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Abstract

In this thesis we focus on Neighbourhood Component Analysis (NCA; Goldberger

et al., 2004) — an elegant metric learning framework developed in the context of

k nearest neighbours (kNN). NCA learns a (low-rank) metric by maximizing the

expected number of correctly classified points. The objective function depends on

the pairwise distances between the points. Hence, the learning procedure scales

quadratically with the number of samples, making the algorithm impractical when

applied on large data sets.

We propose two families of algorithms for reducing the computational cost of

the NCA method. First, we consider ideas inspired by the sub-sampling meth-

ods. We investigate a mini-batch method that forms mini-batches by cluster-

ing. Our results indicate that this approach works well for medium-sized mini-

batches. Next, we present a sub-set learning algorithm that is theoretically jus-

tified by stochastic optimization arguments. Our experiments demonstrate that

this method offers similar results to classical NCA.

The second family of algorithms includes variants of approximate methods.

We derive these methods by first interpreting NCA as a class-conditional kernel-

density estimation (CC-KDE) problem. This formulation offers several advan-

tages: (i) it allows us to adapt existing algorithms for fast kernel-density esti-

mation into the context of NCA and (ii) it offers more flexibility; for example,

we develop a compact support version NCA method that achieves considerable

speed-ups when combined with the stochastic learning procedure.
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Chapter 1

Introduction

k nearest neighbours (kNN) is one of the oldest and simplest classification meth-

ods. It has its origins in an unpublished technical report by Fix and Hodges (1951)

and since then it has become standard textbook material (Russell et al., 1996;

Mitchell, 1997; Bishop, 2006). In the last 50 years, kNN was present in most of

the machine learning related fields (pattern recognition, statistical classification,

data mining, information retrieval, data compression) and it plays a role in many

applications (e.g., face recognition, plagiarism detection, vector quantization).

The idea behind kNN is intuitive and straightforward: classify a given point

according to a majority vote of its neighbours; the selected class is the one that is

the most represented amongst the k nearest neighbours. This is easy to implement

and it usually represents a good way to approach new problems or data sets.

Despite its simplicity kNN is still a powerful tool, performing surprisingly well in

practice (Holte, 1993).

There are also other characteristics that make kNN an interesting method.

First, kNN makes no assumptions about the underlying structure of the data.

No a priori knowledge is needed beforehand, but we let the data “speak for

itself”. The accuracy increases with the number of points in the data set and,

in fact, it approaches Bayes optimality as the cardinality of the training set goes

to infinity and k is sufficiently large (Cover and Hart, 1967). Second, kNN is

able to represent complex functions with non-linear decision boundaries by using

only simple local approximations. Lastly, kNN operates in a “lazy” fashion. The

training data set is just stored and its use is delayed until testing. The quasi-

inexistent training allows the easy addition of new training examples.

kNN has some drawbacks that influence both the computational performance

1



Chapter 1. Introduction 2

and the quality of its predictions. Since kNN has to store all the exemplars, the

memory requirements are directly proportional to the number of instances in the

training set. The cardinality of the data also influences the method’s speed. All

computations are done at testing time, making kNN painfully slow when applied

on large data sets.

The accuracy of kNN is closely related to how we define what “close” and “far”

mean for our data set and task. Mathematically, the notion of dissimilarity is

incorporated into kNN by using different distance metrics. Usually the standard

Euclidean metric is not satisfactory and the aim is to find the particular metric

that gives the best results on our data set for a given task (section 2.1). There is

an entire literature that tries to come up with possible solutions (section 2.2).

1.1 Neighbourhood component analysis

This thesis focuses on neighbourhood component analysis (NCA; Goldberger

et al., 2004). The NCA method learns a metric that maximizes the expected

number of correctly classified points (section 3.1). Using the NCA metric with

kNN usually improves performance over simple kNN, since we use the label in-

formation to construct a suitable metric that selects the relevant attributes.

In its initial formulation, NCA considers only a family of distance metrics

known as Mahalanobis (or quadratic) metrics; these are characterized by having

associated a linear transformation1 (section 2.1). By restricting the transfor-

mation to be non-square we obtain the corresponding low-rank metric. Such a

projection results in a low dimensional representation of the original data that

reduces the storage needs and the computational expense at test time. Also it

alleviates some of the concerns that have been raised regarding the usefulness of

nearest neighbours methods for high dimensional data (Beyer et al., 1999; Hinneb-

urg et al., 2000). The curse of dimensionality arises for kNN, because inter-point

distances can become indiscernible in many dimensions. For a given distribution

the maximum and the minimum distance between points become equal in the

limit of many dimensions. NCA proves to be an elegant answer for the above is-

sues and, consequently, it was successfully used in a variety of applications: face

recognition (Butman and Goldberger, 2008), hyper-spectral image classification

1In the original paper, Goldberger et al. (2004) present also a non-linear version of NCA. In
this thesis, we will restrict ourselves to linear transformations.
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(Weizman and Goldberger, 2007), acoustic modelling (Singh-Miller, 2010) and

even reinforcement learning (Keller et al., 2006).

However, the method introduces additional training time. The objective func-

tion needs the pairwise distances of the points, so the function evaluation is

quadratic in the number of data points. Also the optimization process is itera-

tive. For large data sets, NCA training becomes prohibitively slow. For example,

Weinberger et al. (2006) reported that the original implementation ran out of

RAM and Weizman and Goldberger (2007) had to use only 10% of their data set

in order to successfully train the model. There is only little previous work that

uses NCA for large scaled applications. One example is by Singh-Miller (2010),

who parallelized the computations across multiple computers and adopted various

heuristics to prune terms of the objective function and the gradient.

1.2 Reducing the computational cost

The main aim of this project is to reduce NCA training time without significant

losses in accuracy (chapter 4). We start our investigation with the most simple

ideas: use only a subset of the data set (section 4.1) or train the metric on different

mini-batches subsampled from the data set (section 4.2). This last idea can be

further refined by using clustered mini-batches. Also we present an alternative

mini-batch algorithm (section 4.3) that decreases the theoretical cost.

These methods can achieve further speedings if we use approximations of the

objective function. Simple approximation ideas (such as ignoring the points which

are farther away than a certain distance from the current point) were mentioned

in the original paper (Goldberger et al., 2004) and they are re-iterated by Wein-

berger and Tesauro (2007) and Singh-Miller (2010). We present a more principled

approach that borrows ideas from fast kernel density estimation problems (Deng

and Moore, 1995; Gray and Moore, 2003; Alexander Gray, 2003). We first recast

NCA into a class-conditional kernel density estimation framework (section 3.2)

and next we present how fast density estimation is done using a space partitioning

structure, such as k-d trees (section 4.4). Similar work of fast metric learning was

done by (Weinberger and Saul, 2008) which uses ball trees (Omohundro, 1989) to

accelerate a different distance metric technique, large margin nearest neighbour

(LMNN; Weinberger et al., 2006). However, LMNN is different from NCA and

the way in which ball trees are applied also differs from our approach.
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An alternative for the approximation method is to change the model such that

it allows exact and efficient computations. In the kernel density estimation model,

we can use compact support kernels instead of the standard Gaussian functions.

The expense is reduced because only the points that lie in the compact support

are used for estimating the density (section 4.5).

We evaluate the proposed techniques in terms of accuracy and speed (chap-

ter 5). Also we provide low dimensional representations of the projected data.

The results are promising, showing that we can obtain considerable speed-ups for

large data sets while retaining almost the same accuracy as in the classic case.

For small and medium sized data sets the accuracy and the time spent are similar

to the standard NCA.



Chapter 2

Background

This chapter sets the theoretical basis for the following discussion on low-rank

metrics. We start with a brief mathematical introduction into distance metrics.

Then we outline the characteristics of the Mahalanobis-like metric. At the end of

the chapter we review some of the most prominent work in the area. The method

we study, neighbourhood component analysis (NCA), is presented in chapter 3.

2.1 Theoretical background

A distance metric is a mapping from a pair of inputs to a scalar. Let d(x, y)

denote the distance function between the arguments x and y. Given a set S, we

say that d is a metric on S if it satisfies the following properties for any x, y, z ∈ S:

• Non-negativity: d(x, y) ≥ 0.

• Distinguishability: d(x, y) = 0⇔ x ≡ y.

• Symmetry: d(x, y) = d(y, x).

• Triangle Inequality: d(x, y) ≤ d(x, z) + d(z, y).

A metric can be defined on any set S of objects. The distance metric is valid

as long as the above properties hold for any elements in the set. However, for

the scope of our applications we limit ourselves to points in D dimensional real

space. The inputs will be represented by column vectors x,y ∈ RD. In this case

the distance d is a function from RD × RD to R. A well known example of such

a function is the Euclidean metric. This is defined by:

d(x,y) =
√

(x− y)T(x− y), with x,y ∈ RD. (2.1)

5



Chapter 2. Background 6

Albeit useful in many scenarios, the Euclidean metric has two properties that

are problematic in machine learning applications (Dwinnell, 2006):

Sensitivity to variable scaling. In geometrical situations, the values across

all D dimensions are measured in the same unit of length. In practical

situations however, each dimension encodes a different feature of the data

set. The Euclidean metric is sensitive to scaling and it returns different

results if we change the measurement units for one of the D variables. We

compensate for these differences by dividing the values on dimension i by

the standard deviation si on that direction:

d(x,y) =

√(
x1 − y1
s1

)2

+ · · ·+
(
xD − yD
sD

)2

=

=
√

(x− y)TS−1(x− y), (2.2)

where S = diag(s21, · · · , s2D) and s2i = var[xi],∀i = 1, · · · , D.

Invariance to correlated variables. Euclidean distance does take into account

any associations between variables. We can take into account the correla-

tions between attributes if we replace S in equation (2.2) with the covariance

matrix of the data:

d(x,y) =
√

(x− y)TS−1(x− y), (2.3)

where S = cov[D], D is the data set. The metric defined in equation (2.3)

is known as the Mahalanobis distance.

The Mahalanobis metric extends the Euclidean distance by incorporating data

specific information. But a good metric should be even more flexible than that.

Apart from the data set, we are also given a task to perform. We want our met-

ric to extract and discriminate only between information that is relevant to our

given task. Take the example of images and face recognition. The pixels from

the image background are highly correlated and they reflect the same informa-

tion: the colour of the background. If the two pictures of the same subject have

different backgrounds, we get a high distance between the images. Since we are

not interested at all in the background colour, the metric should identify all the

pixels in the background as non-relevant and down-weight their importance. In

figure 2.1, we illustrate why we need our metric should depend on a given task

and why for a given data set it is not optimal to use a fixed metric.
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(a) Face recognition (b) Expression recognition

Figure 2.1: On a given data set we might need to perform multiple tasks; in this

example: face recognition and expression recognition. The Euclidean metric is not

optimal since we want different pairs of equivalence for the two tasks. A good

distance metric should be task dependent. These images are an extract from Yale

face database.

We can further generalize the result from equation (2.3). Instead of setting

S as the covariance of the data, we let S be a different matrix. The problem of

determining a suitable matrix S−1 is called Mahalanobis (or quadratic) distance

metric learning. We note that S−1 ought to be positive semi-definite xTS−1x ≥
0,∀ x. This ensures that the norm is a real value: d(x,0) ≡ ‖x‖=

√
xTS−1x ∈ R.

There is an interesting equivalence between a Mahalanobis-like metric and a

linear transformation. Using the Cholesky decomposition or other matrix square

root we can write S−1 = ATA, which gives ‖x‖=
√

(Ax)T(Ax), where A rep-

resents a linear transformation of the data. Hence, the problem of finding a

suitable distance metric S is equivalent to the problem of finding a good linear

transformation A and then applying Euclidean distance in the projected space

(figure 2.2). We will discuss these two variants interchangeably and we will often

parametrize our models in terms of A.

2.2 Related methods

The first attempts in metric learning were simple alterations of the Euclidean met-

ric to improve kNN performance. For example, Mitchell (1997) suggests weighting
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(a) Mahalanobis metric in the original

space

(b) Euclidean metric in the projected space

Figure 2.2: Illustration of the equivalence between a Mahalanobis metric in the original

data space and an Euclidean metric in the transformed data space. The metrics are

denoted by an ellipse and, respectively, a circle whose contours indicate equal distance

from the centre point to the rest of the points.

each attribute of the data points such that the cross validation error is minimized.

This technique is equivalent to stretching the axis of the relevant attributes and

compressing the axis of the attributes that are less informative. The approach

is a special case of learning a diagonal metric, equation (2.2). Another method

(Moore and Lee, 1994) is to eliminate the least relevant attributes: they are given

a weight of zero. Albeit useful, these techniques are restrictive as the feature scal-

ing does not reflect how the data covary.

Hastie and Tibshirani (1996) proposed discriminant adaptive nearest neigh-

bours (DANN), a method that constructs a local metric for each particular query.

The metric is chosen such that it provides the best discrimination amongst classes

in the neighbourhood of the query point. This increases the already costly testing

time of kNN. However, DANN method provides a non-linear metric if we take

into account all the possible resulting local linear distance metrics. Even though

non-linear transformations are an interesting domain, we will concentrate our at-

tention on linear metrics as they are less prone to over-fitting and easier to learn

and represent.

Xing et al. (2003) proposed learning a Mahalanobis-like distance metric for

clustering in a semi-supervised context. There are specified pairs of similar data

points and the algorithm finds the linear projection that minimizes the distance
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between these pairs, while imposing the total distance between points that are not

similar to be larger than a constant. The solution is attained using an iterative

procedure, such as Newton-Raphson. This method assumes that the underlying

density of the data is unimodal which leverages the assumption-free kNN. Another

drawback is the training time, because the iterative process is costly for large data

sets.

