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PARTITIONING WELL-CLUSTERED GRAPHS: SPECTRAL
CLUSTERING WORKS!∗

RICHARD PENG† , HE SUN‡ , AND LUCA ZANETTI‡

Abstract. In this paper we study variants of the widely used spectral clustering that partitions a
graph into k clusters by (1) embedding the vertices of a graph into a low-dimensional space using the
bottom eigenvectors of the Laplacian matrix and (2) grouping the embedded points into k clusters
via k-means algorithms. We show that, for a wide class of graphs, spectral clustering gives a good
approximation of the optimal clustering. While this approach was proposed in the early 1990s and has
comprehensive applications, prior to our work similar results were known only for graphs generated
from stochastic models. We also give a nearly linear time algorithm for partitioning well-clustered
graphs based on computing a matrix exponential and approximate nearest neighbor data structures.
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1. Introduction. Partitioning a graph into two or more pieces is one of the
most fundamental problems in combinatorial optimization and has comprehensive
applications in various disciplines of computer science.

One of the most studied graph partitioning problems is the edge expansion prob-
lem, i.e., finding a cut with few crossing edges normalized by the size of the smaller
side of the cut. Formally, let G = (V,E) be an undirected graph. For any set S, the
conductance of set S is defined by

φG(S) �
|E(S, V \ S)|

vol(S)
,

where vol(S) is the total weight of edges incident to vertices in S, and let the conduc-
tance of G be

φ(G) � min
S:vol(S)�vol(G)/2

φG(S).

The edge expansion problem asks for a set S ⊆ V of vol(S) � vol(V )/2 such that
φG(S) = φ(G). This problem is known to be NP-hard [26], and the current best
approximation algorithm achieves an approximation ratio of O(

√
logn) [5].

The k-way partitioning problem is a natural generalization of the edge expansion
problem. We call subsets of vertices (i.e., clusters) A1, . . . , Ak a k-way partition of G

if Ai∩Aj = ∅ for different i and j, and
⋃k

i=1 Ai = V . The k-way partitioning problem
asks for a k-way partition of G such that the conductance of any Ai in the partition
is at most the k-way expansion constant, defined by

(1) ρ(k) � min
partition A1,...,Ak

max
1�i�k

φG(Ai).

Clusters of low conductance in networks appearing in practice usually capture the
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notion of community, and algorithms for finding these subsets have applications in
various domains such as community detection and network analysis. In computer
vision, most image segmentation procedures are based on region-based merge and
split [10], which in turn rely on partitioning graphs into multiple subsets [36]. On the
theoretical side, decomposing vertex/edge sets into multiple disjoint subsets is used
in designing approximation algorithms for unique games [39] and efficient algorithms
for graph problems [18, 23, 38].

Despite widespread use of various graph partitioning schemes over the past decades,
the quantitative relationship between the k-way expansion constant and the eigen-
values of the graph Laplacians were unknown until a sequence of very recent re-
sults [22, 24]. For instance, Lee, Oveis Gharan, and Trevisan [22] proved the following
higher-order Cheeger inequality:

(2)
λk

2
� ρ(k) � O(k2)

√
λk,

where 0 = λ1 � · · · � λn � 2 are the eigevalues of the normalized Laplacian matrix
L of G. Informally, the higher-order Cheeger inequality shows that a graph G has a
k-way partition with low ρ(k) if and only if λk is small. Indeed, (2) implies that a
large gap between λk+1 and ρ(k) guarantees (i) existence of a k-way partition {Si}ki=1

with bounded φG(Si) � ρ(k), and (ii) any (k+1)-way partition of G contains a subset
with significantly higher conductance ρ(k+1) � λk+1/2 compared with ρ(k). Hence,
a suitable lower bound on the gap Υ(k) for some k, defined by

(3) Υ(k) � λk+1

ρ(k)
,

implies the existence of a k-way partition for which every cluster has low conductance,
and that G is a well-clustered graph.

We study well-clustered graphs which satisfy a gap assumption on Υ(k) in this
paper. Our gap assumption on Υ(k) is slightly weaker than assuming gaps between the
eigenvalues but is nonetheless related via Cheeger-type inequalities. Our assumption
is also well-grounded in practical studies: clustering algorithms have been studied
before under this assumption in machine learning, e.g., [1]. Sharp drop-offs between
two consecutive eigenvalues have also been observed to give good indicators for the
number of clusters, e.g., [40] and [14, section D].

1.1. Our results. We give structural results that show close connections be-
tween the eigenvectors and the indicator vectors of the clusters. This characterization
allows us to show that many variants of spectral clustering, that are based on the
spectral embedding and that work “in practice,” can be rigorously analyzed “in the-
ory.” Moreover, exploiting our gap assumption, we can approximate this spectral
embedding using the heat kernel of the graph. Combining this with approximate
nearest neighbor data structures, we give a nearly linear time algorithm for the k-way
partitioning problem.

Our structural results can be summarized as follows. Let {fi}ki=1 be the eigen-
vectors corresponding to the k smallest eigenvalues of L, and {Si}ki=1 be a k-way
partition of G achieving ρ(k) defined in (1). We define {gi}ki=1 to be the indicator
vectors of the clusters {Si}ki=1, where gi(u) = 1 if u ∈ Si, and gi(u) = 0 otherwise. We
further use {ḡi}ki=1 to express the normalized indicator vectors of the clusters {Si}ki=1,
defined by

ḡi =
D1/2gi
‖D1/2gi‖ .
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We show that, under the condition of Υ(k) = Ω(k2), the span of {ḡi}ki=1 and the span
of {fi}ki=1 are close to each other, which is stated formally in Theorem 1.1.

Theorem 1.1 (the structure theorem). Let {Si}ki=1 be a k-way partition of G
achieving ρ(k), and let Υ(k) = λk+1/ρ(k) = Ω(k2). Let {fi}ki=1 and {ḡi}ki=1 be defined
as above. Then, the following statements hold:

1. For every ḡi, there is a linear combination of {fi}ki=1, called f̂i, such that

‖gi − f̂i‖2 � 1/Υ(k).
2. For every fi, there is a linear combination of {gi}ki=1, called ĝi, such that

‖fi − ĝi‖2 � 1.1k/Υ(k).

This theorem generalizes the result shown by Arora, Barak, and Steurer [2, Theo-
rem 2.2], which proves the easier direction (the first statement, Theorem 1.1) and can
be considered as a stronger version of the well-known Davis–Kahan theorem [12]. We
remark that, despite our use of the higher-order Cheeger inequality (2) to motivate
the definition of Υ(k), our proof of the structure theorem is self-contained. Specifi-
cally, it omits much of the machinery used in the proofs of higher-order and improved
Cheeger inequalities [21, 22].

The structure theorem has several applications. For instance, we look at the
well-known spectral embedding F : V [G] → Rk defined by

(4) F (u) � 1

NormalizationFactor(u)
· (f1(u), . . . , fk(u))ᵀ ,

where NormalizationFactor(u) ∈ R is a normalization factor for u ∈ V [G]. We use
Theorem 1.1 to show that this well-known spectral embedding exhibits very nice
geometric properties: (i) all points F (u) from the same cluster are close to each
other, and (ii) most pairs of points F (u), F (v) from different clusters are far from
each other; (iii) the bigger the value of Υ(k), the higher concentration the embedded
points within the same cluster.

Based on these facts, we analyze the performance of spectral clustering, aiming
at answering the following longstanding open question: Why does spectral clustering
perform well in practice? We show that the partition {Ai}ki=1 produced by spectral
clustering gives a good approximation of any “optimal” partition {Si}ki=1: every Ai

has low conductance and has large overlap with its corresponding Si. This algorithm
has comprehensive applications and has been the subject of extensive experimental
studies for more than 20 years, e.g., [28, 40]. Prior to this work, similar results on
spectral clustering mainly focus on graphs generated from the stochastic block model.
Instead, our gap assumption captures more general classes of graphs by replacing
the input model with a structural condition. Our result represents the first rigorous
analysis of spectral clustering for the general family of graphs that exhibit a multicut
structure but are not captured by the stochastic block model. Our result is as follows.

Theorem 1.2 (approximation guarantee of spectral clustering). Let G be a
graph satisfying the condition Υ(k) = λk+1/ρ(k) = Ω(k3), and k ∈ N. Let F :
V [G] → R

k be the embedding defined in (4). Let {Ai}ki=1 be a k-way partition by any
k-means algorithm running in Rk that achieves an approximation ratio APT. Then,
the following statements hold: (i) vol(Ai	Si) = O(APT · k3/Υ(k)) vol(Si), and (ii)
φG(Ai) = 1.1 · φG(Si) +O(APT · k3/Υ(k)).

We further study fast algorithms for partitioning well-clustered graphs. Notice
that, for moderately large values of k, e.g., k = ω(logn), directly applying k-means
algorithms and Theorem 1.2 does not give a nearly linear time algorithm, since (i) ob-
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taining the spectral embedding (4) requires Ω(mk) time for computing k eigenvectors,
and (ii) most k-means algorithms run in Ω(nk) time.

To overcome the first obstacle, we study the so-called heat kernel embedding
xt : V [G] → Rn, an embedding from V to Rn defined by

xt(u) �
1

NormalizationFactor(u)
· (e−t·λ1f1(u), . . . , e

−t·λnfn(u)
)

for some t ∈ R�0. The heat kernel of a graph is a well-studied mathematical concept
and is related to, for example, the study of random walks [34]. We exploit the heat
kernel embedding to approximate the squared-distance ‖F (u)−F (v)‖2 of the embed-
ded points F (u) and F (v) via their heat-kernel distance ‖xt(u) − xt(v)‖2. Since the
heat kernel distances between vertices can be approximated in nearly linear time [29],
this approach avoids the computation of eigenvectors for a large value of k. For the
second obstacle, instead of applying k-means algorithms as a black-box, we apply ap-
proximate nearest-neighbor data structures. This can be viewed as an ad-hoc version
of a k-means algorithm and indicates that in many scenarios the standard Lloyd-type
heuristic widely used in k-means algorithms can eventually be avoided. Our result is
as follows.

Theorem 1.3 (nearly linear time algorithm for partitioning graphs). Let G =
(V,E) be a graph of n vertices and m edges, and k = ω(logn) be the number of

clusters. Assume that Υ(k) = λk+1/ρ(k) = Ω̃(k5), and {Si}ki=1 is a k-way partition

such that φG(Si) � ρ(k). Then there is an algorithm which runs in Õ(m) time and

outputs a k-way partition {Ai}ki=1 such that (i) vol(Ai	Si) = Õ(k4/Υ(k)) vol(Si),

and (ii) φG(Ai) = 1.1 · φG(Si) + Õ(k4/Υ(k)). The Õ(·) and Ω̃(·) terms here hide a
factor of poly logn.

We remark that bounds of other expansion parameters of k-way partitioning can
be derived from our analysis as well. For instance, it is easy to see that ρ(k) and the
normalized cut [36] studied in machine learning, which is defined as the sum of the
conductance of all returned clusters, differ by at most a factor of k, and the normalized
cut value of a k-way partition from spectral clustering can be derived from our results.

1.2. Related work. In the broadest sense, our algorithms are clustering rou-
tines. Clustering can be formulated in many ways, and the study of algorithms in
many such formulations are areas of active work [7, 8, 17, 25]. Among these, our work
is most closely related to spectral clustering, which is closely related to normalized
or low conductance cuts [36]. The k-way expansion that we study is always within a
factor of k of k-way normalized cuts.

