||F(v)||^2$. return $C \triangleq \{c_1, \ldots, c_K\}$.

With const. prob., each S_i has at least one vertex sampled.

2. Delete points in C "close" to each other, until |C| = k.

With const. prob., each S_i has exactly one vertex remaining in C.

3. The other n - k vertices find their closest neighbours in C.

apply approximate nearest neighbour data structures.

Runtime is $O(n \cdot \operatorname{poly} \log n)$, even for a large value of k!

Obtaining the Pairwise Distances via Heat Kernels

Recall the two embeddings discussed so far:

•
$$F(v) = (f_1(v), \dots, f_k(v))$$

•
$$\psi_t(v) = \left(e^{-t\lambda_1} f_1(v), \dots, e^{-t\lambda_n} f_n(v) \right)$$

Obtaining the Pairwise Distances via Heat Kernels

Recall the two embeddings discussed so far:

•
$$F(v) = (f_1(v), \dots, f_k(v))$$

•
$$\psi_t(v) = \left(e^{-t\lambda_1} f_1(v), \dots, e^{-t\lambda_n} f_n(v) \right)$$

Lemma (Peng-S.-Zanetti, 2017) -

We can compute in $O\left(nd\cdot\log^{10}n\right)$ time an embedding such that, with hight probability, it holds that

$$(1-\varepsilon)\|F(u) - F(v)\|^2 \le \|\psi_t(u) - \psi_t(v)\|^2 \le \|F(u) - F(v)\|^2 + n^{-10}.$$

Obtaining the Pairwise Distances via Heat Kernels

Recall the two embeddings discussed so far:

•
$$F(v) = (f_1(v), \dots, f_k(v))$$

•
$$\psi_t(v) = \left(e^{-t\lambda_1} f_1(v), \dots, e^{-t\lambda_n} f_n(v) \right)$$

Lemma (Peng-S.-Zanetti, 2017) -----

We can compute in $O\left(nd\cdot\log^{10}n\right)$ time an embedding such that, with hight probability, it holds that

$$(1-\varepsilon)\|F(u) - F(v)\|^{2} \le \|\psi_{t}(u) - \psi_{t}(v)\|^{2} \le \|F(u) - F(v)\|^{2} + n^{-10}.$$

Proof Sketch

- Johnson-Lindenstrauss transformation
- Algorithm for approximating matrix exponential.

Theorem (Peng-S.-Zanetti, 2017) -

There is a linear-time algorithm that, for a graph G with k clusters S_1, \ldots, S_k and $\Upsilon = \Omega(k^3)$, outputs a partition A_1, \ldots, A_k such that

 $|A_i \bigtriangleup S_i| = O(k^3 \cdot \Upsilon^{-1} \cdot |S_i|).$

Theorem (Peng-S.-Zanetti, 2017)

There is a linear-time algorithm that, for a graph G with k clusters S_1, \ldots, S_k and $\Upsilon = \Omega(k^3)$, outputs a partition A_1, \ldots, A_k such that

$$|A_i \bigtriangleup S_i| = O(k^3 \cdot \Upsilon^{-1} \cdot |S_i|).$$

The heat kernel distances

$$d_t(u, v) = \sum_{w} (H_t(w, u) - H_t(w, v))^2$$

do behave differently among edges inside a cluster and edges crossing different clusters.

Theorem (Peng-S.-Zanetti, 2017)

There is a linear-time algorithm that, for a graph G with k clusters S_1, \ldots, S_k and $\Upsilon = \Omega(k^3)$, outputs a partition A_1, \ldots, A_k such that

$$|A_i \bigtriangleup S_i| = O(k^3 \cdot \Upsilon^{-1} \cdot |S_i|).$$

The heat kernel distances

$$d_t(u, v) = \sum_{w} (H_t(w, u) - H_t(w, v))^2$$

do behave differently among edges inside a cluster and edges crossing different clusters.

• This gives us the first linear-time algorithm for graph clustering.

Theorem (Peng-S.-Zanetti, 2017) -

There is a linear-time algorithm that, for a graph G with k clusters S_1, \ldots, S_k and $\Upsilon = \Omega(k^3)$, outputs a partition A_1, \ldots, A_k such that

$$|A_i \bigtriangleup S_i| = O(k^3 \cdot \Upsilon^{-1} \cdot |S_i|).$$

The heat kernel distances

$$d_t(u, v) = \sum_{w} (H_t(w, u) - H_t(w, v))^2$$

do behave differently among edges inside a cluster and edges crossing different clusters.

- This gives us the first linear-time algorithm for graph clustering.
- Our intuitions are from random walk theory, but our analysis is based on geometry.