Relevant component analysis (RCA; Bar-Hillel et al., 2003; Shental et al.,

2002) is another method that makes use of the labels of the classes in a semi-

supervised way to provide a distance metric. More precisely, RCA the so-called

chunklet information. A chunklet contains points from the same class, but the

class label is not known; data points that belong to the same chunklet have the

same label, while data points from different chunklets do not necessarily belong

to different classes. The main idea behind RCA is to find a linear transformation

which “whitens” the data with respect to the averaged within-chunklet covariance

matrix (Weinberger et al., 2006). Compared to the method of Xing et al. (2003),

RCA has the advantage of presenting a closed form solution, but it has even

stricter assumptions about the data: it assumes that the data points in each

class are normally distributed so they can be described using only second order

statistics (Goldberger et al., 2004).

Large margin nearest neighbour (LMNN; Weinberger et al., 2006) is a metric

learning method that was designed especially for kNN classification. LMNN has

some similar characteristics to the support vector machine (SVM) technique. As

SVM, LMNN brings together points from the same class trying to separate the

classes by a certain margin. Also LMNN inherits the convexity property and can

be optimize as a semi-definite programming. Weinberger and Saul (2008) worked

on fast metric learning by introducing ball trees to speed up the computations. In

(Weinberger and Saul, 2008), they extended LMNN to learn local metrics further

improving its performance.

Metric learning is an ongoing research area in machine learning with an abun-

dance of different techniques. For a good report that covers many related meth-

ods, the reader is referred to (Yang and Jin, 2006).



Chapter 3

Neighbourhood component analysis

This chapter can be regarded as a self-contained tutorial on neighbourhood com-

ponent analysis (NCA; Goldberger et al., 2004). Much of the material is especially

useful for the reader interested in applying the algorithm in practice. We start

with a review of the NCA method (section 3.1). Next we recast the NCA model

into a class conditional kernel density estimation problem (section 3.2). This new

formulation will prove useful later when we want to alter the model in a princi-

pled way (section 4.5.1). Lastly, in section 3.3 we present the lessons learnt from

our experience with NCA. Both sections 3.2 and 3.3 offer new insights into the

NCA method and they also bring together related ideas from previous work.

3.1 General presentation

Neighbourhood component analysis learns a Mahalanobis metric that improves

the performance of k nearest neighbours (kNN). From a practical point of view,

NCA is regarded as a desirable additional step before doing classification with

kNN. It improves the classification accuracy and it can provide a low-dimensional

representation of the data.

Because the goal is to enhance kNN’s performance, the first idea Goldberger

et al. (2004) had was to maximize the leave one out cross validation performance

with respect to a linear projection A. The procedure can be described as fol-

lows: apply the linear transformation A to the whole data set, then take each

point Axi and classify it using kNN on the remainder of the transformed data

set {Axj}j 6=i. The matrix A that achieves the highest number of correct classifi-

cations will be used for testing. However, finding the optimal A is not easy. Any

10
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objective function based on the k nearest neighbours is piecewise constant and

discontinuous and, hence, hard to optimize. The reason is that there does not

exist a direct relation between A and the neighbours of a given point: a small

perturbation in A might cause strong changes or, conversely, it might leave the

neighbours unchanged.

The authors’ solution lies in the concept of stochastic nearest neighbours.

Remember that in the classical 1-NN scenario, a query point gets the label of the

closest point. In the stochastic nearest neighbour case, the query point inherits

the label of a neighbour with a probability that decreases with distance. The

stochastic function is reminiscent of the generalized logistic function or of the

softmax activation used for neural networks. Let pij denote the probability that

the point j is selected as the nearest neighbour of the point i. The value of pij is

given by:

pij =
exp(−d2ij)∑
k 6=i exp(−d2ik)

, (3.1)

where dij represents the distance between point i and point j in the projected

space, i.e. dij = d(Axi; Axj) = (xi − xj)
TATA(xi − xj). Also we have to set

pii = 0: point i cannot pick itself as the nearest neighbour since we assume its

label is not known.

Now we can construct a continuous objective function using the stochastic

assignments pij which are differentiable with respect to A. A suitable quantity

to optimize is the average probability of each point getting correctly classified.

Point i is correctly classified when it is selected by a point j that has the same

label as i:

pi =
∑
j∈ci

pij. (3.2)

The objective function considers each point in the data set and incorporates

its probability of being labeled with the true class:

f(A) =
N∑
i=1

pi

=
N∑
i=1

∑
j∈ci

exp(−d2ij)∑
k 6=i exp(−d2ik)

. (3.3)

The score given by the objective function can be interpreted as the expected

number of the correctly classified points.
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To obtain the best linear projection A, we maximize f(A) using an iterative

gradient based solver such as gradient ascent, conjugate gradients or delta-bar-

delta (subsection 3.3.1). For these methods, we can use the analytical expression

of the gradient. If we differentiate with respect to A, we obtain:

∂f

∂A
= 2A

N∑
i=1

(
pi

N∑
k=1

pikxikx
T
ik −

∑
j∈ci

pijxijx
T
ij

)
, (3.4)

where xij = xi − xj.

At test time, we use the learnt matrix A to transform the points before doing

classification with kNN. Given a query point x∗, we assign it the label cj of the

closest point j in the projected space, where j = argmini d(Ax∗,Axi).

Further remarks

There are some interesting observations that can be made about NCA. It is useful

to note that equations (3.1) to (3.4) hold and NCA model can still be applied

even if we set the matrix A to be rectangular, i.e. A ∈ Rd×D, with d < D.

In this case the linear transformation A is equivalent to a low dimensional pro-

jection. Restricting A to be non-square gives rise to a couple of advantages.

Firstly, the optimization process is less prone to overfitting since a rectangular

matrix has fewer parameters than a square one. Secondly, the low dimensional

representation of the data set reduces the memory requirements and the com-

putational cost at test time. In this thesis we concentrate mostly on low-rank

metrics partly motivated by the above reasons, but also because many techniques

that are subsequently developed (chapter 4) work best in low dimensions.

We need to underline that NCA’s objective function is not convex. The first

consequence is that the parameter space is peppered with local optima and care

must be taken to avoid poor solutions. Factors such as the choice of initialization

or the optimization procedure affect the quality of the final result. Section 3.3

discusses these practical issues in detail. The other side of non-convexity is that

it allows NCA to cope well with data sets that have multi-modal class densities.

This is an important advantage over classical methods such as principal compo-

nent analysis, linear discriminant analysis or relevant component analysis. When

treated as probabilistic models, all of these methods assume that the data is

normally distributed which harms the classification performance on complicated

data sets.



Chapter 3. Neighbourhood component analysis 13

Another important characteristic of NCA is its computational cost. For each

point, we need to calculate the distances to all the other points. So the num-

ber of operations is quadratic in the number of data points. The evaluation of

the objective function is done in two steps. First we find the point projections

{Axi}Ni=1; this operation has O(dDN) cost. Next we compute all the distances dij

in the low dimensional space; this is done in O(dN2) flops. The total cost is then

O(dDN +dN2). Another way of evaluating the function f is to parametrize it in

terms of the Mahalanobis metric S = ATA. Then we can compute the distances

in the D-dimensional space in O(DN2) flops. This option is slower than the

previous case for d < D and D � N .

Since the optimization is based on the gradient, we are also interested in its

cost. The evaluation of gradient given in the original paper and in equation (3.4)

scales in D2N2. We improve this by “pushing” the matrix A into the sum as in

(Singh-Miller, 2010):

∂f

∂A
= 2

N∑
i=1

(
pi

N∑
k=1

pik(Axik)x
T
ik −

∑
j∈ci

pij(Axij)x
T
ij

)
, (3.5)

If we consider that the projections Axi were already calculated for the function

evaluation, the gradient has a cost of O(dDN2). However, in theory, evaluating

the gradient should have the same complexity as evaluating the objective func-

tion. Automatic differentiation (AD; Rall, 1981) is a technique that achieve this

theoretical result. AD uses the chain rule to derivative the objective function and

split the gradient into elementary functions that can be readily computed. So

instead of evaluating the complicated analytical gradient, we work on a series of

cheap operations. This method is very useful in practice and there exist libraries

for this in most programming languages. In our implementation we used the

analytical differentiation, because we were not aware of AD until recently.

The computational drawback represents an important setback in applying

NCA in practice. For example, Weinberger and Tesauro (2007) reported that

the method ran out of memory on large data sets and Weizman and Goldberger

(2007) used only 10% of an hyper-spectral data set to train the NCA classifier.

We present a number of solutions to this problem in chapter 4.
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xi

xj

Figure 3.1: NCA as a class-conditional kernel density estimation model. The figure

represents a schematic illustration of a mixture of Gaussians. The red circles denote

isotropic Gaussians. These are centred onto the points that belong to a certain class.

A point i is generated by either of the components of the class with a probability

inverse proportional with the distance.

3.2 Class-conditional kernel density estimation in-

terpretation

In this section we recast NCA into a class-conditional kernel density estimation

framework. This interpretation will allow us to understand the assumptions be-

hind the NCA method. After this we are in position to alter the model in a

suitable way that is efficient for computations (sections 4.4 and 4.5). Similar

ideas were previously presented by Weinberger and Tesauro (2007) and Singh-

Miller (2010), but the following were derived independently and they offer differ-

ent insights. Our following interpretation was inspired by the probabilistic kNN

presented by Barber (2011).

We start with the basic assumption that each class can be modelled by a

mixture of Gaussians. For each of the Nc data points in class c we consider a

Gaussian “bump” centred around it (figure 3.1). From a generative perspective,

we can imagine that each point j can generate a point i with a probability given

by an isotropic normal distribution with variance σ2:

p(xi|xj) = N (xi|xj, σ2ID) (3.6)

=
1

(2π)D/2σD
exp

{
− 1

2σ2
(xi − xj)

T(xi − xj)

}
. (3.7)
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By changing the position of the points through a linear transformation A, the

probability changes as follows:

p(Axi|Axj) ∝ exp

{
− 1

2σ2
(xi − xj)

TATA(xi − xj)

}
. (3.8)

We note that this is similar to the pij from NCA. Both p(Axi|Axj) and pij

are directly proportional to the same quantity.

Using the mixture of Gaussians assumption, we have that the probability of a

point of being generated by class c is equal to the sum of all Gaussians in class c:

p(xi|c) =
1

Nc

∑
xj∈c

p(xi|xj) (3.9)

=
1

Nc

∑
xj∈c

N (xi|xj, ID). (3.10)

However, we are interested in the inverse probability, given a point xi what

is the probability of xi belonging to class c. We obtain the expression for p(c|xi)
using Bayes’ theorem:

p(c|xi) =
p(xi|c)p(c)
p(c|xi)

=
p(xi|c)p(c)∑
c p(xi|c)p(c)

. (3.11)

Now if we further consider the classes to be equally probable, we arrive at a

result that resembles the expression of pi (equation (3.2)):

p(c|Axi) =

1
Nc

∑
xj∈c exp

{
− 1

2σ2 (xi − xj)
TATA(xi − xj)

}
1
Nc′

∑
c′
∑

xk∈c′ exp
{
− 1

2σ2 (xi − xk)TATA(xi − xk)
} (3.12)

We are interested in predicting the correct class of the point i. So we try to

find the linear transformation A that maximizes the class conditional probability

of this point p(ci|Axi) to its true class ci.

f(A) =
∑
i

p(ci|Axi). (3.13)

As in section 3.1, we can optimize the function using its gradient information.

The gradient is the following:

∂f

∂A
=
∑
i


∂p(Axi|c)

∂A
p(c)∑

c p(xi|c)p(c)
− p(Axi|c)p(c)∑

c p(Axi|c)p(c)︸ ︷︷ ︸
p(c|Axi)

∑
c
∂p(Axi|c)

∂A
p(c)∑

c p(Axi|c)p(c)

 . (3.14)
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The main advantage of the above formulation is that we can construct different

models simply by modifying the class-conditional probability (equation (3.9)).

Once p(xi|c) is altered in a suitable way, we use Bayes rule in conjunction with

equations (3.13) and (3.14) to get the new function and its corresponding gradient.

We optimize the parameter A in exactly the same way as for classical NCA.

Examples of this technique are in sections 4.5 and 4.5.1. These alterations

allow considerable speed-ups as we shall see in chapter 5.

Other benefits of the CC-KDE model are the possibility to incorporate prior

information about the class distributions p(c) and the possibility to classify a

point x∗ using p(c|Ax∗) (subsection 3.3.5).

3.3 Practical notes

While NCA is not that hard to implement (appendix A.1), certain care is needed

in order to achieve good solutions. In this section we try to answer some of the

questions that can be raised when implementing NCA.

3.3.1 Optimization methods

The function f(A), equation (3.3), can be maximized using any gradient based

optimizer. We considered two popular approaches for our implementation: gra-

dient ascent and conjugate gradients. These are only briefly presented here. The

interested reader is pointed to (Bishop, 1995).

Gradient ascent

Gradient ascent is one of the simplest optimization methods. It is an iterative

algorithm that aims to find the maximum of a function by following the gradient

direction at each step. The entire procedure is summarized by algorithm 3.1.

Besides this version, an alternative is to compute the gradient on fewer points

than the entire data set. This variant is known as stochastic gradient ascent

and has the advantage of being much faster than the batch version on redundant

data sets (redundancy is common in practice and especially in large data sets).

Different versions of stochastic gradient ascent were tried in chapter 4 to reduce

the computational cost.