Theoretical studies of graph partitioning are often based on augmenting the frac-
tional relaxation of these cut problems with additional constraints in the form of
semidefinite programs or Lasserre hierarchy. The goal of our study is to obtain simi-
lar bounds using more practical tools such as k-means and heat-kernel embedding.

Oveis Gharan and Trevisan [32] formulate the notion of clusters with respect to the
inner and outer conductance: a cluster S should have low outer conductance, and the
conductance of the induced subgraph by S should be high. Under a gap assumption
between λk+1 and λk, they present a polynomial-time algorithm which finds a k-
way partition {Ai}ki=1 that satisfies the inner- and outer-conductance condition. In
order to ensure that every Ai has high inner conductance, they assume that λk+1 �
poly(k)λ

1/4
k , which is much stronger than ours. Moreover, their algorithm runs in

polynomial-time, in contrast to our nearly linear time algorithm.
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Dey, Rossi, and Sidiropoulos [13] study the properties of the spectral embedding
for graphs having a gap between λk and λk+1 and present a k-way partition algorithm,
which is based on k-center clustering and is similar in spirit to our work. Using
combinatorial arguments, they are able to show that the clusters concentrate around
k distant points in the spectral embedding. In contrast to our work, their result
only holds for bounded-degree graphs and cannot provide an approximate guarantee
for individual clusters. Moreover, their algorithm runs in nearly linear time only if
k = O(poly logn).

We also explore the separation between λk and λk+1 from an algorithmic perspec-
tive and show that this assumption interacts well with heat-kernel embeddings. The
heat kernel has been used in previous algorithms on local partitioning [9] and balanced
separators [29]. It also plays a key role in current efficient approximation algorithms
for finding low conductance cuts [30, 35]. However, most of these theoretical guaran-
tees are through the matrix multiplicative weights update framework [3, 4]. Our algo-
rithm instead directly uses the heat-kernel embedding to find low conductance cuts.

There is also a considerable amount of research on partitioning random graphs.
For instance, in the stochastic block model (SBM) [27], the input graph with k clusters
is generated according to probabilities p and q with p > q: an edge between any two
vertices within the same cluster is placed with probability p, and an edge between
any two vertices from different clusters is placed with probability q. It is proved that
spectral algorithms give the correct clustering for certain ranges of p and q [27, 33, 41].
However, the analysis of these algorithms cannot be easily generalized into our setting:
we consider graphs where edges are not necessarily chosen independently with certain
probabilities but can be added in an “adversarial” way. For this reason, standard
perturbation theorems used in the analysis of algorithms for SBMs, such as the Davis–
Kahan theorem [12], cannot be always applied, and ad-hoc arguments specific for
graphs, like our structure theorem (Theorem 1.1), become necessary.

2. Preliminaries. Let G = (V,E) be an undirected and unweighted graph with
n vertices and m edges. The set of neighbors of a vertex u is represented by N(u),
and its degree is du = |N(u)|. For any set S ⊆ V , let vol(S) �

∑
u∈S du. For any

set S, T ⊆ V , we define E(S, T ) to be the set of edges between S and T , that is,
E(S, T ) � {{u, v}|u ∈ S and v ∈ T }. For simplicity, we write ∂S = E(S, V \ S) for
any set S ⊆ V . For two sets X and Y , the symmetric difference of X and Y is defined
as X	Y � (X \ Y ) ∪ (Y \X).

We work extensively with algebraic objects related to G. We use D to denote
the n × n diagonal matrix with Duu = du for u ∈ V [G]. The Laplacian matrix
of G is defined by L � D − A, where A is the adjacency matrix of G defined by
Au,v = 1 if {u, v} ∈ E[G], and Au,v = 0 otherwise. The normalized Laplacian matrix

of G is defined by L � D−1/2LD−1/2 = I − D−1/2AD−1/2. For this matrix, we
denote its n eigenvalues with 0 = λ1 � · · · � λn � 2, with their corresponding
orthonormal eigenvectors f1, . . . , fn. Note that if G is connected, the first eigenvector
is f1 = D1/2f , where f is any nonzero constant vector.

For a vector x ∈ Rn, the Euclidean norm of x is given by ‖x‖ = (
∑n

i=1 x
2
i )

1/2.

For any f : V → R and h � D−1/2f , the Rayleigh quotient of f with respect to graph
G is given by

R(f) � fᵀLf
‖f‖2 =

hᵀLh
‖h‖D =

∑
{u,v}∈E(G) (h(u)− h(v))

2∑
u duh(u)

2
,

where ‖h‖D � hᵀDh. Based on the Rayleigh quotient, the conductance of a set Si
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fi

f̂i

ĝi

ḡi

f̂i = a linear

combination of {fj}
with coefficients α

(i)
j

ĝi = a linear

combination of {ḡj}
with coefficients β

(i)
j

Part 1

‖f̂i − gi‖2 � 1/Υ

Part 2

‖fi − ĝi‖2 � 1.1k/Υ

Fig. 1. Relations among {f̂i}, {fi}, {ḡi}, and {ĝi} given in Theorem 3.1. Here Υ is the gap
defined with respect to λk+1 and ρ(k).

can be expressed as φG(Si) = R(ḡi), and the gap Υ(k) can be written as

(5) Υ(k) =
λk+1

ρ(k)
= min

1�i�k

λk+1

φG(Si)
= min

1�i�k

λk+1

R(ḡi)
.

Since k is always fixed as part of the algorithm’s input, throughout the rest of the
paper we always use Υ to express Υ(k) for simplicity. We will also use S1, . . . , Sk to
express a k-way partition of G achieving ρ(k). Note that this partition may not be
unique.

3. Connection between eigenvectors and indicator vectors of clusters.
In this section we study the relations between the multiple cuts of a graph and the
eigenvectors of the graph’s normalized Laplacian matrix. Given clusters S1 . . . Sk,
define the indicator vector of cluster Si by

(6) gi(u) =

{
1 if u ∈ Si,
0 if u �∈ Si,

and define the corresponding normalized indicator vector by

(7) gi =
D1/2gi

‖D1/2gi‖
.

A basic result in spectral graph theory states that G has k connected components
if and only if the k smallest eigenvalues are 0, implying that the spaces spanned by
f1, . . . , fk and ḡ1, . . . , ḡk are the same. Generalizing this result, we expect that these
two spaces would be still similar if these k components of G are loosely connected,
in the sense that (i) every eigenvector fi can be approximately expressed by a lin-
ear combination of {gi}ki=1, and (ii) every indicator vector ḡi can be approximately
expressed by a linear combination of {fi}ki=1. This leads to our structure theorem,
which is illustrated in Figure 1.

Theorem 3.1 (the structure theorem, formal statement). Let Υ = Ω(k2), and
1 � i � k. Then, the following statements hold:

1. There is a linear combination of the eigenvectors f1, . . . , fk with coefficients

α
(i)
j : f̂i = α

(i)
1 f1 + · · ·+ α

(i)
k fk, such that ‖gi − f̂i‖2 � 1/Υ.

2. There is a linear combination of the vectors ḡ1, . . . , ḡk with coefficients β
(i)
j :

ĝi = β
(i)
1 ḡ1 + · · ·+ β

(i)
k ḡk, such that ‖fi − ĝi‖2 � 1.1k/Υ.
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Part 1 of Theorem 3.1 shows that the normalized indicator vectors ḡi of every
cluster Si can be approximated by a linear combination of the first k eigenvectors, with
respect to the value of Υ. The proof follows from the fact that if ḡi has small Rayleigh
quotient, then the inner product between ḡi and the eigenvectors corresponding to
larger eigenvalues must be small. This statement was also shown implicitly in [2,
Theorem 2.2].

Proof of Part 1 of Theorem 3.1. We write gi as a linear combination of the eigen-
vectors of L, i.e.,

gi = α
(i)
1 f1 + · · ·+ α(i)

n fn

and let the vector f̂i be the projection of vector ḡi on the subspace spanned by {fi}ki=1,
i.e.,

f̂i = α
(i)
1 f1 + · · ·+ α

(i)
k fk.

By the definition of Rayleigh quotients, we have that

R(gi) =
(
α
(i)
1 f1 + · · ·+ α(i)

n fn

)ᵀ
L
(
α
(i)
1 f1 + · · ·+ α(i)

n fn

)
=
(
α
(i)
1

)2
λ1 + · · ·+

(
α(i)
n

)2
λn

�
(
α
(i)
2

)2
λ2 + · · ·+

(
α
(i)
k

)2
λk +

(
1− α′ −

(
α
(i)
1

)2)
λk+1,

where α′ � (α
(i)
2 )2 + · · ·+ (α

(i)
k )2. Therefore, we have that

1− α′ −
(
α
(i)
1

)2
� R(gi)/λk+1 � 1/Υ

and

‖gi − f̂i‖2 =
(
α
(i)
k+1

)2
+ · · ·+

(
α(i)
n

)2
= 1− α′ −

(
α
(i)
1

)2
� 1/Υ,

which finishes the proof.

Part 2 of Theorem 3.1 is more interesting and shows that the opposite direction
holds as well, i.e., any fi (1 � i � k) can be approximated by a linear combina-
tion of the normalized indicator vectors {gi}ki=1. To sketch the proof, note that if
we could write every gi exactly as a linear combination of {fi}ki=1, then we could
write every fi (1 � i � k) as a linear combination of {gi}ki=1. This is because both
{fi}ki=1 and {gi}ki=1 are sets of linearly independent vectors of the same dimension
and span {g1, . . . , gk} ⊆ span {f1, . . . , fk}. However, the gi’s are only close to a lin-
ear combination of the first k eigenvectors, as shown in Part 1. We will denote this
combination as f̂i and use the fact that the errors of approximation are small to show
that these {f̂i}ki=1 are almost orthogonal between each other. This allows us to show

that span {f̂1, . . . , f̂k} = span {f1, . . . , fk}, which implies Part 2.
We will use the following two classical results in our proof.

Theorem 3.2 (Geršgorin circle theorem). Let A be an n × n matrix , and let
Ri(A) =

∑
j �=i |Ai,j | for 1 � i � n. Then, all eigenvalues of A are in the union of

Geršgorin Discs defined by

n⋃
i=1

{z ∈ C : |z −Ai,i| � Ri(A)} .
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Theorem 3.3 (see [15, Corollary 6.3.4]). Let A be an n× n real and symmetric

matrix with eigenvalues λ1, . . . , λn, and E be an n × n matrix. If λ̂ is an eigenvalue
of A+E, then there is some eigenvalue λi of A for which |λ̂− λi| � ‖E‖.

Proof of Part 2 of Theorem 3.1. By Part 1, every gi is approximated by a vector

f̂i defined by

f̂i = α
(i)
1 f1 + · · ·α(i)

k fk.

Define a k by k matrix A such that Ai,j = α
(j)
i , i.e., the jth column of matrix

A consists of values {α(j)
i }ki=1 representing f̂j . We express the jth column of A by a

vector α(j), defined as

α(j) =
(
α
(j)
1 , . . . , α

(j)
k

)ᵀ
.

We will show that the vectors {α(j)}kj=1 are linearly independent, which implies

that {f̂ (j)}kj=1 are linearly independent as well. To prove this, we will show that AᵀA
has no zero eigenvalue, and hence A is invertible.

