
Fast optimization of non-convex Machine
Learning objectives

Nikolaos Nikolaou
Master of Science,

Artificial Intelligence,
School of Informatics,

University of Edinburgh

August 17, 2012

Abstract

In this project we examined the problem of non-convex optimization in the con-
text of Machine Learning, drawing inspiration from the increasing popularity of
methods such as Deep Belief Networks, which involve non-convex objectives. We
focused on the task of training the Neural Autoregressive Distribution Estimator,
a recently proposed variant of the Restricted Boltzmann Machine, in applications
to density estimation. The aim of the project was to explore the various stages
involved in implementing optimization methods and choosing the appropriate one
for a given task. We examined a number of optimization methods, ranging from
derivative-free to second order and from batch to stochastic. We experimented
with variations of these methods, presenting along the way all the major steps
and decisions involved. The challenges of the problem included the relatively
large parameter space and the non-convexity of the objective function, the large
size of some of the datasets we used, the multitude of hyperparameters and de-
cisions involved in each method, as well as the ever-present danger of overfitting
the data. Our results show that second order Quasi-Newton batch methods like
L-BFGS and variants of stochastic first order methods like Averaged Stochastic
Gradient Descent outshine the rest of the methods we examined.

Acknowledgements

I would like to extend my thanks to my supervisor Dr. Iain Murray for his guid-
ance and patience. Every piece of information he provided was to-the-point and
saved me many hours of work. From theoretical background, to implementation
details, to writing and typesetting style, the end result would be of far lesser
quality, in every aspect, without his feedback.

I also thank my family and all my friends for their love and support. Special
thanks go to my friends Costas and Stratis who lended me not only strength but
also their computing power for some of the experiments.

Declaration

I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified.

Contents

1 Introduction and Outline of the Dissertation 4
1.1 Introduction . 4
1.2 Outline of the Dissertation . 5

2 Background 8
2.1 Optimization and its Role in Machine Learning 8
2.2 Deep Belief Networks . 10
2.3 Restricted Boltzmann Machines 12
2.4 Density Estimation . 14
2.5 Models Examined . 14

3 Optimization Methods Examined 23
3.1 Categorization of Optimization Methods 23
3.2 Order of Optimization Methods 24
3.3 Batch vs Stochastic Optimization Methods 26
3.4 Some Intuitions Regarding Our Optimization Problem 28
3.5 Gradient Computation . 28
3.6 Batch Methods . 30
3.7 Stochastic Methods . 47
3.8 Mini-Batch Methods . 49

4 Hyperparameter Selection 52
4.1 Step Size . 52
4.2 Adaptive and Individual Step Sizes 55
4.3 Momentum . 56
4.4 Batch Size . 56
4.5 Epsilon in Statistical Tests . 56
4.6 Termination Criteria and Overfitting Control 57
4.7 Evaluation . 59
4.8 Alternative Ways to Search the Hyperparameter Space 61

5 Gradient Code Debugging and Verification 62
5.1 The Finite Differences Method . 62
5.2 Toy Problem: Optimizing a Logistic Regression Model 65
5.3 Simple Baselines for Density Estimation 68

6 Experimental Results 72

2

CONTENTS 3

6.1 The Datasets . 72
6.2 Experimental Design . 74
6.3 Results: Average Loglikelihood (ALL) 75
6.4 Results: Execution Times . 81
6.5 Results: Closing Remarks . 83

7 Conclusion and Future Work 88

Bibliography 91

A Notational Conventions 96

B Table of Method Names 98

C Average Execution Times Table 99

Chapter 1

Introduction and Outline of the
Dissertation

1.1 Introduction

Optimization plays a significant role in the field of Machine Learning. “Learning”
usually means “finding the values of the parameters of our model for it to best
fit the data”. This in turn is usually translated mathematically as an optimiza-
tion problem. In Maximum A Posteriori we maximize a posterior probability. In
Maximum Likelihood we maximize a likelihood. In a Support Vector Machine we
maximize the gap between two categories (margin) so as to better distinguish be-
tween them. In many forms of clustering we minimize a distance. In classification
and regression tasks we usually minimize an error function and in cost-sensitive
classification (where each type of misclassification has a different cost associated
with it) we are minimizing a total cost (the weighted sum or average of the errors
of each type weighted by the error types’ costs). As a result, improving the speed
of the optimization algorithm that lies in the heart of a Machine Learning tech-
nique will make the entire procedure faster, as —in most cases— this is where
the bottleneck of the method is.

Although the majority of problems commonly faced in Machine Learning are
convex, there also exist many methods based on the optimization of non-convex
objective functions. In non-convex functions a local minimum is not necessarily
the global minimum, so we do not only care about the speed of convergence of the
optimization algorithm, but also about the quality of the local optima it finds.
Examples of Machine Learning techniques that involve the optimization of non-
convex objectives are most types of Deep Belief Networks(DBNs), models that
are becoming increasingly popular as of late.

In this project we will use a probabilistic graphical model, the Neural Autore-
gressive Density Estimator (NADE) which can be used as a building block of
DBNs. We will train NADE to perform density estimation, i.e. to estimate the
underlying probability density function given a number of datapoints (an unsu-

4

CHAPTER 1. INTRODUCTION AND OUTLINE OF THE DISSERTATION5

pervised task). The objective function used for training NADE is non-convex, its
parameter space is quite large and the datasets we will train it on contain –in
some cases– a large amount of instances. All these characteristics of the problem
need to be takin into account when choosing which optimization method we will
use.

We will examine a range of different optimization algorithms from simple and
fairly inappropriate for convex settings like Steepest Gradient Descent and Coor-
dinate Descent to better-suited ones for the problem such as Stochastic Gradient
Descent and L-BFGS. Judging from the size of the parameter space, Coordinate
Descent is probably a poor choice, large datasets favor stochastic approaches and
the non-convex nature of the objective suggests that stochastic methods and sec-
ond order batch methods are the most likely to yield good quality optima. We
will present all methods in detail, analyzing their theoretical underpinnings, their
possible variations and the problems for which they are most appropriate. We
will present detailed pseudocode for each and the practical considerations of their
implementation.

When designing an optimization algorithm we need to take special considerations
to ensure its correctness and its termination. Many optimization algorithms have
hyperparameters which need to be adjusted to appropriate values for them to
work correctly. Finally, there is a number of heuristics and modifications that
can be applied to an optimization algorithm, to boost its performance. And once
we have implemented our algorithms we need to compare them not only in terms
of quality of optima (for non-convex objectives), but also in terms of speed of
convergence and in terms of simplicity (as in “fewer hyperparameters involved”).
In this project we will cover all these aspects of implementing and evaluating
optimization methods. We will describe both the theoretical background of each
aspect as well as practical considerations that needed to be taken into account.

1.2 Outline of the Dissertation

In Chapter 2 we will introduce the basic theoretical background behind this dis-
sertation. Our intention is for it to act as both a theoretical basis for the rest of
the chapters and as a source of motivation for studying non-convex optimization
in the context of machine learning. We will begin by presenting the general form
of an optimization problem and introducing some basic terminology, including the
distinction between convex and non-convex optimization problems and the impor-
tance of parameter regularization. We will see how often optimization problems
arise in machine learning tasks and what distinguishes them from optimization
problems in general.

We will then move on to describing the basics of Deep Belief Networks (DBNs),
since they represent a successful recent trend in machine learning where the ob-
jectives generally are non-convex. We will mention their basic structure, as well
as the motivation for using them drawing analogies between the principles that

govern them and how learning appears to work in humans. We will outline the
principles of training DBNs and how the non-convexity of their objectives arises.
We will then briefly present Restricted Boltzmann Machines and how they are
used as building blocks for DBNs. We will only go as deep as introducing their
limitations and how other models —ones we will cover in more depth— can over-
come them. Throughout these discussions we will offer examples of applications
and pointers to bibliography which emphasize the wide range of applications and
the power of DBNs.

Finally, we will present the specific models we will be working with, emphasizing
on aspects that will be examined throughout the dissertation. Main focus will
revolve around their respective advantages and disadvantages over other models,
their parameters, their objective functions and their gradients with respect to
their parameters and describe in brief the ones we will be comparing our results
to, the convexity of their objectives, their computational complexity, the role of
overfitting and regularization in practice. The principal focus of this project will
be the the Neural Autoregressive Density Estimator (NADE) with the presenta-
tion of which, the chapter closes.

Chapter 3 is a combination of theory and application. Here we will delve deeper
and more formally into the subject of optimization and more specifically in large
scale non-convex optimization problems, as is the task of training NADE with
the specific datasets we use. We will compare the benefits and shortcomings of
batch versus stochastic methods as well as what we gain and what we lose by
using methods of different order.

We will then choose a number of specific methods to examine in more depth,
most of which will include both the basic version and variants based on various
heuristics. We will present each version of each method in detail, including the
motivation behind it, relative benefits and disadvantages over other methods, the
role of their hyperparameters and some possible variations. We will then discuss
our specific implementation for each version, including justification for each of
our decisions and present pseudocodes for all of them.

Chapter 4 will discuss hyperparameter selection in more depth. This chapter con-
tinues the theme of combining theory and application. This is so, because there
are theoretical and experimental guidelines for this procedure, yet also practi-
cal considerations, like keeping the execution time manageable were taken into
account. We will discuss termination criteria, choices about which hyperparame-
ters we fixed to specific values and why and which ones we tried to adjust in each
method and what subspace of the hyperparameter space we explored. We will
discuss how we evaluate our hyperparameter values’ choices, how we safeguard
against overfitting and how we chose the termination criteria of our methods. In
most cases, besides describing the specific hyperparameter selection scheme we
used, we will also discuss alternatives, some of which we explored up to some
point.

In Chapter 5 we will test some of our techniques by applying them on a toy prob-
lem, more specifically on performing binary classification using logistic regression.

6

CHAPTER 1. INTRODUCTION AND OUTLINE OF THE DISSERTATION7

We will also present the steps taken to ensure that the gradient and the objective
function value computation code for NADE works properly, as well as a couple
of very simple baselines for the value of the objective function.

In Chapter 6 we will present the datasets we will train NADE on, discuss the
experimental design for obtaining the results and present detailed results of each
method on each dataset. We also present baselines produced by other models
in other studies on the same datasets for comparisons. We will then examine
the ability of the methods studied to reach good local optima as well as the
execution time they require. We will analyze how different factors affect the
affects the performance of NADE trained under each method and compare the
advantages and disadvantages of each one of them in practice.

In Chapter 7 we will present our conclusions from these explorations. We will
also discuss paths not traveled that could possibly offer fertile ground for further
work.

Chapter 2

Background

2.1 Optimization and its Role in Machine Learn-

ing

An optimization problem is generally the problem of finding the best solution from
all feasible solutions. We will briefly discuss the categorizations of optimization
problems in the beginning of the next chapter. Here we will restrict ourselves
to presenting the general form of continuous optimization problems and their
role in Machine Learning. In a continuous optimization problem, our goal is
to either minimize or maximize the value of a function f(θ) : RN → R, called
the objective function, possibly under a number of inequality and/or equality
constraints (gi(θ) ≤ 0 and hi(θ) = 0, respectively). The standard definition of a
continuous optimization problem [Boyd et al. , 2004] is

minimize
θ

f(θ)

subject to gi(θ) ≤ 0, i = 1, . . . ,m1

hi(θ) = 0, i = 1, . . . ,m2.

(2.1)

Any continuous optimization problem can be expressed in the form above. Con-
straints of the form g′i(θ) ≥ 0 can be rewritten as −g′i(θ) ≤ 0. If the right hand
side is not equal to zero, but a constant bi 6= 0, we can simply subtract bi from
both sides to obtain the standard inequality constraint form. Finally, a maxi-
mization problem with objective function f(θ) can be stated as the minimization
of −f(θ) subject to the same constraints.