For the algorithm 3.1, there are three aspects we need to consider:
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Algorithm 3.1 Gradient ascent (batch version)

Require: Data set D = {x1, · · · ,xN}.
1: Get initial A0

2: repeat

3: Update parameter: At+1 ← At + η ∂f(At,D)
∂A

4: Update learning rate η

5: t← t+ 1

6: until convergence

7: return At.

Initialization. The algorithm starts the search in the parameter space from

an initial parameter A0. Different values for A0 will give different final

solutions. In the NCA context, initialization is related to finding a good

initial linear transformation; this is discussed separately in subsection 3.3.2.

For the moment, we can assume the values of A0 are randomly chosen.

Learning rate. The parameter η is called the step size or, in the neural networks

literature, it also known as the learning rate. As its name suggests, η

controls how much we move the parameters in the gradient direction.

The learning rate can be either fixed or adaptive. For the first case, choosing

the correct value for η is critical. If η is set too large, the algorithm diverges.

On the other hand, a small η results in slow convergence.

Usually, a variable learning rate η is preferred. “Bold driver” (Vogl et al.,

1988) is a reasonable heuristic for automatically modifying η during train-

ing. The idea is to gradually increase the learning rate after each iteration

until the objective function stops improving. Then we go back to the pre-

vious position and decrease the learning rate until a new increase in the

function is found. The common way to increase the step size η is by multi-

plying it with a constant ρ > 1, usually ρ = 1.1. To decrease the step size,

we can multiple it with a constant σ < 1, for example σ = 0.5.

Another way is to change the learning rate η using a decreasing rule pro-

portional to the current iteration number: η = η0
t+t0

. Now we have two

parameters instead of one. Intuitively, η0/t0 can be regarded as the initial

learning rate and t0 as the number of iterations after which η0 starts to

drop off. Using a learning rate of such form is especially motivated in the
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stochastic gradient case. If η ∝ 1/t, the algorithm converges to the true

minimum as t goes to infinity. However, in practice the convergence is very

slow; so setting the constants η0 and t0 is important for reaching a good

solution in a short time. Leon Bottou1 recommends setting η0 to be the

regularization value and then select t0 such that the resulting update will

modify A by a sensible amount. Since we did not use regularization, we

followed some of the tricks presented in (LeCun et al., 1998). We fixed

the value for η0 and searched for t0 on an exponential scale from 0.1 to

1000. We kept that value of t0 that achieved the highest accuracy on a

cross-validation set.

Convergence. The gradient ascent algorithm can be stopped either when we

hit a maximum number of iterations or when the learning rate η falls below

a certain threshold. Also we can look at the variation in the objective

function. If the value of the objective function stops improving we can

halt the algorithm. Another popular choice to check convergence is “early

stopping”. We monitor the performance of the new A on a cross validation

set. If the objective function does not improve the best score for more

than a pre-set number of iterations we stop and return to the previous best

solution. This solution prevents overfitting since we stop when we achieve

a minimum on a test error and not on the training error. We illustrate this

in figure 3.2.

Gradient ascent has known convergence problems and determining good learn-

ing rates is often difficult. But it has the advantage of being quite flexible, es-

pecially in the stochastic optimization scenario, where we can select any noisy

estimate of the gradient in order to replace the total gradient.

Conjugate gradients

The conjugate gradient (CG; Hestenes and Stiefel, 1952) method solves some

of the convergence issues. Instead of selecting the search directions to be the

gradient directions, the CG method selects the next direction depending on both

the previous directions and on the curvature of the surface. CG reaches the

maximum of a quadratic energy function in a number of iterations equal to the

number of dimensions the function has support on. Also CG eliminates the

1Oral communication: http://videolectures.net/mmdss07_bottou_lume/
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Figure 3.2: This figure illustrates the early stopping procedure. During training we

keep a small part of the data set apart, for cross-validation. On this cross-validation

data set we compute the error function at each iteration. When the error function

stops decreasing we stop the learning procedure and return to the parameter that

achieved the best value. This figure resulted while applying NCA on the mnist data

set. The best value was obtained at iteration 98, as indicated by the red dot.

manual set-up for the learning rates. As Bishop (1995) notes, CG can be regarded

as a more complex version of gradient ascent that automatically chooses the

parameters. The details of the conjugate gradient method are out of the scope of

this thesis; a gentle introduction into the subject is given by Shewchuk (1994).

In practice it is considerably easier to use an existing implementation of CG

(for example, minimize.m by Rasmussen, 2010) than trying to find the optimal

parameters for the learning rate for gradient ascent. For small and medium-

sized data sets, the “bold driver” heuristic gives comparable scores to the more

sophisticated CG method (tables C.1 and C.2).

3.3.2 Initialization

Initialization is important because the function f(A) is not convex. The quality

of the final solution relies on the starting point of the optimization algorithm. A

general rule of thumb is to try multiple initial seeds and select the final A that

gives the highest score.

We have already mentioned random initialization in subsection 3.3.1. If the

projection is full-rank, A ∈ RD×D, another obvious initializations is the identity
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Score: 48.88

(a) Initial random projection

Score: 97.75

(b) NCA projection after random initialization

Score: 94.94

(c) Initial projection using PCA

Score: 100.00

(d) NCA projection after PCA initialization

Score: 98.88

(e) Initial projection using LDA

Score: 100.00

(f) NCA projection after LDA initialization

Figure 3.3: Results for different initializations (random, PCA and LDA) on wine data set.

The images on the left side represent the projections of the data set using the initial A.

The images on the right side are data set projection with the final A. Above each figure

there is presented the LOOCV score which is normalized to 100.
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matrix A = ID. Beside these, we can try linear transformations that are cheap to

compute. Such examples include principal component analysis (PCA; Pearson,

1901), linear discriminant analysis (LDA; Fisher, 1936) and relevant component

analysis (RCA; Bar-Hillel et al., 2003). For completeness, we give here the equa-

tions and also include further notes:

• PCA finds an orthogonal linear transformation of the data. This is obtained

by computing the eigendecomposition of the outer covariance matrix:

S =
1

N

N∑
i=1

(x− µ)(x− µ)T. (3.15)

The projection A is then given by S−1/2. If we want to learn a low-rank

projection, A ∈ Rd×D, d < D, we construct A using only the top d most

discriminative eigenvectors, i.e., those eigenvectors that have the highest

eigenvalues associated.

• LDA finds a linear transformation A by maximizing the variance between

classes SB relative to the amount of within-class variance SW :

SB =
1

C

C∑
c=1

µcµ
T
c (3.16)

SW =
1

N

C∑
c=1

∑
i∈c

(xi − µc)(xi − µc)
T. (3.17)

The projection matrix A that achieves this maximization consists of the

eigenvectors of S−1W SB.

Unlike PCA, LDA makes use of the class labels and this usually guarantees

a better initial projection.

• RCA finds a linear transformation A that decorrelates the points within

a chunklet, i.e. it makes the within-chunklet covariance equal to the iden-

tity matrix. Because for NCA we restrict ourselves to fully labeled data,

the within-chunklet covariance is the within-class covariance SW , equa-

tion (3.17). The “whitening” transformation A is then A = S
−1/2
W .

From our experiments, we conclude that a good initialization results in a good

solution and a faster convergence; these benefits are more evident on large data

sets. As advertised by Butman and Goldberger (2008), we found RCA to work
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the best. Occasionally random initialization gives better final scores than the

other techniques (figure C.2). Figure 3.3 depicts initialization effects on a small

data set. More illustrations are shown in appendix C.

3.3.3 Numerical issues

Numerical problems can easily appear when computing the soft assignments pi.

If a point xi is far away from the rest of the points, the stochastic probabilities

pij,∀j, are all 0 in numerical precision. Consequently, the result pi is undeter-

mined: 0
0
. To give an idea of how far xi has to be for this to happen, let us

consider an example in Matlab. The answer to exp(-dˆ2) is 0 whenever d

exceeds 30 units. This is problematic in practice, since distances larger than 30

often appear. Some common cases include data sets that contain outliers or data

sets that present a large scale.

The large scale effect can be partially alleviated if we initialize A with small

values. This idea was used by van der Maaten (2010) in his NCA implemen-

tation: A = 0.01*randn(d,D). However, this fixed coefficient of 0.01 does

not reduce the scale variation of any data set enough to guarantee no numerical

issues.

A more robust solution is to normalize the data, i.e., centre and make it have

unit marginal variances:

xij ←
xij − µj
σj

, i = {1, · · · , N}, j = {1, · · · , D}. (3.18)

In this case, we have to store the initial mean and variance of the data and, at test

time, transform the test data accordingly: subtract the mean and scale it using

the variance coefficients. The variance scaling can be regarded as a linear trans-

formation. We can combine this transformation with the learnt transformation

A and get:

Atotal ← A ·


σ1 · · · 0
...

. . .
...

0 · · · σD

 . (3.19)

In general, data normalization avoids numerical issues for the first iterations.

But during training, the scale of A increases and data points can be “thrown”

away. We adopt a rather simplistic approach to avoid any numerical problems:

replace pi with a very small value whenever we are in the 0
0

case, as in the
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implementation of van der Maaten (2010). In Matlab, this is done using the

following command max(p i,realmin).

A more rigorous way of dealing with this by multiplying both the numerator

and denominator of pi with a certain quantity exp(L):

pi =

∑
j∈ci exp(L− d2ij)∑
k 6=i exp(L− d2ik)

, (3.20)

where L = mink 6=i d
2
ik. This value of L ensures that at least one term in the

denominator does not underflow.

3.3.4 Regularization

Although the original paper (Goldberger et al., 2004) claimed that there were no

problems with overfitting, we observed that the NCA objective function has the

tendency to increase the scale of the linear projection A. Butman and Goldberger

(2008) pointed out that this is especially problematic for data sets whose size N

is significantly smaller than the dimensionality D. In such a case, the linear

transformation A can be chosen to project each point xi to a pre-specified a

location yi. The values of A are obtained by solving the linear system:

Axi = yi, i = {1, · · · , N}. (3.21)

Because the system has more equations dN than unknowns dD, it has exact

solutions. If we set the same positions yi for points in the same class, we can

virtually increase the scale of the projection to infinity and get an error-free

classification. This degeneracy can be corrected with the help of regularization.

We alter the objective function by subtracting a regularization term proportional

to the magnitude of A. This gives:

g(A) = f(A)− λ
d∑
i=1

D∑
j=1

A2
ij. (3.22)

∂g

∂A
=
∂f

∂A
− 2λA, (3.23)

where λ is a positive constant that is tuned via cross-validation.

Another effect of a large scale linear projection A is the fact that only the

nearest neighbour is considered for each point. This is not usually the optimal

thing to do, so regularization is also used to prevent this (Singh-Miller, 2010).

In our implementation, we use an “early stopping” technique which has a

similar effect to regularization.
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3.3.5 Doing classification

For testing, Goldberger et al. (2004) considered only the kNN decision rule. Since

we are optimizing a particular function f(A), another sensible tool for classifica-

tion is an NCA based function. If we are using the probabilistic interpretation

(section 3.2) a query point xi is labeled with the most probable class c:

c = argmaxc p(c|xi). (3.24)

This can be re-written in NCA specific notation as:

c = argmaxc

∑
j∈c pij∑
k pik

. (3.25)

In our experiments, 1-NN and the NCA classification rule described by equa-

tion (3.25) give very similar results if we train A on the un-regularized func-

tion f(A). When we used early stopping, the NCA classification rule yielded

better performances (chapter 5). In this case, kNN with k > 1 should also per-

form better than simple 1-NN.

3.3.6 Dimensionality annealing

Dimensionality annealing is an approach to learning a low-rank metric in an way

that avoids local optima (Hinton via Murray, oral communication). We start

with a full rank projection A and gradually reduce the rank by introducing reg-

ularization terms on the rows of A. Compared with the classical regularization

procedure, subsection 3.3.4, here we use a regularization term on each dimen-

sion d. The new objective function and its gradient are given by the following

equations:

g(A) = f(A)−
d∑
i=1

λi

D∑
j=1

A2
ij (3.26)

∂g

∂A
=
∂f

∂A
− 2


λ1A11 · · · λ1A1D

...
. . .

...

λdAd1 · · · λdAdD

 . (3.27)

A large value of λd will impose a small magnitude of A on dimension d. We

increase λd slowly; this permits the rest of the values of A to readjust. We clarify

these steps in algorithm 3.2.
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Algorithm 3.2 Dimensionality annealing

Require: Data set D = {x1, · · · ,xN}, initial linear transformation A ∈ RD×D

and low dimension d.

1: for i = 1, · · · , D − d do

2: Select dimension d to anneal

3: for j = 1, . . . , P do

4: Increase regularization coefficient λd ← λd + ∆λ

5: Optimize function g: A = A + η ∂g(A,D,λ)
∂A

6: end for

7: Remove row d from A

8: end for

There are several notes to be made. There are alternatives for selecting the

dimension d we want to anneal, step 2 of algorithm 3.2. We can choose d to be

the direction that has:

• minimum variance in our data set {xi}Ni=1

• minimum variance in the projected data set {Axi}Ni=1

• smallest magnitude in A.

The function optimization step can be done either by gradient ascent or con-

jugate gradients. It is possible to do conjugate gradients for a small number of

iterations, typically 2 or 3. After a dimension is annealed, we reach the end of

the inner for loop, then we can remove that particular dimension; for example set

the elements on the d-th row equal to 0. A further idea would be to run conju-

gate gradients until convergence, initialized with low dimensional A returned by

algorithm 3.2.

Figure 3.4 shows a successful example of dimensionality annealing. The

two dimensional projection given by the dimensionality annealing technique, fig-

ure 3.4(b), is better than the one provided by simple NCA transformation, fig-

ure 3.4(a).