First, notice that it holds by the orthonormality of {fi}ki=1 that∣∣∣〈α(i), α(j)
〉∣∣∣ = ∣∣∣〈f̂i, f̂j〉∣∣∣ = ∣∣∣〈ḡi − (ḡi − f̂i), ḡj − (ḡj − f̂j)

〉∣∣∣
=
∣∣∣〈ḡi, ḡj〉 − 〈ḡi − f̂i, ḡj

〉
−
〈
ḡi, ḡj − f̂j

〉
+
〈
ḡi − f̂i, ḡj − f̂j

〉∣∣∣
�
∥∥∥ḡi − f̂i

∥∥∥+ ∥∥∥ḡj − f̂j

∥∥∥+ ∥∥∥ḡi − f̂i

∥∥∥ ∥∥∥ḡj − f̂j

∥∥∥
� 2
√
1/Υ+ 1/Υ,

where the first inequality follows from the orthonormality of ḡi and ḡj , and the second
inequality follows by Part 1 of Theorem 3.1. So it holds for any i �= j that

|(AᵀA)i,j | =
∣∣∣∣∣

k∑
�=1

A�,iA�,j

∣∣∣∣∣ =
∣∣∣∣∣

k∑
�=1

α
(i)
� α

(j)
�

∣∣∣∣∣ = ∣∣∣〈α(i), α(j)
〉∣∣∣ � 3

√
1/Υ

while

(AᵀA)i,i =

k∑
�=1

(
α
(i)
�

)2
� 1− 1/Υ.

Then, by the Geršgorin circle theorem (cf. Theorem 3.2), it holds that all the eigen-
values of AᵀA are at least

1− 1/Υ− (k − 1) · 3
√
1/Υ.

Therefore, A has no eigenvalue with value 0 as long as Υ > 10k2, proving that
the vectors {α(j)}kj=1 are linearly independent. Combining this with the fact that

span {f̂1, . . . , f̂k} ⊆ span {f1, . . . , fk} and dim(span ({f1, . . . , fk})) = k, it holds that

span {f̂1, . . . , f̂k} = span {f1, . . . , fk}. Hence, we can write every fi (1 � i � k) as a

linear combination of {f̂i}ki=1, i.e.,

(8) fi = β
(i)
1 f̂1 + β

(i)
2 f̂2 + · · ·+ β

(i)
k f̂k.

Now define the value of ĝi as

(9) ĝi = β
(i)
1 g1 + β

(i)
2 g2 + · · ·+ β

(i)
k gk
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and define ‖β‖2 =
∑k

j=1(β
(i)
j )2. Then, it holds that

1 = ‖fi‖2 =
k∑

�=1

(
β
(i)
�

)2 ∥∥∥f̂�∥∥∥2 +∑
� �=�′

β
(i)
� β

(i)
�′

〈
f̂�, f̂�′

〉
� ‖β‖2(1− 1/Υ)−

∑
�

∣∣∣β(i)
�

∣∣∣∑
�′ �=�

∣∣∣β(i)
�′

∣∣∣ 〈f̂�, f̂�′〉
� ‖β‖2(1− 1/Υ)−

(√
k · ‖β‖

)
·
(√

k · ‖β‖
)
·
(
3 ·
√
1/Υ
)

�
(
1− 1/Υ− 3k/

√
Υ
)
‖β‖2,

where the second inequality holds by the Cauchy–Schwarz inequality. Since Υ =
Ω(k2), we have that

‖β‖2 �
(
1− 1

Υ
− 3k√

Υ

)−1

� 1.1.

Combining this with Part 1 of Theorem 3.1 and the Cauchy–Schwarz inequality, we
have that

‖fi − ĝi‖ �
k∑

j=1

∣∣∣β(i)
j

∣∣∣ ∥∥∥f̂j − gj

∥∥∥ � (1/√Υ
) k∑

j=1

∣∣∣β(i)
j

∣∣∣ �√1.1k/Υ,

which proves Part 2 of the theorem.

Theorem 3.1 shows a close connection between the first k eigenvectors and the
indicator vectors of the clusters. We leverage this and the fact that the {ĝi}’s are al-
most orthogonal between each other to show that, for any two different clusters Si and
Sj , there exists an eigenvector having reasonably different values on the coordinates
which correspond to Si and Sj .

Lemma 3.4. Let Υ = Ω(k3). For any 1 � i � k, let ĝi = β
(i)
1 g1 + · · ·+ β

(i)
k gk be

such that ‖fi − ĝi‖ � 1.1k/Υ. Then, for any 	 �= j, there exists i ∈ {1, . . . , k} such
that

(10)
∣∣∣β(i)

� − β
(i)
j

∣∣∣ � ζ � 1

10
√
k
.

Proof. Let β(i) = (β
(i)
1 , . . . , β

(i)
k )ᵀ for 1 � i � k. Since ḡi ⊥ ḡj for any i �= j, we

have by the orthonormality of g1, . . . , gk that

〈ĝi, ĝj〉 =
〈
β
(i)
1 g1 + · · ·+ β

(i)
k gk, β

(j)
1 g1 + · · ·+ β

(j)
k gk

〉
=

k∑
�=1

β
(i)
� β

(j)
� ‖g�‖2 =

〈
β(i), β(j)

〉
and ∣∣∣〈β(i), β(j)

〉∣∣∣ = |〈ĝi, ĝj〉| = |〈fi − (fi − ĝi), fj − (fj − ĝj)〉|
= |〈fi, fj〉 − 〈fi − ĝi, fj〉 − 〈fj − ĝj , fi〉+ 〈fi − ĝi, fj − ĝj〉|
� ‖fi − ĝi‖+ ‖fj − ĝj‖+ ‖fi − ĝi‖‖fj − ĝj‖
� 2.2

√
k/Υ+ 1.1k/Υ.
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Moreover, it holds that∥∥∥β(i)
∥∥∥ = ‖ĝi‖ = ‖fi + ĝi − fi‖ � 1 + ‖ĝi − fi‖ � 1 +

√
1.1k/Υ

and ∥∥∥β(i)
∥∥∥ = ‖ĝi‖ = ‖fi + ĝi − fi‖ � 1− ‖ĝi − fi‖ � 1−

√
1.1k/Υ,

which implies that

(11)
∥∥∥β(i)

∥∥∥2 ∈
(
1− (2.2

√
k/Υ+ 1.1k/Υ), 1 + 2.2

√
k/Υ+ 1.1k/Υ

)
.

In other words, we showed that β(i)’s are almost orthonormal.
Now we construct a k by k matrix B, where the jth column of B is β(j). By the

Geršgorin circle theorem (Theorem 3.2), all eigenvalues λ of BᵀB satisfy

(12) |λ− (BᵀB)i,i| � (k − 1) · (2.2
√
k/Υ+ 1.1k/Υ)

for any i. Combing this with (11), we have that the eigenvalues of BᵀB are close to
1.

Now we show that β
(i)
� and β

(i)
j are far from each other by contradiction. Suppose

there exist 	 �= j such that

ζ′ � max
1�i�k

∣∣∣β(i)
� − β

(i)
j

∣∣∣ < 1

10
√
k
.

This implies that the jth row and 	th row of matrix B are somewhat close to each
other. Let us now define matrix E ∈ Rk×k, where

E�,i � β
(i)
j − β

(i)
� ,

and Et,i = 0 for any t �= 	 and 1 � i � k. Moreover, let Q = B+ E. Notice that Q
has two identical rows, and rank at most k − 1. Therefore, Q has an eigenvalue with
value 0, and the spectral norm ‖E‖ of E, the largest singular value of E, is at most√
kζ′. By definition of matrix Q we have that

QᵀQ = BᵀB+BᵀE+EᵀB+EᵀE.

Since BᵀB is symmetric and 0 is an eigenvalue of QᵀQ, by Theorem 3.3 we know
that if λ̂ is an eigenvalue of QᵀQ, then there is an eigenvalue λ of BᵀB such that

|λ̂− λ| � ‖BᵀE+EᵀB+EᵀE‖
� ‖BᵀE‖+ ‖EᵀB‖+ ‖EᵀE‖
� 4

√
kζ′ + kζ′2,

which implies that

λ̂ � λ− 4
√
kζ′ − kζ′2 � 1− k

(
2.2
√
k/Υ+ 1.1k/Υ

)
− 4

√
kζ′ − kζ′2,

due to (11) and (12). By setting λ̂ = 0, we have that

1− k
(
2.2
√
k/Υ+ 1.1k/Υ

)
− 4

√
kζ′ − kζ′2 � 0.

By the condition of Υ = Ω(k3), the inequality above implies that ζ′ � 1
10

√
k
, which

leads to a contradiction.
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We point out that it was shown in [21] that the first k eigenvectors can be ap-
proximated by a (2k+1)-step function. The quality of the approximation is the same
as the one given by our structure theorem. However, a (2k + 1)-step approximation
is not enough to show that most vertices belonging to the same cluster are mapped
close to each other in the spectral embedding.

We further point out that standard matrix perturbation theorems cannot be ap-
plied in our setting. For instance, we look at a well-clustered graph G that contains a
subset C of a cluster Si such that most neighbors of vertices in C are outside Si. In
this case, the adjacency matrix representing crossing edges of G has a high spectral
norm, and hence standard matrix perturbation arguments could not give us a mean-
ingful result. However, our structure theorem takes the fact that vol(C) has to be
small into account, and that is why the structure theorem is needed to analyze the
cut structure of a graph.

4. Analysis of spectral clustering. In this section we analyze an algorithm
based on the classical spectral clustering paradigm and give an approximation guaran-
tee of this method on well-clustered graphs. We will show that any k-means algorithm
AlgoMean(X , k) with certain approximation guarantee can be used for the k-way par-
titioning problem. Furthermore, it suffices to call AlgoMean in a black-box manner
with a point set X ⊆ Rk.

This section is structured as follows. We first give a quick overview of spectral
and k-means clustering in section 4.1. In section 4.2, we use the structure theorem
to analyze the spectral embedding. Section 4.3 gives a general result about k-means
when applied to this embedding and gives the proof of Theorem 1.2.

4.1. k-means clustering. Given a set of points X ⊆ Rd, a k-means algorithm
AlgoMean(X , k) seeks to find a set K of k centers c1, . . . , ck to minimize the sum of
the 	22-distance between x ∈ X and the center to which it is assigned. Formally, for
any partition X1, . . . ,Xk of the set X ⊆ Rd, we define the cost function by

COST(X1, . . . ,Xk) � min
c1,...,ck∈Rd

k∑
i=1

∑
x∈Xi

‖x− ci‖2,

i.e., the COST function minimizes the total 	22-distance between the points x’s and
their individually closest center ci, where c1, . . . , ck are chosen arbitrarily in Rd. We
further define the optimal clustering cost by

(13) Δ2
k(X ) � min

partition X1,...,Xk

COST(X1, . . . ,Xk).

Spectral clustering can be described as follows: (i) Compute the bottom k eigen-
vectors f1, . . . , fk of the normalized Laplacian matrix1 of graph G. (ii) Map every
vertex u ∈ V [G] to a point F (u) ∈ Rk according to

(14) F (u) =
1

NormalizationFactor(u)
· (f1(u), . . . , fk(u))ᵀ

with a proper normalization factor NormalizationFactor(u) ∈ R for each u ∈ V . (iii)
Let X � {F (u) : u ∈ V } be the set of the embedded points from vertices in G. Run

1Other graph matrices (e.g., the adjacency matrix and the Laplacian matrix) are also widely
used in practice. Notice that, with proper normalization, the choice of these matrices does not
substantially influence the performance of k-means algorithms.
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AlgoMean(X , k), and group the vertices of G into k clusters according to the output
of AlgoMean(X , k). This approach that combines a k-means algorithm with a spectral
embedding has been widely used in practice for a long time, although there was a lack
of rigorous analysis of its performance prior to our result.

