
Balls into Bins via Local Search

Paul Bogdan∗ Thomas Sauerwald† Alexandre Stauffer‡ He Sun §

Abstract

We propose a natural process for allocating n balls into

n bins that are organized as the vertices of an undirected

graph G. Each ball first chooses a vertex u in G uniformly

at random. Then the ball performs a local search in

G starting from u until it reaches a vertex with local

minimum load, where the ball is finally placed on. In our

main result, we prove that this process yields a maximum

load of only Θ(log logn) on expander graphs. In addition,

we show that for d-dimensional grids the maximum load is

Θ
((

logn
log logn

) 1
d+1

)
. Finally, for almost regular graphs with

minimum degree Ω(logn), we prove that the maximum

load is constant and also reveal a fundamental difference

between random and arbitrary tie-breaking rules.

1 Introduction

It is well known that if each of n balls is placed
sequentially into one of n bins chosen independently
and uniformly at random, then the highest loaded
bin is likely to contain Θ

(
logn

log logn

)
balls. We call

this process the 1-choice process. Alternatively, in
the d-choice process, each ball is allowed to choose d
bins independently and uniformly at random and is
placed in the least loaded among the d bins. It was
shown by Azar et al. [3] and Karp et al. [11] that the
maximum load reduces drastically to Θ

(
log logn

log d

)
in

the d-choice process. The constants omitted in the Θ
are known [3] and as shown by Vöcking [18], a slight
modification of the d-choice process can decrease the
maximum load further. Berenbrink et al. [4] extended

8 ∗Department of Electrical and Computer En-
gineering, Carnegie Mellon University, Pittsburgh,
PA, USA.

8 †Max Planck Institute for Informatics,
Saarbrücken, Germany and Cluster of Excellence
“Multimodal Computing and Interaction”, Univer-
sität des Saarlandes, Saarbrücken, Germany. Part of
this work was done while visiting Microsoft Research
Redmond.

8 ‡Microsoft Research, Redmond WA, USA.
Part of this work was done while visiting Max Planck
Institute for Informatics, Saarbrücken, Germany.

8 §Max Planck Institute for Informatics,
Saarbrücken, Germany, and Institute of Modern
Mathematics and Physics, Fudan University, Shang-
hai, China.

these results to the case where the number of balls is
larger than the number of bins.

In some applications, it is important to allow each
ball to choose bins in a correlated way. For example,
such correlations occur naturally in distributed sys-
tems, where the bins represent processors that are in-
terconnected as a graph and the balls represent tasks
that need to be assigned to processors. From a prac-
tical point of view, letting each task choose d inde-
pendent random bins may be undesirable, since the
cost of accessing two bins which are far away in the
graph may be higher than accessing two bins which
are nearby. Furthermore, in some contexts, tasks are
actually created by the processors, which are then
able to forward tasks to other processors to achieve
a more balanced load distribution. In such settings,
allocating balls close to the processor that created it
is certainly very desirable as it reduces the costs of
probing the load of a processor and allocating the
task.

We propose a very natural and simple process
for allocating balls into bins that are interconnected
as a graph. We refer to this process as local search
allocation. At each step, a ball is “born” in a
bin chosen independently and uniformly at random,
which we call the birthplace of the ball. Then,
starting from its birthplace, the ball performs a local
search in the graph, where in each step the ball moves
to the adjacent bin with the smallest load, provided
that the load is strictly smaller than the load of the
bin the ball is currently in. Unless otherwise stated,
we assume that ties are broken uniformly at random.
The local search ends when the ball visits the first
vertex that is a local minimum, which is a vertex for
which no neighbor has a smaller load. After that,
the next ball is born and is allocated according to
the procedure described above, and this process is
repeated. See Figure 1 for an illustration.

In this paper we analyze the asymptotic behavior
of the maximum load obtained when n balls are
allocated to n bins as n → ∞. The main question
is whether the local search allocation ensures a small
load amount like the d-choice process with d > 2. Our
main result gives a positive answer for the important
case where the n balls are allocated to n bins which
are organized as the vertices of an expander graph.

1 2 3 4 5 6

(a)

1 2 3 4 5 6

(b)

ball i

1 2 3 4 5 6

(c)

ball i+ 1

1 2 3 4 5 6

(d)

ball i+ 2

Figure 1: Illustration of the local search allocation. Black circles
represent the vertices 1–6 arranged as a path, and the yellow circles
represent the balls of the process (the most recently allocated ball
is marked red). Figure (a) shows the configuration after placing
i − 1 balls. As shown in Figure (b), ball i born at vertex 4 has
two choices in the first step of the local search (vertices 3 or 5)
and is finally allocated to vertex 2. Figure (c) and (d) shows the
placement of ball i+ 1 and i+ 2.

We show, in this case, that the maximum load is
Θ(log log n), which has the same order of magnitude
as of the d-choice process (refer to Theorem 3.1 for a
more general statement of Theorem 1.1 below).

Theorem 1.1. (Expander graphs) Let G be any
expander graph with constant maximum degree.
Then, as n → ∞, the maximum load after n balls
are allocated is Θ(log log n) with probability 1− o(1).

Remark 1.2. Theorem 1.1 holds also when ties are
not broken uniformly at random but by means of a
fixed permutation. In this tie-breaking procedure, for
each vertex v ∈ V , we associate an arbitrary permu-
tation ξv of the neighbors of v. Then, whenever a
ball is currently at v during its local search, the ball
breaks ties by using the order in the permutation ξv.
With this tie-breaking procedure, the local search al-
location is a deterministic function of the birthplaces
of the balls and the permutations {ξv}v∈V .

Before discussing and comparing our main result
with existing results, we proceed to state our other
results. Recall that, unless otherwise stated, we
assume that in the local search allocation ties are
broken uniformly at random. An important instance
for applications is when the bins are organized as a

ring or a grid. The theorem below establishes the
maximum load in this case up to constant factors.

Theorem 1.3. (Grid graphs) Let G be any d-
dimensional grid graph, where d > 1 is any integer
constant. Then, as n →∞, the maximum load after

n balls are allocated is Θ

((
logn

log logn

) 1
d+1

)
with prob-

ability 1− o(1).

In comparison to Theorem 1.1, the above theorem
shows that the maximum load can be quite high on
graphs with small expansion. Besides the expansion,
it is also conceivable that a large degree ensures a
small maximum load. The next theorem confirms this
intuition by showing that a constant maximum load is
obtained for any almost regular graph with minimum
degree Ω(log n), where a graph is almost regular if the
ratio between the minimum and maximum degrees is
a constant. This class of graphs includes hypercubes
and Erdős-Rényi random graphs with average degree
(1 + ε) log n, for any ε > 0.

Theorem 1.4. (Dense graphs) Let G be any al-
most regular graph with minimum degree Ω(log n).
Then, as n → ∞, the maximum load after n balls
are allocated is O(1) with probability 1− o(1).

In the next two theorems, we do not restrict the
local search allocation to break ties uniformly at ran-
dom. In particular, we show that deviating from the
usual random tie breaking rule can dramatically in-
crease the maximum load. Here, as in Remark 1.2,
we define a tie-breaking rule as a collection of vari-
ables {ξv}v∈V , where each ξv is a permutation of the
neighbors of v.

Theorem 1.5. (Impact of tie-breaking rules)
For any d = ω(1) as n → ∞, there is a d-regular
graph and a choice of {ξv}v∈V for which the max-
imum load after n balls are allocated is at least
Ω
(

min
{
d1/4, logn

log d

})
with probability 1− o(1).

To highlight the difference between random tie break-
ing and arbitrary tie breaking, Theorem 1.5 estab-
lishes that there exists a d-regular graph G with
d = Θ(log n) and a tie-breaking rule for which the
maximum load in G is Ω((log n)1/4). On the other
hand, by Theorem 1.4 we have that breaking ties uni-
formly at random leads to a constant maximum load
in G.

Our final result establishes some lower bounds
on the maximum load. These lower bounds hold for
arbitrary tie-breaking rules.

Theorem 1.6. (Lower bounds) For any graph
with maximum degree ∆, the maximum load after n

balls are allocated is at least Ω
(

log logn
log ∆

)
with prob-

ability 1 − o(1) as n → ∞. Furthermore, for any
integer 2 6 d 6 logn

e , there is a d-regular graph for
which the maximum load after n balls are allocated is

at least Ω

(√
logn

d·log(logn
d)

)
with probability 1−o(1) as

n→∞.

The combination of Theorem 1.5 and the second
statement of Theorem 1.6 shows that the two condi-
tions concerning the degree and the random tie break-
ing in Theorem 1.4 are not only sufficient but also
necessary for obtaining a constant maximum load.

While in the d-choice process a ball only probes
the load of a constant number of bins (provided
d = O(1)), the local search allocation may probe the
load of ω(1) bins for some balls. However, the number
of bins which a given ball can probe is bounded above
by ∆ times the load of the birthplace of the ball,
where ∆ is the maximum degree of G. Therefore,
the expected number of probed bins per ball is at
most ∆ and, for the case of expander graphs with
constant maximum degree, Theorem 1.1 implies that
the maximum number of probed bins per ball is
O(log log n).

An important feature of our local search alloca-
tion is that it maintains a smooth load distribution
(cf. Lemma 2.2); i.e., the load difference for each edge
of G is at most one and balls are only placed in the
bins whose load is a local minimum. Hence, if each
ball is controlled by an agent who strives for a min-
imization of its load, then each agent has a natural
incentive to follow the local search allocation.

It is also important to remark that our process
uses only a small amount of randomness. For in-
stance, when ties are broken by means of a deter-
ministic collection of {ξv}v∈V , the only randomness
comes from the birthplaces of the balls, which re-
quires only n log2 n random bits. From this perspec-
tive, it is comparable to the process by Mitzenmacher
et al. [15], which uses the same number of random bits
and achieves a maximum load of O(log log n) as well.

Further Related Work. The work that is
most related to ours is that of Kenthapadi and
Panigrahy [12]. They analyzed a balls-into-bins
model where each ball chooses a pair of adjacent
bins uniformly at random and is placed in the bin
with the smaller load. They proved that, for any d-
regular graph, the maximum load after n balls are
allocated is log log n + O

(
1 + logn

log(d/ log4 n)

)
, and also

showed an almost matching lower bound. Hence,
to retain the maximum load of O(log log n) from
the 2-choice process, the degree d must be as large
as Ω(nΩ(1/(log logn))). In contrast, our local search

allocation achieves a maximum load of O(log log n)
even for a large class of constant-degree graphs. The
model from Kenthapadi and Panigrahy [12] was also
studied implicitly in Peres et al. [16], where the
authors analyzed the gap defined as the difference
between the maximum and minimum load. They
proved that, even if the number of balls m is much
larger than the number of bins n, the gap is Θ(log n)
for expander graphs and, for the cycle, the gap is
between Ω(log n) and O(n log n), i.e., independent of
the number of balls.