Summary

In this chapter we have concentrated on the classic NCA method presenting

its theoretical and practical aspects. In section 3.2 we have interpreted NCA
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Plain NCA transformation

(a) Simple NCA transformation

NCA transformation by annealing the dimensionality

(b) NCA with dimensionality annealing

projection

Figure 3.4: Example of applying the dimensionality annealing procedure to

ionosphere data set. The method using dimensionality annealing is more visually

appealing than the classical approach.

in a more flexible framework. This allows us to easily incorporate prior class

probabilities p(c). Usually we can estimate p(c) = Nc

N
and this might prove useful

for unbalanced class. Furthermore, by modeling the posterior p(c|x) and then

using decision theory, we can obtain optimal solutions. Regarding the practical

side of NCA, there does not seem to exist a technique that clearly dominates the

others, but a combination of RCA for initialization and CG for optimization can

be applied with little effort on any small and medium-sized data set. For high

dimensional data sets, we recommend regularization or early stopping and then

using an NCA-based classification function (equation 3.25 or 3.24). In the next

chapter, we will see how we can apply NCA on large data sets.



Chapter 4

Reducing the computational cost

As emphasized in section 3.1, neighbourhood component analysis (NCA) is a

computationally expensive method. The evaluation of its objective function is

quadratic in the size of the data set. Given that the optimization is done itera-

tively, NCA becomes prohibitively slow when applied on large data sets. There

is only little previous work that uses NCA for large scaled applications. One ex-

ample is Singh-Miller (2010), who parallelizes the computations across multiple

computers and adopts various heuristics to prune terms of the objective function

and the gradient.

This chapter aims to continue the existing work and to present a series of

methods that can improve NCA’s speed. Most of these ideas are new in the

context of NCA. We start with simple approaches like sub-sampling (section 4.1)

and mini-batch methods (sections 4.2 and 4.3). For further speed-ups, we proceed

with more sophisticated ideas (starting from section 4.4).

4.1 Sub-sampling

Sub-sampling is the simplest idea that can help speeding up the computations.

For the training procedure we use a randomly selected sub-set Dn of the original

data set D:

Dn = {xi1 , · · · ,xin} ⊆ D.

If n is the size of the sub-set then the cost of the gradient, equation (3.5), is

reduced to O(dDn2). After the projection matrix A is learnt, we apply it to

the whole data set {xi}Ni=1. Then all the new data points {Axi}Ni=1 are used for

27
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(a) Learnt projection A on the sub-sampled

data set Dn.

(b) The projection A applied to the whole

data set D.

Figure 4.1: Result of sub-sampling method on wine. One third of the original data

set were used for training, i.e., n = N/3. We note that the points that belong to the

sub-set Dn are perfectly separated. But after applying the metric to the whole data,

misclassification errors appear. The effects are more acute if we use smaller sub-sets.

classification. The cost of the classification is O(dN) which is linear in the total

number of points N .

While easy to implement, this method discards a lot of the information avail-

able. Also it is affected by the fact the sub-sampled data has a thinner density

than the real data. The distances between the randomly selected points are larger

than they are in the full data set. This causes the scale of the projection matrix

A not to be large enough. In figure 4.1 we illustrate that a seemingly perfect

linear transformation of the sub-sampled data set does not correspond to a good

transformation of the entire data set.

4.2 Mini-batches

The next obvious idea is to use sub-sets of data in an iterative manner, similar

to the stochastic gradient descent method: split the data into mini-batches and

train on them successively. Again the cost for one evaluation of the gradient will

be O(dDn2) if the mini-batch consists of n points.

A possible way of using mini-batches for learning an NCA projection is sum-

marized by algorithm 4.1. This algorithm should be used in conjunction with the

advice on convergence, the learning rate or initialization that was discussed in
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sections 3.3.1 and 3.3.2.

Algorithm 4.1 NCA learning algorithm using mini-batches (NCA MB)

Require: Data set D = {x1, · · · ,xN} and initial linear transformation A.

1: repeat

2: Project each data point using A: DA = {Ax1, · · · ,AxN}.
3: Use either algorithm 4.2 or 4.3 on DA to split D into K mini-batches

M1, · · · ,MK .

4: for allMi do

5: Update parameter: A← A + η ∂f(A,Mi)
∂A

.

6: Update learning rate η.

7: end for

8: until convergence.

We considered two different choices for splitting the data-set:

Random selection. In this case the points are assigned randomly to each mini-

batch. After one pass through the whole data set, we repeat the random

allocation procedure. As in section 4.1, this suffers from the thin distribu-

tion problem. In order to alleviate this problem and achieve convergence,

we should use large-sized mini-batches (as in the NCA implementation of

van der Maaten, 2010). The algorithm is similar to algorithm 4.1, but lines

2 and 3 will be replaced with a simple random selection.

Clustering. Constructing mini-batches by clustering ensures that the point den-

sity in each mini-batch is conserved. In order to maintain a low computa-

tional cost, we consider cheap clustering methods, e.g., farthest point clus-

tering (FPC; Gonzalez, 1985) and recursive projection clustering (RPC;

Chalupka, 2011).

FPC gradually selects cluster centres until it reaches the desired number

of clusters K. The point which is the farthest away from all the current

centres is selected as the new centre. The precise procedure is given by

algorithm 4.2.

The computational cost of this method is O(NK). However, we do not

have any control over the number of points in each cluster, so we might

end up with very unbalanced clusters. A very uneven split has a couple of
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Algorithm 4.2 Farthest point clustering (FPC; Gonzalez, 1985)

Require: Data set D = {x1, · · · ,xN} and K number of clusters.

1: Randomly pick a point that will be the first centre c1.

2: Allocate all the points in the first cluster M1 ← D.

3: for i = 1 to K do

4: Select the i-th cluster centre ci as the point that is farthest away from any

cluster centre c1, · · · , ci−1.
5: Move to the cluster Mi those points that are closer to its centre than to

any other cluster centre: Mi = {x ∈ D | d(x; ci) < d(x; cj),∀j 6= i}
6: end for

obvious drawbacks: too large mini-batches will maintain high cost, while

on too small clusters there is not too much to learn.

An alternative is RPC which was especially designed to mitigate this prob-

lem. It constructs the clusters similarly to how the k-d trees are built,

(subsection 4.4.1). But instead of splitting the data set across axis aligned

directions it chooses the splitting directions randomly (algorithm 4.3). Be-

cause RPC uses the median value it will result in similar sized clusters and

we can easily control the dimension of each cluster.

Algorithm 4.3 Recursive projection clustering (RPC; Chalupka, 2011)

Require: Data set D = {x1, · · · ,xN} and n size of clusters.

1: if N < n then

2: New cluster: i← i+ 1.

3: return current points as a cluster: Mi ← D.

4: else

5: Randomly select two points xj and xk from D.

6: Project all data points onto the line defined by xj and xk.

7: Select the median value x̃ from the projected points.

8: Recurse on the data points above and below x̃: RPC(D>x̃) and RPC(D≤x̃).

9: end if

In algorithm 4.1, we are re-clustering in the transformed space after one sweep

through the whole data set. There are other alternatives. For example, we could

cluster in the original space, either once or periodically. The proposed variant
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works well in the case of a low-rank projection matrix A: we obtain better clusters

using RPC on low dimensional data sets than on high dimensional data sets.

4.3 Stochastic learning

The following technique is theoretically justified by stochastic approximation ar-

guments. The main idea is to get an unbiased estimator of the gradient by looking

only at a few points and how they relate to the entire data set. More precisely, at

each iteration we randomly select n data points and find their stochastic nearest

neighbours assignments using all the data. We maximize the probability of these

n points belonging to the true class:

fNCA-SL(A) =
n∑
l=1

pil , (4.1)

where i1, · · · , in denote the indices of the randomly selected points and pi is the

average probability of the point i of getting correctly classified:

pi =
N∑
j=1
j∈ci

pij. (4.2)

The gradient of the new objective function is given by:

∂̂f

∂A
=
∂fNCA-SL

∂A
=

n∑
l=1

∂pil
∂A

(4.3)

= 2
n∑
l=1

pil N∑
k=1

pilk(Axilk)x
T
ilk
−
∑
j∈cil

pilj(Axilj)x
T
ilj

 . (4.4)

The evaluation of the objective function and its gradient scales with nN .

Algorithm 4.4 presents a stochastic learning procedure for NCA. As before, we

refer the reader to the previous subsections 3.3.1 and 3.3.2 for advice regarding

the convergence and update of the learning rate.

It might be useful to contrast the NCA SL algorithm with the simple NCA.

In the classical NCA learning setting, we update our parameter A after we have

considered each point i in the data set and how it relates to the rest of the

training set. In the stochastic learning procedure, we update A more frequently

by considering only n randomly selected points and how they relate to the whole

training set. The use of the stochastic gradient is motivated by the fact that at
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Algorithm 4.4 Stochastic learning for NCA (NCA SL)

Require: Data set D = {x1, · · · ,xN}, n number of points to consider for the

gradient estimation, A initial linear transformation.

1: repeat

2: Split data D into groups Mi of size n.

3: for allMi do

4: Update parameter using gradient given by equation 4.4:

A← A + η ∂fNCA-SL(A,Mi)
∂A

.

5: Update learning rate η.

6: end for

7: until convergence.

the initial stages we are far from the optimum solution. If we follow a direction

that makes an angle smaller than π/2 with the true gradient, we get closer to

a maximum of the function. Estimated gradients often represent a cheap and

practical way of optimizing the parameters.

NCA SL also differs from the mini-batch method because for the mini-batch

method the contributions pi are calculated only between the n points that belong

to the mini-batch.

This stochastic learning method method comes with an additional facility. It

can be used for on-line learning. Given a new point xN+1 we update A using the

derivative ∂pN+1

∂A
.

Interlude

The algorithms we presented are characterized by data sub-sampling. These are

easy to apply once we decide on the convergence conditions and a learning rate

update rule.

In the following sections we describe variants of algorithms that use approx-

imations. When computing pi we can ignore some of the individual point con-

tributions pij. While useful on their own, this family of algorithms can achieve

better accelerations when combined with the previous methods.

In section 4.4 we use k-d trees to select the significant stochastic assignments

pij that are significant. To clearly present this method, we need to introduce the

k-d tree data structure (subsection 4.4.1) and how it is used for fast kernel density
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Figure 4.2: Evolution of the stochastic assignments pij during training for a given

point i. The y-axis specifies the contributions pij on a logarithmic scale. On x-axis

we sorted the neighbours in descending order of their contributions. Each curve is

associated to a certain linear projection At, where t denotes the iteration number

from the optimization algorithm.

estimation (subsection 4.4.2). Subsection 4.4.3 offers details of adapting existing

algorithms specifically for NCA. In section 4.5, we change the NCA model into a

compact support version of NCA, such that only the points within a certain radius

from the query point are considered, while the rest are given 0 weight. Lastly, we

present a more robust version of the compact support NCA that avoids possible

numerical problems (subsection 4.5.1).

4.4 Approximate computations

A straightforward way of speeding up the computations was previously mentioned

in the original paper (Goldberger et al., 2004) and in some NCA related work

(Weinberger and Tesauro, 2007; Singh-Miller, 2010). The observations involve

pruning small terms in the original objective function. We then use an approx-

imated objective function and its corresponding gradient for the optimization

process.

The motivation lies in the fact that the contributions pij decay very quickly
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with distance:

pij ∝ exp{−d(Axi; Axj)
2}.

The evolution of the contributions during the training period is depicted in

figure 4.2. We notice that maybe in the first 5-10 iterations the contributions of

more than 50 neighbours are significant; after we get out of this regime we can

discard a large part of the neighbours and preserve the accuracy of our estima-

tions.

Weinberger and Tesauro (2007) choose to use only the top m = 1000 neigh-

bours for each point xi. Also they disregard those points that are farther away

than dmax = 34 units from the query point: pij = 0,∀xj such that d(Axi; Axj) >

dmax. While useful in practical situations, these suggestions lack a principled

description: how can we optimally choose m and dmax in a general setting? We

would also like to be able to estimate the error introduced by the approximations.

We correct those drawbacks by making use of the KDE formulation of NCA

(see section 3.2) and adapting existing ideas for fast KDE (Deng and Moore,

1995; Gray and Moore, 2003) to our particular application. We will use a class

of accelerated methods that are based on data partitioning structures (e.g., k-d

trees, ball trees). As we shall see shortly, these provide us with means to quickly

find only the neighbours xj that give significant values pij for any query point xi.

4.4.1 k-d trees

The k dimensional tree structure (k-d tree; Bentley, 1975) organises the data in

a binary tree using axis-aligned splitting planes. The k-d tree places points that

live nearby in the original geometrical space close in the tree. This makes such

structures efficient mechanisms for nearest neighbour searches (Friedman et al.,

1977) or range searches (Moore, 1991).

There are different flavours of k-d trees. We choose for our application a

variant of k-d tree that uses bounding boxes to describe the position of the points.

Intuitively, we can imagine each node of the tree as a bounding hyper-rectangle

in the D dimensional space of our data. The root node will represent the whole

data set and it can be viewed as a hyper-rectangle that contains all the data

points, see figure 4.3(a). In the two-dimensional example presented, the points

are enclosed by rectangles. Figures 4.3(a) to 4.3(d) show the existing bounding

boxes at different levels of the binary tree. To understand how these are obtained,
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(a) Root node (b) First level

(c) Second level (d) Last level

Figure 4.3: Illustration of the k-d tree with bounding boxes at different levels of

depths. This figure also outlines the building phases of the tree.

we discuss the k-d tree construction.