Theorem (Peng-S.-Zanetti, 2017) -

There is a linear-time algorithm that, for a graph G with k clusters S_1, \ldots, S_k and $\Upsilon = \Omega(k^3)$, outputs a partition A_1, \ldots, A_k such that

$$|A_i \bigtriangleup S_i| = O(k^3 \cdot \Upsilon^{-1} \cdot |S_i|).$$

The heat kernel distances

$$d_t(u, v) = \sum_{w} (H_t(w, u) - H_t(w, v))^2$$

do behave differently among edges inside a cluster and edges crossing different clusters.

- This gives us the first linear-time algorithm for graph clustering.
- Our intuitions are from random walk theory, but our analysis is based on geometry.
- A direct proof based on random walks?

What is the limit of this technique?

Graph Expansion -

Given a d-regular graph G=(V,E) as input, find a set $S\subseteq V$ of size $|S|\leq n/2$ of minimum conductance, i.e.,

$$\phi_G(S) = \min_{S':|S'| \le n/2} \phi_G(S').$$
Graph Expansion -

Given a d-regular graph G=(V,E) as input, find a set $S\subseteq V$ of size $|S|\leq n/2$ of minimum conductance, i.e.,

$$\phi_G(S) = \min_{S':|S'| \le n/2} \phi_G(S').$$

• This is the simplified version of graph clustering (k = 2 clusters).

Graph Expansion -

Given a d-regular graph G=(V,E) as input, find a set $S\subseteq V$ of size $|S|\leq n/2$ of minimum conductance, i.e.,

$$\phi_G(S) = \min_{S':|S'| \le n/2} \phi_G(S').$$

- This is the simplified version of graph clustering (k = 2 clusters).
- NP-hard to approximate, and there is no constant-factor approximation algorithms assuming the small-set expansion conjecture holds.

Graph Expansion

Given a d-regular graph G=(V,E) as input, find a set $S\subseteq V$ of size $|S|\leq n/2$ of minimum conductance, i.e.,

$$\phi_G(S) = \min_{S':|S'| \le n/2} \phi_G(S').$$

- This is the simplified version of graph clustering (k = 2 clusters).
- NP-hard to approximate, and there is no constant-factor approximation algorithms assuming the small-set expansion conjecture holds.
- The current best approximation algorithm is based on SDP + geometric embedding. Arora-Rao-Vazirani, JACM, 2009

Graph Expansion -

Given a d-regular graph G=(V,E) as input, find a set $S\subseteq V$ of size $|S|\leq n/2$ of minimum conductance, i.e.,

$$\phi_G(S) = \min_{S':|S'| \le n/2} \phi_G(S').$$

- This is the simplified version of graph clustering (k = 2 clusters).
- NP-hard to approximate, and there is no constant-factor approximation algorithms assuming the small-set expansion conjecture holds.
- The current best approximation algorithm is based on SDP + geometric embedding. Arora-Rao-Vazirani, JACM, 2009

Improve the state-of-the-art algorithm by heat kernels?

Grid Graphs

We define a family of graphs $\{G\}_n$ as follows:

- Every G_n has 3n vertices, which form a grid of size $\sqrt{n} \times 3\sqrt{n}$.
- The weight of every edge in the middle row has weight $1/\sqrt{n}$, and all the other edges have weight 1.

Grid Graphs

We define a family of graphs $\{G\}_n$ as follows:

- Every G_n has 3n vertices, which form a grid of size $\sqrt{n} \times 3\sqrt{n}$.
- The weight of every edge in the middle row has weight $1/\sqrt{n}$, and all the other edges have weight 1.

Grid Graphs

We define a family of graphs $\{G\}_n$ as follows:

- Every G_n has 3n vertices, which form a grid of size $\sqrt{n} \times 3\sqrt{n}$.
- The weight of every edge in the middle row has weight $1/\sqrt{n}$, and all the other edges have weight 1.

- Heat kernel is a basic notion in PDEs.

Summary

- Heat kernel is a basic notion in PDEs.
- We studied its connections to random walks and geometry, which allows us to design the first linear-time algorithm for graph clustering.

- Heat kernel is a basic notion in PDEs.
- We studied its connections to random walks and geometry, which allows us to design the first linear-time algorithm for graph clustering.
- This leaves us a number of interesting questions, including the powers and limits of PDEs for processing large datasets.

- Heat kernel is a basic notion in PDEs.
- We studied its connections to random walks and geometry, which allows us to design the first linear-time algorithm for graph clustering.
- This leaves us a number of interesting questions, including the powers and limits of PDEs for processing large datasets.

THANK YOU!

<u>Reference:</u> Richard Peng, He Sun, and Luca Zanetti: Partitioning Well-Clustered Graphs: Spectral Clustering Works! SIAM Journal on Computing, 46(2):710-743, 2017.