In a different context, Adler et al. [1] studied a
related graph-based coupon collector process. In this
process, each ball performs a local search but dis-
tinguishes only between empty and nonempty bins.
Therefore, each ball is allocated either to its birth-
place or to one of its neighbors. For different graphs,
the authors analyzed how many balls have to be al-
located until all bins are non-empty.

There are several other variations of balls-into-
bins models for which the power of two choices has
been analyzed (we refer to [14] for a survey). For
instance, Broder and Mitzenmacher [6] considered a
multidimensional version where balls correspond to
0/1 vectors. Godfrey [9] analyzed balanced alloca-
tions on hypergraphs, extending the model of [12]
for allocations on graphs. Among other results, the
author obtained a constant maximum load for an al-
most regular hypergraph if each hyperedge consists of
d = Θ(log n) bins, which is comparable to our result
for dense graphs (Theorem 1.4).

Local search is a generic method to solve opti-
mization problems and several recent studies in algo-
rithmic game theory involve local search-based pro-
cesses. In contrast to our model, these processes
usually start from a state where all tasks are as-
signed and allow, either sequentially or in parallel,
tasks to be reallocated by using so-called improve-
ment steps (a.k.a. selfish steps). For various settings,
lower and upper bounds on the number of improve-
ment steps until a Nash equilibrium is found have
been shown [5, 8, 10]. We note that the total num-
ber of improvement steps in our process is always
bounded by O(n) with probability 1 − o(1), regard-
less of the underlying graph.

2 Basic properties

We start with some notation. Let G = (V,E) be
an undirected, connected graph, where the n vertices
represent n bins to which n balls should be allocated.

For each node v ∈ V , denote by X
(i)
v the load of v

right after the ith ball is allocated. Thus, we initially

have X
(0)
v = 0 for all v ∈ V . Let X

(n)
max be the

maximum load after n balls have been allocated; i.e.,

X(n)
max = max

v∈V
X(n)
v .

Let Ui ∈ V be the birthplace of ball i, so Ui is a
uniformly random sample from V . Recall that in the
1-choice process, for all i > 1, ball i is allocated to

Ui. For any v ∈ V , let X
(n)

v be the load of v after n
balls are allocated according to the 1-choice process.
In symbols, we have

X
(n)

v = |{i ∈ [1, n] : Ui = v}|.

With this, define the maximum load for the 1-choice
process as

X
(n)

max := max
v∈V

X
(n)

v .

For vectors A = (a1, a2, . . . , an) and A′ =
(a′1, a

′
2, . . . , a

′
n) such that

∑n
i=1 ai =

∑n
i=1 a

′
i, we say

that A majorizes A′ if, for each κ = 1, 2, . . . , n,
the sum of the κ largest entries of A is at least
the sum of the κ largest entries of A′. More for-
mally, if j1, j2, . . . , jn are distinct numbers such that
aj1 > aj2 > · · · > ajn and j′1, j

′
2, . . . , j

′
n are distinct

numbers such that a′j′1
> a′j′2

> · · · > a′j′n , then A

majorizes A′ if

κ∑
i=1

aji >
κ∑
i=1

a′j′i

for all κ = 1, 2, . . . , n. The lemma below establishes
that the load vector obtained by the 1-choice pro-
cess majorizes the load vector obtained by the lo-
cal search allocation. As a consequence, the max-
imum load of our local search allocation process is
O(log n/(log log n)) for any graph.

Lemma 2.1. (Comparison with 1-choice) For

any fixed k > 0, we can couple X(k) and X
(k)

so that, with probability 1, X
(k)

majorizes X(k).

Consequently, we have that, for all k > 0, X
(k)

max

stochastically dominates X
(k)
max.

Proof. The proof is by induction on k. Clearly, for

k = 0, we have X
(0)
v = X

(0)

v = 0 for all v ∈ V . Now,

assume that we can couple X(k−1) with X
(k−1)

so

that X
(k−1)

majorizes X(k−1). Now let j1, j2, . . . , jn
be distinct elements of V so that X

(k−1)
j1

> X
(k−1)
j2

>

· · · > X
(k−1)
jn

. Similarly, let j′1, j
′
2, . . . , j

′
n be distinct

elements of V so that X
(k−1)

j′1
> X

(k−1)

j′2
> · · · >

X
(k−1)

j′n
. Now let ` be a uniformly random integer

from 1 to n. Then, for the process (X
(k)
v)v∈V , we

let the kth ball be born at vertex j` and define ι such
that jι is the vertex to which the kth ball is allocated.

Note that, ι > `. For the process (X
(k)

v)v∈V , we set
the birthplace of the kth ball to be j′`. Therefore, for
any κ = 1, 2, . . . , n, we have

κ∑
i=1

X
(k)

j′i

=

κ∑
i=1

X
(k−1)

j′i
+ 1 (κ > `) >

κ∑
i=1

X
(k−1)
ji

+ 1 (κ > `)

>
κ∑
i=1

X
(k−1)
ji

+ 1 (κ > ι) =

κ∑
i=1

X
(k)
ji
,

where the first inequality follows by the induction
hypothesis and the second inequality holds as ι > `.

For any v ∈ V , let Nv be the set of neighbors of
v in G. The next lemma establishes that the local
search allocation always maintains a smoothed load
vector in the sense that the load of any two adjacent
vertices differs by at most 1.

Lemma 2.2. (Smoothness) For any k > 0, any v ∈
V and any u ∈ Nv, we have that |X(k)

v −X(k)
u | 6 1.

Proof. In order to obtain a contradiction, suppose

that X
(k)
v > X

(k)
u + 2, and let j be the last ball

allocated to v. Then, we have that

X(j−1)
v = X(k)

v − 1 > X(k)
u + 1 > X(j−1)

u + 1.

Therefore, the moment the jth ball is born, vertex v
has at least one neighbor with load strictly smaller
than v. Therefore, ball j is not allocated to v,
establishing a contradiction.

For any vertex v ∈ V and integer r > 0, let
Nr
v be the set of vertices of G whose distance to v

is exactly r (in particular, N0
v = {v}), and let Brv

be the set of vertices of G whose distance to v is at
most r; then Brv =

⋃r
i=0N

i
v. Below we show that, if

for a given v ∈ V we have an upper bound for the
number of balls allocated to Brv , then we obtain an
upper bound for the load of v.

Lemma 2.3. (Upper Bound) Let v be an arbitrary
vertex of G. Suppose that there exists an integer r > 1
and a positive Ψ, that may depend on n, such that the
total number of balls allocated to the vertices of Brv is

at most Ψ|Brv |; i.e.,
∑
u∈Brv

X
(n)
u 6 Ψ|Brv |. Then, we

have that

X(n)
v 6 Ψ +

r∑
i=0

i
|N i

v|
|Brv |

.

Proof. Note that, by Lemma 2.2, for any u ∈ N i
v, we

have X
(n)
u > X

(n)
v − i. Using this and the condition

of the lemma, we obtain

Ψ|Brv | >
∑
u∈Brv

X(n)
u >

r∑
i=0

(X(n)
v − i)|N i

v|

=X(n)
v |Brv | −

r∑
i=0

i|N i
v|.

Complementing the previous lemma, we now
prove a lower bound on the maximum load that
depends only on the number of balls born at a subset
of vertices and the cardinality of a small ball around
that subset.

Lemma 2.4. (Lower Bound) For any subset S ⊆
V , let ΦS :=

∑n
i=1 1 (Ui ∈ S) be the number of balls

born in S. Then, the maximum load β := X
(n)
max

satisfies β · |BβS | > ΦS , where BβS :=
⋃
s∈S B

β
s is the

set of vertices with distance at most β from S.

Proof. If the maximum load is β, then every ball born
at some vertex u is allocated in Bβu , and clearly the

load of any vertex in BβS is at most β. Combining
these two insights yields

ΦS 6
∑
u∈BβS

X(n)
u 6 β · |BβS |.

Hence the maximum load β satisfies β · |BβS | > ΦS .

For the next two lemmas, we need ties to be
broken either uniformly at random or by means of
a fixed permutation ξv of the neighbors of v for each
v ∈ V . The next lemma establishes that the load
vector X(n) satisfies a Lipschitz condition, which will
turn out to be crucial in our proofs.

Lemma 2.5. (Lipschitz property) Let k > 1 be
fixed and u1, u2, . . . , uk ∈ V be arbitrary. Let

(X
(k)
v)v∈V be the load of the vertices of G after the

local search allocation places k balls with birthplaces
u1, u2, . . . , uk. Let i ∈ {1, 2, . . . , k} be fixed, and let

(Y
(k)
v)v∈V be the load of the vertices of G after the

local search allocation places k balls with birthplaces
u1, u2, . . . , ui−1, u

′
i, ui+1, ui+2, . . . , uk, where u′i ∈ V

is arbitrary. In other words, (Y
(k)
v)v∈V is obtained

from (X
(k)
v)v∈V by changing the birthplace of the ith

ball from ui to u′i. Assume that, for both processes,
the local search allocation breaks ties either uniformly
at random or via the permutations {ξv}v∈V described

in Remark 1.2. Then, there exists a coupling such
that

(2.1)
∑
v∈V

∣∣∣X(k)
v − Y (k)

v

∣∣∣ 6 2.

Proof. We refer to the process defining the variables
X(k) as the X process, and the process defining the
variables Y (k) as the Y process. If ties are broken
uniformly at random, then for each v ∈ V and i > 1,

we define ξ
(i)
v to be an independent and uniformly

random permutation of the neighbors of v. We use
this permutation for both the X and Y processes to
break ties when ball i is at vertex v. Then, since
the first i− 1 balls have the same birthplaces in both
processes, we have that

(2.2) X(i−1)
v = Y (i−1)

v for all v ∈ V .

Now, when adding the ith ball, we let vi be the vertex
to which this ball is allocated in the X process and
v′i be the vertex to which this ball is allocated in the

Y process. If vi = v′i, then X
(i)
u = Y

(i)
u for all u ∈ V

and (2.1) holds. More generally, we have that

(2.3)

X(i)
vi = Y (i)

vi + 1 (vi 6= v′i)

Y
(i)
v′i

= X
(i)
v′i

+ 1 (vi 6= v′i)

X(i)
u = Y (i)

u for u ∈ V \ {vi, v′i}.