4.2. Analysis of the spectral embedding. The first step of spectral clustering
is to map vertices of a graph into points in Euclidean space, through the spectral
embedding (14). This subsection analyzes the properties of this embedding. Let us
define the normalization factor to be

NormalizationFactor(u) �
√
du.

We will show that the embedding (14) with the normalization factor above has very
nice properties: embedded points from the same cluster Si are concentrated around
their center ci ∈ Rk, and embedded points from different clusters of G are far from
each other. These properties imply that a simple k-means algorithm is able to produce
a good clustering.2

We first define k points p(i) ∈ Rk (1 � i � k), where

(15) p(i) � 1√
vol (Si)

(
β
(1)
i , . . . , β

(k)
i

)ᵀ
and the parameters {β(j)

i }kj=1 are defined in Theorem 3.1. We will show in Lemma 4.1

that all embedded points Xi � {F (u) : u ∈ Si} (1 � i � k) are concentrated around
p(i). Moreover, we bound the total 	22-distance between points in Xi and p(i), which
is proportional to 1/Υ: the bigger the value of Υ, the higher concentration the points
within the same cluster have. Notice that we do not claim that p(i) is the actual
center of Xi. However, these approximated points p(i)’s suffice for our analysis.

Lemma 4.1. It holds that

k∑
i=1

∑
u∈Si

du‖F (u)− p(i)‖2 � 1.1k2/Υ.

Proof. Since ĝj(u) =
√

du

vol(Si)
β
(j)
i and p

(i)
j = 1√

vol(Si)
β
(j)
i hold for any 1 � j � k

and u ∈ Si by definition, we have that

k∑
i=1

∑
u∈Si

du

(
F (u)j − p

(i)
j

)2
=

k∑
i=1

∑
u∈Si

du

(
1√
du

fj(u)− 1√
vol(Si)

β
(j)
i

)2

=

k∑
i=1

∑
u∈Si

(
fj(u)−

√
du

vol(Si)
β
(j)
i

)2

=

k∑
i=1

∑
u∈Si

(fj(u)− ĝj(u))
2

= ‖fj − ĝj‖2
� 1.1k/Υ,

2Notice that this embedding is similar with the one used in [22], with the only difference that
F (u) is not normalized and so it is not necessarily a unit vector. This difference, though, is crucial
for our analysis.



722 RICHARD PENG, HE SUN, AND LUCA ZANETTI

where the last inequality follows from Theorem 3.1. Summing over all j for 1 � j � k
implies that

k∑
i=1

∑
u∈Si

du

∥∥∥F (u)− p(i)
∥∥∥2 =

k∑
i=1

k∑
j=1

∑
u∈Si

du

(
F (u)j − p

(i)
j

)2
� 1.1k2/Υ.

The next lemma shows that the 	22-norm of p(i) is inversely proportional to the
volume of Si. This implies that embedded points from a big cluster are close to the
origin, while embedded points from a small cluster are far from the origin.

Lemma 4.2. It holds for every 1 � i � k that

99

100 vol(Si)
�
∥∥∥p(i)∥∥∥2 � 101

100 vol(Si)
.

Proof. By (15), we have that∥∥∥p(i)∥∥∥2 =
1

vol(Si)

∥∥∥(β(1)
i , . . . , β

(k)
i

)ᵀ∥∥∥2 .
Notice that p(i) is just the ith row of the matrix B defined in the proof of Lemma 3.4,
normalized by

√
vol(Si). Since B and Bᵀ share the same singular values (this follows

from the SVD decomposition), by (12) the eigenvalues of BBᵀ are close to 1. But
since (BBᵀ)i,i is equal to the 	22-norm of the ith row of B, we have that

(16)
∥∥∥(β(1)

i , . . . , β
(k)
i

)ᵀ∥∥∥2 ∈
(
1−
(
2.2
√
k/Υ+ 1.1k/Υ

)
, 1 + 2.2

√
k/Υ+ 1.1k/Υ

)
,

which implies the statement.

We will further show in Lemma 4.3 that these points p(i)(1 � i � k) exhibit
another excellent property: the distance between p(i) and p(j) is inversely proportional
to the volume of the smaller cluster between Si and Sj . Therefore, points in Si of
smaller vol(Si) are far from points in Sj of bigger vol(Sj). Notice that, if this were
not the case, a misclassification of a small fraction of points in Sj could introduce a
large error to Si.

Lemma 4.3. For every i �= j, it holds that∥∥∥p(i) − p(j)
∥∥∥2 � ζ2

10min {vol(Si), vol(Sj)} ,

where ζ is defined in (10).

Proof. Let Si and Sj be two arbitrary clusters. By Lemma 3.4, there exists
1 � 	 � k such that ∣∣∣β(�)

i − β
(�)
j

∣∣∣ � ζ.

By the definition of p(i) and p(j) it follows that

∥∥∥∥ p(i)

‖p(i)‖ − p(j)

‖p(j)‖
∥∥∥∥2 �

⎛⎜⎜⎝ β
(�)
i√∑k

t=1

(
β
(t)
i

)2 − β
(�)
j√∑k

t=1

(
β
(t)
j

)2
⎞⎟⎟⎠

2

.
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By (16), we know that√√√√ k∑
�=1

(
β
(�)
j

)2
=
∥∥∥(β(1)

j , . . . , β
(k)
j

)ᵀ∥∥∥ ∈ (1− ζ

10
, 1 +

ζ

10

)
.

Therefore, we have that∥∥∥∥ p(i)

‖p(i)‖ − p(j)

‖p(j)‖
∥∥∥∥2 � 1

2
·
(
β
(�)
i − β

(�)
j

)2
� 1

2
· ζ2

and 〈
p(i)

‖p(i)‖ ,
p(j)

‖p(j)‖
〉

� 1− ζ2/4.

Without loss of generality, we assume that ‖p(i)‖2 � ‖p(j)‖2. By Lemma 4.2, it holds
that ∥∥∥p(i)∥∥∥2 � 9

10 · vol(Si)

and ∥∥∥p(i)∥∥∥2 �
∥∥∥p(j)∥∥∥2 � 9

10 · vol(Sj)
.

Hence, it holds that ∥∥∥p(i)∥∥∥2 � 9

10min {vol(Si), vol(Sj)} .

We can now finish the proof by considering two cases based on ‖p(i)‖.
Case 1: Suppose that ‖p(i)‖ � 4‖p(j)‖. We have that∥∥∥p(i) − p(j)

∥∥∥ � ∥∥∥p(i)∥∥∥− ∥∥∥p(j)∥∥∥ � 3

4

∥∥∥p(i)∥∥∥ ,
which implies that∥∥∥p(i) − p(j)

∥∥∥2 � 9

16

∥∥∥p(i)∥∥∥2 � 1

2min {vol(Si), vol(Sj)} .

Case 2: Suppose ‖p(j)‖ = α‖p(i)‖ for α ∈ (14 , 1]. In this case, we have that

∥∥∥p(i) − p(j)
∥∥∥2 =

∥∥∥p(i)∥∥∥2 + ∥∥∥p(j)∥∥∥2 − 2

〈
p(i)

‖p(i)‖ ,
p(j)

‖p(j)‖
〉∥∥∥p(i)∥∥∥ ∥∥∥p(j)∥∥∥

�
∥∥∥p(i)∥∥∥2 + ∥∥∥p(j)∥∥∥2 − 2(1− ζ2/4) ·

∥∥∥p(i)∥∥∥ ∥∥∥p(j)∥∥∥
= (1 + α2)

∥∥∥p(i)∥∥∥2 − 2(1− ζ2/4)α ·
∥∥∥p(i)∥∥∥2

= (1 + α2 − 2α+ αζ2/2) ·
∥∥∥p(i)∥∥∥2

� αζ2

2
·
∥∥∥p(i)∥∥∥2 � ζ2 · 1

10min {vol(Si), vol(Sj)} ,

and the lemma follows.
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4.3. Approximation guarantees of spectral clustering. Now we analyze
why spectral clustering performs well for solving the k-way partitioning problem. We
assume that A1, . . . , Ak is any k-way partition returned by a k-means algorithm with
an approximation ratio of APT.

We map every vertex u to du identical points in R
k. This “trick” allows us

to bound the volume of the overlap between the clusters retrieved by a k-means
algorithm and the optimal ones. For this reason we define the cost function of partition
A1, . . . , Ak of V [G] by

COST(A1, . . . , Ak) � min
c1,...,ck∈Rk

k∑
i=1

∑
u∈Ai

du‖F (u)− ci‖2,

and the optimal clustering cost is defined by

Δ2
k � min

partition A1,...,Ak

COST(A1, . . . , Ak),

i.e., we define the optimal clustering cost in the same way as in (13), except that
we look at the embedded points from vertices of G in the definition. From now
on, we always refer COST and Δ2

k as the COST and optimal COST values of points
{F (u)}u∈V , and for technical reasons every point is counted du times. The next
lemma gives an upper bound to the cost of the optimal k-means clustering which
depends on the gap Υ

Lemma 4.4. It holds that Δ2
k � 1.1k2/Υ.

Proof. Since Δ2
k is obtained by minimizing over all partitions A1, . . . , Ak and

c1, . . . , ck, we have

Δ2
k �

k∑
i=1

∑
u∈Si

du

∥∥∥F (u)− p(i)
∥∥∥2 .(17)

Hence the statement follows by applying Lemma 4.1.

Since A1, . . . , Ak is the output of a k-means algorithm with approximation ra-
tio APT, by Lemma 4.4 we have that COST(A1, . . . , Ak) � APT · 1.1k2/Υ. We
will show that this upper bound of APT · 1.1k2/Υ suffices to show that this ap-
proximate clustering A1, . . . , Ak is close to the “actual” clustering S1, . . . , Sk, in the
sense that (i) every Ai has low conductance, and (ii) under a proper permutation
σ : {1, . . . , k} → {1, . . . , k}, the symmetric difference between Ai and Sσ(i) is small.
The fact is proved by contradiction: If we could always find a set Ai with high sym-
metric difference with its correspondence Sσ(i), regardless of how we map {Ai} to
their corresponding {Sσ(i)}, then the COST value will be high, which contradicts the
fact that COST(A1, . . . , Ak) � APT · 1.1k2/Υ. The core of of the whole contradiction
arguments is the following technical lemma, whose proof will be presented in the next
subsection.

Lemma 4.5. Let A1, . . . , Ak be a partition of V . Suppose that, for every permuta-
tion of the indices σ : {1, . . . , k} → {1, . . . , k}, there exists i such that vol(Ai	Sσ(i)) �
2ε vol(Sσ(i)) for ε � 105 · k3/Υ; then COST(A1, . . . , Ak) � 10−4 · ε/k.

Proof of Theorem 1.2. Let A1, . . . , Ak be a k-way partition that achieves an ap-
proximation ratio of APT, and let

ε =
2 · 105 · k3 · APT

Υ
.
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We first show that there exists a permutation σ of the indices such that

(18) vol
(
Ai	Sσ(i)

)
� ε vol(Sσ(i)) for any 1 � i � k.