Solving optimization problems, usually involves starting at some point in the
parameter space and searching for close local optima. One way to categorize
optimization problems is based on whether or not the objective function is convex.
In convex objective functions, any local optimum has to be a global optimum. In
non-convex objectives1 we have more than one local optima. As a result, while

1From time to time we may refer to the value of the objective function as the “cost” or the

8

CHAPTER 2. BACKGROUND 9

methods that search for the closest local optimum will succeed in finding the
global optimum of a convex objective, in non-convex objectives the success is not
guaranteed, as we might get trapped in a local optimum. In this sense, non-
convex problems are “harder”. In Figure 2.1 we can see two univariate functions,
a convex and a non-convex one.

Figure 2.1: A non-convex (left) and a convex (right) function of one variable.
Notice in the convex case the local minimum is also the global minimum.

Image adapted from images in lecture 4 of the course B1 Optimization from
University of Oxford, by Andrew Zisserman

http://www.robots.ox.ac.uk/~az/lectures/b1/lect4.pdf.

In the Introduction we stressed the importance of optimization in Machine Learn-
ing and gave a few examples to illustrate how common a subproblem in learning
algorithms it is. Here we should clarify that optimization in the context of learn-
ing is not the same as solving an optimization problem. Our real goal is not to
minimize the value of the objective function on the training set, but to train a
model that can generalize on new data. When this generalization capability is
lost because the model has adjusted its parameters so as only to fit the training
data, the model suffers from overfitting. In practice this often means that some
parameters have assumed extremely large values compared to others. Regular-
ization is a way to protect training against overfitting. To implement parameter
regularization, we can add a term to the objective function that encourages the
parameters to assume small values (by penalizing big ones) or that forces many
of the parameters to assume zero values (encourages sparse solutions). A way to
encourage small parameter values for example is L2-regularization,

f ′(θ) = f(θ) + λ ||θ||22 , ||θ||2 =

√√√√ N∑
i=1

θ2i . (2.2)

Here we formed a new objective function f ′(θ), by adding to the original objective
function f(θ) the square of the L2-norm of θ, weighted by a factor λ ∈ R+,
which controls how harshly we penalize large values (big values of λ mean harsh
penalization, thus heavier regularization). Se the new objective balances the old

“error” or simply the “objective” without properly introducing the term. We hope it will be
clear that we mean the exact same thing.

http://www.robots.ox.ac.uk/~az/lectures/b1/lect4.pdf

one (minimize f(θ) wrt θ) and the regularization term (keep parameter values
as small as possible).

A way to encourage sparseness is L1-regularization, where we use the L1-norm
of θ, instead,

f ′(θ) = f(θ) + λ ||θ||1 , ||θ||1 =
N∑
i=1

|θi|. (2.3)

In this project we will use unregularized objectives. Our way of preventing over-
fitting will be by use of a statistical test (see Chapter 3) or in most cases by early
stopping (see Chapter 4) .

To close this brief introduction to optimization in machine learning, we should
note that we usually choose to use convex objectives instead of non-convex ones,
whenever we have the chance, as their global optimum is easier to find. Especially
since 2006, however, Deep Belief Networks have been growing in popularity and
—largely due to that— Neural Networks have been experiencing a rebirth as well.
In both cases, the objective functions for training them are usually non-convex.

2.2 Deep Belief Networks

Deep Belief Networks (DBNs) [Hinton et al. , 2006a] are probabilistic generative
models that consist of more than one layers of stochastic, latent variables, which
typically assume binary values. We call such variables hidden units or feature
detectors and we call the layers they compose hidden layers. The inputs of the
first hidden layer are the elements of the data vector and the inputs of the second
one and on are the activations of its preceding layer. Each hidden layer combines
its inputs nonlinearly to transform them into new features that will be provided
as inputs to the level above. The top two layers have undirected, symmetric
connections between them and form an associative memory.

So in DBMs we perform feature extraction at multiple levels by combining the
features from the level below in a nonlinear fashion. An example with image
data would be the following: Imagine we have T grayscale images of 100 × 100
pixels and let us assume our initial features are the D = 10000 intensity values
of the pixels. The D pixels are combined in a nonlinear fashion to form H new
features. These features are no longer pixels but nonlinear combinations of pixels,
we can think of them as edges, shapes, forms of any kind within an image which
represent a different level of abstraction. Then the next layer combines these edges
and basic shapes to form new features, which represent an even higher level of
abstraction, like entire objects, for instance. As we see, DBNs can extract features
of multiple levels of abstraction. This property allows them to approximate any
distribution over binary vectors to arbitrary accuracy [Sutskever et al. , 2008],
[Bengio, 2009a]. In Figure 2.2 we can see features learned at different levels of a
Deep Belief Network in [Lee et al. , 2011] in image recognition tasks.

10

CHAPTER 2. BACKGROUND 11

Figure 2.2: An illustration of the features detected at multiple levels from a DBN.
Top row shows features learned at the second hidden layer of the convolutional
DBN (CDBN) presented in [Lee et al. , 2011]. Bottom row shows features learned
at the third hidden layer of the network. The first four columns correspond to
a training the CDBN on different categories of objects while the last column
shows the features learned by training on a mixture of images from all categories.
Notice the different levels of abstraction at different layers of the network, the
‘intuitiveness’ of the features learned (e.g. eyes and mouths of faces, wheels and
doors of cars, etc.) as well as the coherence of the features learned even when
objects of different categories are presented to the network.

Image from [Lee et al. , 2011].

Most likely humans perform similar forms of feature extraction [Morrone et al. , 1988],
[Watson, 2000]. After all, when looking at an image we observe shapes and dis-
tinct regions within it, edges and repeated patterns, not just colors, although
the initial information our eyes receive are packets of photons. Similarly we un-
derstand language as ideas, concepts and interactions among them, although its
building blocks are simple phonemes. In fact, we even use different levels of
abstraction. We don’t only recognize regions of different color or texture in an
image, we recognize parts of objects (like the eyes and nose of a person), entire
objects (like faces).

Since the goal of Artificial Intelligence (AI), is to develop techniques that allow
machines to perform such tasks at a level comparable to that of humans, it is
no surprise that DBNs which can allow for such multilevel abstraction are be-
coming more and more prevalent in subfields of AI such as Machine Vision (e.g.
generating and recognizing images [Bengio et al. , 2007], [Ranzato et al. , 2007],
[Hinton et al. , 2006b], [Lee et al. , 2011], video sequences [Sutskever et al. , 2007],
and motion-capture data [Taylor et al. , 2007]), Speech [Lee et al. , 2009] and Nat-
ural Language Processing [Collobert et al. , 2009].

The task of training DBMs is not an easy one. First of all, DBMs by definition
have many layers and a common practice is to train each layer greedily and move
on to the next one. A second difficulty is that in order to search the parameter
space of DBNs, the objective functions we need to optimize tend to be non-convex
for two main reasons: (i) the outputs of each layer are non-linear transformations
of its inputs and (ii) due to symmetries in the networks, we can permute elements

of the weight matrices without changing the network’s output. Of course there
are some models that use convex objective functions like the one presented in
[Deng et al. , 2011], but they are the exception, rather than the rule.

And now, an interesting side note. Since we have already made an analogy
of the way humans learn to the feature extraction at various abstraction levels
performed by DBNs, let us make another one that illustrates the importance
of non-convex optimization in learning. When we humans learn, the way we
are presented the examples matters. This might imply that learning in humans
also involves solving non-convex optimization problems, where different order of
presenting the examples will result in ending up in different local optima. In
[Bengio, 2009b] the authors stress this analogy, and present a formalization of
such strategies for machine learning called “curriculum learning”. One possible
explanation is that curriculum learning is a special case of continuation methods.

Continuation methods are a strategies used in non-convex optimization methods
for finding global optima. We start with a smooth relaxation of the original
problem and gradually consider less smooth versions of it. Ideally, the global
optimum of the relaxation will also be the global optimum of the original problem.
The authors suggest that using curriculum learning techniques we can speed up
convergence, allow us to reach better local optima, even act as regularizers. In
this work we will make use of any of form of curriculum learning or continuation
methods. However perhaps in a future work, such ideas could be explored on
this problem, or similar ones involving non-convex objectives. We just raised
this point to show that non-convex objectives have a great potential in Machine
Learning. Analyzing the ways to optimize them and understanding the merits
and drawbacks of each —which is the aim of this project— is an important step
towards a broader use of non-convex objectives in learning tasks.

2.3 Restricted Boltzmann Machines

Let us now return to DBMs and see how they are constructed. A typical building
block of DBMs is the Restricted Boltzmann Machine (RBM). The RBM is a type
of stochastic recurrent neural network introduced by [Smolensky, 1986].

In a RBM we have a number of ‘observation’ or ‘visible’ units xd, d = 1, 2, ..., D
each of which is connected to a number of hidden units hk, k = 1, 2, ..., H by a
set of weights Wdk. Units of the same layer (visible, hidden) have no connections
between them but each visible unit is connected to every hidden unit (and vice-
versa). So we have a bipartite graph and the weight matrix W is symmetric.
The visible units also have a set of bias parameters b ∈ RD and the hidden units
a set of bias parameters c ∈ RH associated with them.

We can construct a DBN by ‘stacking’ RBMs on top of one another
[Hinton et al. , 2006a], [Sutskever et al. , 2008]. After training one RBM, the ac-
tivations of its hidden units can be treated as the visible units of a higher-level
RBM and so on, allowing us to greedily train each layer. We alternatively refer to

12

CHAPTER 2. BACKGROUND 13

the units as ‘nodes’, ‘neurons’ or ‘variables’, following the terminology of Proba-
bilistic Graphical Models in general and specifically Neural Networks. In Figure
2.3 we can see the graphical model of a RBM and a 3-layer DBM constructed by
RBMs.

Figure 2.3: Graphical model of a RBM (left) depicted as a bipartite graph among
the input x and hidden units h. Graphical model of a a 3-layer DBM using RBMs
as its building blocks (right). To train the DBN we greedily train each hidden
layer (units hi) and move on to the next one (units hi+1).

Images from Yoshua Bengio’s research webpage:
http://www.iro.umontreal.ca/~bengioy/yoshua_en/research.html

To any observation x we assign probabilities,

p(x) =
1

Z

∑
h

e−E(x,h) , (2.4)

where

E(x,h) = −bTWv − xTh− cTh (2.5)

is called the ‘energy function’, with high probability configurations corresponding
to low energy. The denominator Z, known as the ‘partition function’, normalizes
the distribution, so that

∑
v p(v) = 1. Training an RBM means finding con-

figuration of its parameters θ = {W , b, c} that maximizes the likelihood of the
model (equivalently minimizes the negative likelihood).

However, in most interesting cases, i.e. when neither the number of visible units
D nor the number of hidden units H is very small, the normalization factor Z

http://www.iro.umontreal.ca/~bengioy/yoshua_en/research.html

becomes intractable. We will not discuss RBMs in more detail here. A useful
source of information about RBMs and their training is [Hinton, 2010]. Many of
the tricks and heuristics regarding the training of RBMs from the aforementioned
paper carry on to the particular model we will make use of many of its general
guidelines in Chapters 3 and 4.