If i = k, then this implies (2.1) and the lemma holds.
For the case i < k, we add ball i + 1 and are

going to define vi+1 and v′i+1 so that (2.3) holds with
i replaced by i + 1. Then the proof of the lemma
is completed by induction. We assume that vi 6= v′i,
otherwise (2.1) clearly holds. We note that vi+1 and
v′i+1 will not be in the same way as vi and v′i. The
role of vi+1 and v′i+1 is to be the only vertices whose
loads in the X and Y processes are different. The
definition of vi+1 and v′i+1 will vary depending on
the situation. For this, let ball i+ 1 be born at ui+1

and define w to be the vertex on which ball i + 1 is
allocated in the X process and w′ to be the vertex
on which ball i+ 1 is allocated in the Y process. We
can assume that w 6= w′, otherwise (2.3) holds with i
replaced by i+ 1 by setting vi+1 = vi and v′i+1 = v′i.

Now we analyze ball i + 1. It is crucial to note
that, during the local search of ball i + 1, if it does
not enter vi in the Y process and does not enter v′i in
the X process, then ball i+1 follows the same path in
both processes. Since we are in the case w 6= w′, we
can assume without loss of generality that ball i + 1
eventually visits vi in the Y process. In this case,
since the local search performed by ball i in the X
process stops at vertex vi, we have that vi is a local

minimum for ball i+1 in the Y process, which implies
that w′ = vi. (The case when ball i + 1 visits v′i in
the X process follows by a symmetric argument.) So,

since w 6= w′, we have X
(i+1)
vi = Y

(i+1)
vi . Then we let

vi+1 = w. If w = v′i, we set v′i+1 = w and (2.3) holds

since X
(i+1)
u = Y

(i+1)
u for all u ∈ V . Otherwise we

set v′i+1 = v′i, and (2.3) holds as well.

The following is a consequence of Lemma 2.5.

Lemma 2.6. (Monotonicity) Let k > 1 be fixed

and u1, u2, . . . , uk ∈ V be arbitrary. Let (X
(k)
v)v∈V

be the load of the vertices after k balls are allocated
with birthplaces u1, u2, . . . , uk. Let i ∈ {1, 2, . . . , k}
be fixed, and let (Z

(i,k)
v)v∈V be the load of the vertices

of G after k − 1 balls are allocated with birthplaces
u1, u2, . . . , ui−1, ui+1, ui+2, . . . , uk. In other words,

Z
(i,k)
v is obtained from X

(k)
v by removing ball i.

Assume that, for both processes, the local search
allocation breaks ties either uniformly at random or
via the variables (ξv)v∈V described in Remark 1.2.
Then, there exists a coupling such that∑

v∈V

∣∣∣X(k)
v − Z(i,k)

v

∣∣∣ = 1.

Proof. Let G′ be the graph obtained from G by
adding an isolated node w; i.e., G′ has vertex set
V ∪ {w} and the same edge set as G. Applying
Lemma 2.5 to G′ with the same choice of u1, . . . , uk ∈
V and with u′i = w gives∑

v∈V ∪{w}

∣∣∣X(k)
v − Y (k)

v

∣∣∣ = 2.

Since Y
(k)
w = 1, X

(k)
w = 0 and Z

(i,k)
v = Y

(k)
v for any

v ∈ V , we conclude that∑
v∈V

∣∣∣X(k)
v − Z(i,k)

v

∣∣∣ =
∑
v∈V

∣∣∣X(k)
v − Y (k)

v

∣∣∣ = 1.

We now use Lemma 2.6 to prove a type of
subadditivity property. In a simpler statement, we
show that, if for k independent copies of the local
search allocation with m balls the maximum load is
at most x, then the maximum load obtained after
placing km balls via local search allocation is at most
kx.

Lemma 2.7. (Subadditivity) For any 1 6 z 6 n,
and any x > 0, it holds that

Pr
[
X(n)

max > dn/ze · x
]
6 dn/ze ·Pr

[
X(z)

max > x
]
.

Proof. Let U1, U2, . . . , Un be independent uniform

random samples from V . Then, X
(n)
max is the maxi-

mum load after n balls are added to G with birth-
places U1, U2, . . . , Un. We define k := dn/ze indepen-
dent copies of the local search allocation, where in the
first copy we allocate z balls according to the birth-
places U1, U2, . . . , Uz, in the second copy we allocate z
balls according to the birthplaces Uz+1, Uz+2, . . . , U2z

and so on and so forth. Hence, in total we allocate
dn/ze · z > n balls. Let M1,M2, . . . ,Mk be the max-
imum load of each copy after z balls are allocated.

Then, we claim that X
(n)
max 6 X

(k·z)
max 6

∑k
i=1Mi.

This follows since, for each copy i, after allocating
the z balls, we can successively add more balls in
such a way that all vertices have load exactly Mi in
copy i. Then, by taking the union of all copies, we
obtain a balls-into-bins process with

∑k
i=1Mi balls,

n of which have birthplaces U1, U2, . . . , Un. Then, by
Lemma 2.6, the maximum load in this process, which

is
∑k
i=1Mi, is at least X

(n)
max. Therefore,

Pr
[
X(n)

max > dn/ze · x
]

6 Pr

[∑k

i=1
Mi > dn/ze · x

]
6 Pr

[⋃k

i=1
{Mi > x}

]
6 kPr

[
X(z)

max > x
]
.

3 Expander graphs

In this section we give the proof of our main result,
Theorem 1.1, which establishes an upper bound for
the maximum load after n balls are allocated to the
vertices of an expander graph. In fact, we can prove
this theorem in a more general setting. As before, for
each u ∈ V and r = 1, 2, . . ., we define Nr

u to be the
set of vertices of V whose distance to u is exactly r,
and Bru to be the set of vertices of V whose distance
to u is at most r; in symbols,

Nr
u = {v ∈ V : graph distance between u and v is r}

and Bru =
⋃r
i=0N

i
u. We say that G has exponential

growth if there exists a constant φ > 0 so that

(3.1) |Bru| > min
{

eφr,
n

2

}
for all u ∈ V and r > 0.

Note that any graph with exponential growth has a
diameter of O(log n). Moreover, if G is an expander,
then it has exponential growth. Therefore, Theo-
rem 1.1 follows from the theorem below.

Theorem 3.1. If G has the exponential growth prop-
erty defined in (3.1) and constant maximum degree,

then there exists a positive constant C so that, as
n→∞,

Pr
[
X(n)

max > C log log n
]
6 n−ω(1).

We devote the remainder of this section to prove
Theorem 3.1. We start with a high level description
of the proof. We claim that, for any vertex v and
some properly chosen r0 = O(log log n),

(3.2) Pr

 ∑
u∈Br0v

X(n)
u > C|Br0v |

 6 n−ω(1);

i.e., with very high probability, the number of balls
allocated to the vertices of Br0v is at most C|Br0v |.
Having established (3.2), the proof follows immedi-
ately by applying Lemma 2.3 and taking the union
bound over all v. Now, in order to prove (3.2),
we use that Lemma 2.5 establishes that the load
of the vertices satisfies a Lipschitz condition; i.e., if
the birthplace of one ball is changed, the load vec-
tor can only change in two vertices. Therefore, we
can apply Azuma’s inequality to bound the prob-

ability that
∑
u∈Br0v X

(n)
u > C|Br0v |; however, for

r0 = O(log log n), the probability bound obtained via
Azuma’s inequality is not small enough to take the
union bound over v ∈ V later. Nevertheless, Azuma’s
inequality gives a small enough bound when applied
to any radii larger than some R� r0. Then, the idea
is to control the number of balls allocated to BR−1

v

by using the bounds obtained for all radii r > R, and
then apply an inductive argument to finally estab-
lish (3.2).

The main intuition why this analysis works is
because a ball can only be allocated inside Brv if
the ball is either born inside Brv or it is born in a
vertex u at distance j to Brv but whose load, at the
moment the ball is born, is at least j. This is true
because, at each time a ball moves from a vertex u
to a vertex u′ ∈ Nu during the local search, the load
of u must be strictly larger than the load of u′. In
other words, the ball traverses a load decreasing path
from its birthplace to the vertex on which the ball
is placed. Therefore, for a ball allocated in Brv , the
larger the distance between the birthplace of this ball
and Brv , the smaller the number of possibilities for the
birthplace of the ball since these vertices must have
a large load at the moment the ball is born. This, in
a high-level description, gives that if we change the
birthplace of a ball to a uniformly random vertex,
the load of the vertices inside Brv does not change
with high probability. This allows us to control the
variance of the Lipschitz condition and apply a more
refined version of Azuma’s inequality to move from

radius r to radius r − 1 inductively until we reach
radius r0. We remark that we actually need to control
not only the number of balls allocated to Brv for all
r ∈ [r0, R], but also the number of balls allocated to
nodes in Brv whose load is at least ` for all r ∈ [r0, R]
and many values of `.

Now we proceed to the rigorous argument. We
start by showing that the load at any given vertex
has an exponential tail.

Lemma 3.2. Let v be any given vertex of V , and let
∆ be the maximum degree of G. Then, it holds for
any z > 8e∆ that

Pr
[
X(n)
v > z

]
6 2

(
4e∆

z

)z
.

Proof. We start defining a sequence of vertices
w0, w1, . . . and time steps t0 > t1 > · · · such that,
for every j > 1, ball tj is born at vertex wj and al-
located to wj−1. We start by setting w0 = v and
t0 = n. Inductively for j > 1, we let tj be the last
ball allocated to wj−1 before time tj−1 and set wj
to be the vertex at which ball tj is born. So, for
j = 1, t1 is the last ball allocated to w0 and w1 is
the vertex where ball t1 is born. Note that, whenever

X
(n)
v > z, if w1 = w0, we know that X

(t1)
w1 > z − 1.

On the other hand, if w1 6= w0, then we have that

X
(t1)
w1 > z + d(w0, w1)− 1, where d(u, v) is the graph

distance between u and v. More general, for all ` > 1,
we have that

X(t`)
w`

> z +
∑̀
j=1

(d(wj−1, wj)− 1) .