Assume for contradiction that for all permutation σ there is 1 � i � k such that

vol(Ai	Sσ(i)) > ε vol
(
Sσ(i)

)
.

This implies by Lemma 4.5 that

COST(A1, . . . , Ak) � 10 · APT · k2/Υ,

which contradicts the fact that A1, . . . , Ak is an APT-approximation to a k-way par-
tition, whose corresponding k-means cost is at most 1.1 · APT · k2/Υ.

Now we assume that σ : {1, . . . , k} → {1, . . . , k} is the permutation satisfying
(18), and bound the conductance of every cluster Ai. For any 1 � i � k, the number
of leaving edges of Ai is upper bounded by

|∂ (Ai)| �
∣∣∂ (Ai \ Sσ(i)

)∣∣+ ∣∣∂ (Ai ∩ Sσ(i)

)∣∣
�
∣∣∂ (Ai	Sσ(i)

)∣∣+ ∣∣∂ (Ai ∩ Sσ(i)

)∣∣ .
Notice that |∂(Ai	Sσ(i))| � ε vol(Sσ(i)) by our assumption on σ, and every node in
|∂(Ai ∩ Sσ(i))| either belongs to ∂Sσ(i) \ Sσ(i) or ∂(Ai	Sσ(i)), and hence

|∂ (Ai)| � ε vol
(
Sσ(i)

)
+ φG

(
Sσ(i)

)
vol
(
Sσ(i)

)
+ ε vol

(
Sσ(i)

)
=
(
2ε+ φG

(
Sσ(i)

))
vol(Sσ(i)).

On the other hand, we have that

vol (Ai) � vol
(
Ai ∩ Sσ(i)

)
� (1− 2ε) vol(Sσ(i)).

Hence,

φG(Ai) �
(2ε+ φG(Sσ(i))) vol(Sσ(i))

(1− 2ε) vol(Sσ(i))

=
2ε+ φG(Sσ(i))

1− 2ε

� 1.1 · φG(Sσ(i)) +O(APT · k3/Υ).

4.4. Proof of Lemma 4.5. It remains to show Lemma 4.5. Our proof is based
on the following high-level idea: suppose by contradiction that there is a cluster
Sj which is very different from every cluster A�. Then there is a cluster Ai with
significant overlap with two different clusters Sj and Sj′ (Lemma 4.6). However, we
already proved in Lemma 4.3 that any two clusters are far from each other. This
implies that the COST value of A1, . . . , Ak is high, which leads to a contradiction.

Lemma 4.6. Suppose for every permutation π : {1, . . . , k} → {1, . . . , k} there
exists an index i such that vol(Ai	Sπ(i)) � 2ε vol(Sπ(i)). Then, at least one of the
following two cases holds:

1. for any index i there are indices i1 �= i2 and εi � 0 such that

vol(Ai ∩ Si1) � vol(Ai ∩ Si2) � εimin {vol(Si1), vol(Si2)},
and
∑k

i=1 εi � ε;
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2. there exist indices i, 	 and εj � 0 such that, for j �= 	,

vol(Ai ∩ S�) � εi vol(S�), vol(Ai ∩ Sj) � εi vol(S�)

and
∑k

i=1 εi � ε.

Proof. Let σ : {1, . . . , k} → {1, . . . , k} be the function defined by

σ(i) = argmax
1�j�k

vol(Ai ∩ Sj)

vol(Sj)
.

We first assume that σ is one-to-one, i.e. σ is a permutation. By the hypothesis of
the lemma, there exists an index i such that vol(Ai	Sσ(i)) � 2ε vol(Sσ(i)). Without
loss of generality, we assume that i = 1 and σ(j) = j for j = 1, . . . , k. Notice that

(19) vol (A1	S1) =
∑
j �=1

vol (Aj ∩ S1) +
∑
j �=1

vol (A1 ∩ Sj) .

Hence, one of the summations on the right-hand side of (19) is at least ε vol(S1). Now
the proof is based on the case distinction.

Case 1: Assume that
∑

j �=1 vol(Aj ∩ S1) � ε vol(S1). We define τj for 2 � j � k
to be

τj =
vol (Aj ∩ S1)

vol (S1)
.

We have that ∑
j �=1

τj � ε,

and by the definition of σ it holds that

vol (Aj ∩ Sj)

vol (Sj)
� vol (Aj ∩ S1)

vol (S1)
= τj

for 2 � j � k. Setting εj = τj for 2 � j � k and ε1 = 0 finishes the proof of Case 1.
Case 2: Assume that

(20)
∑
j �=1

vol(A1 ∩ Sj) � ε vol(S1).

Let us define τ ′j for 1 � j � k, j �= 1, to be

τ ′j =
vol(A1 ∩ Sj)

vol (S1)
.

Then, (20) implies that ∑
j �=1

τ ′j � ε.

The statement in this case holds by assuming vol(A1∩S1) � ε vol(S1), since otherwise
we have

vol (S1)− vol (A1 ∩ S1) =
∑
j �=1

vol (Aj ∩ S1) � (1− ε) vol (S1) � ε vol (S1) ,

and this case was proved in Case 1.
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Ai

Si1 Si2

u

Bi
ci

p(i1) p(i2)

Fig. 2. We use the fact that ‖p(i1) − ci‖ � ‖p(i2) − ci‖ and lower bound the value of COST
function by only looking at the contribution of points u ∈ Bi for all 1 � i � k.

So it suffices to study the case in which σ defined earlier is not one-to-one. Then,
there is j (1 � j � k) such that j �∈ {σ(1), . . . , σ(k)}. For any 1 � 	 � k, let

τ ′′� =
vol(A� ∩ Sj)

vol(Sj)
.

Then,
∑k

�=1 τ
′′
� = 1 � ε and it holds for any 1 � 	 � k that

vol
(
A� ∩ Sσ(�)

)
vol
(
Sσ(�)

) � vol(A� ∩ Sj)

vol(Sj)
= τ ′′� .

Proof of Lemma 4.5. We first consider the case when part 1 of Lemma 4.6 holds,
i.e., for every i there exist i1 �= i2 such that

(21)
vol(Ai ∩ Si1) � εi min {vol(Si1 ), vol(Si2)},
vol(Ai ∩ Si2) � εi min {vol(Si1 ), vol(Si2)}

for some ε � 0, and
∑k

i=1 εi � ε.
Let ci be the center of Ai. Let us assume without loss of generality that ‖ci −

p(i1)‖ � ‖ci − p(i2)‖, which implies ‖p(i1) − ci‖ � ‖p(i1) − p(i2)‖/2. However, points
in Bi = Ai ∩ Si1 are far away from ci; see Figure 2. We lower bound the value of
COST(A1, . . . , Ak) by only looking at the contribution of points in the Bis . Notice
that by Lemma 4.1 the sum of the squared-distances between points in Bi and p(i1)

is at most k2/Υ, while the distance between p(i1) and p(i2) is large (Lemma 4.3).
Therefore, we have that

COST(A1, . . . , Ak) =

k∑
i=1

∑
u∈Ai

du‖F (u)− ci‖2 �
k∑

i=1

∑
u∈Bi

du‖F (u)− ci‖2.
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By applying the inequality a2 + b2 � (a− b)2/2, we have that

COST(A1, . . . , Ak) �
k∑

i=1

∑
u∈Bi

du

(∥∥p(i1) − ci
∥∥2

2
−
∥∥∥F (u)− p(i1)

∥∥∥2)

�
k∑

i=1

∑
u∈Bi

du

∥∥p(i1) − ci
∥∥2

2
−

k∑
i=1

∑
u∈Bi

du

∥∥∥F (u)− p(i1)
∥∥∥2

�
k∑

i=1

∑
u∈Bi

du

∥∥p(i1) − ci
∥∥2

2
− 1.1k2

Υ
(22)

�
k∑

i=1

∑
u∈Bi

du

∥∥p(i1) − p(i2)
∥∥2

8
− 1.1k2

Υ

�
k∑

i=1

ζ2 vol(Bi)

80min {vol(Si1), vol(Si2)}
− 1.1k2

Υ
(23)

�
k∑

i=1

ζ2εimin {vol(Si1), vol(Si2)}
80min {vol(Si1), vol(Si2)}

− 1.1k2

Υ

�
k∑

i=1

ζ2εi
80

− 1.1k2

Υ

� ζ2ε

80
− 1.1k2

Υ
� ζ2ε

100
,

where (22) follows from Lemma 4.1, (23) follows from Lemma 4.3, and the last in-
equality follows from the assumption that ε � 105 · k3/Υ.

Now, suppose that part 2 of Lemma 4.6 holds, i.e., there are indices i, 	 such that,
for any j �= 	, it holds that

vol(Ai ∩ S�) � εi vol(S�),

vol(Ai ∩ Sj) � εi vol(S�)

for some ε � 0, and
k∑

i=1

εi � ε.

In this case, we only need to repeat the proof by setting, for any j �= i, Bj = Ai ∩ Sj ,
Sj1 = S�, and Sj2 = Sj .

5. Partitioning well-clustered graphs in nearly linear time. In this sec-
tion we present a nearly linear time algorithm for partitioning well-clustered graphs
and prove Theorem 1.3. At a high level, our algorithm follows the general framework
of k-means algorithms and consists of two steps: the seeding step and the grouping
step. The seeding step chooses k candidate centers such that each one is close to the
actual center of a different cluster. The grouping step assigns the remaining vertices
to their individual closest candidate centers.
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All the proofs for the seeding and grouping steps assume that we have an embed-
ding {x(u)}u∈V [G] satisfying the following two conditions:(

1− 1

10 logn

)
· ‖F (u)‖2 � ‖x(u)‖2 � ‖F (u)‖2 + 1

n5
,(24) (

1− 1

10 logn

)
· ‖F (u)− F (v)‖2 � ‖x(u)− x(v)‖2 � ‖F (u)− F (v)‖2 + 1

n5
(25)

Notice that these two conditions hold trivially if {x(u)}u∈V [G] is the spectral
embedding {F (u)}u∈V [G] or any embedding produced by good approximations of
the first k eigenvectors. However, obtaining such embedding becomes nontrivial for
a large value of k, as directly computing the first k eigenvectors takes superlinear
time. We will present a nearly linear time algorithm that computes an embed-
ding satisfying (24) and (25). By using standard dimensionality reduction techniques
that approximately preserve pairwise distances, such as the Johnson–Lindenstrauss
transform (see e.g., [11]), we can also always assume that the dimension of the em-
bedding {x(u)}u∈V [G] is d = O(log3 n). Throughout the whole section, we assume

k = ω(poly logn) and Υ = Ω̃(k5).
This section is organized as follows: sections 5.1 and 5.2 discuss the seeding

and grouping steps, assuming that we have an embedding {x(u)}u∈V [G] that satisfies
(24) and (25), and section 5.3 analyzes the approximation guarantee of the partition
returned by the grouping step. In section 5.4, we present an algorithm that computes
all required quantities in nearly linear time, assuming that we know the value of λk.
This assumption on λk will be finally removed in section 5.5, and this leads to our
final algorithm, which corresponds to Theorem 1.3.

5.1. The seeding step. We proved in section 4.2 that the approximate center
p(i) for every 1 � i � k satisfies

99

100 vol(Si)
�
∥∥∥p(i)∥∥∥2 � 101

100 vol(Si)
,

and most embedded points F (u) are close to their approximate centers. Together
with (24) and (25), these two properties imply that, when sampling points x(u) with
probability proportional to du · ‖x(u)‖2, vertices from different clusters will be ap-
proximately sampled with the same probability. We will prove that, when sampling
Θ(k log k) points in this way, with constant probability there is at least one point
sampled from each cluster.