The model we will be working in this project is the Neural Autoregressive Distri-
bution Estimator (NADE), presented in [Larochelle et al. , 2011]. NADE, trans-
forms the estimation of the partition function to a tractable problem, by con-
verting the RBM into a Bayesian Network. The discussion is restricted to binary
variables only, however the model can be extended to non-binary cases as well.
More precisely, we are going to examine various non-convex optimization tech-
niques in the context of training NADE to perform density estimation. NADE
can be viewed as an autoencoder (it tries to reproduce each data vector from
the feature activations that they cause), whose output can be used to assign
valid probabilities to the observations. Therefore NADE can be used as a density
estimator.

2.4 Density Estimation

Density estimation, the estimation of the distribution p(x) given a number of dat-
apoints x, is of great importance as a machine learning task. Some of its most
notable applications are mentioned in [Zoran et al. , 2011] and include estimat-
ing missing features (for example ‘inpainting’ missing pixels in an image), image
processing applications like denoising and deblurring, and performing unsuper-
vised feature extraction as a first step to solve other tasks (e.g. in Natural Lan-
guage Processing, Speech Recognition and Computer Vision that we discussed, in
collaborative filtering [Salakhutdinov et al. , 2007a], time series classification and
anomaly detection [Wulsin et al. , 2011], etc.).

RBMs, NADE, DBMs are all generative models, we can therefore use them to
learn the distribution p(x). Note that we use the terms “density” and “distribu-
tion” somewhat loosely. The probability density function applies to continuous
random variables, and we will be dealing with discrete ones, so the correct term
would be “probability mass function”, i.e. the function that gives us the proba-
bility that the discrete random variable is exactly equal to some value.

2.5 Models Examined

Logistic Regression

In Chapter 5 we will test some of our optimization methods in a toy application
of logistic regression before applying them to the harder task of training NADE.
Furthermore, logistic regression is the building block of FVSBN, a model whose

14

CHAPTER 2. BACKGROUND 15

performance we shall compare to that of NADE’s. Finally, it is an opportunity to
introduce terms and concepts we will be using throughout this dissertation like
the definition and behaviour of the logistic sigmoid, the likelihood of a model,
why we use loglikelihoods instead and how overfitting works in practice. For all
of the reasons above, we shall briefly present the logistic regression model applied
to solving a binary classification problem.

We are given T data pairs of the form (x̃(t), y(t)), where x̃(t) ∈ RD is the t-th
feature vector and y(t) ∈ {0, 1} is the corresponding target label, the class to
which the x̃(t) belongs.

We define θ0 ∈ R and θ̃ ∈ RD. We will use θ̃d, d = 0, 1, 2, ..., D as the parameters
of the model, the variables of the model for which we must find the optimal values
such that the model fits the data as well as possible. To measure how well the
model fits the data, we must first define how we want it to classify an instance.
We need a function that assigns to instance x̃(t) a the probability that it belongs
to each class. We shall use a sigmoid function σ : [−∞,∞] → [0, 1]. More
precisely, we shall use the logistic function. In one dimension it is,

σθ(x) =
1

1 + e−(β+αx)
, (2.6)

where θ = [β, α] ∈ R2. In Figure 2.4 we can see the logistic sigmoid function for
β = 0 and various values of the parameter α ∈ R, which as we see controls the
steepness of the sigmoid.

To simplify the notation we define the matrix

X =

1 1 · · · 1

x̃
(1)
1 x̃

(2)
1 · · · x̃

(T)
1

...
...

. . .
...

x̃
(1)
D x̃

(2)
D · · · x̃

(T)
D

and the parameter vector

θ =

θ0
θ̃1
...

θ̃D

We can now define the probability that x̃(t) belongs to class 1 as

P (y = 1|x̃(t);θ) = σθ(x
(t)) =

1

1 + e−θ
Tx(t)

(2.7)

So we classify x(t) to class 1 if P (y = 1|x(t);θ) > 0.5 and we assign it to class 0
if P (y = 0|x(t);θ) = 1− P (y = 1|x(t);θ) > 0.5,

Figure 2.4: The logistic sigmoid function for various values of parameter α. As
|α| → ∞ , the sigmoid becomes a step function (σ(x) = 0, for x < 0 and σ(x) = 1,
for x > 0). As |α| → 0, it becomes σ(x) = 0.5, ∀x. For α < 0 we would just
have a mirrored image, i.e. it would assign values values σ(x) > 0.5, for x < 0
and σ(x) < 0.5, for x > 0. Finally, for β 6= 0 we would have a displacement of
the sigmoid on the x -axis.

We can measure how well the model fits the data using the likelihood of the
logistic regression with parameters θ under the data. The likelihood is defined as
the probability of observing the given data under the model with parameters θ.
Assuming the data are independent and identically distributed (iid) the likelihood
in our case is

J ′(θ) =
T∏
t=1

P (y = 1|x(t);θ)
y(t)

(1− P (y = 1|x(t);θ))(1−y
(t)) (2.8)

This will be our objective function and our goal is to maximize it. It is a convex
function. We usually prefer to work with sums rather than products. Very
small or very large values which can arise in such products can cause numerical
instabilities in an algorithm (underflowing or overflowing variables). Also, adding
numbers causes less round-off errors to occur and propagate in the calculations.
So we take the logarithm of J(θ) and get

J̃(θ) = log(J ′(θ)) =
T∑
t=1

[−y(t) log(σθ(x
(t)))− (1− y(t)) log(1− σθ(x(t)))] (2.9)

16

CHAPTER 2. BACKGROUND 17

We will use the Average Loglikelihood (ALL) of the logistic regression model with
parameters θ given the data,

J(θ) =
1

T

T∑
t=1

[−y(t) log(σθ(x
(t)))− (1− y(t)) log(1− σθ(x(t)))] (2.10)

We will use the ALL as the objective function to be maximized in the next
models we will present as well. J(θ) is a convex function of the parameters θd,
d = 0, 1, ..., D. We will often use its negative, the Average Negative Loglikeli-
hood (ANLL) as an objective to minimize, posing our optimization problem in
the standard form we saw in Eq. (2.1).

The partial derivative of J(θ) with respect to parameter θd, d = 0, 1, ..., D, θ0
being the intersect (bias) term is

∂J(θ)

∂θd
=

1

T

T∑
t=1

(σθ(x
(t))− y(t))x(t)d (2.11)

Normally, some sort of regularization is applied to the objective of logistic re-
gression. Notice in Figure 2.4 that the absolute values of the parameters θd,
d = 1, 2, ..., D control the steepness of the sigmoid in the corresponding dimen-
sion (the intersect (bias) term θ0 just displaces it on the x -axis). The steeper
the sigmoid, the farther the probabilities P (y = 1|x(t);θ) and P (y = 0|x(t);θ)
get from 0.5, so the higher their difference becomes. In a sense, the more confi-
dent the classifier is about classifying to the one class or the other after seeing
the feature that corresponds to this dimension. If one θd has an extremely high
(compared to the other parameters) absolute value, the sigmoid essentially be-
comes a step function in this dimension, thus assigning the examples solely based
on their value of xd. With regularization, we prevent any θd from growing to an
extreme value, thus dominating θTx(t) and causing the classifier to ignore the
rest of the features.

In Algorithm 1 we present the pseudocode for LOGREG(), a subroutine that
computes the value of the ALL and its partial derivatives wrt the parameters θd,
d = 0, 1, 2, ..., D at a given point θ = θ(0) in the parameter space, for the given
dataset Xtrain with labels y under the logistic regression model we presented
above. These partial derivatives form the gradient ∇J(θ) of J(θ). We will

introduce the gradient and its use more formally in the next chapter.

Data: Xtrain, y, θ
Result: J(θ),∇J(θ)
J(θ) = 0 ; ∇J(θ) = ZEROS(SIZE(θ));
T ′ = SIZE(Xtrain, ROWS);
for t = 1 : T ′ do

J(θ(0)) = J(θ) + [−y(t) log(σθ(x
(t)))− (1− y(t)) log(1− σθ(x(t)))] ;

for d = 0 : D do
∂J(θ)
∂θd

= ∂J(θ)
∂θd

+ (σθ(x
(t))− y(t))x(t)d ;

end

end
// Return averages instead of sums:

J(θ(0)) = 1
T ′
J(θ(0));

∇J(θ(0)) = 1
T ′
∇J(θ(0))

Algorithm 1: The pseudocode for a simple, non-vectorized version of the algo-
rithm that computes the value of the ALL of a logistic regression model and its
partial derivatives wrt the parameters θd, d = 0, 1, 2, ..., D: LOGREG().

Fully Visible Sigmoid Belief Network (FVSBN)

The Fully Visible Sigmoid Belief Network (FVSBN), can be used as a density
estimator and it is based on the idea of arranging the variables into a Bayesian
Network, that is, a directed acyclic graph (DAG) that represents the joint prob-
ability p(x). This idea was first proposed in [Frey, 1998] as the logistic autore-
gressive Bayesian network and then [Bengio et al. , 2000] presented a non-linear
generalization. Using the chain rule of probability, we decompose p(x) into

p(x) =
D∏
d=1

p(xd|x<d), (2.12)

where x<d is the subvector containing all variables xi : i < d, assuming that
xi : i < d are the parents of xd in the Bayesian Network. Note that the ordering
of the features xd, d = 1, 2, ..., D need not necessarily be the initial one as our
notation might indicate. To avoid overloading our notation let us just assume
that we have chosen an appropriate or a random ordering of the elements of x
before constructing the DAG.

The individual conditional probabilities p(xd|x<d), d = 1, 2, ..., D are tractable
(therefore so is p(x)) and they are given by logistic regression,

p(xd|x<d) = σ(bd +
∑
j<d

Wdjvj). (2.13)

18

CHAPTER 2. BACKGROUND 19

We can use the Average Loglikelihood (ALL) of the model as the objective func-
tion to be maximized,

J(θ) =
1

T

T∑
t=1

log(p(x(t))) =
1

T

T∑
t=1

D∑
d=1

log(p(xd|x<d)), (2.14)

where the parameter vector is θ = [b,W (∗)] ∈ RN , and by W (∗) we denote the
column vector that we get by concatenating all columns of the weight matrix W .
The total number of parameters is N = D +D ×D = D(D + 1). Note that the
objective is convex since it is a sum of convex functions (The FVSBN model is
practically D separate logistic regressors). Again usually a regularization term is
added to the objective function, typically with a different regularization constant
for each of the D regressors.

Neural Autoregressive Density Estimator (NADE)

NADE is another model that can be used for density estimation. It is based on
transforming the RBM into a Bayesian Network. Again we use the chain rule
to decompose p(x) as in Eq. (2.12). In NADE, however, we interject a hidden
layer between the input and the output layer. Thus, the model needs connection
weights and biases both to map from the input layer to the hidden layer (W ∈
RH×D and b ∈ RH , respectively) and synaptic weights and biases to connect the
hidden units to the output units (V ∈ RD×H and b ∈ RD, respectively). We can
use any sigmoid activations but let us use again the logistic sigmoid we have been
using all this time. The mapping from input to hidden layer is thus performed
by computing

hd = σ(c+W∗,<dx<d) (2.15)

and the mapping from hidden layer to output layer is done by taking

p(xd = 1|x<d) = σ(bd + Vd,∗hd) (2.16)

The whole procedure corresponds to a Neural Network for each p(xd = 1|x<d),
where the weighted connections going in and out of the hidden layer of each mini-
neural network are tied. In addition to that, connections are also tied across the
individual neural networks, so that the difference between two consequent hidden
layer activations is

(c+W∗,<d+1x<d+1)− (c+W∗,<dx<d) = W∗,d+1xd+1 , (2.17)

which can be computed in O(H) time and we have D conditionals in the fac-
torization of the joint probability p(x). So, computing the p(x) under NADE
takes O(HD) time overall. Contrast that with the O(HD2) time complexity

of an approach that would not take into account the weight sharing across the
conditionals.