We continue this procedure until we find a value

of ` such that X
(t`)
w` = 0. Note that, for each j,

we have X
(tj)
wj − X

(tj−1)
wj−1 > −1; consequently, we

can have X
(t`)
w` = 0 only for ` > z. In order to

obtain an upper bound for Pr
[
X

(n)
v > z

]
, we apply

the first-moment method over all possible sequences
(w1, w2, . . . , w`) ∈ V ` and t1 > t2 > · · · > t`, for

every ` > 1, such that
∑`
j=1(d(wj−1, wj)− 1) 6 −z.

With this, we have

Pr
[
X(n)
v > z

]
6
∑
`>z

∑
w1,w2,...w`
t1>t2>···>t`

1

∑̀
j=1

(d(wj−1, wj)− 1) 6 −z

·Pr

[⋂`

j=1
{ball tj is born at wj}

]

6
∑
`>z

∑
w1,w2,...w`
t1>t2>···>t`

1

∑̀
j=1

(d(wj−1, wj)− 1) 6 −z

 1

n`
.

(3.3)

Let λi = d(wj−1, wj) − 1 ∈ {−1, 0, 1, . . .}. For
any fixed `, we can estimate the number of possible
sequences by counting the number of possibilities to
choose λj and tj so that

∑`
j=1 λj 6 −z, and then

counting the number of possibilities to choose wj
accordingly. Clearly, there are at most

(
n
`

)
ways to

choose tj . Let k > z be the number of values of j for
which λj = −1. Then, the other ` − k values of λj
are all non-negative and must sum to at most k − z.
With this, we can bound above the number of choices
for the tj and λj by(

n

`

)∑̀
k=z

(
`

k

)(
`− z
k − z

)

6
(e · n

`

)`
2`−z

∑̀
k=z

(
`

k

)
6
(e · n

`

)`
22`−z.(3.4)

Once the λj are fixed, the number of choices for the
wj is at most

(3.5)
∏̀
j=1

∆λj+1 6 ∆`−z.

Plugging the estimates in (3.4) and (3.5) into (3.3),
we have

Pr
[
X(n)
v > z

]
6
∑
`>z

(e · n
`

)`
· 22`−z∆`−z

n`

6
∑
`>z

(
4e ·∆
`

)`
6
∑
`>z

(
4e ·∆
z

)`
6 2

(
4e ·∆
z

)z
,

where the last inequality uses the fact that z > 8e ·∆.

Throughout the section, we fix an arbitrary ver-
tex v and bound the number of balls allocated to the

vertices of Brv for all r0 6 r 6 R, where

r0 := min
{
r : |Brv | > log10 n

}
, and

(3.6) R := min
{
r : |Brv | >

n

4∆

}
.

We will consider the balls (Brv)r>r0 , and will bound
the number of vertices in Brv with load at least ` for
all integers ` ∈ [`0, `1], where

(3.7) `0 := 8e ·∆2 and `1 :=
log n

4 log(2∆)
.

Then, for all r and `, define

Λr,` =
{
u ∈ Brv : X(n)

u > `
}
.

In order to control Λr,`, we will need to estimate
the probability that the nth ball changes the load of
vertices in Brv . For this last value, we need to control
the load of the vertices after n− 1 balls have arrived.
Then, we define

Λ?r,` :=
{
u ∈ Brv : X(n−1)

u > `
}

.

Note that Λ?r,` ⊆ Λr,`. By Lemma 3.2, we have that,
for ` > `0 and any r > 1,

E [| ∪k>0 Λr+k,`+k|] 6
∑
k>0

|Br+kv |2
(

4e ·∆
`+ k

)`+k

6 |Brv |
∑
k>0

∆k2

(
1

2∆

)`+k
6 4(2∆)−`|Brv | .(3.8)

Next define

Λ?` :=
{
u ∈ V : X(n−1)

u > `
}
,

hence, Λ?` =
⋃∞
r=1 Λ?r,`. Define the event

L?R =

6`1⋂
`=`0

{
|Λ?` | 6

n

4∆
· (2∆)−` +

log7 n

`

}
.(3.9)

From now on let Fi be the σ-algebra induced by
the configuration obtained after i balls are placed.
More formally, if U1, U2, . . . , Ui are the birthplaces of
the first i balls and, for each v ∈ V and j = 1, 2, . . . , i,

we define ξ
(j)
v to be an independent uniformly random

permutation of the neighbors of v, where {ξ(j)
v }v∈V

are the permutations used to break ties uniformly at
random for ball j, then Fi is the σ-algebra induced

by U1, . . . , Ui and {ξ(j)
v }v∈V,16j6i.

Lemma 3.3. Let v ∈ V be fixed, and let R and L?R
be as defined in (3.6) and (3.9), respectively. Then,
there exist n0 so that, for all n > n0, we have

Pr [L?R] > 1− 2n− log5 n.

Proof. Recall that by Lemma 2.1, there is a coupling

such that with probability 1, X
(n)

majorizes X(n).
Hence the claim follows directly by Lemma A.4 and
a union bound over all ` with `0 6 ` 6 `1.

For any r with 1 6 r < R and any ` > `0, in
order to bound the number of vertices in Λr,`, we will
look at the probability that the nth ball affects Λr,`.
In other words, we control the probability that Λr,` is
different from Λ?r,`. Note that it is only possible that
Λr,` 6= Λ?r,` if the nth ball is born at a vertex of Λ?r,`−1

or if it is born at a vertex of Nr+k
v with load at least

`− 1 + k for some k > 1; we shall bound this last set
of vertices by Λr+k,`−1+k. We define inductively for
r < R that

L?r,`0−1 = L?r+1,`1 and L?R−1,`0−1 = L?R

and, for ` > `0,

(3.10) L?r,` = L?r,`−1∩
{∣∣Λ?r,`∣∣ 6 8 · |Brv |

(2∆)`
+

log7 n

`

}
.

The next lemma establishes that, with high prob-
ability, the last ball cannot affect the load of a small
set of vertices.

Lemma 3.4. Let v be any fixed vertex, r > 1, and
` > `0. Then, there exists a positive constant c =
c(∆) such that

Pr

[⋃
u∈Λ?r,`−1

{X(n−1)
u 6= X(n)

u }
∣∣∣∣L?r,`−1

]
6
c|Brv |(2∆)−`

n
+

3 log7 n log log n

n
.

Proof. Note that the nth ball can only change the
load of a vertex in Λ?r,`−1 if it is born at a vertex of
Brv of load at least ` − 1 or if it is born at a vertex

u ∈ Nr+k
v with X

(n−1)
u > ` − 1 + k for some k > 1.

Fixing any realization for the birthplaces of the first
n − 1 balls, and thereby fixing the sets Λ?r,` for all r
and `, we have the following upper bound

Pr

[⋃
u∈Λ?r,`−1

{X(n−1)
u 6= X(n)

u }
∣∣∣∣Fn−1

]
6
|Λ?r,`−1|

n
+
|
⋃∞
k=1 Λ?r+k,`−1+k|

n
,

where the probability above is taken over the choice
of Un only. Note that L?r,`−1 is measurable with

respect to Fn−1 since the birthplace of the nth ball is
independent of any event in Fn−1. Then, for ` > `0,
we obtain that

Pr

[⋃
u∈Λ?r,`−1

{X(n−1)
u 6= X(n)

u }
∣∣∣∣L?r,`−1

]
6

8|Brv |(2∆)−`+1 + log7 n
`−1

n

+

R−r∑
k=1

8|Br+kv |(2∆)−`+1−k + log7 n
`−1+k

n

+
8|BRv |(2∆)−`−R+r + log7 n

`−1

n
,

where the last term comes from L?R. Using the
bounds |Br+kv | 6 |Brv |∆k and |BRv | 6 |Brv |∆R−r, we
obtain that

Pr

[⋃
u∈Λ?r,`

{X(n−1)
u 6= X(n)

u }
∣∣∣∣L?r,`−1

]
6

8|Brv |(2∆)−`+1 + log7 n
`−1

n

+

R−r+1∑
k=1

8|Brv |∆k(2∆)−`+1−k

n
+

R−r∑
k=0

log7 n

(`− 1 + k)n

6
8|Brv |(2∆)−`+1 + log7 n

`−1

n
+

16|Brv |(2∆)−`+1

n

+
2 log7 n log log n

n

6
24|Brv |(2∆)−`+1

n
+

3 log7 n log log n

n
.

For ` = `0, we simply bound |Λ?r,`0−1| by |Brv |, which
gives that

Pr

[⋃
u∈Λ?r,`0

{X(n−1)
u 6= X(n)

u }
∣∣∣∣L?r,`0]

6
|Brv |
n

+

R−r+1∑
k=1

8|Brv |∆k(2∆)−`0+1−k

n

+

R−r∑
k=0

log7 n

(`0 − 1 + k)n

6
|Brv |
n

+
16|Brv |(2∆)−`0+1

n
+

2 log7 n log log n

n
.

Now, for any i > 1, r ∈ [r0, R] and ` ∈ [`0, `1],
we define Υi

r,` ⊆ V i as the set

Υi
r,` =

{
(u1, . . . , ui) ∈ V i : ∀1 6 j0 6 i :(3.11)

Pr

L?r,`
∣∣∣∣∣∣
j0⋂
j=1

{Uj = uj}

 > 1− 1

n2

}
.

Intuitively, for any given r, ` and i, the set Υi
r,`

contains the good birthplace for the first i balls so
that the event L?r,` is likely to occur, conditioning on
any prefix of the birthplaces.

While Lemma 3.4 considered the effect of the
last ball n, the following lemma studies the effect
of replacing the birthplace of ball i by a randomly
chosen bin.

Lemma 3.5. Let i, `, r and v be fixed. Let
f : V n → Z be an increasing function that de-

pends only on (X
(n)
v′)v′∈Λr,` and is 1-Lipschitz.

Let W0,W1, . . . ,Wn−i and Ŵ0 be i.i.d. random
variables chosen uniformly from V . Then, if
(u1, u2, . . . , ui−1) ∈ Υi−1

r,` , we have

Pr
[
f(u1,...,ui−1,W0,W1,...,Wn−i)

6=f(u1,...,ui−1,Ŵ0,W1,...,Wn−i)

]
6

6c|Brv |(2∆)−`+1

n
+

18 log7 n log log n

n
+

5

n2
,

where c is the constant from Lemma 3.4.

Proof. In this proof all the probabilities are taken
conditional on Uj = uj for all j = 1, 2, . . . , i− 1, but
we will omit this dependence from the notation. The
idea is to relate the probability above to

Pr
[

f(u1,...,ui−1,W1,...,Wn−i,W0)

6=f(u1,...,ui−1,W1,...,Wn−i,Ŵ0)

]
,

which corresponds to changing the nth ball instead
of the ith ball; this will allow us to apply Lemma 3.4.