In the next step remove the sampled points which are close to each other and
call this resulting set C�. We prove that with constant probability there is exactly
one point in C� from a cluster. Algorithm 1 below gives a formal description of the
seeding step.

Now we analyze Algorithm 1. For any 1 � i � k, we define Ei to be the sum of
the 	22-distance between the embedded points from Si and p(i), i.e.,

Ei �
∑
u∈Si

du

∥∥∥F (u)− p(i)
∥∥∥2 .

For any parameter ρ > 0, we define the radius of Si with respect to ρ to be

Rρ
i � ρ · Ei

vol(Si)
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Algorithm 1 SeedAndTrim(k, {x(u)}u∈V [G]).

1: input: the number of clusters k, and the embedding {x(u)}u∈V [G].
2: Let K = Θ(k log k).
3: for i = 1, . . . ,K do
4: Set ci = u with probability proportional to du‖x(u)‖2.
5: end for
6: for i = 2, . . . ,K do

7: Delete all cj with j < i such that ‖x(ci)− x(cj)‖2 < ‖x(ci)‖2

2·104k .
8: end for
9: return the remaining sampled vertices.

and define COREρ
i ⊆ Si to be the set of vertices whose 	22-distance to p(i) is at most

Rρ
i , i.e.,

(26) COREρ
i �
{
u ∈ Si :

∥∥∥F (u)− p(i)
∥∥∥2 � Rρ

i

}
.

By the averaging argument it holds that

vol(Si \ COREρ
i ) �

∑
u∈Si

du
∥∥F (u)− p(i)

∥∥2
Rρ

i

=
vol(Si)

ρ

and

(27) vol(COREρ
i ) � max

{(
1− 1

ρ

)
vol(Si), 0

}
.

From now on, we set the parameter

α � Θ(K logK).

We first show that most embedded points of the vertices in Si are contained in the
cores COREα

i for 1 � i � k.

Lemma 5.1. The following statements hold:
1.
∑

u∈COREα
i
du · ‖F (u)‖2 � 1− 1

100K .

2.
∑k

i=1

∑
u/∈COREα

i
du · ‖F (u)‖2 � k

100K .

Proof. By the definition of COREα
i , it holds that∑

u∈COREα
i

du · ‖F (u)‖2

� 1

α

∫ α

0

∑
u∈COREρ

i

du · ‖F (u)‖2dρ

� 1

α

∫ α

0

(∥∥∥p(i)∥∥∥−√Rρ
i

)2

vol(COREρ
i )dρ(28)

� 1

α

∫ α

0

(∥∥∥p(i)∥∥∥2 − 2
√
Rρ

i ·
∥∥∥p(i)∥∥∥)max

{(
1− 1

ρ

)
vol(Si), 0

}
dρ(29)

� 1

α

∫ α

0

max

{(
1−
(
2.2
√
k/Υ+ 1.1k/Υ

)
− 3
√
Eiρ
)(

1− 1

ρ

)
, 0

}
dρ,(30)
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where (28) follows from the fact that for all u ∈ COREρ
i , ‖F (u)‖ � ‖p(i)‖−√Rρ

i , (29)
from (27), and (30) from the definition of Rρ

i and the fact that∥∥∥p(i)∥∥∥2 · vol(Si) ∈
(
1−
(
2.2
√
k/Υ+ 1.1k/Υ

)
, 1 + 2.2

√
k/Υ+ 1.1k/Υ

)
.

Since Ei � 1.1k2/Υ by Lemma 4.1, it holds that∑
u∈COREα

i

du · ‖F (u)‖2

� 1

α

∫ α

0

max

{(
1−
(
2.2
√
k/Υ+ 1.1k/Υ

)
− 4
√
k2ρ/Υ

)(
1− 1

ρ

)
, 0

}
dρ

� 1

α

∫ α

0

max

{
1−
(
2.2
√
k/Υ+ 1.1k/Υ

)
− 4
√
k2ρ/Υ− 1

ρ
, 0

}
dρ

� 1−
(
2.2
√
k/Υ+ 1.1k/Υ

)
− 4k
√
α/Υ− lnα

α

� 1− 1

100K
,

where the last inequality holds by the assumption on α and Υ.
The second statement follows by the fact that

k∑
i=1

∑
u∈COREα

i

du · ‖F (u)‖2 � k

(
1− 1

100K

)
and
∑

u∈V [G] du · ‖F (u)‖2 = k.

The next lemma shows that the embedded points from the same core are close to
each other, while the embedded points from different cores are far from each other.

Lemma 5.2. The following statements hold:
1. For any 1 � i � k and any two vertices u, v ∈ COREα

i , it holds that

‖x(u)− x(v)‖2 � min

{
11αk2

Υvol(Si)
,
‖x(u)‖2
2 · 104 · k

}
.

2. For any i �= j, and u ∈ COREα
i , v ∈ COREα

j , it holds that

‖x(u)− x(v)‖2 � 1

7000k vol(Si)
>

‖x(u)‖2
104k

.

Proof. By the definition of COREα
i , it holds for any u ∈ COREα

i that∥∥∥F (u)− p(i)
∥∥∥ �√Rα

i .

By the triangle inequality, it holds for any u ∈ COREα
i and v ∈ COREα

i that ‖F (u)−
F (v)‖ � 2

√
Rα

i and

‖F (u)− F (v)‖2 � 4Rα
i =

4αEi
vol(Si)

� 5αk2

Υvol(Si)
,

where the last inequality follows from Lemma 4.1. Hence, by (25) it holds that

‖x(u)− x(v)‖2 � ‖F (u)− F (v)‖2 + 1

n5
� 5αk2

Υvol(Si)
+

1

n5
� 11αk2

Υvol(Si)
,
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where we use the fact that 1
n5 � 1

vol(Si)
. On the other hand, we have that

‖F (u)‖2 �
(∥∥∥p(i)∥∥∥−√Rα

i

)2
� 9

10 vol(Si)
,

where the last inequality follow from Lemma 4.2 and the definition of Rα
i . By (24)

and the conditions on α, Υ, it also holds that

‖x(u)− x(v)‖2 � 5αk2

Υvol(Si)
+

1

n5
� 10αk2

Υ
‖F (u)‖2 � ‖x(u)‖2

2 · 104 · k .

With these we proved the first statement.
Now we turn to the second statement. By the triangle inequality, it holds for any

pair of u ∈ COREα
i and v ∈ COREα

j that

‖F (u)− F (v)‖ �
∥∥∥p(i) − p(j)

∥∥∥− ∥∥∥F (u)− p(i)
∥∥∥− ∥∥∥F (v) − p(j)

∥∥∥ .
By Lemma 4.3, we have for any i �= j that∥∥∥p(i) − p(j)

∥∥∥2 � 1

103kmin {vol(Si), vol(Sj)} .

Combining this with the fact that

∥∥∥F (u)− p(i)
∥∥∥ �√Rα

i �
√

1.1αk2

Υvol(Si)
,

we obtain that

‖F (u)− F (v)‖ �
∥∥∥p(i) − p(j)

∥∥∥− ∥∥∥F (u)− p(i)
∥∥∥− ∥∥∥F (v)− p(j)

∥∥∥
�
√

1

103kmin {vol(Si), vol(Sj)} −
√

1.1αk2

Υvol(Si)
−
√

1.1αk2

Υvol(Sj)

�
√

1

1.1 · 103kmin {vol(Si), vol(Sj)} .

Notice that

‖x(u)‖2 � ‖F (u)‖2 + 1

n5
�
(∥∥∥p(i)∥∥∥+√Rα

i

)2
+

1

n5
� 11

10 vol(Si)
+

1

n5
� 11

9 vol(Si)
,

and therefore we have

‖x(u)− x(v)‖2 �
(
1− 1

10 logn

)
‖F (u)− F (v)‖2 � 1

7000k vol(Si)
>

‖x(u)‖2
104k

.

We next show that, after sampling Θ(k log k) vertices, with constant probability

the sampled vertices are in the cores
⋃k

i=1 CORE
α
i , and every core contains at least

one sampled vertex.

Lemma 5.3. Assume that K = Ω(k log k) vertices are sampled, in which each
vertex is sampled with probability proportional to du · ‖x(u)‖2. Then, with constant
probability the set C = {c1 . . . cK} of sampled vertices satisfies the following properties:
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1. Set C only contains vertices from the cores, i.e., C ⊆ ⋃k
i=1 CORE

α
i .

2. Set C contains at least one vertex from each cluster, i.e., C ∩ Si �= ∅ for any
1 � i � k.

Proof. By (24), it holds for every vertex u that(
1− 1

10 logn

)
· ‖F (u)‖2 � ‖x(u)‖2 � ‖F (u)‖2 + 1

n5
.

Since
∑

u∈V [G] du‖F (u)‖2 = k, it holds that

∑
u∈V [G]

du‖x(u)‖2 �
∑

u∈V [G]

du ·
(
‖F (u)‖2 + 1

n5

)
� k + 1

and ∑
u∈V [G]

du‖x(u)‖2 �
∑

u∈V [G]

du ·
(
1− 1

10 logn

)
· ‖F (u)‖2 �

(
1− 1

10 logn

)
· k,

i.e., the total probability mass that we use to sample vertices, i.e.,
∑

u∈V [G] du‖x(u)‖2,
is between (1− 1

10 logn ) · k and k + 1.
We first bound the probability that we sample at least one vertex from every core.

For any fixed 1 � i � k, the probability that a vertex from COREα
i gets sampled is at

least ∑
u∈COREα

i
du · ‖x(u)‖2

k + 1
�
∑

u∈COREα
i
du · ‖F (u)‖2

3(k + 1)
�

1− 1
100K

3 · (k + 1)
� 1

10k
.

Therefore, the probability that we never encounter a vertex from COREα
i after sam-

pling K vertices is at most (1 − 1
10k )

K � 1
10k . Also, the probability that a sampled

vertex is outside the cores of the clusters is at most∑k
i=1

∑
u∈Si\COREα

i
du · ‖x(u)‖2(

1− 1
10 logn

)
· k

�
∑k

i=1

∑
u∈Si\COREα

i
du · (‖F (u)‖2 + n−5

)
k/2

�
k

100K + n−3

k/2
� 2

100K
+

1

n2
.

Taking a union bound over all these events gives that the total probability of undesired
events is at most

k · 1

10k
+K ·

(
1

n2
+

2

100K

)
� 1

3
.

Based on Lemmas 5.2 and 5.3 we can simply delete one of the two vertices ci and
cj whose distance is less than 10−4 · ‖x(ci)‖2/(2k). The following lemma presents the
correctness and runtime of the procedure SeedAndTrim, i.e., Algorithm 1.

Lemma 5.4. Given the embedding {x(u)}u∈V [G] of dimension d = O(log3 n) that
satisfies (24) and (25), with constant probability the procedure SeedAndTrim returns

a set C� of centers c1 . . . ck in Õ(n+k2) time, such that each COREα
i contains exactly

one vertex in C�.
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Proof. Since the sampled set C contains at least one vertex from each core COREα
i

with constant probability, and only vertices from different cores will remain in C� by
Lemma 5.2 and the algorithm description, the SeedAndTrim procedure returns k
centers with constant probability.