Again, we can use the ALL of this model as the objective function. It is given
by Eq. (2.14). The parameter vector is now θ = [b,W (∗), c,V (∗)] ∈ RN . The
total number of parameters is N = D+H+H×D+D×H = D+H+2HD. Each
row of W will correspond to a new feature created by nonlinearly combining the
initial features xd, d = 0, 1, 2, ..., D.

In Figure 2.5 we can see illustrations of NADE and FVSBN. In Algorithm 2 we
present the pseudocode for NADE(), a subroutine that computes the value of the
ALL and its partial derivatives wrt the parameters b, W , c and V at a given
point (b,W , c,V) = (b(0),W (0), c(0),V (0)) in the parameter space, for the given

20

CHAPTER 2. BACKGROUND 21

dataset Xtrain with labels y under the NADE model.

Data: Xtrain, b, W , c, V
Result: J(b,W , c,V), ∇J(b), ∇J(W), ∇J(c), ∇J(V)
[T ′, D] = SIZE(Xtrain);
for d = 1 : T ′ do

// Objective function:

α = c;
J(b,W , c,V) = 0 ;
for d = 1 : D do
h = σ(α);
p(xd = 1|x<d) = σ(bd + V (d, ∗)h);
J(b,W , c,V) = J(b,W , c,V) + xd log(p(xd =
1|x<d)) + (1− xd) log(1− p(xd = 1|x<d));
α = α+W (∗, d)xd;

end
// Gradients:

∇J(h) = ZEROS(SIZE(c));
for d = D : −1 : 1 do
α = α−W (∗, d)xd;
h = sigmoid(α);
p(xd = 1|x<d) = σ(bd + V (d, ∗)h);
∂J(θ)
∂θbd

= p(xd = 1|x<d)− xd;
(∇J(V))(d, ∗) = (p(xd = 1|x<d)− xd)hT ;
∇J(h) = (p(xd = 1|x<d)− xd)V (d, ∗)T ;
(∇J(W))(∗, d) =∇J(c)xd;
// Below ◦ denotes element-wise multiplication:

∇J(c) =∇J(c) +∇J(h) ◦ h ◦ (1− h);

end
// Return averages instead of sums:

J(b,W , c,V)(t) = 1
D
J(b,W , c,V);

∇J(b)(t) = 1
D
∇J(b);

∇J(W)(t) = 1
D
∇J(W);

∇J(c)(t) = 1
D
∇J(c);

∇J(V)(t) = 1
D
∇J(V);

end
// Now average over all instances:

J(b,W , c,V) = 1
T ′

∑(T ′)
t=1 J(b,W , c,V)(t);

∇J(b) = 1
T ′

∑(T ′)
t=1 ∇J(b)(t);

∇J(W) = 1
T ′

∑(T ′)
t=1 ∇J(W)(t);

∇J(c) = 1
T ′

∑(T ′)
t=1 ∇J(c)(t);

∇J(V) = 1
T ′

∑(T ′)
t=1 ∇J(V)(t);

Algorithm 2: The pseudocode for a simple, non-vectorized version of the al-
gorithm that computes the value of the ALL of a NADE model and its partial
derivatives wrt the parameters parameters b, W , c and V : NADE().

Figure 2.5: An illustration of an arbitrary FVSBN and an arbitrary NADE. The
edges connected by blue lines denote connections with tied parameters. Also,
we denote with x′d = p(xd = 1|x<d) are the output probabilities of the density
estimator.

Image adapted from [Larochelle et al. , 2011].

Note that we can have H > D or H < D. In the first case we map the ini-
tial feature vectors into a higher dimensional space, before mapping it back
to a D-dimensional space. In the second case we map the initial feature vec-
tors into a lower dimensional space, before mapping it back to a D-dimensional
space, thus performing a non-linear dimensionality reduction step. The higher
the redundancy in the dataset, the less lossy this transformation will be. The
same idea extends to RBMs and DBMs in general, of course. For example
[Hinton et al. , 2006a], [Salakhutdinov et al. , 2007b] show that using such a di-
mensionality reduction, DBMs can learn short binary codes that allow very fast
retrieval of documents or images.

22

Chapter 3

Optimization Methods Examined

We experimented with various optimization methods and variants thereof during
the course of this project. Some of these methods, for instance the simple versions
of Steepest Gradient Descent and Coordinate Descent are not suited for large scale
non-convex settings. However we included them in some experiments to showcase
their inadequacy or to use them as a baseline to improve upon and as a means
to “measure the difficulty” of training on a particular dataset.

In this section we will present the methods used, the theoretical motivation behind
them and a brief discussion about the strengths, weaknesses and some potential
variations of each one of them. A brief description of each method is followed
by the corresponding pseudocode in its most basic version. Details such as step
size decay, termination criteria and tricks to reduce the number of operations
(such as indexing and vectoring) were omitted wherever possible in order to keep
the pseudocode for each method in its most general and intelligible form. Step
size decay and termination criteria (including early stopping) are shared across
groups of methods and will be discussed in the following chapter in more detail.

3.1 Categorization of Optimization Methods

Mathematical Optimization is a huge field which encompasses many types of
problems and the techniques used for solving them. Categorizations of these
techniques include factors such as the number of the objective functions (single-
objective vs multi-objective), the existence or not of constraints (constrained vs
unconstrained) the properties of the constraints and the objective functions (lin-
ear vs non-linear, including special subcategories such as geometric and quadratic
programming problems), the separability or lack thereof of the objective functions
and the constraints (separable vs non-separable) the properties of the parameters
(integer vs real-valued programming, deterministic vs stochastic) the existence
or lack thereof of interdependent stages (optimal control vs non-optimal control
problems). Another division of optimization techniques can take into account
whether a technique is guaranteed to find the optimum or not (exact vs heuristic

23

optimization techniques). We shall not expand any further on the landscape of
optimization techniques. The subject of this dissertation is not to cover opti-
mization methods in general, but merely to apply a number of appropriate ones
to the problem in hand: training the NADE model to perform fast and accurate
density estimation on a given dataset.

Therefore, we will only deal with optimization methods that are used for solv-
ing unconstrained, non-linear, real-valued optimization problems. Both objective
functions we include in our study (logistic regression and NADE’s average nega-
tive log-likelihood) are non-linear, our parameters take real values and there are
no constraints involved. In Table 3.1 we can see a simple categorization of the
methods studied based on the order of derivative information of the objective
function with respect to the parameters they use and whether they need to ex-
amine the entire dataset before making a parameter update (Batch Methods),
they make an update after seeing a single instance (Stochastic Methods) or a
number of instances (Mini-batch Methods).

Table 3.1: A categorization of the methods studied.
Instances Examined per Update Step

Order Batch Minibatch Stochastic

Zeroth CD basicGD
CD basicNewton

First BGD basic, MBGD basic, SGD basic,
BGD heavyball, MBGD heavyball, SGD heavyball,
BGD bolddriver, MBGD bolddriver, ASGD basic,

BGD rprop, IAGD basic,
DIBGD basic,

Second Newton
Quasi-Newton L-BFGS

3.2 Order of Optimization Methods

Zeroth order methods do not directly calculate the gradient of the objective func-
tion (see next paragraph for more on the gradient). For this reason they are
also referred to as non-gradient or derivative free optimization techniques. They
perform a line search in a single dimension of the parameter space (can do so
iteratively as well), or approximate the gradient using other techniques. Since
they need only use simple evaluations of the objective function, each iteration
is less expensive computationally compared to first order (or higher) methods.
However they are less efficient than the first order methods, since they require
more steps to converge. Most of them are easy to program and robust and an
important benefit is that they can also be applied to objective functions that are
discontinuous or non-differentiable, contrary to higher order methods. For the
definitions below we shall assume that the objective function is continuous and
k times differentiable, where k is the order of the method we are referring to.

First order methods use only gradient and objective value function information,
in other words they only consider up to the first order partial derivatives of the

24

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 25

objective function with respect to the parameters in order to decide how the
corresponding parameters will be updated. The gradient ∇J of the objective
function J(θ) with respect to the parameters θ = [θi], i = 1, 2, ...N is the vector
of all first order partial derivatives of J(θ) with respect to θ,

∇J =∇J(θ) =

[
∂J(θ)

∂θi

]
, i = 1, 2, ...N. (3.1)

In second order methods, the parameter updates also use curvature (second order
derivative) information. The HessianH(J(θ)) (or simplyH(J) or evenH when
it is obvious from the context) of the objective function J(θ) with respect to the
parameters θ = [θi], i = 1, 2, ...N is the matrix whose (i, j)-th element is the
second partial derivative of J(θ) with respect to parameters θi and θj,

H = H(J(θ)) =

[
∂2J(θ)

∂θi∂θj

]
, i, j = 1, 2, ...N. (3.2)

The non-diagonal elements of H are called mixed derivatives (generally partial
derivatives of second or greater order with respect to two or more different vari-
ables are called so). The order of differentiation does not matter for continuous
mixed derivatives. In other words, Hij = Hji,∀i, j and therefore the Hessian is
symmetric. Due to this symmetry, instead of N2 second order partial derivatives
we only need to calculate N(N − 1)/2 to compute the Hessian of J(θ) (remem-
ber that N is the dimensionality of the parameter space). So we need O(N2)
operations. Moreover, some 2nd order methods require the inverse of the Hessian
H−1, the computation of which requires O(N3) operations. So, second order
methods are characterized by a high computational cost.

Some methods have been developed to incorporate curvature information with-
out explicitly using the Hessian itself, but approximations of it or its inverse are
computed with the use of first order derivative and previous step information.
These methods, called Quasi-Newton Methods, aim to balance the nice conver-
gence properties of the second order methods without suffering the cost of the
latter. They are still more expensive computationally per iteration than first
order methods though.

There also exist Higher Order methods, which also take into account the third
or higher order partial derivatives of the objective function with respect to the
parameters in order to decide how the corresponding parameters will be updated.
These are rarely used in practice as they involve tensors of higher order partial
derivatives, rendering the computational cost per iteration unaffordable. We will
not discuss any such methods here.

So the central idea here is that higher order methods are typically more powerful
than first order methods, in the sense that they converge in fewer iterations. How-
ever, they are more expensive computationally (per iteration) and possibly their
computational cost can outweigh their benefits, especially for large parameter

spaces. So we have a convergence rate versus computational (time) complexity
tradeoff.

3.3 Batch vs Stochastic Optimization Methods

Batch methods use the entire training set in order to calculate the appropriate
update for each of the parameters. As a result, each step is slower compared to
that of stochastic and minibatch methods. On the other hand, since it takes into
account all the training instances, each step is indeed towards the direction that
minimizes the overall error on the training set. The stochastic methods make a
parameter update based on a single instance t, therefore it will not necessarily
lead to a parameter vector θ which decreases the average or total value of the
objective function (i.e. over all training instances), but for the particular instance.

Comparisons of the relative advantages of batch and stochastic methods can be
found in [LeCun et al. , 1998], [Bishop, 1995], [Bengio, 2012] and [Bottou et al. , 2007].
Here we will review the main ideas presented in the aforementioned works. In
short, the batch methods have the following advantages:

(i) Their conditions of convergence are well understood.

(ii) Many acceleration techniques like conjugate gradient or 2nd order methods
only operate in batch learning (This is not entirely true, there exist second
order stochastic methods, however they are not used widely and we will
explain later on why).

(iii) Analyzing theoretically their parameter dynamics and convergence rates is
simpler.

(iv) They can be parallelized (for example by using map-reduce techniques).

The above advantages are lost in stochastic gradient descent methods, due to the
noise their stochasticity adds and to the fact that execution of each step requires
the previous step to have been executed. However, the stochastic methods also
have their advantages over the batch methods:

(i) They are much faster than batch methods in large-scale learning and in
scenarios with redundant data.