Consider the three events below:

E1 =
{
f(u1,...,ui−1,W0,W1,...,Wn−i)
6=f(u1,...,ui−1,W1,...,Wn−i,W0)

}
Ê1 =

{
f(u1,...,ui−1,Ŵ0,W1,...,Wn−i)

6=f(u1,...,ui−1,W1,...,Wn−i,Ŵ0)

}
Eend =

{
f(u1,...,ui−1,W1,...,Wn−i,W0)

6=f(u1,...,ui−1,W1,...,Wn−i,Ŵ0)

}
.

Clearly, f(u1, . . . , ui−1,W0,W1, . . . ,Wn−i) and

f(u1, . . . , ui−1, Ŵ0,W1, . . . ,Wn−i) can only be dif-

ferent if at least one of E1, Ê1 or Eend happens.
Therefore, we can write

Pr
[
f(u1,...,ui−1,W0,W1,...,Wn−i)

6=f(u1,...,ui−1,Ŵ0,W1,...,Wn−i)

]
6 Pr [E1] + Pr

[
Ê1

]
+ Pr [Eend] .(3.12)

We start with the term Pr [Eend]. Let Iend

be the event that L?r,`−1 happens given that the
birthplaces of the first n − 1 balls are according to

the sequence (u1, . . . , ui−1,W1, . . . ,Wn−i). If Y
(n)
u is

the load of vertex u when n balls are added with
birthplaces u1, u2, . . ., ui−1, W1, W2, . . ., Wn−i, W0

and Ŷ
(n)
u is the load of vertex u when n balls are

added with birthplaces u1, u2, . . ., ui−1, W1, W2, . . .,

Wn−i, Ŵ0, we have that

Pr [Eend] 6 Pr [Ic
end]

(3.13)

+ Pr

 ⋃
u∈Brv

(
{Y (n−1)

u 6= Y (n)
u } ∩ {Y (n)

u > `}
)
∩ Iend

+ Pr

 ⋃
u∈Brv

(
{Ŷ (n−1)

u 6= Ŷ (n)
u } ∩ {Ŷ (n)

u > `}
)
∩ Iend

 ,
where Pr [Ic

end] 6 n−2 by (3.11) since
(u1, . . . , ui−1) ∈ Υi−1

r,` and W1, . . . ,Wn−i are
i.i.d. uniform samples from V . The other two terms
in (3.13) can be bounded by Lemma 3.4.

Now it remains to bound Pr [E1], since by

symmetry we have Pr [E1] = Pr
[
Ê1

]
. In order to

bound Pr [E1], we consider all cyclic permutations of
(u1, . . . , ui−1,W0,W1, . . . ,Wn−i). More specifically,
we first compare

f(u1, . . . , ui−1,W0,W1, . . . ,Wn−i) with

f(u1, . . . , ui−1,W1,W2, . . . ,Wn−i,W0) ,

then we compare

f(u1, . . . , ui−1,W1,W2, . . . ,Wn−i,W0) with

f(u1, . . . , ui−1,W2,W3, . . . ,Wn−i,W0,W1) ,

and so on and so forth until we compare

f(u1, . . . , ui−1,Wn−i,W0,W1, . . . ,Wn−i−1) with

f(u1, . . . , ui−1,W0,W1, . . . ,Wn−i) .

In order to do this, we define a graph H whose vertex
set is {0, 1, . . . , n − i} × V n−i+1; so the vertices of
H have the form (j, z0, z1, . . . , zn−i). We let each
vertex of H have exactly one outgoing edge and one
incoming edge by having a directed edge from each
vertex (j, z0, z1, . . . , zn−i) to (j′, z1, z2, . . . , zn−i, z0)
where j′ = j + 1 (mod n − i + 1). With this, the
sequence

(0, z0, z1, . . . , zn−i), (1, z1, . . . , zn−i, z0), . . . ,

(j, zj , . . . , zn−i, z0, z1, . . . , zj−1), . . . ,

(n− i, zn−i, z0, . . . , zn−i−1), (0, z0, z1, . . . , zn−i)

forms a directed cycle in H. Since each vertex
has in-degree and out-degree equal to one, we have
that each connected component of H is a directed

cycle with n − i + 1 vertices. Now, for any vertex
(j, z0, z1, . . . , zn−i) of H, we say that the edge from
(j, z0, z1, . . . , zn−i) to (j + 1, z1, z2, . . . , zn−i, z0) is f -
increasing if

f(u1, u2, . . . , ui−1, z0, z1, . . . , zn−i)

< f(u1, u2, . . . , ui−1, z1, z2, . . . , zn−i, z0) .

Similarly we say that the edge is f -decreasing if the
opposite inequality holds:

f(u1, u2, . . . , ui−1, z0, z1, . . . , zn−i)

> f(u1, u2, . . . , ui−1, z1, z2, . . . , zn−i, z0).

Since f is 1-Lipschitz and integer-valued, for any
directed cycle, the number of f -increasing edges is
the same as the number of f -decreasing edges, and
therefore the number of f -increasing edges in H is
the same as the number of f -decreasing edges.

Note that choosing a sequence
(W0,W1, . . . ,Wn−i) uniformly at random from
V n−i+1 and a number k uniformly at random from
{0, 1, . . . , n − i} gives a uniformly random vertex of
H. Similarly, if we choose a vertex (j, z0, z1, . . . , zn−i)
uniformly at random from the vertex set of H, then
(z0, z1, . . . , zn−i) is a uniform sample from V n−i+1.
Since each vertex of H has a unique outgoing edge,
one can choose a uniformly random edge of H by
choosing the outgoing edge of an uniformly random
vertex of H.

We fix a uniformly random vertex
(j, z0, z1, . . . , zn−i) of H and let e be its unique out-
going edge; i.e., e is the edge from (j, z0, z1, . . . , zn−i)
to (j + 1, z1, . . . , zn−i, z0). Therefore,

Pr [E1] 6 Pr [e is f -increasing]

+ Pr [e is f -decreasing]

= 2Pr [e is f -increasing] .(3.14)

Let Y
(k)
u be the load of vertex u after k balls

are added with birthplaces given by the sequence

(u1, . . . , ui−1, z0, . . . , zn−i), and let Ŷ
(k)
u be the load

of vertex u after k balls are added with birthplaces
given by the sequence (u1, . . . , ui−1, z1, . . . , zn−i, z0).

Note that, by Lemma 2.6, removing a ball cannot
increase the load of any vertex; this gives that

Y (n)
u > Ŷ (n−1)

u for all u ∈ V .

Therefore, e can only be f -increasing if Ŷ
(n)
u 6=

Ŷ
(n−1)
u and Ŷ

(n)
u > ` for some u ∈ Brv . Let Ie

be the indicator that L?r,`−1 holds given that the
birthplaces of the balls are according to the sequence
(u1, . . . , ui−1, z1, . . . , zn−i, z0). Hence, using (3.14),

we have that

Pr [E1]

6 2Pr

 ⋃
u∈Brv

(
{Ŷ (n−1)

u 6= Ŷ (n)
u } ∩ {Ŷ (n)

u > `}
)
| Ie

+ 2Pr [Ic

e] .

By (3.11), Pr [Ic
e] 6 n−2 and the other term can be

bounded by Lemma 3.4. Then, we put this and (3.13)
into (3.12) to complete the proof.

Now we will use an inductive argument to bound
the probability that L?r,` happens for all r and `.

Lemma 3.6. There exists a positive constant c′ such
that, for any v ∈ V , r < R and any integer ` ∈
[`0, `1], we have

Pr

[
|Λr,`| > 8|Brv |(2∆)−` +

log7 n

`

]
6 e− log4 n + n2 ·Pr

[
(L?r,`−1)c

]
for all large enough n.

Proof. Recall that, by Lemma 3.2, we have

E [|Λr,`|] 6 2|Brv |
(

4e ·∆
`

)`
6 4|Brv | (2∆)

−`
.

Define the stopping time

τ = n ∧min
{
j : (U1, U2, . . . , Uj) 6∈ Υj

r,`

}
,

where for any two numbers a ∧ b := min{a, b}. Let
Xi = E [|Λr,`| | Fi] and Zi = Xi∧τ . Note that Zi is
a martingale since τ is a stopping time. Moreover,
τ is a bounded stopping time and, using the optional
stopping theorem, we have that E [Zτ] = E [Z0] =
E [X0]. We want to bound the conditional variance
of Zi − Zi−1 uniformly over all i, which is given by

VarUi [Zi − Zi−1 | Fi−1]

= EUi
[

(Zi − Zi−1)2
∣∣Fi−1

]
− (EUi [Zi − Zi−1 | Fi−1])

2

= EUi
[

(Zi − Zi−1)2
∣∣Fi−1

]
,

where the variance and expectation are taken over
the choice of Ui only. Now, we write

EUi
[

(Zi − Zi−1)2
∣∣Fi−1

]
= EUi

[
(Zi − Zi−1)21 (τ > i)

∣∣Fi−1

]
+ EUi

[
(Zi − Zi−1)21 (τ < i)

∣∣Fi−1

]
= EUi

[
(Zi − Zi−1)21 (τ > i)

∣∣Fi−1

]
,

since Zi = Zi−1 whenever τ < i. We want to bound

EUi

[
(Zi − Zi−1)2

∣∣∣∣⋂i−1

j=1
{Uj = uj}

]
,

uniformly over all (u1, u2, . . . , ui−1) ∈ Υi−1
r,` . Let

ζu be the value of Zi when Ui = u and let ζ =
1
n

∑
u∈V ζu. Then we have

EUi

[
(Zi − Zi−1)2

∣∣∣∣⋂i−1

j=1
{Uj = uj}

]
=

1

n

∑
u∈V

(ζu − ζ)2.

Since Xi is 1-Lipschitz we have |ζu − ζu′ | 6 1 for all
u, u′ ∈ V . With this, we can write

1

n

∑
u∈V

(ζu − ζ)2 6
1

n

∑
u∈V
|ζu − ζ|

=
1

n

∑
u∈V

∣∣∣ ∑
u′∈V

1

n
(ζu − ζu′)

∣∣∣
6

1

n2

∑
u∈V

∑
u′∈V

|ζu − ζu′ | .