Now we analyze the runtime. The procedure takes Õ(n) time to compute the
norms of {x(u)}u∈V [G], since the embedding has dimension O(log3 n) by assumption.

It takes Õ(k) time to sample Õ(k) vertices, and trimming the sampling vertices takes

Õ(k2) time. Hence, the total runtime is Õ(n+ k2).

As the end of this subsection, we would like to mention that choosing good candi-
date centers is crucial for most k-means algorithms and has been studied extensively
in the literature (e.g., [6, 31]). Comparing with recent algorithms that obtain good
initial centers by iteratively picking points from a nonuniform distribution and take
Ω(nk) time, our seeding step (Algorithm 1) runs in Õ(n+ k2) time.

5.2. The grouping step. After the seeding step, with constant probability we
obtain a set of k vertices C� = {c1, . . . , ck}, and these k vertices belong to k different
clusters. Now we assign each remaining vertex u to a cluster Si if, comparing with
all other points x(cj) with cj ∈ C�, x(u) is closer to x(ci). A naive implementation

of this step requires Ω̃(nk) time. To speed it up, we apply ε-approximate nearest
neighbor data structures (ε-NNS) [16], whose formal description is as follows.

Problem 1 (ε-approximate nearest neighbor problem). Given a set of point P ⊂
Rd and a point q ∈ Rd, find a point p ∈ P such that, for all p′ ∈ P , ‖p − q‖ �
(1 + ε)‖p′ − q‖.

Theorem 5.5 (see [16]). Given a set P of points in Rd, there is an algorithm

that solves the ε-approximate nearest neighbor problem with Õ(|P |1+ 1
1+ε + d · |P |)

preprocessing time and Õ(d · |P | 1
1+ε ) query time.

Now we set P = {x(c1), . . . , x(ck)} and apply the above ε-approximate nearest
neighbor data structures to assign the remaining vertices to k clusters A1, . . . , Ak. By
Theorem 5.5 and setting ε = log k−1, this step can be finished with Õ(k) preprocessing

time and Õ(1) query time for each query. Hence, the runtime of the grouping step is

Õ(n). Notice that, with our choice of ε = log k − 1 and application of ε-NNS, all the
remaining vertices in V \C� might not assign to the cluster Ai with the closest center
ci. We will prove in the next subsection that our choice of ε suffices to obtain a good
approximation of the optimal partition. The runtime of the grouping step, and the
properties of the returned clusters are summarized in the following lemma.

Lemma 5.6. Given a set of centers C� = {c1, . . . , ck}, the grouping step runs

in Õ(n) time and returns a partition A1, . . . , Ak of vertices, such that for any i ∈
{1, . . . , k}, and every u ∈ Ai, it holds for any j �= i that

‖x(u)− x(ci)‖ � log k · ‖x(u)− x(cj)‖.

Proof. The statement follows from the definition of ε-NNS, with the choice of
ε = log k − 1, and Theorem 5.5.

5.3. Approximation analysis of the algorithm. Now we study the approxi-
mation ratio of the k-way partition computed by the seeding and grouping steps. The
next lemma analyzes the symmetric difference between the optimal partition and the
output of the algorithm.
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Lemma 5.7. Let A1, . . . , Ak be the output of the grouping procedure. Then, under
a proper permutation of the indices, with constant probability for any 1 � i � k it
holds that (i) vol(Ai	Si) = Õ(k3/Υ)vol(Si) and (ii) φG(Ai) = 1.1·φG(Si)+Õ(k3/Υ).

Proof. We assume that c1, . . . , ck ∈ V are the centers returned by SeedAndTrim,
and {x(u)}u∈V [G] is the embedding we used in the algorithm. Moreover, {x(u)}u∈V [G]

satisfies (24) and (25). We further assume that these sampled c1, . . . , ck ⊆ ⋃k
i=1 CORE

α
i .

By Lemma 5.3, this holds with constant probability, and we assume that this event
happens in the following analysis. Then, by the second statement of Lemma 5.2 it
holds for any i �= j that

(31) ‖x(ci)− x(cj)‖2 = Ω

(
1

k ·min{vol(Si), vol(Sj)}
)
.

By Lemma 5.6, it holds for any 1 � i � k that

vol(Si \Ai)

�
∑
i�=j

vol

({
v ∈ Si : ‖x(ci)− x(v)‖ >

‖x(cj)− x(v)‖
log k

})

�
∑
i�=j

vol

({
v ∈ Si : ‖x(ci)− x(v)‖ >

‖x(ci)− x(cj)‖ − ‖x(ci)− x(v)‖
log k

})

�
∑
i�=j

vol

({
v ∈ Si : 2‖x(ci)− x(v)‖ >

‖x(ci)− x(cj)‖
log k

})

=
∑
i�=j

vol

({
v ∈ Si : ‖x(ci)− x(v)‖ >

‖x(ci)− x(cj)‖
2 log k

})
.

By (25) and the triangle inequality, we have that

‖x(ci)− x(v)‖ � ‖F (ci)− F (v)‖+ 1

n2.5
�
∥∥∥F (ci)− p(i)

∥∥∥+ ∥∥∥p(i) − F (v)
∥∥∥ + 1

n2.5
,

and hence

vol(Si \Ai)

�
∑
i�=j

vol

({
v ∈ Si :

∥∥∥F (ci)− p(i)
∥∥∥+ ∥∥∥p(i) − F (v)

∥∥∥+ 1

n2.5
>

‖x(ci)− x(cj)‖
2 log k

})

�
∑
i�=j

vol

({
v ∈ Si :

∥∥∥p(i) − F (v)
∥∥∥ > ‖x(ci)− x(cj)‖

2 log k
−
∥∥∥F (ci)− p(i)

∥∥∥− 1

n2.5

})

�
∑
i�=j

vol

({
v ∈ Si :

∥∥∥p(i) − F (v)
∥∥∥ > ‖x(ci)− x(cj)‖

2 log k
−√Rα

i − 1

n2.5

})

�
∑
i�=j

vol

({
v ∈ Si :

∥∥∥p(i) − F (v)
∥∥∥2 = Ω

(
1

k log2 k ·min{vol(Si), vol(Sj)}

)})
= Õ
(
k3/Υ

)
vol(Si),
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where the last equality follows from Lemma 4.1. For the same reason, we have

vol(Ai \ Si) �
∑
i�=j

vol

({
v ∈ Sj : ‖x(cj)− x(v)‖ � ‖x(ci)− x(v)‖

log k

})
= Õ
(
k3/Υ

)
vol(Si),

and therefore

vol(Si	Ai) = vol(Si \Ai) + vol(Ai \ Si) = Õ
(
k3/Υ

)
vol(Si).

This yields the first statement of the lemma.
The second statement follows by the same argument used in proving Theo-

rem 1.2.

5.4. Fast computation of the required embedding. So far we assumed the
existence of the embedding {x(u)}u∈V [G] satisfying (24) and (25) and analyzed the
performance of the seeding and grouping steps. In this subsection, we will present a
nearly linear time algorithm to compute all the required distances used in the seeding
and grouping steps. Our algorithm is based on the so-called heat kernal of a graph.

Formally, the heat kernel of G with parameter t � 0 is defined by

(32) Ht � e−tL =

n∑
i=1

e−tλifif
ᵀ
i .

We view the heat kernel as a geometric embedding from V [G] to Rn defined by

(33) xt(u) �
1√
du

· (e−t·λ1f1(u), . . . , e
−t·λnfn(u)

)
,

and define the 	22-distance between the points xt(u) and xt(v) by

(34) ηt(u, v) � ‖xt(u)− xt(v)‖2.

The following lemma shows that, when k = Ω(log n) and Υ = Ω(k3), the values of

ηt(u, v) for all edges {u, v} ∈ E[G] can be approximately computed in Õ(m) time.

Lemma 5.8. Let k = Ω(logn) and Υ = Ω(k3). Then, there is t = O(poly(n)) such
that the embedding {xt(u)}u∈V [G] defined in (33) satisfies (24) and (25). Moreover,

the values of ηt(u, v) for all {u, v} ∈ E[G] can be approximately computed in Õ(m)
time, such that with high probability the conditions (24) and (25) hold for all edges
{u, v} ∈ E[G].

Our proof of Lemma 5.8 uses the algorithm for approximating the matrix expo-
nential in [29] as a subroutine, whose performance is summarised in Theorem 5.9.
Recall that any n× n real and symmetric matrix A is diagonally dominant (SDD) if
Aii �

∑
j �=i |Aij | for each i = 1, . . . , n. It is easy to see that the Laplacian matrix of

any undirected graph is diagonally dominant.

Theorem 5.9 (see [29]). Given an n × n SDD matrix A with mA nonzero
entries, a vector v, and a parameter δ > 0, there is an algorithm that can compute a
vector x such that ‖e−Av − x‖ � δ‖v‖ in time Õ((mA + n) log(2 + ‖A‖)), where the

Õ(·) notation hides poly logn and poly log(1/δ) factors.
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Proof of Lemma 5.8. By the higher-order Cheeger inequality (2), we have that

Υ =
λk+1

ρ(k)
� 2λk+1

λk
.

Since k = Ω(log n) and Υ = Ω(k3), it holds that 400 · log2 n � λk+1/λk, and there is
t such that

t ∈
(
10 · logn
λk+1

,
1

20 · λk · logn
)
.

We first show that the embedding {xt(u)}u∈V [G] with this t satisfies (24) and (25).
By the definition of ηt(u, v), we have that

ηt(u, v) =

n∑
i=1

e−2tλi

(
fi(u)√
du

− fi(v)√
dv

)2

=

k∑
i=1

e−2tλi

(
fi(u)√
du

− fi(v)√
dv

)2

+

n∑
i=k+1

e−2tλi

(
fi(u)√
du

− fi(v)√
dv

)2

.(35)

Notice that it holds for 1 � i � k that

(36) 1− 1

10 logn
� e−1/(10 logn) � e−λi/(10λk/ logn) � e−2tλi � 1,

and it holds for k + 1 � i � n that

(37) e−2t·λi � e−2λi·10 logn/λk+1 � e−10 lognλk+1/λk+1 =
1

n20
.

Combining (35), (36), and (37), it holds for any {u, v} ∈ E[G] that(
1− 1

10 · logn
)
· ‖F (u)− F (v)‖2 � ηt(u, v) � ‖F (u)− F (v)‖2 + 1

n5
,

which proves the first statement.
Now we show that the distances of ‖xt(u) − xt(v)‖ for all edges {u, v} ∈ E[G]

can be approximately computed in nearly linear time. For any vertex u ∈ V [G], we
define ξu ∈ Rn, where (ξu)v = 1/

√
du if v = u, and (ξu)v = 0 otherwise. Combining

(32) with (33) and (34), we have that ηt(u, v) = ‖Ht(ξu − ξv)‖2. We define Z to be
the operator of error δ which corresponds to the algorithm described in Theorem 5.9,
and replacing Ht with Z we get∣∣∣‖Z (ξu − ξv)‖ − η

1/2
t (u, v)

∣∣∣ � δ ‖ξu − ξv‖ � δ,

where the last inequality follows from du, dv � 1. Hence, it holds that

(38) η
1/2
t (u, v)− δ � ‖Z (ξu − ξv)‖ � η

1/2
t (u, v) + δ.