(ii) They usually result in better solutions in non-convex objectives.

(iii) They can be used for keeping track of changes to the function modeled.

(iv) They can be used in the context of online learning (Somewhat related to
(iii)).

(v) Although the convergence rate of stochastic methods is lower than that of
batch methods, there is evidence [Bottou et al. , 2007], [Bengio, 2012] that
in the context of learning tasks this convergence benefit loses its importance.

26

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 27

For a simple explanation for (i) let us imagine that our dataset consists of 10
consecutive identical copies of a smaller dataset of, 100 instances. Averaging the
gradient over all 1000 instances would yield the same result as computing the
gradient based on just the first 100. So, a batch method would need 10 times
more time to make a single update to the parameters compared to a stochastic
method. This example is —of course— extreme, as identical examples rarely
appear in real-world datasets. However similar ones often do. This redundancy
is what can make stochastic methods faster than their batch counterparts.

As for (ii), due to the stochasticity of the updates a stochastic method can escape
local optima. Advantage (iii) comes into play when the function we model changes
over time. Then a stochastic method can capture these changes, as it examines
every instance in sequence. Somewhat related to (iii), advantage (iv) comes into
play when the instances are presented one at a time (or few at a time) to the
training algorithm and we generally need to update our parameters as soon as the
new example(s) arrive(s). Here, using batch methods is no longer a viable option
as it would be a terrible waste computationally to use our entire old dataset of T
instances plus our 1 new example and perform operations on the new (T+1)-sized
batch. It is also a waste of memory to keep all previous instances stored. Using
a stochastic method we can avoid all this computational and memory cost. So
this is an extra advantage of the stochastic methods in large-scale optimization.

Finally, regarding (v), the convergence rate of e.g. Stochastic Gradient Descent
might be lower than that of Batch Gradient Descent. However, in learning tasks,
it has been shown that the convergence rate of the test error (i.e. the value
of the objective function on unseen data) is O(1

t
), i.e. the same as the rate of

convergence of SGD [Bottou et al. , 2007], [Bengio, 2012]. So there is no benefit
in having a faster convergence rate on the training set as this will not mean having
a faster convergence rate on the test set. And remember, in learning we don’t
really care about minimizing the value of the objective function on the training
set, but about achieving generalization.

Miniibatch methods try to strike a balance between the two approaches. If very
small batch sizes are used they lean towards the stochastic side, which allows
them to be used in online learning and grants them increased ability to escape
local optima in non-convex objectives (contrary to batch methods). In addition
to that, vectorization can allow each iteration to be almost as fast as a stochastic
gradient descent step and compared to stochastic methods, minibatch methods
generally need fewer update steps as its steps are less noisy (i.e. each step is
based on more training samples, so the direction of the step is towards the local
minimum with greater probability). If large batch sizes are used they become
less stochastic, but still can have benefits over batch methods e.g provide faster
updates.

So, to summarize, when optimizing non-convex objectives we favour stochastic or
minibatch or second order batch ones. In large datasets, high redundancy within

the data is to be expected so we also favour stochastic methods and minibatch
ones with small batch sizes. We also opt to use stochastic methods when we want
each update step to be taken as quickly as possible (e.g. right after receiving the
next instance). If the parameter space or the dataset is small, perhaps it is a
better idea to use second order methods instead.

3.4 Some Intuitions Regarding Our Optimiza-

tion Problem

So we should take into account many factors when deciding which optimization
method to use and how to tailor it to the problem, including the properties of
the objective function (e.g. convexity, smoothness, steepness), the dimensionality
of the parameter space, the size of the dataset and whether we need to make
updates as fast as possible or we can afford to wait. Also, any additional domain
knowledge we have, for example, whether a high amount of redundancy in the
dataset is to be expected or not, whether some features are correlated and the
parameters related to them can be treated as a groups or not, all these can
determine which method is appropriate for a given problem.

In our case, the objective function we are trying to optimize is non-convex. So
we can deduce that stochastic, minibatch and second order batch methods are
the most viable options for achieving good quality optima. Furthermore, we have
relatively large datasets, so redundancies are likely to exist within them. Re-
dundancy gives a speed advantage to stochastic methods and minibatch methods
where the size of the minibatch is small. We also have large parameter spaces
to explore, a fact that translates to high computational cost of second order
methods.

So intuitively, in the task of training NADE on the specific datasets, we expect
variants of stochastic and minibatch methods to yield better, faster results than
the other methods and while second order methods might match (or possibly
exceed) their quality of optima, they will require larger execution times.

3.5 Gradient Computation

In Algorithm 3 we can see the common function all methods we examine share:
the one that computes the value of the objective function and its gradient with
respect to the parameters θ at θ(0) on the given training set Xtrain. We imagina-
tively named it COMPUTE OBJECTIVE AND GRADIENT(). To clarify any
confusion θ(0) ∈ RN is just an instantiation of the variable θ. From this point
on, however we shall use the two symbols interchangeably since we can easily
distinguish if we refer to a parameter or its actual value by the context. Also,
in the algorithms that follow we will use J instead of J(θ(0)) and ∇J instead
of ∇J(θ(0)). Again, what we mean will be clear from the context. Of course

28

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 29

for every model used the objective function and the parameters involved differ,
so COMPUTE OBJECTIVE AND GRADIENT() will take the form of NADE()
or LOGREG() we presented in the previous section, here we just generalize the
concept to include any of these, as well as any other model.

As for the given training data matrix Xtrain its dimensions change according
to the actual method use. In the case of batch methods, Xtrain ∈ RT×D,
as we use all training instances. So N is the number of parameters of our
model, T the number of instances (training datapoints) and D the number of
features (the dimensionality of each datapoint). For Stochastic Gradient De-
scent, Xtrain ∈ R1×D, since now we only use one instance to make an update.
Finally, for the Dynamically Increasing Batch Size approaches and the Mini-Batch
Methods, Xtrain ∈ RTbatch×D, where Tbatch is the current minibatch size.

In all cases except for Coordinate Descent, the function outputs J(θ(0)) ∈ R
and ∇J(θ(0)) ∈ RN. In Coordinate Descent, we still get a scalar J(θ(0)) but

instead of ∇J(θ(0)) ∈ RN we get ∂J(θ(0))
∂θi

∈ R, since we are working with a single

parameter at each iteration. We use J (t)(θ(0)) ∈ R to denote the cost on the
t-th instance of the training set and ∇J (t)(θ(0)) ∈ RN to denote the gradient
computed using only the t-th instance of the training set. All this will become
more clear in the description of each method.

All methods we implemented call such a function on every iteration. The method
we call from the Mark Schmidt’s minfunc() package1 (L-BFGS) also calls such
a function on every iteration. Second order methods in addition to the gradient
also need the Hessian supplied, so the algorithm below needs to also include
the computation of the Hessian in an analogous fashion (i.e. averaging over all
instances). Higher order methods would need tensors of higher order partial
derivatives.

Data: Xtrain, θ(0)

Result: J(θ(0)),∇J(θ(0))
T ′ = SIZE(Xtrain, ROWS);

// Below, OBJFUNCEVAL(Xtrain(t, ∗), θ(0)) and

COMPUTEGRAD(Xtrain(t, ∗), θ(0)) simply compute J (t)(θ(0)) and

∇J (t)(θ(0)) respectively and their implementations differ from

model to model:

J(θ(0)) = 1
T ′

∑T ′

t=1 OBJFUNCEVAL(Xtrain(t, ∗), θ(0));

∇J(θ(0)) = 1
T ′

∑T ′

t=1COMPUTEGRAD(Xtrain(t, ∗), θ(0));

Algorithm 3: The general pseudocode for the algorithm that computes the
value of the objective function and its gradient with respect to the parameters:
COMPUTE OBJECTIVE AND GRADIENT().

We should note here that instead of taking the average of the J (t)(θ(0)) we could
instead simply take their sum since 1

T ′
is just a scaling factor. We would correct

1Available at http://www.di.ens.fr/~mschmidt/Software/minFunc.html.

http://www.di.ens.fr/~mschmidt/Software/minFunc.html

the scaling of the actual parameter update with appropriate selection of the step
size α to rescale the update step. Similarily, it bears no significance if we optimize
regarding to the total cost

∑T ′

t=1 J
(t)(θ(0)) or the average cost 1

T ′

∑T ′

t=1 J
(t)(θ(0))

per instance.

Also, although this implementation would work for all kinds of methods, we
point out for one last time that this is a general purpose pseudocode, not the
actual implementation we used. In fact, we implemented two different versions
for this function: one for one for Stochastic Gradient Descent and its variants
and one for all the other methods. The benefit to this is that Xtrain degenerates
to a D-dimensional row vector in the SGD case, so we can ignore one dimension
and avoid additional operations (e.g. avoid taking averages for SGD) gaining
some computational benefits (albeit constant ones). We will not dwell any more
on this, we just mention it to showcase that a general model can be good for
abstraction and theoretical generalization, but in practice, all theoretical tools
have to be tailored to their practical implementation.

3.6 Batch Methods

Batch Gradient Descent

The simplest method that falls in the batch category is Batch Gradient Descent,
also known as (Steepest) Gradient Descent. It is a First Order Method that
is based on taking steps proportional to the negative of the gradient (−α∇J)
in order to find a local minimum of J(θ). Gradient descent is based on the
observation that J(θ) decreases fastest if we go from θ(0) in the direction of
−∇J(θ(0)) , so if θ(1) = θ(0)−α∇J(θ(0)), for a small enough α, then J(θ(1)) ≤
J(θ(0)). So for θ(n) = θ(n−1) − α(n)∇J(θ(n−1)), n ≥ 0 we will have J(θ(0)) ≥
J(θ(1)) ≥ ... ≥ J(θ(n)). Consequently, the sequence {θ(n)} converges to the
local minimum. We can see an illustration of the process in Figure 3.1.

As for α(n) ∈ R+ is called the step size, sometimes also referred to as the learn-
ing rate. It controls, as the name suggests, the size of the update step of the
parameters. It can be constant or vary as a function of the number of iterations
passed. The step size is a hyperparameter of the optimization method. More on
hyperparameters and hyperparameter selection can be found in the next section.
If the goal of the optimization problem is to maximize, rather than minimize the
objective function all that changes is that we move towards the direction of the
gradient and not its negative, ‘−’ signs in the formulae and the pseudocodes be-
low become ‘+’. To distinguish between the two procedures we call this Gradient
Ascent. In fact in our implementation we actually perform Gradient Ascent on
the Average Log Likelihood of the NADE model instead of Gradient Descent on
the Negative Average Log Likelihood.

The variants we will examine here are the following:

30

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 31

Figure 3.1: An illustration of the convergence of Steepest Gradient Descent to the
local minimum. In this case it is the global minimum as the objective is convex.

Image adapted from Wikipedia:
http://en.wikipedia.org/wiki/File:Gradient_descent.png

BGD basic: The simple version of the method we discussed above. The pseu-
docode can be found in Algorithm 4.

Data: Xtrain, θinitial, α
Result: θ
θ = θinitial;
while Termination Conditions Are Not Met do

[J,∇J] = COMPUTE OBJECTIVE AND GRADIENTS(Xtrain, θ);
θ = θ − α∇J ;

end

Algorithm 4: The core pseudocode for the simple version of Steepest Gradient
Descent: BGD basic.