We start building the tree from the root node and then proceed in a recursive

manner. At each node we select which of the points from the current node will be

allocated to each of the two children. Because these are also described by hyper-

rectangles, we just have to select a splitting plane. Then the two successors will

consist of the points from the two sides of the hyper-plane.

A splitting hyper-plane can be fully defined by two parameters: a direction ~d

on which the plane is perpendicular and a point P that is in the plane. Given

that the splits are axis aligned, there are D possible directions ~d. We can either

choose this randomly or we can use each of the directions from 1 to D in a

successive manner. A more common approach is to choose ~d to be the dimension
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that presents the largest range:

~d← argmaxd(max
i
xid −min

i
xid). (4.5)

Splitting perpendicular on the direction with the greatest range results in a

better clustering of the points and the shape of the bounding boxes will be closer

to the shape of a square. Otherwise it might happen that points situated in the

same node can still be further away.

Regarding the splitting value P , a usual choice is the median value x̃d on

the previously selected direction ~d. This choice of P guarantees a balanced tree

which offers several advantages. We can allocate static memory for the entire data

structure. This is faster to access than dynamical allocation. Also a balanced

tree has a better worst case complexity than an unbalanced one. Other useful

implementation tricks that can be applied to balanced k-d trees are suggested by

Lang (2009).

After the splitting plane is chosen, the left child will contain the points that

are on the left of the hyper-plane:

D≤x̃d = {x ∈ Dxi
|xd ≤ x̃d}, (4.6)

where Dxi
denotes the data points bounded by the current node xi. Similarly, the

right child will contain the points that are placed on the right of the hyper-plane:

D>x̃d = {x ∈ Dxi
|xd > x̃d}. (4.7)

This process is repeated until the number of points bounded by the current

node goes below a threshold m. These nodes are the leaves of the tree and they

store the data points. The other non-leaf nodes store information regarding the

bounding box and the splitting plane. A hyper-rectangle is completely defined

by only two D-dimensional points, one for the “top-right” corner and the other

for the “bottom-left” corner.

The most common operation on a k-d tree is the nearest neighbour (NN)

search. While we will not apply pure NN for the next method, we will use similar

concepts. However, we can do NN retrieval with k-d trees after we applied NCA,

as suggested by Goldberger et al. (2004). The search in the k-d tree is done in

a depth-first search manner: start from the root and traverse the whole tree by

selecting the closest node to the query point. In the leaf, we find the nearest

neighbour from the m points and store it and the corresponding distance dmin.
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Algorithm 4.5 k-d tree building algorithm

Require: Data set D = {x1, · · · ,xN}, i position in tree and m number of points

in leaves.

1: if N < m then

2: Mark node i as leaf: splitting direction(i)=-1.

3: Add points to leaf: points(i)← D.

4: return

5: end if

6: Choose direction ~d using equation (4.5): splitting direction(i)=d.

7: Find the median value x̃d on the direction ~d: splitting value(i)=x̃d.

8: Determine the subsets of points that are separated by the resulting splitting

plane: D≤x̃ and D>x̃, see equations (4.6) and (4.7).

9: Build left child build kdtree(D≤x̃,2*i).

10: Build right child build kdtree(D>x̃,2*i+1).

Then we recurse up the tree and look at the farther node. If this is situated at

a minimum distance that is smaller than dmin, we also have to investigate that

node. Otherwise, we can ignore the node and all the points it contains. Usually, a

large fraction of the points can be omitted, especially when the data is clustered.

It is important to stress that the performance of k-d trees quickly degrades with

the dimensionality of the data.

4.4.2 Approximate kernel density estimation

The next ideas are mostly inspired by previous work on fast kernel density esti-

mators with k-d trees (Gray and Moore, 2001, 2003; Alexander Gray, 2003) and

follows closely work on fast Gaussian Processes regression with k-d trees (Shen

et al., 2006).

In kernel density estimation (KDE), we are given a data set D and the goal

is to compute the probability density at a given point using a sum of the contri-

butions from all the points:

p(xi) =
1

N

N∑
j=1

k(xi|xj). (4.8)

A common class of KDE problems are the N -body problems (Gray and Moore,

2001) where we have to estimate p(xi) for each data point {xi}Ni=1 in the data set
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D. This operation is quadratic in the number of points, as it is the case of NCA.

If the number of samples N in D is sufficiently large, we expect to accurately

approximate p(xi) by using only nearby neighbours of xi.

To illustrate how this works, let us assume we are given a query point xi

and a group of points G. We try to reduce computations by replacing each

individual contribution k(xi|xj),xj ∈ G, with a fixed quantity k(xi|xg). The

value of k(xi|xg) is group specific and since it is used for all points in G, it is

chosen such that it does not introduce a large error. A reasonable value for

k(xi|xg) is obtained by approximating each point xi with a fixed xg, for example,

the mean of the points in G. Then we compute the kernel value k(xi|xg) using

the estimated xg. A second possibility is to directly approximate k(xi|xg). For

example:

k(xi|xg) =
1

2
(kmin + kmax) , (4.9)

where kmin and kmax represent the minimum and maximum contributions that

can arise for the given query point xi and the bounding box that encloses the

group G. This last option does not introduce any further computational expense.

Both the minimum and the maximum contributions are previously calculated to

decide whether to prune or not. Also it does not need to store any additional

statistics, such as the mean.

The error introduced by each approximation is bounded by the following quan-

tity:

εmax =
1

2
(kmax − kmin) . (4.10)

This can be controlled to be small if we approximate only for those groups

that are far away from the query point or when the variation of the kernel value is

small within the group. It is better still to consider the error relative to the total

quantity p(xi). Of course we do not know the total sum we want to estimate in

advance, but we can use a lower bound: pSoFar(xi)+NGkmin, where pSoFar denotes

the current estimate for p(xi) and NG is the number of points in the group G.

Hence, a possible cut-off rule is:

εmaxNG ≤ τ(pSoFar +NGkmin), (4.11)

where τ is a constant that controls the error introduced by the approximations:

a small τ means the computations will more accurate, conversely, a large τ allows
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more approximations. We use a pruning technique whenever the cut-off rule is

true. So in this case it is important the order in which we accumulate. A large

pSoFar(xi) in the early stages will allow more computational savings.

We use k-d trees to form groups of points G that will be described as hyper-

rectangles. To compute the probability density function p(xi), we start at the

root, the largest group, and traverse the tree going through the nearest node

each time until we reach the leaf. In this manner, we are able to add large

contributions at the beginning. Then we recurse up the tree and visit other

nodes only if necessary, when the cut-off condition is not satisfied. We give the

exact algorithm for this procedure in the next subsection.

4.4.3 Approximate KDE for NCA

We recall that NCA was formulated as a class-conditional kernel density estima-

tion problem (CC-KDE; section 3.2). By combining ideas from the previous two

subsections, we can develop an NCA specific approximation algorithm.

There are some differences from the classical KDE approximation. In this

case, we deal with class-conditional probabilities p(Axi|c),∀c. So each class c

needs to be treated separately: we build a k-d tree with the projected data

points {Axj}j∈c and calculate the estimated probability p̂(Axi|c) for each class.

Another distinction is that for NCA our final interests are the objective function

and its gradient. Algorithm 4.6 presents at a high-level how the NCA objective

function and its gradient are computed in the CC-KDE scenario.

We demonstrate how we can obtain an approximated version of the objective

function. We begin by replacing p(Axi|c) with the approximated p̂(Axi|c) in

equation (3.13):

f̂(A) =
N∑
i=1

p̂(ci|Axi). (4.12)

To obtain the gradient of this new objective function we use equation (3.14).

Recalling that each individual contribution is given by a normal distribution:

k(Ax|Axi) ∝ exp
{
−(Ax−Axi)

T(Ax−Axi)
}
, (4.13)

The gradient of each individual contribution with respect to the linear trans-

formation A will be:

∂

∂A
k(Ax|Axi) ∝ −2A · k(Ax|Axi)(x− xi)(x− xi)

T. (4.14)
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Algorithm 4.6 Approximate NCA

Require: Projection matrix A, data set D = {x1, · · · ,xN} and error τ .

1: for all classes c do

2: Build k-d tree for the points in class c.

3: end for

4: for all data points xi do

5: for all classes c do

6: Compute approximate class-conditional probability p̂(Axi|c) and its cor-

responding gradient ∂
∂A
p̂(Axi|c) using algorithm 4.7

7: end for

8: Compute soft probability p̂i ≡ p̂(c|Axi) = p̂(Axi|ci)∑
c p̂(Axi|c) .

9: Update function value (equation 3.13) and gradient value (equation 3.14).

10: end for

Now let us consider the derivative ∂
∂A
p(Ax|c) for a group G and then approx-

imate it using the criterion given in equation (4.9). We obtain:

∂

∂A
p(Ax|G) =

∂

∂A

∑
j∈G

k(Ax|Axj)

≈ ∂

∂A

1

2
(kmin + kmax)

=
1

2

{
∂

∂A
k(Ax|Axc) +

∂

∂A
k(Ax|Axf )

}
= −A

{
kmax(x− xc)(x− xc)

T + kmin(x− xf )(x− xf )
T
}
, (4.15)

where Axc and Axf denote the points associated with kmax and kmin. We observe

that for the gradient computation we need to find these points and then to recover

their positions in the original space. The class-conditional approximated gradient

is obtained by adding the contributions for all the groups (algorithm 4.7).

4.5 Exact computations

Exact methods are the counterpart of approximate methods. We can have both

efficient and exact computations just by modifying the NCA model. Again, the

idea is motivated by the rapid decay of the exponential function. Instead of

operating on very small values, we will make them exactly zero. This is achieved

by replacing the squared exponential kernel with a compact support function. So,
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Algorithm 4.7 Approximate class-conditional kernel density estimation

Require: Query point x, projection matrix A, data set D = {x1, · · · ,xN} and

error τ .

1: Find dmax and dmin from x to the current bounding box and then compute

kmin and kmax.

2: if NG(kmax − kmin) ≤ 2τ(pSoFar +NGkmin) then

3: Compute group contribution: p̂(Ax|G) = NG

2
(kmin + kmax)

4: Compute derivative ∂
∂A
p̂(Ax|G) using equation (4.15)

5: Update accumulated contribution: pSoFar ← pSoFar + p̂(Ax|G)

6: return p̂(Ax|G) and ∂
∂A
p̂(Ax|G).

7: end if

8: if current node is a leaf then

9: Compute probability: p(Ax|Gleaf) =
∑

j∈leaf k(Ax|Axj)

10: Compute derivative: ∂
∂A
p(Ax|Gleaf) = ∂

∂A

∑
j∈Gleaf

k(Ax|Axj)

11: Update pSoFar

12: return p(Ax|Gleaf) and ∂
∂A
p(Ax|Gleaf).

13: end if

14: Recurse on nearest child to x and compute the probability and the gradient

contributions: p̂(Ax|Gnear) and ∂
∂A
p̂(Ax|Gnear)

15: Recurse on farthest child to x and compute the probability and the gradient

contributions: p̂(Ax|Gfar) and ∂
∂A
p̂(Ax|Gfar)

16: return p̂(Ax|Gnear) + p̂(Ax|Gfar) and ∂
∂A
p̂(Ax|Gnear) + ∂

∂A
p̂(Ax|Gfar).
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the points that lie outside the support of the kernel are ignored and just a fraction

of the total number of points is used for computing the contributions pij. The

most significant cost savings come from the fact that we do not have to compute

the expensive terms for the points that have pij = 0. Further gains in speed are

obtained if the search for those points is done with k-d trees (the range search

algorithm is suitable for this task; Moore, 1991).

The choice of the compact support kernel is restricted by a single require-

ment: differentiability. We will use the simplest polynomial function that has

this property. This is given by the following expression:

kCS(u) =

h(a2 − u2)2 if u ∈ [−a; +a]

0 otherwise,
(4.16)

where h is a constant that controls the height of the kernel and a is a constant that

controls the width of the kernel. In the given context, the kernel will be a function

of the distance between two points: kCS(u) = kCS(dij), where dij = d(Axi; Axj).

We introduced a general expression for the compact support kernel because

later we will need to carefully set the parameters a and h (subsection 4.5.1). For

now, we can consider a = 1 and h = 1. We obtain the following simplified version

of the kernel:

kCS(dij) = (1− d2ij)2 I(|dij| ≤ 1), (4.17)

where I(·) denotes the indicator function: I(·) returns 1 when its argument is true

and 0 when its argument is false.

Now we reiterate the steps of the NCA algorithm (presented in section 3.1),

and replace each exp(−d2ij) with kCS(dij). We obtain the following new stochastic

neighbour assignments:

qij =
kCS(dij)∑
k 6=i kCS(dik)

. (4.18)

These can be compared to the classical soft assignments given by equation (3.1).

Next we do not need to change the general form of the objective function:

fCS(A) =
∑
i

∑
j∈ci

qij. (4.19)

In order to derive the gradient of the function fCS, we start by computing the
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gradient of the kernel:

∂

∂A
kCS(dij) =

∂

∂A

[
(1− d2ij)2 · I(|dij| ≤ 1)

]
= −4A(1− d2ij)xijxT

ij · I(|dij| ≤ 1), (4.20)

where xij = xi − xj.

The gradient of the new objective function is:

∂fCS

∂A
= 4A

N∑
i=1

(
qi

N∑
k=1

qik
1− d2ik

xikx
T
ik −

∑
j∈ci

qij
1− d2ij

xijx
T
ij

)
. (4.21)

This method can be applied in same way as classic NCA: learn a metric A

that maximizes the objective function fCS(A). Since the function is differen-

tiable, any gradient based method is suitable for optimization and can be used

on equation (4.21).