By applying the Johnson–Lindenstrauss transform in a way analogous to the com-
putation of effective resistances (e.g., [20] and [37]), we obtain an O(ε−2 · logn) × n
Gaussian matrix Q, such that with high probability it holds for all u, v that

(39) (1− ε) ‖Z (ξu − ξv)‖ � ‖QZ (ξu − ξv)‖ � (1 + ε) ‖Z (ξu − ξv)‖ .
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Combining (38) and (39) gives us that

(1− ε)
(
η
1/2
t (u, v)− δ

)
� ‖QZ (ξu − ξv)‖ � (1 + ε)

(
η
1/2
t (u, v) + δ

)
.

Squaring both sides and invoking the inequality (1− ε)α2 − (1 + ε−1)b2 � (a+ b)2 �
(1 + ε)α2 + (1 + ε−1)b2 gives

(1− 5ε) ηt(u, v)− 2δ2ε−1 � ‖QZ (ξu − ξv)‖2 � (1 + 5ε) ηt(u, v) + 2δ2ε−1.

Scaling QZ by a factor of (1 + 5ε)−1 and appending an extra entry in each vector to
create an additive distortion of 2δε−1 then gives the desired bounds when δ is set to
εn−6. To satisfy the conditions (24) and (25) we just need to set ε = O(1/ logn).

To analyze the runtime of computing ‖QZ(ξu − ξv)‖2 for all edges {u, v} ∈ E[G],
notice that Q has only O(log3 n) rows. We can then run the approximate exponential
algorithm from [29] O(log3 n) times, where each time we use a different row of Q as

input. Since ‖L‖ � 2, by Theorem 5.9 we can compute QZ in Õ(m) time. Notice
that QZξu is some column of QZ after rescaling, and therefore we can compute all
the required distances in time Õ(m).

We remark that the proof above shows an interesting property about the embed-
ding (33), i.e., for a large value of k and a certain condition on Υ, there is always a t
such that the values of ηt(u, v) gives a good approximation of ‖F (u)− F (v)‖2 for all
edges {u, v} ∈ E[G]. A similar intuition which views the heat kernel embedding as a
weighted combination of multiple eigenvectors was discussed in [29].

5.5. Proof of Theorem 1.3. We proved in section 5.4 that if k = Ω(logn) and
Υ = Ω(k3), there is a

(40) t ∈
(
10 logn

λk+1
,

1

20 · λk · logn
)

such that {xt(u)}u∈V [G] satisfies the conditions (24) and (25). Moreover, the values
of ‖xt(u)− xt(v)‖ for {u, v} ∈ E[G] can be approximately computed in nearly linear
time.3 However, it is unclear how to approximate λk. Furthermore, without this
approximation of λk, obtaining the desired embedding {x(u)}u∈V [G] becomes highly
nontrivial.

To overcome this obstacle, we run the seeding and grouping steps for all possible
t of the form 2i, where t ∈ N�0, as it allows us to run the seeding and grouping steps
with the right values of t at some point. However, by (34) the distance between any
pair of embedded vertices decreases when we increase the value of t. Moreover, all
these embedded points {xt(u)}u∈V [G] tend to “concentrate” around a single point for
an arbitrary large value of t. To avoid this situation, for every possible t we compute
the value of

∑
v∈V [G] dv‖xt(v)‖2, and the algorithm only moves to the next iteration

if

(41)
∑

v∈V [G]

dv‖xt(v)‖2 � k

(
1− 2

logn

)
.

3Lemma 5.8 shows that both of the embedding {xt(u)}u∈V [G] and the embedding that the
algorithm computes in nearly linear time satisfy the conditions (24) and (25) with high probability.
For ease of discussion, we use {xt(u)}u∈V [G] to express the embedding that the algorithm actually
uses.



PARTITIONING WELL-CLUSTERED GRAPHS 739

By Lemma 5.1, (41) is satisfied for all values of t in the right range (40), and the
algorithm will not terminate before t = �logn/λk+1�. See Algorithm 2 for the formal
description of our final algorithm.

Algorithm 2 A nearly linear time graph clustering algorithm, k = Ω(logn).

1: input: the input graph G, and the number of clusters k
2: Let t = 2.
3: repeat
4: Let (c1, . . . , ck) = SeedAndTrim

(
k, {xt(u)}u∈V [G]

)
.

5: if SeedAndTrim returns exactly k points then
6: Compute a partition A1, . . . , Ak of V [G]: for every v ∈ V [G] assign v to its

nearest center ci using the ε-NNS algorithm with ε = log k − 1.
7: end if
8: Let t = 2t
9: until t > n10 or

∑
v∈V [G] dv‖xt‖2 < k

(
1− 2

logn

)
.

10: return (A1, . . . , Ak).

Lemma 5.10. Let t = Ω(1/(λk · logn)), and t satisfies (41). Suppose that
SeedAndTrim uses the embedding {xt(u)}u∈V [G] and returns k centers c1, . . . , ck.
Then, with constant probability, the following statements hold:

1. It holds that

{c1, . . . , ck} ⊆
k⋃

i=1

COREα
i .

2. These k centers belong to different cores, and it holds for any different i, j
that

‖xt(ci)− xt(cj)‖2 = Ω̃

(
1

k · vol(Si)

)
.

3. For any i = 1, . . . , k, it holds that

k∑
i=1

∑
u∈Si

du · ‖x(u)− x(ci)‖2 = Õ

(
k3

Υ

)
.

Proof. Since ‖xt(u)‖ is decreasing with respect to the value of t for any vertex u,
by Lemma 5.1 for any t = Ω(1/(λk · logn)) we have

k∑
i=1

∑
u/∈COREα

i

du · ‖xt(u)‖2 �
k∑

i=1

∑
u/∈COREα

i

du ·
(
‖F (u)‖2 + 1

n5

)
� k

100K
+
kn2

n5
� 1

log k
.

On the other hand, we only consider values of t satisfying (41). Since every vertex u
is sampled with probability proportional to du · ‖xt(u)‖2, with constant probability it
holds that

{c1, . . . , ck} ⊆
k⋃

i=1

COREα
i ,

which proves the first statement.
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Now we prove that these k centers belong to different cores. We fix an index i
and assume that ci ∈ Si. We will prove that

(42) ‖xt(ci)‖2 = Ω̃

(
1

vol(Si)

)
.

Assume by contradiction that (42) does not hold, i.e.,

‖xt(ci)‖2 = o

(
1

logc k vol(Si)

)
for any constant c. Then, we have that∑

u∈COREα
i

du · ‖xt(u)‖2 �
∑

u∈COREα
i

du ·
(
‖xt(ci)‖+

√
Rα

i

)2
� 2 ·

∑
u∈COREα

i

(
du · ‖xt(ci)‖2 + du · Rα

i

)
= o

(
1

logc k

)
+ o

(
1

k2

)
= o

(
1

logc k

)
.

Combining this with (41), the probability that vertices get sampled from COREα
i is∑

u∈COREα
i
du · ‖xt(u)‖2∑

v∈V [G] dv‖xt(v)‖2 = o

(
1

k · logc k
)
.

This means if we sample K = Θ(k log k) vertices, vertices in COREα
i will not get

sampled with probability at least 1 − 1/ log5 k. This contradicts the fact that ci ∈
COREα

i . Therefore (42) holds.
Now, by description of Algorithm 1, we have for any j �= i

‖xt(ci)− xt(cj)‖2 � ‖x(ci)‖2
2 · 104 · k = Ω̃

(
1

k · vol(Si)

)
,

where the last equality follows from (42). Since any vertex in COREα
i has distance at

most Rα
i from ci, cj and ci belong to different cores. Therefore, the second statement

holds.
Finally we turn our attention to the third statement. We showed in Lemma 5.8

that, when t = Θ(1/(λk · logn)), the embedding {xt(u)}u∈V [G] satisfies the conditions
(24) and (25). Hence, it holds that

k∑
i=1

∑
u∈Si

du · ‖x(u)− x(ci)‖2

�
k∑

i=1

∑
u∈Si

(
du · ‖F (u)− F (ci)‖2 + 1

n5

)

�
k∑

i=1

∑
u∈Si

(
du · (‖F (u)− pi‖+ ‖F (ci)− pi‖)2 + 1

n5

)

�
k∑

i=1

∑
u∈Si

(
2 · du ·

(
‖F (u)− pi‖2 + ‖F (ci)− pi‖2

)
+

1

n5

)
.(43)
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Notice that by Lemma 4.1 we have

(44)

k∑
i=1

∑
u∈Si

du · ‖F (u)− pi‖2 � 1.1k2/Υ.

On the other hand, we have ‖F (ci)− pi‖2 � Rα
i as ci ∈ COREα

i , and

(45)

k∑
i=1

∑
u∈Si

2 · du · ‖F (ci)− pi‖2 �
k∑

i=1

2 vol(Si) · α · Ei
vol(Si)

=

k∑
i=1

2α · Ei = Õ

(
k3

Υ

)
.

Combining (43) with (44) and (45), we have that

k∑
i=1

∑
u∈Si

du · ‖x(u)− x(ci)‖2 � Õ

(
k3

Υ

)
+
∑

u∈V [G]

du
n5

= Õ

(
k3

Υ

)
.

Moreover, by (33) and (34) it is straightforward to see that the distance between any
embedded vertices decreases as we increase the value of t. Hence, the statement holds
for any t = Ω(1/(λk · logn)).

Lemma 5.11. Let A1, . . . , Ak be a k-way partition returned by Algorithm 2. Then,
under a proper permutation of the indices, with constant probability for any 1 � i � k
it holds that (i) vol(Ai	Si) = Õ(k4/Υ)vol(Si), and (ii) φG(Ai) = 1.1 · φG(Si) +

Õ(k4/Υ).

Proof. We assume that c1, . . . , ck are the centers returned by SeedAndTrim

when obtaining A1, . . . , Ak. By Lemma 5.10, with constant probability it holds that
{c1, . . . , ck} ⊆ ⋃k

i=1 CORE
α
i , and ci and cj belong to different cores for i �= j. Without

loss of generality, we assume that ci ∈ COREα
i . Then, it holds that

vol(Si \Ai)

�
∑
i�=j

vol

({
v ∈ Si : ‖x(ci)− x(v)‖ � ‖x(cj)− x(v)‖

log k

})

�
∑
i�=j

vol

({
v ∈ Si : ‖x(ci)− x(v)‖ � ‖x(ci)− x(cj)‖ − ‖x(ci)− x(v)‖

log k

})

�
∑
i�=j

vol

({
v ∈ Si : 2‖x(ci)− x(v)‖ � ‖x(ci)− x(cj)‖

log k

})

�
∑
i�=j

vol

({
v ∈ Si : ‖x(ci)− x(v)‖2 = Ω̃

(
1

kmin{vol(Sj), vol(Si)}
)})

(46)

= Õ
(
k4/Υ

)
vol(Si),(47)

where (46) follows from the second statement of Lemma 5.10.
Similarly, we also have that

vol(Ai \ Si) �
∑
i�=j

vol

({
v ∈ Sj : ‖x(cj)− x(v)‖ � ‖x(ci)− x(v)‖

log k

})
= Õ
(
k4/Υ

)
vol(Si).

This yields the first statement of the lemma. The second statement follows by the
same argument used in proving Theorem 1.2.
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Proof of Theorem 1.3. The approximation guarantee of the returned partition is
shown in Lemma 5.11. For the runtime, notice that we enumerate at mostO(poly logn)
possible values of t. Furthermore, and for every such possible value of t, the algorithm
runs in Õ(m) time. This includes computing the distances of embedded points and

the seeding/grouping steps. Hence, the total runtime is Õ(m).
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