Now, using Lemma 3.5, we have that

1

n2

∑
u∈V

∑
u′∈V

|ζu − ζu′ |

6
6c|Brv |(2∆)−`+1

n
+

18 log7 n log log n

n
+

5

n2
,

which gives that

EUi
[

(Zi − Zi−1)2
∣∣Fi−1

]
6

6c|Brv |(2∆)−`+1

n
+

18 log7 n log log n

n
+

5

n2
,

uniformly over i. Now, note that, for any λ > 0,

Pr [|Xn −X0| > λ]

6 Pr [{|Xn −X0| > λ} ∩ {τ > n}] + Pr [τ < n]

= Pr [{|Zn − Z0| > λ} ∩ {τ > n}] + Pr [τ < n] .

Also, we have that for any 1 6 i 6 n,

Pr
[

(L?r,`−1)c
]

=

i∑
j0=1

Pr

[
(Lr,`−1)c∩{(U1,...,Uj0) 6∈Υ

j0
r,`−1}

∩(
⋂j0−1

k=1 {(U1,...,Uk)∈Υkr,`−1})

]
+

Pr

[
(L?r,`−1)c ∩

(⋂i

k=1
{(U1, . . . , Uk) ∈ Υk

r,`−1}
)]

> Pr
[

(U1, . . . , Ui) 6∈ Υi
r,`−1

]
· 1

n2
.

This gives that

Pr [τ < n] 6Pr
[

(U1, . . . , Un−1) 6∈ Υn−1
r,`−1

]
6n2 ·Pr

[
(L?r,`−1)c

]
.

Then, applying the version of Azuma’s inequality
from Lemma A.2, we have that

Pr

[
|Λr,`| > 8|Brv |(2∆)−` +

log7 n

`

]
6 Pr

[
|Zn − Z0| > 4|Brv |(2∆)−` +

log7 n

`

]
+ n2 ·Pr

[
(L?r,`−1)c

]
6 exp

(
−

(4|Brv |(2∆)−` + log7 n
`)2

14c|Brv |(2∆)−` + 37 log7 n log log n

)
+ n2 ·Pr

[
(L?r,`−1)c

]
.

If |Brv |(2∆)−` > log7 n log log n, the exponential term
above is at most

exp

(
− (4|Brv |(2∆)−`)2

(14c+ 37)|Brv |(2∆)−`

)
6 exp

(
−16|Brv |(2∆)−`

14c+ 37

)
6 exp

(
− log4 n

)
;

otherwise we bound above the exponential term by

exp

(
−

(log7 n
`)2

(14c+ 37) log7 n log log n

)

6 exp

(
− log7 n

(14c+ 37)`2 log log n

)
6 exp

(
− log4 n

)
,

where the last inequality holds for all large enough n
since ` 6 `1 = O(log n).

Proof. [of Theorem 3.1] First note that the lower
bound on the maximum load is established by The-
orem 1.6. So we now prove the upper bound. Let v
be an arbitrary vertex of V . We start the proof by
showing that there exist positive constants C and c
such that, for all large enough n, it holds that

(3.15) Pr

 ∑
u∈Br0v

X(n)
u > C|Br0v |

 6 e−c log3 n .

Then, it follows by Lemma 2.3 that

X(n)
v 6 C +

r0∑
i=0

|N i
v|

|Br0v |
.

Note that
∑r
i=0

|Niv|
|Br0v |

is the average distance between

v and a vertex in Br0v , which is at most r0. Therefore,

we obtain X
(n)
v 6 C + r0. By the definition of r0,

we have |Br0v | 6 ∆ log10 n. Combing this with the
exponential growth property of G yields

r0 6
1

φ
log |Br0v | = O(log log n),

where φ is the parameter defined by (3.1).
It remains to establish (3.15). First note that

∑
u∈Br0v

X(n)
u =

∞∑
`=1

|Λr0,`| 6 |Br0v |`0 +

∞∑
`=`0+1

|Λr0,`|.

Therefore, we have that

Pr

 ∑
u∈Br0v

X(n)
u > C|Br0v |

6 Pr

[∞∑
`=`0

|Λr0,`| > (C − `0)|Br0v |

]
.

Now, if |Λr0,`| 6 8|Br0v |(2∆)−` + log7 n
` for all ` =

`0, `0 + 1, . . . , `1, then

∞∑
`=`0

|Λr0,`| 6 (C − `0)|Br0v |

for some large enough C since |Br0v | > log10 n. For
any given `, using Lemma 3.6, we have

Pr

[
|Λr0,`| > 8|Br0v |(2∆)−` +

log7 n

`

]
6 exp(− log4 n) + n2 ·Pr

[
(L?r0,`−1)c

]
.(3.16)

By definition of L?r,` (cf. (3.10)), we have that

Pr
[

(L?r0,`−1)c
]

6 Pr

[
|Λ?r0,`−1| > 8|Br0v |(2∆)−`+1 +

log7 n

`− 1

]
+ Pr

[
(L?r0,`−2)c

]
6 Pr

[
|Λr0,`−1| > 8|Br0v |(2∆)−`+1 +

log7 n

`− 1

]
+ Pr

[
(L?r0,`−2)c

]
6 exp(− log4 n) + (n2 + 1)Pr

[
(L?r0,`−2)c

]
,

where the second inequality follows since Λ?r0,`−1 ⊆
Λr0,`−1 and last inequality follows from Lemma 3.6.

Applying this into (3.16), we have

Pr

[
|Λr0,`| > 8|Br0v |(2∆)−` +

log7 n

`

]
6 exp(− log4 n) + (n2 + 1) exp(− log4 n)

+ (n2 + 1)2Pr
[

(L?r0,`−2)c
]

6
`−`0∑
k=0

(n2 + 1)k exp(− log4 n)

+ (n2 + 1)`−`0+1Pr
[

(L?r0+1,`1)c
]
.

Using the same argument, we obtain for any r that

Pr
[

(L?r,`1)c
]

6
`1−`0∑
k=0

(n2 + 1)k exp(− log4 n)

+ (n2 + 1)`1−`0+1Pr
[

(L?r+1,`1)c
]

6
R−r−1∑
j=0

`1−`0∑
k=0

(n2 + 1)`1j+k exp(− log4 n)

+ (n2 + 1)`1(R−r)Pr [(L?R)c] .

Using Lemma 3.3,

Pr [(L?R)c] 6 2n− log5 n,

and plugging this into (3.16), and using the union
bound over `, we obtain that

Pr

[⋃`1

`=`0

{
|Λr0,`| > 8|Br0v |(2∆)−` +

log7 n

`

}]
6 exp(−c log3 n)

for some positive constant c, which establishes (3.15).

4 Grid graphs

In this section, we analyze the maximum load of the
local allocation process on any d-dimensional grid,
where d is an arbitrary constant. We show that the

maximum load is Θ
((

logn
log logn

) 1
d+1
)

. Interestingly,

the analysis on the grid turns out to be much easier
than the analysis on expander graphs. Roughly
speaking, this is due to the fact that on grid graphs
the number of paths the local search could take is
much smaller than on the expansion. Formally, we
define the d-dimensional grid by the vertex set

V =
{
u : u = (u1, . . . , ud), ui = 0, . . . , n1/d − 1

}
and edge set E = {{u, v} : dist(u, v) = 1}, where

dist(u, v) =

d∑
i=1

dist(ui, vi)

and

dist(ui, vi) = min
{
|ui − vi|, n1/d − |ui − vi|

}
.

Proof. [of Theorem 1.3] We start with the upper
bound. Within this proof, we use the following
notation:

B̃ru := {v ∈ V : dist(ui, vi) 6 r, ∀i = 1, . . . , d}.

Roughly speaking, B̃ru can be seen as the “`∞-
version” of the set Bru used in Section 3. Note that

for any r 6 n1/d/2− 1/2, |B̃ru| = (2r + 1)d. We first
define an event that gives an upper bound for the
number of balls born in B̃ru for various u and r:

E :=
⋂
u∈V

n1/d/2⋂
r=(4d)d

(
logn

log logn

) 1
d+1

∑
v∈B̃ru

Z(n)
v 6 ρ(r)

 ,

where ρ(r) := 4e · (d + 1)(logn
log logn)

1
d+1 · (3r)d and

Z
(n)
v =

∑n
i=1 1 (Ui = v) is the number of balls born

on v during the first n rounds.
To prove that E holds with high probability, fix

any vertex u ∈ V and r > (4d)d(logn
log logn)

1
d+1 . We

have that

Pr

 ∑
v∈B̃ru

Z(n)
v > ρ(r)

6

(
n

ρ(r)

)(
|B̃ru|
n

)ρ(r)
6

(
e · n
ρ(r)

)ρ(r)(
(2r + 1)d

n

)ρ(r)

6

(
e · (3r)d

ρ(r)

)ρ(r)

=

(
e

4e · (d+ 1)(logn
log logn)

1
d+1

)4e·(d+1)(logn
log logn)

1
d+1 ·(3r)d

6 n−3.

Taking the union bound over the n vertices and
at most n/2 possible values for r yields Pr [E] >
1− n−1.

Assuming that E occurs, we now infer the upper
bound on the maximum load. Assume for the sake
of contradiction that the maximum load is in the
interval [α/2, α] where α is any value larger than

16e ·(16d)d(d+1)(logn
log logn)

1
d+1 . Let u ∈ V be a vertex

with X
(n)
u ∈ [α/2, α]. Since the maximum load is at

most α, only balls that are born in B̃2α
u can reach

B̃αu . Since E occurs, we know for r = 2α that∑
v∈B̃2α

u

Z(n)
v 6 4e(d+ 1)(6α)d

(
log n

log log n

) 1
d+1

.(4.1)

On the other hand, if u has load at least α/2, then∑
v∈B̃2α

u

Z(n)
v >

∣∣∣B̃α/(4d)
u

∣∣∣ · (α
2
− d · α

4d

)
>
(α

2d

)d
· α

4
=

1

4
· α

(16d)d
· (8α)d

> 4e · (d+ 1) ·
(

log n

log log n

) 1
d+1

· (8α)d,(4.2)

where the last step used our lower bound on α.
The desired contradiction follows now from (4.1) and
(4.2), and the proof of the upper bound is complete.

Now we proceed to establish the lower bound. It
is a well-known fact (cf. [13, Lemma 5.12]) that with
probability at least 1 − n−1, there is a vertex u ∈ V
on which at least logn

log logn balls are born. Applying

Lemma 2.4 with S = {u}, ΦS = logn
log logn implies that

the maximum load β := X
(n)
max satisfies

β · |Bβu | >
log n

log log n
.

Hence, as |Bβu | 6 |B̃βu | 6 (2β+1)d and d is a constant,

we obtain that β = Ω

((
logn

log logn

) 1
d+1

)
.