There is one concern with the compact support version of NCA. There are

situations when a point xi is placed outside the support of any other point in the

data set. Intuitively, this means that the point xi is not selected by any point,

hence it is not assigned any class label. Also this causes mathematical problems:

as in subsection 3.3.3, the contributions pij will have an indeterminate value 0
0
.

The advice from subsection 3.3.3 can be applied here as well. A more robust way

of dealing with this is discussed in the next subsection.

4.5.1 NCA with compact support kernels and background dis-

tribution

We extend the previous model to handle cases where points fall outside the sup-

port of any other neighbours. The idea is to use for each class a background

distribution that explains the unallocated points. The background distribution

should have an infinite support and an obvious example is the normal distribution.

To introduce a background distribution in a principled manner, we return to

the class conditional kernel density estimation (CC-KDE) formulation of NCA

(section 3.2). First, we recast the compact support NCA in the probabilistic

framework and consider each class as mixture of compact support distributions:

p(xi|c) =
1

N

∑
j∈c

kCS(xi|xj), (4.22)
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xj

k(x|xj)

µ

N (x|µ,Σ)

Figure 4.4: Neighbourhood component analysis with compact support kernels and

background distribution. The main assumption is that each class is a mixture of com-

pact support distributions k(x|xj) plus a normal background distribution N (x|µ,Σ).

where kCS(xi|xj) = kCS(dij) and is defined by equation (4.16). Because kCS(xi|xj)
denotes a distribution, it ought to integrate to 1. For h = 15

16
and a = 1 the

requirement is satisfied.

We further change the model and incorporate an additional distribution in

the class-conditional probability p(xi|c). From a generative perspective this can

be interpreted as follows: a point xi is generated by either the compact support

distribution from each point kCS(xi|xj) or by a class-specific normal distribution

N (xi|µc,Σc). So, the distribution p(xi|c) can be written as the sum of these

components:

p(xi|c) = βN (xi|µc,Σc) + (1− β)
1

Nc

∑
j∈c

kCS(xi|xj), (4.23)

where β ∈ [0, 1] is the mixing coefficient between the background distribution

and the compact support model, µc is the sample mean of the class c and Σc is

the sample covariance of the class c. The constant β can be set to 1
Nc+1

. This will

give equal weights to the background distribution and to each compact support

distribution. It might be better to treat β as a parameter and fit it during

training. We expect β to adapt to the data set: for example, β should increase

for data sets with convex classes.

To finalize this method, we just need to plug equation (4.23) into the set of

equations (3.11), (3.13) and (3.14). The only difficulty is the gradient computa-

tion. We now give the derivatives for each individual component:



Chapter 4. Reducing the computational cost 45

• The gradient of the compact support distribution kCS(xi|xj) with respect

to A is very similar to what is given in equation (4.20). The only difference

is that in this case we have everything multiplied by the constant h = 15
16

.

• For the gradient of the background distribution it is useful to note that

projecting the points {xi}Ni=1 into a new space {Axi}Ni=1 will change the

sample mean µc to Aµc and the sample covariance Σc to AΣcA
T. Hence,

we have:

∂

∂A
N (Axi|Aµc,AΣcA

T) = N (Axi|Aµc,AΣcA
T)

× {−(AΣcA
T)−1AΣc + vvTAΣc − v(xi − µc)

T}, (4.24)

where v = (AΣcA
T)−1A(xi − µc). The interested reader can find the

derivation in appendix B.

• If we also consider β a parameter, we also need the derivative of the objective

function with respect to β. This can be easily obtained, if we use the

derivative of the class conditional distribution with respect to β:

∂

∂β
p(xi|c) = N (xi|µc,Σc)−

1

Nc

∑
j∈c

kCS(xi|xj). (4.25)

We obtain a suitable metric A in the standard way, by using a gradient-based

optimizer.

Summary

In this chapter we have shown two main families of algorithms that can help

reducing the computational cost of NCA. First, we have considered mini-batch

algorithms. These achieve speed-ups by using sub-sets of the data instead of

the whole training set. Second, we have presented algorithms that are based on

approximations. In section 4.4 we saw how the NCA function can be directly

approximated using k-d trees, while in section 4.5 we propose a different model

to get the same effect even if we did not introduce approximation errors. Finally,

in subsection 4.5.1 we make the compact support classifier well defined across

the whole space by using a Gaussian distribution to represent each class. The

next chapter will present the results obtained by evaluating these methods and a

comparison between different algorithms.
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Evaluation

This chapter contains the evaluation of the methods proposed in the previous

part, chapter 4. In section 5.1, we present the data sets and the methodology

used for testing. We give details about the parameter choices and set baseline

scores obtained by either classical NCA or simple linear projections, such as PCA,

LDA or RCA. Results for each individual method are presented in sections 5.3

and 5.4. A comparison of the methods is shown in subsection 5.3.4 using accuracy

versus time plots.

We should mention that we did not include all the results in this chapter to

prevent cluttering. Further experimentations can be found in appendix C.

5.1 Evaluation setup

The evaluation was done in terms of two metrics: accuracy and speed. An ad-

ditional and more subjective criterion is to judge a method by visualizing low

dimensional representations of various data sets. We provided 2D plots of the

projected data where suitable.

The data sets selected for testing are listed in table 5.1. We note that the

used data vary both in number of samples N and in dimensionality D. Even

if we concentrate on large amounts of data, we need small data sets to assess

the performance of the new models. The methods’ speeds were tested on the

large data sets (usps, magic and mnist). However, the diversity in size and

complexity made it difficult to find a single optimal selection of parameters. We

are aware that there is “no free lunch” in accurately solving widely different

problems with a fixed model. When concentrating on a single task it is often

46
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Data set name Abbreviation N D C

Balance scale balance 625 4 3

Ecoli ecoli 336 7 8

Glass identification glass 214 9 6

Ionosphere ionosphere 351 33 2

Iris iris 150 4 3

Landsat satellite landsat 6435 36 6

MAGIC Gamma telescope magic 19020 10 2

MNIST digits mnist 70000 784 10

Pima Indians diabetes pima 768 8 2

Image segmentation segment 2310 18 7

Blood transfusion transfusion 748 4 2

USPS digits usps 11000 256 10

Wine wine 178 13 3

Yeast yeast 1484 8 10

Table 5.1: This table presents the characteristics of the data sets used: number

of samples N , dimensionality of the data D and number of classes C. The two

digits data sets mnist and usps were downloaded from the following URL http:

//cs.nyu.edu/˜roweis/data.html. All the others data sets are available in

the UCI repository http://archive.ics.uci.edu/ml/datasets.html.

advised to include prior knowledge into the model.

For evaluation we used 70% of each data set for training and the remaining

30% was kept for testing. We report standard errors for the mean accuracy

averaged over different splits. We made exceptions for two data sets: landsat

and mnist. These are already split into standard training and testing sets.

The methods we test are: sub-sampling (SS; section 4.1), mini-batches (MB;

section 4.2), stochastic learning (SL; section 4.3). For stochastic learning we

included two approximated method: the fast kernel density estimation idea (SL-

KDE; section 4.4) and compact support version of NCA (SL-CS; section 4.5).

Each method has particular parameters that we discuss in its corresponding sub-

section.

There are some common choices for all the methods, related to the NCA im-

plementation. For convenience, we review these choices here. We experimented
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with three optimization methods: gradient ascent with the “bold driver” heuris-

tic, conjugate gradients and variants of stochastic gradient ascent with “early

stopping”. For initialization we used the techniques described in subsection 3.3.2:

random initialization, principal component analysis (PCA; Pearson, 1901), linear

discriminant analysis (LDA; Fisher, 1936) or relevant component analysis (RCA;

Bar-Hillel et al. (2003)). At test time, we did classification using 1-NN or using

an NCA based function as described in subsection 3.3.5. However, we usually

present scores using both classification rules.

The experiments were carried out in Matlab and most of the implementa-

tions are the authors’ own work. There are some exceptions however. For conju-

gate gradients (CG) we used the function minimize.m, written by Rasmussen

(2010).1 The RCA implementation was provided by Noam Shental on his web-

page.2 Also we used functions from Iain Murray’s Matlab toolbox.3 Finally, we

inspected previous implementations of NCA,4 even if we did not explicitly make

use of them.

5.2 Baseline

We started by implementing the standard NCA algorithm (appendix A.1). This

is the main baseline against which we compare new models. For our first series

of experiments, we tried to replicate the work in the original article (Goldberger

et al., 2004). We encountered some difficulties since no information about their

implementation was provided in the paper. Our results are presented in table 5.2

(scores are averaged over 40 runs). We randomly initialized the matrix A and

optimized it using the conjugate gradients (CG) method. This was the easiest

thing to do since no parameter tuning is need for CG. We note that the results

are similar to those of Goldberger et al. (2004); for the ionosphere data set

we obtained slightly worse results.

However, in order to achieve a robust implementation of NCA we had to carry

1This is available for download at <http://www.gaussianprocess.org/gpml/code/
matlab/util/minimize.m>.

2The code was downloaded from <http://www.openu.ac.il/home/shental/>.
3Iain Murray’s toolbox is available at <http://homepages.inf.ed.ac.uk/

imurray2/code/imurray-matlab/>.
4Implementations of NCA are provided by Laurens van der Maaten in his Matlab Tool-

box for Dimensionality Reduction <http://homepage.tudelft.nl/19j49/Matlab_
Toolbox_for_Dimensionality_Reduction.html> and by Charless C. Fowlkes on his
website <http://www.ics.uci.edu/˜fowlkes/software/nca/>.
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Train score Test scores Baseline

Data set d f(A) 1-NN NCA Eucl.

balance 2 92.86± 0.47 90.78± 0.53 90.61± 0.55

D = 4 95.36± 0.38 93.40± 0.47 93.04± 0.51 76.18

ionosphere 2 98.31± 0.14 79.86± 0.75 79.74± 0.78

D = 33 72.07± 0.71 86.22± 0.64 72.87± 0.71 85.38

iris 2 99.38± 0.11 94.94± 0.39 94.72± 0.39

D = 4 99.48± 0.10 95.10± 0.44 95.15± 0.44 95.53

wine 2 99.15± 0.14 92.4± 1.0 92.4± 1.0

D = 13 98.95± 0.15 95.36± 0.51 95.36± 0.51 74.53

Table 5.2: Accuracy of standard NCA on four small data sets. Scores are averaged

over 40 runs. The second column presents the dimensionality d the data set is reduced

to. The last column shows the leave one out cross validation performance on the data

set using Euclidean metric.

Data set PCA LDA RCA

usps 73.47± 0.13 87.44± 0.12 87.42± 0.13

magic 77.097± 0.080 76.17± 0.29 77.574± 0.078

mnist 70.13 9.96 79.11

Table 5.3: Accuracy of three linear transformation techniques applied on the large

data sets. We used 1-NN for classification. Scores are averaged over 20 runs, except

for mnist data set. We reduced each data set dimensionality to d = 5.
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out additional experiments. The lessons learnt were summarized in section 3.3.

We will further see the influence of the implementation tricks in the next part

(section 5.3). Results were shown in section 3.3 and are also attached at the end

of the thesis, appendix C:

• Tables C.1 and C.2 compare two of the optimization methods: conjugate

gradients and gradient ascent with the “bold driver” heuristic. We observe

that the two methods give close scores on most of data sets. However,

gradient ascent takes longer until it reaches convergence.

• Figures C.1, C.2 and C.3 illustrate the initialization effect on three data

sets: iris, balance and ecoli. RCA seems to be the best option

for initialization and we used it in most of our comparisons. However,

random projection can also be sometimes surprisingly good as we see in

figure C.1(a).

We could not apply NCA on large data sets (usps, magic, and mnist)

since it would have taken far too long. We decided to use as a baseline the linear

transformations that we also use for initialization (PCA, LDA and RCA). The

results are averaged over different splits of training and testing set and they are

listed in table 5.3. For the mnist data set we have scores of classic NCA (Singh-

Miller, 2010). For d = 5 the accuracy obtained was 91.1% using the kNN classifier

and 90.9% using the NCA classifier. For the classification procedure Singh-Miller

learnt the optimal value for k using cross-validation.

5.3 Mini-batches methods

The mini-batch methods were compared on the larger data sets: usps, magic,

and mnist. We chose to reduce the dimensionality to d = 5. This decision was

partly motivated by the fact that NCA is very effective for reducing the data

dimensionality to small values, somewhere around 5 to 15. A more principled

approach would have been to develop a model choosing algorithm: start with a

projection to d = 2 dimensions and then increase the number of dimensions until

the score stops improving. This idea is similar to the “early stopping” procedure,

and is illustrated for the landsat data set in figure 5.1.
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Figure 5.1: Evolution of test accuracy as dimensionality increases on landsat data

set. We see that NCA operates almost as well in low dimensions (d = 6, · · · , 10)

as in high dimensions (d > 25). This approach can be used for selecting a suitable

dimension to which we project the data.

Data set Train 1-NN NCA

usps 99.112± 0.099 89.30± 0.18 89.41± 0.16

magic 82.71± 0.41 79.25± 0.45 80.22± 0.72

mnist 96.867 82.130 82.470

Table 5.4: Accuracy scores for the sub-sampling method on the larger data sets. We

used RCA for initialization and CGs for optimization. We used a subset of n = 3000

data points for training and the whole data set for testing.