BGD heavyball: Batch Gradient Descent using the Heavy Ball heuristic in-
troduced in [Polyak, 1964]. The idea is borrowed from the movement of a ball

http://en.wikipedia.org/wiki/File:Gradient_descent.png

subject to the laws of classical mechanics. The simple Gradient Descent version
can be very slow when the surface of the objective function is highly non-spherical
(its curvature varies significantly with each direction). At most points on the er-
ror surface, the local gradient will not point directly towards the minimum. The
result is a “zig-zagging” behaviour, so Gradient Descent will take many steps to
reach the minimum. We can moderate this effect by to adding a contribution
from the previous step ∆θprev weighted by a “momentum” term 0 ≤ γ ≤ 1
to the parameter update , which will smooth the oscillations (the “zig-zagging”
mentioned above), and therefore allow us to reach the minimum in fewer steps.
However it adds an extra hyperparameter, the momentum term, which we we
have to fine tune in addition to α. In Figure 3.2 we can see the zig-zagging be-
haviour of Steepest Gradient Descent compared to the more smooth convergence
of the ‘Heavy Ball’ heuristic. The pseudocode for this version can be found in
Algorithm 5.

Figure 3.2: An illustration of the “zig-zagging” behaviour the Steepest Gradient
Descent might suffer from in 2 or more dimensions. In black we can see the steps
of Steepest Gradient Descent towards the direction of the negative gradient and
with gray how by using the “Heavy Ball” heuristic the successive steps can almost
“cancel out” the movement on the θ2 coordinate retaining only the movement
the on θ1, thus reaching in fewer iterations the minimum. The “zig-zagging”
behaviour was caused due to the fact that we only needed to move along θ1 to
reach the minimum, but in Gradient Descent we move towards the direction of
the negative gradient, which does not necessarily point to the minimum.

32

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 33

Data: Xtrain, θinitial, α, γ
Result: θ
θ = θinitial; ∆θprev = 0;
while Termination Conditions Are Not Met do

[J,∇J] = COMPUTE OBJECTIVE AND GRADIENTS(Xtrain, θ);
θ = θ − α∇J − γ∆ θprev;
∆θprev = α∇J ;

end

Algorithm 5: The core pseudocode for the “Heavy Ball” version of Steepest
Gradient Descent: BGD heavyball.

BGD bolddriver: Batch Gradient Descent using the Bold Driver heuristic
[Vogl et al. , 1988] to adapt the step size after each iteration. The idea is simple:
As long as we are far away from the local optimum we must take big steps in
order to approach it. Once we are close to it, we need to take smaller steps. But
how do we know we are close to the local minimum? A simple way to do this
— and the basis of the Bold Driver technique— is that we are close to a local
minimum when... we have just overshot it! How do we detect that we overshot
the minimum? Simply, the value of the objective function has increased since the
last iteration. So in this case, the learning rate proved to be too large to allow us
to converge to the local minimum and therefore we decrease it heavily to allow for
convergence in the next iterations. On the other hand, we can afford to slightly
increase the learning rate in each iteration that we keep detecting a decrease in
the value of the objective function based on the idea that “if we haven’t overshot
it, we are still far from it and need to move faster towards it”. Increasing the step
size in this case will allow us to get faster near the minimum, and if we overshoot
then decrease it considerably to eventually reach it. The fancy name of the algo-
rithm comes from its resemblance to the behaviour of a reckless driver that keeps
going faster and faster until there is sufficient indication that this is dangerous, in
which case they decrease the speed of the vehicle considerably and instantly. It is
a simple and effective strategy to adjust the weights, but perhaps a bad strategy
for driving. In Figure 3.3 we can see a visualization of the method. One way to
implement it is to compute at each iteration i the value of the objective function
on the training set J (i). If in iteration i the value of the objective function has
decreased compared to J (i−1), we increase the stepsize slightly, multiplying it by
a factor ρ > 1, typically around 1.1. If, on the other hand, the value of the objec-
tive function has increased compared to J (i−1), we decrease the stepsize severely,
multiplying it by a factor 0 < σ < 1, typically around 0.5. We could also use
other schemes (e.g. a linear one) to adapt the step size but our implementation
used this approach. The constants ρ and σ are additional hyperparameters. In
the next section we can see what values we actually used and how we selected
them (the above given are just a “rule of thumb” and we gave them just to point
out roughly how big the decrease and the increase in weights should be). The
pseudocode for this approach can be found in Algorithm 6.

Figure 3.3: An illustration of the Bold Driver Method. In this case the learning
rate is decreased considerably, hopefully allowing us to eventually reach the min-
imum. Steps shown in red indicate that the step size has been decreased, while
green ones indicate that it has been increased. The first step is taken using the
initial step size alpha.

Data: Xtrain, θinitial, α, ρ, σ
Result: θ
θ = θinitial; Jprev =∞ ;
while Termination Conditions Are Not Met do

[J,∇J] = COMPUTE OBJECTIVE AND GRADIENTS(Xtrain, θ);
θ = θ − α∇J ;
if J < Jprev then

α = α ρ;
else if J > Jprev then

α = ασ;
else

// Do Nothing...

end
Jprev = J ;

end

Algorithm 6: The core pseudocode for the “Bold Driver” version of Steepest
Gradient Descent: BGD bolddriver.

BGD rprop: This method is known as ‘Resilient Backpropagation or R-prop
[Riedmiller et al. , 1993]. Here we use a different step size for every parameter.
Furthermore, we adapt each step size individually. The idea is that if the sign
of a partial derivative has changed from last iteration, we have actually over-

34

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 35

shot the minimum in this dimension, as shown in Figure 3.4, so in this case we
should decrease the step size in order to converge to it in next iterations. On the
other hand if the sign of a partial derivative remains unchanged in consecutive
iterations, it means we have yet to overshoot the minimum in this dimension, so
increase the step size. In terms of implementation, we just keep track of (the sign
of) each partial derivative we calculated in the previous iteration, and if the sign
is the same in the current one, we multiply the step size of this parameter by a
factor ρ > 1. If the sign is different in the current one, we multiply the step size
of this parameter by a factor 0 < σ < 1. Typical values are for these constants
are ρ = 1.1 and σ = 0.5. These are additional hyperparameters of the method
and in the next section we can see what values we actually used and how we
selected them (the above given are again just a “rule of thumb” roughly showing
how big the decrease and the increase in weights should be). The pseudocode for
this version can be found in Algorithm 7.

Figure 3.4: An illustration of the basic idea behind the “Resilient Backpropaga-
tion” heuristic. The color of the arrows indicates the sign of the partial derivative
of the objective function wrt the parameter at the specific point. Green stands
for positive, red stands for negative. Once the sign changes we have overshot the
minimum.

Data: Xtrain, θinitial, α, ρ, σ
Result: θ
θ = θinitial; ∇Jprev = 0 ;
/* Now expand α into a vector of individual parameter stepsizes.

Initially all parameters have the same stepsize: */

αvec = α zeros(SIZE(θ));
while Termination Conditions Are Not Met do

[J,∇J] = COMPUTE OBJECTIVE AND GRADIENTS(Xtrain, θ);
// In the line below ◦ denotes element-wise multiplication:

θ = θ −α ◦∇J ;
for i = 1 : N do

if ∂J(θ)
∂θi
∗ (∂J(θ)

∂θi
)prev > 0 then

αi = αi ρ;

else if ∂J(θ)
∂θi
∗ (∂J(θ)

∂θi
)prev < 0 then

αi = αi σ;
else

// Do Nothing...

end

end
∇Jprev =∇J ;

end

Algorithm 7: The core pseudocode for the “Resilient Backpropagation” variant
of Steepest Gradient Descent: BGD rprop.

Generally, Batch Gradient Descent is outperformed by other methods. It is a
first order method so it needs more iterations to converge compared to second
and quasi-Newton methods and it is a batch method which renders it useless
in online settings and leaves it at a disadvantage in the task of optimizing non-
convex functions, compared to stochastic and mini-batch methods. Even for
convex objective functions there are more successful methods one can use such as
Conjugate Gradient [Hestenes et al. , 1952]. Perhaps only for very small datasets
and convex objectives should one pick Batch Gradient Descent.

The Heavy Ball heuristic can counter the zig-zagging behaviour, increasing the
speed of convergence of the Batch Gradient Descent in most cases. However this
method is still plagued by the problems we mentioned in the previous paragraph.
The Bold Driver and Resilient Backpropagation (R-prop) heuristics in practice
offer adaptive learning rates providing both speed and quality of solution benefits
and appear to work acceptably well even in non-convex settings. In fact, R-prop is
still widely used in the fields of Natural Language Processing [Huck et al. , 2010],
[Hahn et al. , 2011] and Speech Recognition [Zweig et al. , 2010], [Heigold et al. , 2009],
mainly due to its simplicity to implement.

36

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 37

Coordinate Descent

Coordinate Descent is technically a zeroth order method as it does not use the
gradient vector (although it can be implemented to use partial derivative at each
iteration, we do not compute the entire gradient or Hessian). Coordinate Descent
considers all but one parameters as constants in each iteration i and optimizes
the objective w.r.t the remaining one. So at each iteration J(θ) degenerates to
J(θi). We optimize in one direction at each iteration by performing a line search.
This approach can be used in stochastic, mini-batch learning, as well as batch
learning. Here we only considered the batch variant. In Figure 3.5 we can observe
an illustration of the method.

A way to implement the line search is similarly to Steepest Gradient Descent but
instead of the entire gradient ∇J at each iteration i we compute the first partial
derivative ∂J(θ)

∂θi
, i = 1, 2, ...N . After executing N iterations cycling through all

N parameters we have completed an epoch of the algorithm. We run as many
epochs as needed until the termination criteria are met. Line search by gradient
descent has the disadvantage that it needs us to set a step size and preferably a
different one for each parameter.

Another way to find the minimum in a single dimension is by use of New-
ton’s Method (more on the next subsection). Newton’s method is a second or-
der method and in higher dimensions it is computationally expensive, but on
just 1 dimension it degenerates into what we call an “inexpensive Newton” as

H =
[
∂2J(θ1)

∂θ21

]
, i.e. a scalar, therefore storing it in memory and inverting it is

“inexpensive”.

We can also perform the line search by direct search methods. We iteratively
divide the search space into intervals and then reject the interval that does not
contain the minimum. Here we shall not examine such a version but we mention
it for completeness.

Due to the coordinate steps the algorithm takes it can become very slow when
many parameters are involved. Especially if many of them are not that important
in the optimization procedure, we end up wasting time optimizing along them.
One of its biggest problems is that it can get stuck at a non-stationary point if
the objective function is non-smooth, as shown in Figure 3.6. One solution to
this problem could be to use the R-prop technique mentioned earlier (applicable
in a batch learning context only) to adjust the individual step sizes.

Coordinate Descent can also take other forms, for instance, instead of cycling
through the parameters each epoch we could simply pick a parameter at random
to optimize at each iteration. An interesting variant is the Randomized (Block)
Coordinate Descent Method [Nesterov, 2010], which extends the concept of up-
dating only one parameter at a time to updating blocks of parameters. Updating
the parameters in blocks can increase the speed of convergence by countering the
effects of the “coordinate movement” mentioned earlier. An important exten-
sion of this method would be finding suitable groups of parameters to update at

Figure 3.5: Three iterations of the Coordinate Descent method in a 2-dimensional
parameter space. On each iteration we move along one dimension of the param-
eter space.

Image adapted from Wikipedia:
http://en.wikipedia.org/wiki/File:Coordinate_descent.jpg

the same step, perhaps by examining similarities over time in the corresponding
partial derivatives. We might also consider heuristic approaches that allow us to
skip updating certain parameters, if for example we notice small change in them
during recent epochs. All these heuristics can help Coordinate Descent become
competitive to the other methods presented here.