5 Dense graphs

In this section, we analyze dense graphs which we de-
fine as graphs where the minimum degree is Ω(log n)
and the ratio between the maximum and minimum
degrees is constant. This includes, for instance, the
log n-dimensional hypercube and Erdős-Rényi ran-
dom graphs with average degree (1 + ε) log n, for any
ε > 0. The key idea of the analysis is that as long as
less than α balls are allocated, where α < n, every
vertex has a constant fraction of neighbors which have
received no ball, and hence, the maximum load is
bounded by 1. Then Lemma 2.7 implies that after
n balls are allocated, the maximum load is at most
n/α. To make the analysis work, we need to assume
that ties are broken uniformly at random; i.e., when-
ever a ball has more than one vertex to be forwarded
to, the vertex is chosen independently and uniformly
at random among the set of possible vertices.

Proof. [of Theorem 1.4] We divide the process of
allocating the n balls into different phases, where each
phase allocates a batch of consecutive α 6 n balls
(hence the number of phases is dn/αe). Then, by
subadditivity (cf. Lemma 2.7), the maximum load at
the end is at most dn/αe times the maximum load of
a single phase.

Let G be an almost regular graph with minimum
degree δ = c · log n and maximum degree ∆ 6 C · δ,

where c > 0 is any value bounded below by a constant
and C > 1 is a constant. For any load assignment
of the vertices (xu)u∈V , we define the exponential
potential as

Φ((xu)u∈V) :=
∑
u∈V

exp

(
σ ·

∑
v∈Nu

xv

)
,

where σ := max{4 log(n)/δ, 1} = O(1). We also
define for any 1 6 t 6 n,

Φ(t) := Φ((X(t)
u)u∈V) =

∑
u∈V

exp

(
σ ·

∑
v∈Nu

X(t)
v

)
,

hence Φ(0) = n. Our goal is to bound the expected
multiplicative increase in Φ(t+1) compared to Φ(t).
In order to do that, we will actually also assume that
Φ(t) is small.

Specifically, assume that (xu)u∈V be any vector
in (N ∪ {0})n such that Φ((xu)u∈V) 6 n · eδ/2 and
suppose that the load vector at the end of round t is
(xu)u∈V , i.e., X(t) = x. Then this implies for every
vertex u ∈ V that

exp

(
σ ·

∑
v∈Nu

X(t)
v

)
6 n · eδ/2 = elogn+δ/2,

and consequently,
∑
v∈Nu X

(t)
v 6 (1/σ) · (log n +

δ/2) 6 δ/4 + δ/2 = (3/4)δ. Hence, there are at least
deg(u) − (3/4)δ > (1/4)δ neighbors of u which have
no ball, where deg(u) is the degree of vertex u. In
particular, this implies that the next ball t + 1 will
be allocated either on its birthplace or at a direct

neighbor. Therefore, with Z
(t)
u :=

∑
v∈Nu X

(t)
v ,

Pr
[
Z(t+1)
u = Z(t)

u + 1 | X(t) = x
]

6
∑
v∈Nu

w∈Nv∪{v}

Pr
[

ball t+ 1 born at w
and allocated on v

| X(t) = x
]

6
∑
v∈Nu

(∑
w∈Nv

(
1

n
· 4

δ

)
+

1

n

)
6

5C∆

n
.

(5.1)

This yields that

E
[

Φ(t+1) | X(t) = x
]

6
∑
u∈V

(
Pr
[
Z(t+1)
u = Z(t)

u + 1 | X(t) = x
]

· exp
(
σ ·
(
Z(t)
u + 1

))
+ Pr

[
Z(t+1)
u = Z(t)

u | X(t) = x
]

· exp
(
σ · Z(t)

u

))
=
∑
u∈V

(
eσ ·Pr

[
Z(t+1)
u = Z(t)

u + 1 | X(t) = x
]

+ 1
)

· exp
(
σ · Z(t)

u

)

6

(
1 + eσ · 5C∆

n

)
· Φ(t),

(5.2)

where (5.2) follows from (5.1). Note that if we only
consider the allocation of α := n/(eσ · 25C2) = Θ(n)
balls, then we have that(

1 + eσ · 5C∆

n

)α
6 e∆/(5C) 6 eδ/4.

Define Ψ(t) := min{Φ(t), n · eδ/2}. Then, since Φ(t) is
increasing in t, (5.2) yields that

E
[

Ψ(t+1)
]
6

(
1 + eσ · 5C∆

n

)
·Ψ(t)

and thus inductively, E
[

Ψ(α)
]
6
(
1 + eσ · 5C∆

n

)α ·
Ψ(0) 6 eδ/4 · n. Hence, applying Markov’s inequality
gives Pr

[
Ψ(α) < eδ/2 · n

]
> 1− e−δ/4. By definition

of Ψ(α), if Ψ(α) < eδ/2 · n, then Ψ(α) = Φ(α). Hence,
Pr
[

Φ(α) < eδ/2 · n
]

> 1 − e−δ/4, as required. If

Φ(α) < eδ/2 · n occurs, then since every vertex has
at least one neighbor with load zero, the maximum
load after the allocation of α balls is 1. Then,
we use subadditivity (cf. Lemma 2.7) to conclude
that the maximum load after all dn/αe · α balls are
allocated is at most 1 ·dn/αe with probability at least
1− dn/αe · o(1) = 1− o(1).

6 Impact of tie-breaking rules

Proof. [of Theorem 1.5] We now analyze the effect
of employing different tie-breaking rules. We first
describe the construction of the graph G, which will
be a d-regular graph, where d = ω(1) as n → ∞.
Additionally, we may assume that d 6

√
n, since

otherwise the claimed lower bound is trivial. For the

construction of G, we assume that there is an integer
k such that 1 +

∑k−1
i=0 d · (d − 1)i = n. Note that

k = Θ(log n/ log d). Then, let G be a balanced tree
with root s so that

|N i
s| = d · (d− 1)i−1 for any i > 1 .

Hence G is a tree where all vertices except for the
leaves and the root have d−1 successors; the root has
d successors, and the leaves have no successor. Hence,
the root has degree d, the inner vertices have degree
d as well and the leaves have degree 1. Further, note
that the number of leaves is d · (d − 1)k−1. In order
to make the graph d-regular, we simply add edges
among the leaves in G so that, after all edges have
been added, every leaf has degree d (this is possible,
since the number of edges to add is smaller than the
total number of leaves).

We choose α := min
{

(d− 1)1/4, k − 2
}

. The
process of allocating the n balls will be divided into α
phases and in each phase we consider the allocation
of n/α balls. To prove the desired lower bound, we
focus on the vertices in B2α

s .
Next, we define an event that essentially shows

that there are always enough balls so that the tie-
breaking rule can send balls towards the root:

E :=

α⋂
p=1

2α⋂
`=1

{
∀u ∈ N `

s ∃v ∈ Nu ∩N `+1
s : Zp(v) > 2

}
,

where Zp(v) :=
∑p·(n/α)
t=(p−1)·(n/α)+1 1 (Ut = v) is the

number of balls born on v in phase p. Hence the
event E means that for each vertex in N `

s , there is in
each phase at least one neighbor in N `+1

s on which
two balls are born; hence, for at least one ball we may
be able to use the tie-breaking rule and forward the
ball towards the root s.

Let us estimate the probability that the event E
occurs. First, for any fixed u ∈ N `

s and v ∈ Nu∩N `+1
s

Pr [Zp(v) > 2] >

(
n/α

2

)
· 1

n2
·
(

1− 1

n

)n/α−2

>
1

8α2
.

Since the events {Zp(v) > 2}v∈Nu are negatively
correlated, we have that, for any fixed u ∈ N `

s ,

Pr
[
∃v ∈ Nu ∩N `+1

s : Zp(v) > 2
]

> 1−
(

1− 1

8α2

)d−1

> 1− exp

(
−d− 1

8α2

)
.

Hence,

Pr [E]

> 1−
∑

16p6α
16`62α

∑
u∈N`s

Pr
[
¬∃v ∈ Nu ∩N `+1

s : Zp(v) > 2
]

> 1− α ·
∑

16`62α

|N `
s | · exp

(
−d− 1

8α2

)

> 1− exp

(
−d− 1

8α2

)
· α · 2d(d− 1)2α−1.

(6.1)

We now claim that the last term in (6.1) is
1 − o(1). To this end, recall the choice of α and
d = ω(1). First, since α 6 (d − 1)1/4, exp

(
−d−1

8α2

)
6

exp
(
− (d−1)1/2

8

)
, whereas α ·2d ·(d−1)2α−1 6 2d3α 6

2d3(d−1)1/4 = 2 · exp
(

log d · 3(d − 1)1/4
)
. Hence, as

d → ∞, the probability on the right-hand side in
(6.1) is 1− o(1); i.e., we have shown that

Pr [E] > 1− o(1) .

It remains to show that if the event E occurs, then
it is possible to break the ties so that we end up with a
maximum load of α after the allocation of n balls (see
Figure 2 for an illustration). Our tie-breaking rule
follows the simple strategy that, whenever possible,
a ball is forwarded to a vertex closer to the root s.

By Lemma 2.6, we may assume that balls are
only generated in the set Bαs and, in each phase, every
vertex in this set generates at most two balls. Then
after the first phase is completed, every vertex in B2α

s

contains at least one ball, since for each such vertex
there is at least one neighbor in B2α+1

s on which two
balls are born.

s

s

s

Figure 2: Illustration of the α = 3 phases after which the root
vertex s has a load of at least 3. The red color indicates the ball
which are placed on the vertex in the recent phase. The existence
of a red ball on a vertex, say, u, follows, since there exists at least
one successor of u, say, v ∈ Nu, on which at least two balls are
born in that phase.

Moreover, in the second phase, every vertex u in
B2α−2
s has at least one neighbor v ∈ Nu in the next

level such that: (i) two balls are generated on v in
the second phase and (ii) all neighbors of v and v
itself have at least one ball at the beginning of phase
two. Hence if ties are always broken in the direction
towards the root, every vertex in B2α−2

s will have at
least two balls at the end of phase two. Completing
the induction, we conclude that at the end of phase
α, the vertex s will have at least α balls. Overall,
we conclude that the maximum load is at least α
whenever the event E occurs. Since E occurs with

probability 1− o(1), the proof is complete.