5.3.1 Sub-sampling

For sub-sampling we trained NCA on a subset of n = 3000 samples of the original

data. We used conjugate gradients for optimization and the RCA linear transfor-

mation for initialization. As previously mentioned in section 4.1, the sub-sampled

data has a thinner distribution than the original data which helps the method

to obtain good scores at training. But the test performance is hindered because

we do not use the true distribution. This is especially evident for the digits data

usps and mnist (table 5.4).
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Data set Train 1-NN NCA

usps 92.00± 0.43 91.26± 0.17 92.37± 0.17

magic 80.04± 0.48 79.14± 0.52 79.8± 1.1

mnist 87.47± 0.49 87.52± 0.36 89.88± 0.25

Table 5.5: Accuracy scores for mini-batch method on the larger data sets. We used

RCA for initialization and the mini-batches were clustered in the low-dimensional

space using RPC. The size of a mini-batch was of maximum n = 2000 data points.

5.3.2 Mini-batches

We trained NCA using the gradient ascent variant with clustered mini-batches

(section 4.2). For the learning rate, we used an update rule of the form η
t+t0

. We

fixed η = 1 and tuned the other free parameter t0 using cross validation across

an exponential scale from 0.1 to 1000. After that, a finer tuning was done on a

linear scale around the best value of t0. We used 5% of the training set for cross

validation to monitor the accuracy score at each iteration. If the performance

on the cross validation set does not increase for 25 iterations, we stopped the

learning process and returned to the previously best parameter.

To get significant gradients we used large mini-batches n = 2000. The points

in a batch are selected via the recursive projection clustering (RPC; Chalupka,

2011) algorithm. The clustering was done in the low dimensional space, after pro-

jecting the points with the current linear transformation matrix A. The results

obtained by the mini-batch method can be found in table 5.5. We note similar

scores on magic and better results on the other two data sets.

5.3.3 Stochastic learning

This method was trained using the variant of stochastic gradient ascent presented

in section 4.3. We used the same parameters as in the previous section. We

considered n = 50 neighbours to look at for each iteration and computed their

contributions with respect to the whole data set.

Besides the results on the large data sets (table 5.7), we also present the

performance of this method when used for small data sets (table 5.6). We note a

considerable improvement on the magic data set compared to the previous two

methods. For small data sets, we observe similar results as the baseline NCA. The
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Train score Test scores

Data set d f(A) 1-NN NCA

balance 2 88.35± 0.83 87.37± 0.49 90.45± 0.38

D = 4 94.70± 0.87 95.32± 0.34 96.14± 0.29

ionosphere 2 89.0± 1.7 85.71± 0.94 87.08± 0.95

D = 33 92.6± 1.5 84.72± 0.57 84.34± 0.59

iris 2 96.41± 0.94 96.33± 0.57 97.00± 0.46

D = 4 97.5± 1.3 95.67± 0.71 96.11± 0.66

wine 2 98.80± 0.70 97.22± 0.65 97.50± 0.49

D = 13 99.25± 0.62 96.85± 0.41 96.85± 0.41

Table 5.6: Accuracy scores for stochastic learning method on the small data sets. We

used RCA for initialization. The scores are averaged after 20 iterations.

Data set Train 1-NN NCA

usps 90.23± 0.50 90.68± 0.22 92.64± 0.17

magic 78.39± 0.25 79.76± 0.13 84.49± 0.12

mnist 85.97± 0.37 86.07± 0.43 89.35± 0.39

Table 5.7: Accuracy scores for stochastic learning method on the larger data sets.

We used RCA for initialization. At each iteration we considered n = 50 data points.

most important remark is that the classification done using the NCA objective

function is better than 1-NN classification. This observation also applies for the

large data sets results. More results for this method are in the appendix, table C.3

and C.4.

5.3.4 Comparison

To easily compare the three methods presented, we provide time-accuracy plots

(figure 5.2). We did not record the time taken for smaller data sets, since classical

NCA was usually fast enough. We also included in the plots the method based on

the compact support kernels (we discuss its individual scores in subsection 5.4.2).

In terms of accuracy, all of the NCA variants improve the accuracy over PCA,
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LDA or RCA (table 5.3). Sub-sampling gives comparable results to the other two

methods only on the magic data set. This data set has only two classes and a

sub-sampled data set does not remove too much information about the decision

boundaries. Mini-batches and stochastic learning are similar in accuracy. The

proposed methods obtain a slightly worse score than classic NCA on mnist. The

performance reported by Singh-Miller (2010) was around 91%, while the mean

accuracy for these two methods is about 90%.

The differences in time varied strongly. We used a logarithmic scale on the

time to better discriminate the plotted scores. The time spent varies even for

the same method because the number of iterations until convergence depends on

random parameters. We notice a certain trade-off between time and accuracy,

especially for the digits data sets.

We also show low dimensional representations of the data sets for d = 2 for

usps (figure 5.3) and magic (figure 5.4).

5.4 Approximate computations

The following methods can be applied on classic NCA, but we tested them in

conjunction with the stochastic learning procedure to further boost the speed.

For approximate computations we also tried a more simplistic approach, sim-

ilar to that of Weinberger and Tesauro (2007): we selected only the first 100

neighbours for each point and discarded those points whose contribution pij is

less than exp(−30). This simple approach gave surprisingly good scores, although

we do not present them here.

5.4.1 NCA with k-d trees

For the class-conditional kernel density estimation idea we used the algorithm

described in section 4.4. Our k-d tree implementation was written in Matlab

and, for this reason, it was pretty slow. The code was slower than the simple SL

version, because we could not vectorize the recursive computation of the objective

function and its gradient. We experimented with kernel density code written in

C and mex-ed in Matlab and we think that such an approach can improve the

speed. Doing simple kernel density estimation with a C written code proved to

be even faster than doing it in Matlab. The short time did not permit us to
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Figure 5.2: Time vs. accuracy plots on larger data sets for four of the proposed meth-

ods: sub-sampling (SS), mini-batches (MB), stochastic learning (SL) and stochastic

learning with compact support NCA (SL-CS). For SS we plotted the 1-NN score,

while for the other three the points indicate the NCA score.
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(a) Mini-batch method (b) Stochastic learning

Figure 5.3: Two dimensional projections of usps data set using two variants of NCA

learning. The linear transformation was learnt on a training set, and here is plotted

the projection of a testing set.

(a) Mini-batch method (b) Stochastic learning

Figure 5.4: Two dimensional projections of magic data set using two variants of

NCA learning. The linear transformation was learnt on a training set, and here is

plotted the projection of a testing set.
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εmax Train 1-NN NCA Visited points

0 87.05± 0.66 86.30± 0.32 87.87± 0.24 80.0± 5.9

10−50 87.50± 0.31 86.26± 0.24 87.88± 0.20 55.1± 5.2

10−20 85.49± 0.89 86.32± 0.28 87.87± 0.26 45.7± 4.1

10−5 87.29± 0.49 85.95± 0.19 87.63± 0.29 22.8± 2.7

0.01 87.34± 0.76 86.14± 0.29 87.90± 0.24 22.1± 4.2

0.1 86.70± 0.39 86.12± 0.29 88.09± 0.19 20.0± 2.0

Table 5.8: Stochastic learning for the approximated version of NCA that uses k-d

trees. The data set used is landsat. εmax denotes the maximum error that we

accept while approximating the density for a point given a class p(x|c). ‘Visited

points’ indicates the fraction of points that are used for computing the function and

the gradient.

Data set Train 1-NN NCA

usps 89.68± 0.51 90.57± 0.20 92.67± 0.15

magic 78.09± 0.37 79.68± 0.30 84.50± 0.21

mnist 84.4± 1.4 85.5± 1.0 88.98± 0.75

Table 5.9: Stochastic learning for the approximated version of NCA that uses k-d

trees. For these experiments we set εmax = 0.1.

finalize this approach. We demonstrate that SL with k-d trees achieves good

results even if we discard a large number of the points. Table 5.9 shows results

for this method on the large data sets. We also present how the accuracy and the

average number of prunings depend on the maximum error imposed (table 5.8).

5.4.2 NCA with compact support kernels

The compact support version of NCA is easy to implement and it is very fast

as we already saw in section 5.3.4. Usually only a small fraction of the points

is inspected. In figure 5.5, we see how this fraction evolves with the learning

process. In the first iterations there might be a larger number of points, but soon

this drops off and stabilizes. It might be tempting to start with all the points

very close together to ensure that no point is outside the compact support of any
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Figure 5.5: This figure illustrates how the fraction of the points inspected varies during

the learning procedure. When we use random initialization, there are inspected only

0.1% of the points. If RCA is used to initialize the learning algorithm a fraction of

about 10% is used. The data set used in this experiment was landsat.

NCA score: 79.10

(a) Random initialization

NCA score: 82.70

(b) RCA initialization

Figure 5.6: Illustration of final two-dimensional projections for the compact support

NCA using stochastic learning. There were used two different initialization: random

selection of parameters and RCA initialization. The data set used is landsat
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Data set Train 1-NN NCA

usps 85.16± 0.33 87.02± 0.44 89.85± 0.30

magic 76.92± 0.56 79.09± 0.42 82.92± 0.36

mnist 80.55± 0.28 81.96± 0.26 86.36± 0.18

Table 5.10: Accuracy scores for the compact support NCA method trained using

stochastic learning on large data sets.

other point. This approach has however two drawbacks. Since all the points are

in the support of all the other points it means the first iteration will not present

any gain in speed. In fact, the first iteration can easily be as expensive as the

whole learning process. A second issue is that the gradients will be very large

and might “throw away” points out of the existing support. An initialization

with RCA provided a more stable evolution. We also see that the final projection

looks better in the second case (figure 5.6).

Results that demonstrate performance in terms of accuracy on small data sets

are attached in appendix, tables C.5 and C.6. The comparison has as baselines

the classical NCA and the extended version of NCA with compact support kernels

and background distribution (NCA CS BACK). The results on the large data set

are available in table 5.10.

5.5 Recommendations

When dealing with a large data set, we suggest first trying the stochastic learning

for the compact support NCA (NCA CS SL). This method has the advantage of

being easy to implement and very fast even for large data sets. However, the

speed does come at a cost. We note a slight decrease in accuracy for most

experimentations. Nonetheless, applying the NCA CS SL first gives us an idea of

how well NCA can perform on a given data set. If one is pleased with the score,

one can also try the NCA optimized using stochastic learning (NCA SL) or the

more sophisticated approximate version that uses k-d trees. Usually, these last

two methods get an improvement of a couple of percentages in accuracy over NCA

CS SL. However all the methods offer better scores than the simple projections

such as LDA, PCA and RCA.
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Conclusions

This thesis presented our approach to fast low-rank metric learning. The need for

a low rank metric was motivated in the context of kNN (chapter 1 and section 2.1),

but we argue that learning a metric is useful whenever our algorithm relies on

dissimilarities. Our efforts were directed towards the already established method,

neighbourhood component analysis (NCA; section 3.1). We introduced a family

of algorithms to mitigate NCA’s main drawback — the computational cost. In

our attempt of speeding up NCA, we encountered other interesting theoretical

and practical challenges. The answers to these issues represent an important part

of the thesis (sections 3.2 and 3.3). We summarize here our main contributions

and present the conclusions.

Section 3.2 The class-conditional kernel density estimation (CC-KDE) inter-

pretation offers flexibility to NCA and opens a new range of methods. We

can easily change the model in a suitable way by redefining the conditional

probability p(x|c). Other advantages are (i) the possibility of including

prior class distribution p(c) into the model and (ii) we can use the poste-

rior probability p(c|x) for classification or in other scenarios that arise in

decision theory.

Section 3.3 The practical advice in this section is helpful for those who are

interested in applying the classic version of NCA. The ideas are particu-

larly useful because we are optimizing a non-convex function. We believe

that using relevant component analysis (RCA; Bar-Hillel et al., 2003) for

initialization and conjugate gradients for optimization works best on small

and medium-sized data sets. This combination does not require tuning any
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parameters so it can be readily applied on any data set. Among others,

we highlight the dimensionality annealing technique; this look promising:

it obtained good projections that seem to avoid local optima.

Section 4.2 We gave several ideas of adapting mini-batch (MB) techniques in

a suitable way for NCA method. We tested a version based on recursive

projection clustering (RPC, Chalupka, 2011). The size of each mini-batch

still has to be quite large to get significant gradients (we used n = 2000). For

large data set this already represents a significant improvement in terms of

cost, but we question whether there is a more principled method of selecting

n, the size of a cluster.

Section 4.3 We presented a stochastic learning (SL) algorithm that is theoreti-

cally motivated by stochastic optimization arguments. Empirical investiga-

tion demonstrated that this method achieves very close scores to the classic

NCA. The SL method scales with the number of the points N , but it can

be further accelerated using technique presented in sections 4.4 and 4.5. A

further advantage of SL is that can be used for online learning.

Section 4.4 Using the CC-KDE framework for NCA and inspired from previous

work on fast KDE (Deng and Moore, 1995; Gray and Moore, 2003), we

proposed an algorithm that efficiently evaluates an approximation of the

NCA objective function and its corresponding gradient. This method is

fastest when combined with the SL method. Our experiments suggested

that even if we accept a large maximum error εmax = 0.1, we do not seem

to lose in classification accuracy. We noticed a similar behaviour when we

did brute pruning.

Section 4.5 Further alterations of NCA method are the compact support version

(NCA CS) and the compact support and background distribution version

(NCA CS BACK). NCA CS achieves considerable speed-ups because we do

not have to compute the gradient terms for all the points. Also we observe

that it convergences faster than the other methods. However its speed does

come at a cost: the accuracy performance is slightly worse than for the rest

of the methods. These results might suggest to try a different approach:

use a heavy tailed distribution
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6.1 Further directions

This projected involved many ideas. Unfortunately, the time was limited and we

could only look at a part of the whole picture and we left some paths open. We

aim to continue some of the work in the near future.