Here we only examined the following basic versions of the method:

CD basicGD: The simple batch version of the method that cycles through the
parameters and updates them individually by performing gradient descent. The
pseudocode can be found in Algorithm 8.

CD basicNewton: The simple batch version of the method that cycles through
the parameters and updates them individually using an inexpensive Newton step
(a detailed description of Newton’s Method will follow shortly). The pseudocode

38

http://en.wikipedia.org/wiki/File:Coordinate_descent.jpg

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 39

Figure 3.6: An illustration on Coordinate Descent on a non-smooth function.
Here Coordinate Descent got trapped at a non-stationary point.

Image adapted from
Wikipedia:http://en.wikipedia.org/wiki/File:Nonsmooth.jpg

can be found in Algorithm 9.

Data: Xtrain, θinitial, α
Result: θ
θ = θinitial;
while Termination Conditions Are Not Met do

for i = 1 : N do
// Below, COMPUTE OBJECTIVE AND GRADIENTS(Xtrain, i) returns

only the i-th element of the gradient:[
J, ∂J(θ)

∂θi

]
= COMPUTE OBJECTIVE AND GRADIENTS(Xtrain, i);

θi = θi − α ∂J(θ)
∂θi

;

end

end

Algorithm 8: The core pseudocode for the simple batch version of Coor-
dinate Descent where the line search was performed using gradient descent:
CD basicGD.

http://en.wikipedia.org/wiki/File:Nonsmooth.jpg

Data: Xtrain, θinitial
Result: θ
θ = θinitial;
while Termination Conditions Are Not Met do

for i = 1 : N do
// Below, COMPUTE OBJECTIVE AND GRADIENTS(Xtrain, i) returns

only the i-th element of the gradient and

COMPUTE 2ND ORDER PART DER(Xtrain, i) computes the

second partial derivative of J(θ) wrt θi:[
J, ∂J(θ)

∂θi

]
= COMPUTE OBJECTIVE AND GRADIENTS(Xtrain, i);

∂J2(θ)

∂θi
2 = COMPUTE 2ND ORDER PART DER(Xtrain, i);

θi = θi −
(
∂J2(θ)

∂θi
2

)−1
∂J(θ)
∂θi

;

end

end

Algorithm 9: The core pseudocode for the simple batch version of Coordinate
Descent where the line search was performed using an inexpensive Newton’s step:
CD basicNewton.

Newton’s Method

Newton’s method (see [Murray, 2010] for a detailed review) is a second order
optimization method. Figure 3.7 shows how by utilizing curvature information
Newton’s method converges faster than gradient descent. We only implemented
Newton’s method for the logistic regression toy problem, just to showcase it. We
also used Newton’s method in CD basicNewton, but this was a trivial case. The
reason we did not use Newton’s method for training NADE is that in NADE’s
case the parameter space is too large, therefore computing the objective function’s
Hessian wrt the parameters would be computationally expensive.

At each iteration i, Newton’s method approximates J(θ) by a quadratic function
around θ(i−1), and then takes a step towards the maximum of the quadratic ap-
proximation. If J(θ) happens to be a quadratic function, then the exact minimum
is found in one step. For each step i > 1 we have

θ(i) = θ(i−1) −H(J(θ(i−1)))−1∇J(θ(i−1)). (3.3)

Usually we modify Newton’s method to include a small step size 0 < α < 1,

θ(i) = θ(i−1) − αH(J(θ(i−1)))−1∇J(θ(i−1)) , (3.4)

mainly to ensure convergence in the common case where J(θ) is not quadratic.
To get an intuition why Newton’s method works (and why it takes only one step
for a quadratic J(θ)), let us examine the case of a 1-dimensional parameter space.

40

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 41

The 2nd order Taylor approximation of J(θ) around θ(n) is

J(θ) ≈ J(θ(n)) + (θ − θ(n))∂J(θ(n))

∂θ
+

1

2!
(θ − θ(n))2 ∂J

2(θ(n))

∂θ2
. (3.5)

Differentiating both sides of Eq. (3.5) we get

∂J(θ)

∂θ
≈ ∂J(θ(n))

∂θ
+ (θ − θ(n))∂J

2(θ(n))

∂θ2
(3.6)

Since at the minimum θ(∗) we have ∂J(θ(∗))
∂θ

= 0, by setting θ = θ(∗) in Eq. (3.6)
and rearranging we get

θ(∗) ≈ θ(n) −
(
∂J2(θ(n))

∂θ2

)−1
∂J(θ)

∂θ(n)
. (3.7)

Note that a point where the gradient of a function is equal to zero is not neces-
sarily a minimum, but a stationary point (maximum, minimum or saddle point
in higher dimensions). In order for Newton’s method to converge to a minimum,
the Hessian needs to be positive definite (all its eigenvalues are positive). In case
it is not, the method converges to a saddle point. If J(θ) is a quadratic function,
then “≈” Eq. (3.5) becomes “=” and so does in the rest of the equations, thus
the single step convergence to θ(∗).

Limited-memory BFGS

The family of Quasi-Newton methods to mimic Newton’s Method, hence the term
“Quasi-Newton”. They use approximations of the Hessian based on gradient
and past update step information instead of the Hessian itself. By not explicitly
computing the Hessian, these methods are faster per iteration than pure Newton’s
method. We shall examine here a variation of the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) method, the Limited-memory BFGS (L-BFGS or LM-BFGS)
proposed in [Nocedal, 1980], which is a member of the Quasi-Newton family.

Standard BFGS, proposed independently in [Broyden, 1970], [Fletcher, 1970],
[Goldfarb, 1970] and [Shanno, 1970], stores a dense N × N approximation of
H , where N is the number of parameters. L-BFGS stores only a few vectors that
represent the approximation of H , hence its name. Also, while standard BFGS
computes the Hessian approximation at iteration k, H(k), using all past updates
i = 1, 2, ..., k−1, L-BFGS only uses the past m updates i = k−m, ..., k−1, where
m is a small number (usually less than 10). So L-BFGS keeps record of only the
vectors [θ(k−m), ...,θ(k−1)]T and [∇J(θ(k−m)), ...,∇J(θ(k−1))]T at iteration k.

In Algorithm 10, we give the pseudocode for the two loop recursion version of
L-BFGS [Nocedal, 1980]. The algorithm gets as input θ(k) and ∇J(θ(k)) and

Figure 3.7: A comparison of Newton’s Method(red) and gradient descent (green).
Newton’s method uses curvature information to take a more direct route (notice
the “closer contours” in its path which correspond to steeper descent towards the
minimum).

Image adapted from Wikipedia: http://en.wikipedia.org/wiki/File:
Newton_optimization_vs_grad_descent.svg

computes δθ(k) = θ(k+1) − θ(k) and δ∇J(θ(k)) = ∇J(θ(k+1)) −∇J(θ(k)) at
each iteration. Using these we define p(k) = 1

(δ∇J(θ(k)))T δθ(k)
. The algorithm also

requires an initialization of H(k) which we denote with H
(k)
0 . The output of the

algorithm is the search direction D(k) = −H(k) δ∇J(θ(k)) and we then perform
a line search in D(k). This concludes the k-th iteration of L-BFGS. We present
this algorithm for completeness. We did not implement L-BFGS, but we did use

42

http://en.wikipedia.org/wiki/File:Newton_optimization_vs_grad_descent.svg
http://en.wikipedia.org/wiki/File:Newton_optimization_vs_grad_descent.svg

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 43

the implementation included in Mark Schmidt’s minfunc() in our experiments.

Data: θ(k),∇J(θ(k)),H
(k)
0

Result: D(k)

q =∇J(θ(k));
for i=(k-1):-1:(k-m) do

α(i) = p(i) (δθ(i))Tq;

q = q −α(i) δ∇J(θ(i));

end

D(k) = H
(k)
0 q;

for i=(k-m):(k-1) do

β(i) = p(i) (δ∇J(θ(i)))TD(k);

D(k) = D(k) + δθ(i)(α(i) − β(i));

end

D(k) = −D(k);

Algorithm 10: The general pseudocode for the two loop recursion version of
LBFGS.

L-BFGS is among the most popular general purpose optimization algorithms.
Comparative studies to SGD, like the one in [Le et al. , 2011], show that it can
outperform the latter even in large scale non-convex machine learning problems.

Dynamically Increasing Batch Methods

Finally, we explored the idea of executing batch methods starting with a small
subset of the data of size T ′ � T as the initial batch and then dynamically
increasing the batch size once there is sufficient evidence that an increase is
necessary. This technique was proposed by [Boyles et al. , 2011] where it was
applied to Coordinate Descent. However the same principle can be applied to any
batch method. The criterion that we use in order to decide whether to include
more datapoints is the reliability of the computed updates (thus, the reliability
of the sign for each computed partial derivative of the gradient). We measure
how reliable a computed partial derivative’s sign is by performing a statistical
test that takes into account how probable it is that the actual sign is not the one
we calculated. More precisely, if we have estimated ∂J(θ)

∂θi
> 0 then θi passes the

test if,

Pr

[
∂J(θ)

∂θi
≤ 0

]
= Ψ

−µ ∂J(θ)
∂θi

σ ∂J(θ)
∂θi

 < ε, (3.8)

and gets updated. Conversely if we have estimated a negative (mean) partial

derivative ∂J(θ)
∂θi

< 0 then θi passes the test and gets updated if,

Pr

[
∂J(θ)

∂θi
≥ 0

]
= 1−Ψ

−µ ∂J(θ)
∂θi

σ ∂J(θ)
∂θi

 < ε. (3.9)

We do this for all i = 1, 2, ...N on every iteration. We only update the parameters
that pass the statistical test. If all parameters fail the statistical test, then we
need to increase the batch size, so as to increase the variance of the sample
partial derivatives, using a rule such as: T ′ = dT ′ ∗Me, M ∈ R+. We used a
fixed value of M = 2 in our implementation. As for the initial batch size value we
used T ′ = 5×T

100
for all datasets. Once all parameters fail their respective partial

derivatives’ tests with T ′ = T , we terminate the algorithm.

In order for a parameter’s (mean) partial derivative to be reliable, we need its
absolute value to be large (i.e. to lie far from zero) and its variance to be small.
The constant 0 ≤ ε ≤ 0.5 is an additional hyperparameter of the algorithm that
needs to be adjusted accordingly to optimize performance (see section 4.5 for
more on this subject).

The potential benefits of such an implementation are numerous. First of all,
by starting with a very small batch we add some stochasticity to the optimizer
which could allow it escape local optima early on, much like a stochastic or mini-
batch method would do. On the other hand, by the end of the execution we
will be running a full batch method, so we asymptotically have the same conver-
gence properties as with batch methods which are better understood compared
to stochastic ones. In fact, it can even speed up convergence, since far from the
minimum, we need less precision to determine the parameter update than closer
to it and this technique takes advantage of it. We only increase the batch size
once the ability of the current batch to provide us with statistically reliable up-
dates is exhausted. Once the current batch cannot offer us reliable updates any
more, continuing to train on it not only is a waste of time, but can even lead to
overfitting. This technique therefore also helps prevent overfitting. As an added
bonus, the statistical test provides us with a natural stopping criterion. As a re-
sult, there is no further need to use other termination conditions and overfitting
safeguards like early stopping (see section 4.5 for details).

However, our results on the task of training the NADE model showed that some
of these findings do not carry on to non-convex optimization tasks. It should
be noted that in [Boyles et al. , 2011] the authors tested the technique on convex
objective functions that included a regularization sub-objective. Thus, possible
explanations for the poor performance in our case include the fact that the ob-
jective function is convex and the lack of any sort of regularization on our part.
L1 -Regularization makes the objective non-smooth and non-differentiable for any
θi = 0 so perhaps this was a reason the authors used a derivative-free method
like Coordinate Descent in the first place.