7 Lower bounds for sparse graphs

Proof. [of Theorem 1.6] In the first part, we show
that the maximum load after n balls are allocated
is Ω

(
log logn

log ∆

)
, where G is any graph with maximum

degree ∆. Our arguments are almost the same as in
the proof of the lower bound of Theorem 1.3. We
are using again the fact that with probability at least
1 − n−1, there is a vertex u ∈ V on which at least

logn
log logn balls are born (cf. [13, Lemma 5.12]). Then,

applying Lemma 2.4 with S = {u}, we obtain that

the maximal load β := X
(n)
max satisfies

β · |Bβu | >
log n

log log n
.

Since |Bβu | 6 ∆β , the above inequality implies that

β ·∆β >
log n

log log n
,

which in turn implies that

β = Ω

 log
(

logn
log logn

)
log ∆

− log(β)

 ,

i.e., β = Ω
(

log logn
log ∆

)
.

Now, for the second part, we show that there
exists a d-regular graph for which the maximum load

after n balls are allocated is Ω

(√
logn

d·log(logn
d)

)
. We

first describe the construction of the d-regular graph
G. First take n/(d−1) disjoint cliques of size d−1 and
arrange them in a cycle. Then connect two cliques
which are next to each other in the cycle by d − 1
vertex-disjoint edges. This way we obtain a d-regular
graph, which can be also defined as the Cartesian
product of a cycle of length n/(d− 1) and a clique of
size d− 1. See Figure 3 below.

Figure 3: Illustration of the construction of the graph G, where
d− 1 = 4 and n/(d− 1) = 9, so n = 36.

Let us now consider the number of balls that
are born in each clique. This can be seen as the 1-
choice process where n balls are randomly placed into

n/(d− 1) bins. By Raab and Steger [17, Theorem 1,
Cases 1 & 2] it follows that, with probability 1−o(1),
there exists a clique with vertex set S, |S| = d−1, so
that the number of balls born in S is at least

ΦS := C ·

 log n

log
(

log(n/(d−1))
d−1

)
 ,

for some constant C > 0. Now we use Lemma 2.4
with the ΦS above to conclude that the maximum
load β = X

(n)
max satisfies

β · |BβS | > C ·

 log n

log
(

log(n/(d−1))
d−1

)
 .

Since |BβS | 6 (2β+1)·d and log(n/(d−1)) = Θ(log n),

this implies β = Ω

(√
logn

d·log(logn
d)

)
.

References

[1] M. Adler, E. Halperin, R. M. Karp, and V. V.
Vazirani. A stochastic process on the hyper-
cube with applications to peer-to-peer networks.
In Proc. 35th Symp. on Theory of Computing
(STOC), pages 575–584, 2003.

[2] N. Alon and J. Spencer. The probabilistic
method. John Wiley & Sons, 3rd edition, 2008.

[3] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Up-
fal. Balanced allocations. SIAM J. Comput., 29
(1):180–200, 1999.

[4] P. Berenbrink, A. Czumaj, A. Steger, and
B. Vöcking. Balanced allocations: The heavily
loaded case. SIAM J. Comput., 35(6):1350–1385,
2006.

[5] P. Berenbrink, T. Friedetzky, L. A. Goldberg,
P. W. Goldberg, Z. Hu, and R. A. Martin.
Distributed selfish load balancing. SIAM J.
Comput., 37(4):1163–1181, 2007.

[6] A. Z. Broder and M. Mitzenmacher. Multidi-
mensional balanced allocations. In 37th An-
nual ACM Symposium on Theory of Computing
(STOC’05), pages 195–196, 2005.

[7] F. Chung and L. Lu. Concentration inequalities
and Martingale inequalities: a survey. Internet
Mathematics, 3:79–127, 2006.

[8] E. Even-Dar, A. Kesselman, and Y. Mansour.
Convergence time to nash equilibrium in load
balancing. ACM Transactions on Algorithms, 3
(3), 2007.

[9] B. Godfrey. Balls and bins with structure: bal-
anced allocations on hypergraphs. In 19th An-
nual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA’08), pages 511–517, 2008.

[10] P. W. Goldberg. Bounds for the convergence
rate of randomized local search in a multiplayer
load-balancing game. In 23rd Annual ACM-
SIGOPT Principles of Distributed Computing
(PODC’04), pages 131–140, 2004.

[11] R. M. Karp, M. Luby, and F. Meyer auf der
Heide. Efficient PRAM simulation on a dis-
tributed memory machine. Algorithmica, 16
(4/5):517–542, 1996.

[12] K. Kenthapadi and R. Panigrahy. Balanced al-
location on graphs. In 17th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’06),
pages 434–443, 2006.

[13] M. Mitzenmacher and E. Upfal. Probability and
Computing: randomized algorithms and proba-
bilistic analysis. Cambridge University Press,
2005.

[14] M. Mitzenmacher, A. Richa, and R. Sitaraman.
The power of two random choices: A survey of
techniques and results. In Handbook of Random-
ized Computing, volume 1, pages 255–312. 2001.

[15] M. Mitzenmacher, B. Prabhakar, and D. Shah.
Load balancing with memory. In 43rd Annual
IEEE Symposium on Foundations of Computer
Science (FOCS’02), pages 799–808, 2002.

[16] Y. Peres, K. Talwar, and U. Wieder. The
(1 + β)-choice process and weighted balls-into-
bins. In 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’10), pages 1613–
1619, 2010.

[17] M. Raab and A. Steger. Balls into bins - a
simple and tight analysis. In 2nd International
Workshop on Randomization and Computation
(RANDOM’98), pages 159–170, 1998.

[18] B. Vöcking. How asymmetry helps load balanc-
ing. J. ACM, 50(4), 2003.

A Standard technical results

Lemma A.1. ([2, Theorem 7.2.1]) Let
X0, X1, . . . , Xm be a martingale such that there
exists a fixed positive c for which |Xi −Xi−1| 6 c for
all i. Then,

Pr [|Xm −X0| > λ] 6 exp

(
− λ2

2c2m

)
.

Lemma A.2. ([7, Theorem 6.1]) Let
X0, X1, . . . , Xm be a martingale adapted to the

filtration Fi. Suppose that there exists a fixed posi-
tive c for which |Xi − Xi−1| 6 c for all i and there
exists c′ such that E

[
(Xi −Xi−1)2

∣∣Fi−1

]
6 c′ for

all i. Then,

Pr [|Xm −X0| > λ] 6 exp

(
− λ2

2c′m+ cλ/3

)
.

For the special case where X1, . . . , Xm are inde-
pendent Bernoulli random variables, we can apply the
above lemma to the random variables (Xi−E [Xi])i
with c′ = E [X1] and c = 1 to obtain the inequality
below.

Lemma A.3. Let X1, . . . , Xm be m independent,
identically distributed Bernoulli random variables.
Let X :=

∑m
i=1Xi. Then, for any λ > 0,

Pr [|X −E [X] | > λ] 6 exp

(
− λ2

2E [X] + λ/3

)
.

Lemma A.4. Consider the 1-choice process

{X(n)

v }v∈V where n balls are allocated to n bins
chosen independently and uniformly at random.

Let `0 := 8e∆2, and let Λ` :=
{
u ∈ V : X

(n)
u > `

}
.

Then, for any ` with `0 6 ` = o(log2 n),

Pr

[
|Λ`| >

n

4∆
· (2∆)−` +

log7 n

`

]
6 2n− log5 n.

Proof. Fix any ` with ` > `0. Let {X̃v}v∈V be
n independent poisson random variables with mean

1. Define Λ̃` :=
{
u ∈ V : X̃

(n)
u > `

}
. Since{

|Λ̃`| > |V |
4∆ · (2∆)−` + log7 |V |

`

}
is a monotone event

in the number of balls 1 6 n 6 |V |, it follows by
a standard “Poissonization argument” (see, e.g., [13,
Corollary 5.11]) that

Pr

[
|Λ`| >

n

4∆
· (2∆)−` +

log7 n

`

]
6 2 ·Pr

[
Λ̃` >

n

4∆
· (2∆)−` +

log7 n

`

]
.

To bound the latter probability, let us first estimate

E
[
|Λ̃`|

]
. First, if P is a Poisson random vari-

able with parameter 1, then we have the following
Chernoff-type inequality ([2, Theorem A.1.15]): for
any ε > 0,

Pr [P > (1 + ε)] 6 eε(1 + ε)−(1+ε).

As long as ε > 8e∆2 − 1, we can write

Pr [P > 1 + ε] 6 e1+ε(8e∆2)−(1+ε) 6 (8∆2)−(1+ε),

and hence, replacing 1 + ε by ` gives

Pr [P > `] 6 (8∆2)−`.

Now observe that |Λ̃`| is stochastically smaller than
the sum of n independent Bernoulli random variables
Z1, . . . , Zn, each with parameter (8∆2)−`. Hence, if
we denote Z :=

∑n
i=1 Zi, then

Pr

[
|Λ̃`| >

n

4∆
· (2∆)−` +

log7 n

`

]
6 Pr

[
Z >

n

4∆
· (2∆)−` +

log7 n

`

]
.

Note that E [Z] = n·(8∆2)−`. Hence by Lemma A.3,

Pr

[
Z >

n

4∆
· (2∆)−` +

log7 n

`

]
6 Pr

[
Z > E [Z] +

log7 n

`
+

n

8∆
· (2∆)−`

]

6 exp

−
(

log7 n
` + n

8∆ · (2∆)−`
)2

2E [Z] + log7 n
` + n

8∆ · (2∆)−`

 .

To bound the last term, we proceed by a case
distinction. The first case is when log7 n/` > n

8∆ ·
(2∆)−`. Then also E [Z] 6 log7 n/` and hence

exp

−
(

log7 n
` + n

8∆ · (2∆)−`
)2

2E [Z] + log7 n
` + n

8∆ · (2∆)−`

6 exp

−
(

log7 n
`

)2

4 · log7 n
`

 6 n− log5 n.

Otherwise, log7 n/` < n
8∆ · (2∆)−`. Then,

exp

−
(

log7 n
` + n

8∆ · (2∆)−`
)2

2E [Z] + log7 n
` + n

8∆ · (2∆)−`

6 exp

(
−
(
n

8∆ · (2∆)−`
)2

4 · n8∆ · (2∆)−`

)
6 n− log5 n.

Hence,

Pr

[
|Λ`| >

n

4∆
· (2∆)−` +

log7 n

`

]
6 2 · n− log5 n.

as desired.

	Introduction
	Basic properties
	Expander graphs
	Grid graphs
	Dense graphs
	Impact of tie-breaking rules
	Lower bounds for sparse graphs
	Standard technical results