We plan to further investigate the automatic differentiation procedure and

see whether this is a better idea than symbolic differentiation. Automatic dif-

ferentiation will help reducing the number of operations needed for the gradient

computation, but it might imply a huge memory cost. This trade-off can make

automatic differentiation impractical.

Implementing efficient k-d tree code for approximate CC-KDE algorithm

should prove beneficial. It will allow our methods to run on even larger data

sets making possible more comparisons between the methods.

We think that dimensionality annealing approach can be fruitful. However,

this idea is still in its infant stages and more experimentation is needed to see

whether it can be applied successfully on a variety of data sets.

Further refinements of our work are still possible. It would be interesting to

try a mini-batch and stochastic gradient combined algorithm: cluster points and

compute mini-batch mini-batch contributions using a dual tree recursion (Gray

and Moore, 2003).

We believe that other extensions of NCA are possible. For example, a low-

dimensional feature extractor could be built using a two step NCA algorithm:

first use a diagonal metric S to select the most relevant attributes, followed by a

low-rank metric.
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MATLAB code

A.1 NCA cost function

function [f, df] = nca_obj(A, X, c)
%NCA_OBJ Neighbourhood Component Analysis cost function.
%Returns function value and the first order derivatives.
%This is a function that should be minimized; it is
%minus the objective function in paper.
%
% [f, df] = nca_obj(A, X, c)
%
% Inputs:
% A dxD - projection matrix (d <= D).
% X DxN - data.
% c 1xN - class labels.
%
% Outputs:
% f 1x1 - function value.
% df 1xD*d - derivative values.

% Dan Oneata, June 2011

[D N] = size(X);
A = reshape(A,[],D);

df = zeros(size(A,1),D);

AX = A*X;
dist_all = square_dist(AX,AX);
kern_all = exp(-dist_all);
kern_all(1:N+1:end) = 0;

% Compute distance to the neighbours:
row_dict = logical(eye(max(c)));
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neigh_mask = row_dict(c,c);
kern_neigh = sum(kern_all.*neigh_mask, 1);

kern_sum = sum(kern_all, 1);
p = kern_neigh ./ kern_sum;
p = max(p, eps);

% Compute function value:
f = - sum(p);

if nargout > 1,
K = bsxfun(@rdivide, kern_all, kern_sum);
K = max(K, eps);
K = K’;
for i=1:N,

x_ik = bsxfun(@minus,X(:,i),X);
Ax_ik = bsxfun(@minus,AX(:,i),AX);
x_ij = x_ik(:,c==c(i));
Ax_ij = Ax_ik(:,c==c(i));

% Update gradient value:
df = df + p(i) * bsxfun(@times, K(i,:), Ax_ik) * x_ik’ ...

- bsxfun(@times, K(i,c==c(i)), Ax_ij) * x_ij’;
end
df = -2*df;
df = df(:);

end

end

Notes:

1. square dist computes the pairwise distances between two D-dimensional

sets of points. The function was written by Iain Murray and it can be

found in his Matlab Toolbox, available at the following URL: http://

homepages.inf.ed.ac.uk/imurray2/code/imurray-matlab/square_

dist.m.

2. This implementation is suitable for rather small data sets whose pairwise

distance matrix can fit in the RAM. If you are dealing with large data

sets, it is better to iterate through the data set and compute the distances

successively: from a point to the rest of the data set.
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Mathematical derivations

B.1 The gradient ofN (Ax|Aµ,AΣAT) with respect

to the linear transformation A

This sections shows the main steps of deriving the result presented in equa-

tion (4.24).

∂

∂A
N (Ax|Aµ,AΣAT) =

∂

∂A

1

(2π)D/2 det(AΣAT)1/2

× exp

{
−1

2
(Ax−Aµ)T(AΣAT)−1(Ax−Aµ)

}
(B.1)

Using the product rule, one can easily see that the computation is reduced to

the following two derivatives:

P =
∂

∂A

1

(2π)D/2 det(AΣAT)1/2
and

Q =
∂

∂A

{
−1

2
(Ax−Aµ)T(AΣAT)−1(Ax−Aµ)

}
.

Starting with P, we have:

P = −1

2
(2π)−D/2 det(AΣAT)−3/2 × 2 det(AΣAT)(AΣAT)−1AΣ, (B.2)

where we have used equation (47) from (Petersen and Pedersen, 2008).

For the second derivative, let Y = AΣAT and b = x−µ. From equation (53)

from (Petersen and Pedersen, 2008), we have that:

∂Y−1

∂aij
= −Y−1

∂Y

∂aij
Y−1, (B.3)
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where aij is the element on the i-th row and j-th column of the matrix A.

Besides that, we also know the following (see Petersen and Pedersen, 2008,

equation (72)):

∂(AΣAT)

∂aij
= AΣJij + JijΣAT, (B.4)

with Jij denoting the single-entry matrix — the matrix that has the value 1 on

the position (i, j) and 0 elsewhere.

By combining equations (B.3) and (B.4), we obtain an entry of the matrix Q:

qij =
∂

∂aij

{
−1

2
bTAT(AΣAT)−1Ab

}
=

1

2
bTATY−1(AΣJij + JijΣAT)Y−1Ab

= vTAΣJijv, (B.5)

where v = Y−1Ab and we have used the fact that Σ is a covariance matrix and

hence symmetric.

By using equation (431) from (Petersen and Pedersen, 2008), we obtain that:

Q = ΣATvvT. (B.6)

Finally, by bringing together the previous results (equations (B.2) and (B.6))

and replacing Y with AΣAT, we arrive at the following identity:

∂

∂A
N (Ax|Aµ,AΣAT) = N (Ax|Aµ,AΣAT)

× {−(AΣAT)−1AΣ + vvTAΣ− v(x− µ)T}. (B.7)
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Further results

Score: 100.00

(a) NCA projection after random initializa-

tion

Score: 100.00

(b) NCA projection after PCA initialization

Score: 99.33

(c) NCA projection after LDA initialization

Score: 100.00

(d) NCA projection after RCA initialization

Figure C.1: Initialization experiments on iris data set.

67



Appendix C. Further results 68

Score: 96.80

(a) NCA projection after random initializa-

tion

Score: 85.44

(b) NCA projection after PCA initialization

Score: 86.24

(c) NCA projection after LDA initialization

Score: 87.20

(d) NCA projection after RCA initialization

Figure C.2: Initialization experiments on balance data set.
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Score: 82.74

(a) NCA projection after random initializa-

tion

Score: 83.04

(b) NCA projection after PCA initialization

Score: 83.04

(c) NCA projection after LDA initialization

Score: 86.31

(d) NCA projection after RCA initialization

Figure C.3: Initialization experiments on ecoli data set.
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Conjugate gradients Bold driver

Data set d 1-NN NCA 1-NN NCA

balance 2 92.74± 0.57 92.29± 0.56 92.05± 0.93 92.45± 0.81

3 94.81± 0.52 94.87± 0.53 92.79± 0.95 92.87± 0.97

4 95.16± 0.39 95.32± 0.33 94.18± 0.76 94.36± 0.69

glass 2 53.6± 1.4 54.2± 1.5 58.7± 1.5 62.5± 1.4

3 61.8± 1.1 60.9± 1.2 66.3± 1.1 67.1± 1.1

4 62.7± 1.4 62.2± 1.5 65.8± 1.0 66.6± 1.3

5 64.5± 1.2 63.46± 0.97 66.69± 0.93 67.00± 0.87

9 66.5± 1.8 65.5± 1.8 66.0± 1.7 65.6± 1.7

ionosphere 2 86.23± 0.80 86.18± 0.75 82.78± 0.98 82.78± 0.91

3 87.69± 0.62 87.64± 0.62 86.04± 0.83 86.08± 0.85

4 87.64± 0.55 87.64± 0.57 86.51± 0.73 86.51± 0.73

5 89.39± 0.70 89.39± 0.70 87.88± 0.64 87.88± 0.64

33 87.97± 0.68 87.97± 0.68 88.44± 0.59 88.44± 0.59

Table C.1: Comparison in terms of accuracy between two possible optimization meth-

ods for NCA: the conjugate gradient method and the gradient ascent with the “bold

driver” heuristic. (Part 2 of 2)
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Conjugate gradient Bold-driver

Data set d 1-NN NCA 1-NN NCA

iris 2 94.44± 0.51 94.11± 0.48 93.67± 0.82 93.78± 0.84

3 95.44± 0.73 95.00± 0.75 95.22± 0.72 95.33± 0.74

4 96.56± 0.46 96.44± 0.46 95.44± 0.76 95.56± 0.77

wine 2 96.67± 0.38 96.57± 0.38 96.30± 0.54 96.30± 0.54

3 96.39± 0.48 96.39± 0.48 96.57± 0.59 96.57± 0.59

4 96.20± 0.40 96.48± 0.41 97.13± 0.52 97.13± 0.52

5 96.57± 0.60 96.57± 0.60 96.76± 0.55 96.76± 0.55

13 96.20± 0.48 96.20± 0.48 97.22± 0.48 97.22± 0.48

yeast 2 42.37± 0.81 43.20± 0.84 44.65± 0.56 46.68± 0.57

3 48.06± 0.67 48.30± 0.65 47.06± 0.53 47.95± 0.54

4 49.06± 0.47 49.14± 0.47 49.48± 0.42 49.83± 0.38

5 50.09± 0.39 50.09± 0.38 50.16± 0.61 50.41± 0.62

8 50.66± 0.52 50.70± 0.52 50.19± 0.58 50.28± 0.60

Table C.2: Comparison in terms of accuracy between two possible optimization meth-

ods for NCA: conjugate gradients and gradient ascent with the “bold driver” heuristic.

(Part 2 of 2)
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Data set d Train 1-NN NCA

balance 2 88.35± 0.83 87.37± 0.49 90.45± 0.38

3 94.0± 1.0 94.44± 0.80 95.11± 0.56

D = 4 94.70± 0.87 95.32± 0.34 96.14± 0.29

glass 2 55.0± 2.5 54.9± 1.7 59.0± 1.7

3 65.4± 3.3 59.0± 1.2 62.5± 1.2

4 69.2± 3.0 60.5± 1.2 63.77± 0.90

5 68.2± 3.0 64.1± 1.3 65.7± 1.1

D = 9 76.0± 2.3 68.0± 1.6 69.7± 1.6

ionosphere 2 89.0± 1.7 85.71± 0.94 87.08± 0.95

3 91.0± 1.8 86.6± 1.1 86.8± 1.1

4 89.6± 1.4 87.7± 1.1 87.74± 0.97

5 91.4± 1.7 88.07± 0.73 88.35± 0.78

D = 33 92.6± 1.5 84.72± 0.57 84.34± 0.59

iris 2 96.41± 0.94 96.33± 0.57 97.00± 0.46

3 97.30± 0.82 95.67± 0.57 96.00± 0.62

D = 4 97.5± 1.3 95.67± 0.71 96.11± 0.66

wine 2 98.80± 0.70 97.22± 0.65 97.50± 0.49

3 98.17± 0.87 97.32± 0.58 97.69± 0.52

4 98.51± 0.86 97.04± 0.53 97.32± 0.46

5 99.22± 0.40 96.95± 0.45 97.13± 0.47

D = 13 99.25± 0.62 96.85± 0.41 96.85± 0.41

Table C.3: Accuracy scores of NCA trained using stochastic learning on small and

medium sized data sets. The scores are averaged over 20 repeats. RCA was used for

initialization. (Part 1 of 2)
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Data set d Train 1-NN NCA

yeast 2 42.83± 0.93 45.85± 0.41 53.90± 0.47

3 47.30± 0.85 46.49± 0.48 54.37± 0.40

4 50.1± 1.2 48.69± 0.68 54.50± 0.63

5 50.41± 0.82 50.19± 0.45 55.35± 0.49

D = 8 52.09± 0.84 51.34± 0.47 55.44± 0.56

ecoli 2 74.1± 2.2 75.8± 1.0 81.98± 0.96

3 81.2± 1.8 78.72± 0.77 81.49± 0.75

4 79.9± 2.1 80.20± 0.73 83.12± 0.86

5 80.9± 2.4 79.16± 0.77 83.62± 0.64

D = 7 82.0± 2.1 80.89± 0.52 84.85± 0.48

pima 2 70.6± 1.1 69.09± 0.64 76.65± 0.44

3 70.0± 1.3 68.57± 0.62 75.56± 0.82

4 71.3± 1.2 69.41± 0.60 74.37± 0.57

5 73.0± 1.2 69.03± 0.71 72.47± 0.81

D = 8 76.2± 1.5 69.29± 0.88 70.48± 0.81

segment 2 84.62± 0.64 88.53± 0.39 88.80± 0.33

3 92.27± 0.57 95.45± 0.31 94.46± 0.33

4 94.24± 0.46 97.11± 0.18 96.09± 0.20

5 94.98± 0.35 97.05± 0.16 96.64± 0.13

D = 18 95.73± 0.57 97.01± 0.28 96.68± 0.30

transfusion 2 70.48± 0.99 73.60± 0.47 78.78± 0.42

3 70.08± 0.92 73.49± 0.54 77.95± 0.39

D = 4 66.0± 3.1 71.44± 0.56 75.4± 2.9

Table C.4: Accuracy scores of NCA trained using stochastic learning on small and

medium sized data sets. The scores are averaged over 20 repeats. RCA was used for

initialization. (Part 2 of 2)
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