For these methods we need the vector of the standard deviations of the partial
derivatives,

44

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 45

σ∇J(θ) =

[
σ ∂J(θ)

∂θi

]
, i = 1, 2, ...N, (3.10)

as well, as its mean,

µ∇J(θ) =

[
µ ∂J(θ)

∂θi

]
, i = 1, 2, ...N. (3.11)

So we modified COMPUTE OBJECTIVE AND GRADIENT() to also output
the standard deviation. We aptly named the new version of the function COM-
PUTE OBJ AND GRAD MEAN AND STDEV(), making a big unimaginative
name more of both. It can be seen in Algorithm 11. We remind here that both
the mean and the standard deviation are taken over the partial derivatives com-
puted for each instance of the batch and that ∇J(θ) = µ∇J(θ) for our versions
of the batch method.

Data: Xtrain, θ(0)

Result: J(θ(0)),∇J(θ(0)),σ∇J(θ(0))

T ′ = SIZE(Xtrain, ROWS);

// Below, OBJFUNCEVAL(Xtrain(t, ∗), θ(0)) and

COMPUTEGRAD(Xtrain(t, ∗), θ(0)) simply compute J (t)(θ(0)) and

∇J (t)(θ(0)) respectively and their implementations differ from

model to model:

J(θ(0)) = 1
T ′

∑T ′

t=1 OBJFUNCEVAL(Xtrain(t, ∗), θ(0));

∇J(θ(0)) = 1
T ′

∑T ′

t=1COMPUTEGRAD(Xtrain(t, ∗), θ(0));

σ∇J(θ(0)) =√
1

T ′−1
∑T ′

t=1(∇J(θ(0))− COMPUTEGRAD(Xtrain(t, ∗),θ(0)))2;

Algorithm 11: The general pseudocode for the algorithm that computes the
value of the objective function and its mean gradient with respect to the pa-
rameters, as well as a vector with the standard deviation of its of its elements:
COMPUTE OBJ AND GRAD MEAN AND STDEV().

The variants of dynamically increasing batch methods we examine here are the
following:

DIBGD basic: Runs the simple version of Batch Gradient Descent with a dy-
namically increasing batch size. The pseudocode can be found in Algorithm 12.

Data: Xtrain, θinitial, ε
Result: θ
θ = θinitial; terminate = 0; grow batch = 0; pass = ZEROS(SIZE(θ));
T = SIZE(Xtrain, ROWS);
T ′ = d0.05T e;
Batch = Xtrain(1:T ′,∗) while terminate == 0 do

if grow batch == 1 then
T ′ = 2T ′;
Batch = Xtrain(1:T ′,∗);
if T ′ > T then

Batch = Xtrain(1:T,∗)
end

end[
J, ∂J(θ)

∂θi
, σ ∂J(θ)

∂θi

]
=

COMPUTE OBJ AND GRAD MEAN AND STDEV(Batch, θ);
for i=1:N do

if ∂J(θ)
∂θi

> 0 then

if Ψ

(
− ∂J(θ)

∂θi

σ ∂J(θ)
∂θi

)
< ε then

pass(i) = 1;
end

end

if ∂J(θ)
∂θi

< 0 then

if 1−Ψ

(
− ∂J(θ)

∂θi

σ ∂J(θ)
∂θi

)
< ε then

pass(i) = 1;
end

end

end
// In the line below ◦ denotes element-wise multiplication,

i.e. update only the parameters that passed their

corresponding test :

θ = θ − α∇J ◦ pass;
if pass == 0 then

grow batch = 1;
if T ′ == T then

terminate = 1;
end

end
pass = ZEROS(SIZE(θ));

end

Algorithm 12: The general pseudocode for Steepest Gradient Descent with
the dynamically increasing batch size technique described in this section:
DIBGD basic. 46

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 47

3.7 Stochastic Methods

We will only examine Stochastic Gradient Descent and some of its variants in
this work. There also exist higher order stochastic methods. A simple version of
one is to apply a form of Newton Method to one training instance per iteration.
Taking this idea a step further we can instead approximate the inverse Hessian
and use a Quasi- Newton version of SGD [Bordes et al. , 2009]. Most of these
however, are complicated, cost more per iteration than simple SGD and it is more
difficult to study their convergence properties. Furthermore, what studies have
been made [Bordes et al. , 2009], [Bottou et al. , 2007], point out that at least
in the context of training machine learning algorithms, whatever computational
benefits are gained are constant and a result of many orthogonal tricks applied
to the methods.

Stochastic Gradient Descent

Stochastic Gradient Descent is a first order stochastic optimization method. It
can be simply viewed as performing Gradient Descent on only one instance of
the training set on each iteration. We can randomly pick an instance on every
iteration, or cycle through all T instances within one epoch and run the algorithm
for a number of epochs. We chose the second option in our implementation.

Despite its apparent simplicity, in practice SGD and its variants has been very suc-
cessful for large scale optimization problems, especially in the case of non-convex
objectives. Their success, combined with the aforementioned simplicity, has made
it the method of choice for many practitioners in large scale and/or non-convex op-
timization problems in machine learning [Bottou et al. , 2004], [Bottou et al. , 2007],
[Bengio, 2012], [Vishwanathan et al. , 2006].

The variants we examine here are the following:

SGD basic: The simple version of the method we discussed above. The pseu-
docode can be found in Algorithm 13.

Data: Xtrain, θinitial, α
Result: θ
θ = θinitial;
while Termination Conditions Are Not Met do

for t = 1 : T do
[J,∇J] = COMPUTE OBJECTIVE AND GRADIENTS(Xtrain(t, ∗),
θ);
θ = θ − α∇J ;

end

end

Algorithm 13: The core pseudocode for the simple version of Stochastic Gradi-
ent Descent: SGD basic.

SGD heavyball: The “Heavy Ball” version of the method we discussed above.
The reasoning behind this heuristic in the SGD setting is to try to moderate the
stochastic behaviour of the algorithm by adding contributions from the previous
steps to each update. The pseudocode can be found in Algorithm 14.

Data: Xtrain, θinitial, α, γ
Result: θ
θ = θinitial; ∆θprev = 0;
while Termination Conditions Are Not Met do

for t = 1 : T do
[J,∇J] = COMPUTE OBJECTIVE AND GRADIENTS(Xtrain(t, ∗),
θ);
θ = θ − α∇J − γ∆ θprev;
∆θprev = α∇J ;

end

end

Algorithm 14: The core pseudocode for the “Heavy Ball” version of Stochastic
Gradient Descent: SGD heavyball.

ASGD basic: A basic version of the Averaged Stochastic Gradient Descent.
Here we use the averaged gradient over all instances visited instead of the gradient
of just current instance to compute each step. Again, the idea is to incorporate
information from all previous partial derivatives on each step, so as to moderate
the stochasticity of SGD. The pseudocode can be found in Algorithm 15.

Data: Xtrain, θinitial, α
Result: θ
θ = θinitial; Tpassed = 0;
while Termination Conditions Are Not Met do

for t = 1 : T do
Tpassed = ++;
[J,∇J] = COMPUTE OBJECTIVE AND GRADIENTS(Xtrain(t, ∗),
θ);

µ∇J =
µ∇J (Tpassed−1)+∇J

Tpassed
;

θ = θ − αµ∇J ;

end

end

Algorithm 15: The core pseudocode for the simple version of Averaged Stochas-
tic Gradient Descent: ASGD basic.

IAGD basic: A basic version of the Iterate Averaging Stochastic Gradient
Descent. Yet another approach for decreasing the stochasticity of the method.
We do this by incorporating information from all previous updates on each step

48

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 49

The pseudocode can be found in Algorithm 16.

Data: Xtrain, θinitial, α
Result: θ
θ = θinitial; Tpassed = 0;
while Termination Conditions Are Not Met do

for t = 1 : T do
Tpassed = ++;
[J,∇J] = COMPUTE OBJECTIVE AND GRADIENTS(Xtrain(t, ∗),
θ);

µ∆θ =
µ∆θ(Tpassed−1)+α∇J

Tpassed
;

θ = θ − µ∆θ;

end

end

Algorithm 16: The core pseudocode for the simple version of Iterate Averaging
Gradient Descent: IAGD basic.

All variants we examine are based on the same premise of decreasing stochasticity
by keeping a memory of past updates or partial derivatives. The idea of speed-
ing up the convergence of stochastic algorithms via averaging is largely inspired
by [Polyak et al. , 1992]. Of the methods above, the most successful is ASGD.
Evidence for its benefits over SGD (and as an optimization technique in general)
can be found in [Le Roux et al. , 2012] and [Xu, 2012].

3.8 Mini-Batch Methods

Mini-Batch Gradient Descent

We also included in our experiments some variations of Mini-Batch Gradient
Descent. Mini-Batch Gradient Descent, can be thought of as the generalization
of Batch Gradient Descent and Stochastic Gradient Descent. Instead of utilizing
all T instances of the dataset (as we do in Batch Gradient Descent) or just 1
instance (as we do in Batch Gradient Descent) in order to make an update, we
use 1 ≤ Tbatch ≤ T . Obviously for Tbatch = T Mini-Batch Gradient Descent
degenerates into Batch Gradient Descent and for Tbatch = 1 it degenerates into
Stochastic Gradient Descent.

The basic procedure is as follows: We split the dataset into B minibatches of
size Tbatch. We then cycle through the minibatches, training our model on each
one of them using Batch Gradient Descent and updating its parameters. In our
implementation after each epoch (each pass through all the minibatches) we re-
shuffle the dataset. We continue executing entire epochs until the termination
criteria are met (for more details, consult the end of this section).

The variants we examine here are the following:

MBGD basic: The simple version of the method we discussed above. The
pseudocode can be found in Algorithm 17.

Data: Xtrain, θinitial, α
Result: θ
θ = θinitial;
while Termination Conditions Are Not Met do
Xtrain = SHUFFLE(Xtrain, ROWS);
for b = 1 : B do
Batch = Xtrain(((b− 1) ∗ Tbatch + 1) : (b ∗ Tbatch), ∗);
[J,∇J] = COMPUTE OBJECTIVE AND GRADIENTS(Batch, θ);
θ = θ − α∇J ;

end

end

Algorithm 17: The core pseudocode for the simple version of Mini-batch Gra-
dient Descent: MBGD basic.

MBGD heavyball: Mini-Batch Gradient Descent using the “Heavy Ball” heuris-
tic we presented in Subsection 3.6. We just keep track of the previous step of
each parameter and add a contribution of it (i.e. previous step multiplied by the
momentum constant) to the new one. The pseudocode for this version can be
found in Algorithm 18.

Data: Xtrain, θinitial, α, γ
Result: θ
θ = θinitial;
while Termination Conditions Are Not Met do
Xtrain = SHUFFLE(Xtrain, ROWS);
for b = 1 : B do
Batch = Xtrain(((b− 1) ∗ Tbatch + 1) : (b ∗ Tbatch), ∗);
[J,∇J] = COMPUTE OBJECTIVE AND GRADIENTS(Batch, θ);
θ = θ − α∇J − γ∆ θprev;
∆θprev = α∇J ;

end

end

Algorithm 18: The core pseudocode for the “Heavy Ball” version of Mini-batch
Gradient Descent: MBGD heavyball.

MBGD bolddriver: Mini-Batch Gradient Descent using a version of the “Bold
Driver” heuristic we presented in Subsection 3.6. We evaluate at each epoch n
for each minibatch b = 1, ..., B the value of the objective function on the training
set J(θ;n, b). If in epoch n the value of the objective function has decreased
compared to J(θ;n − 1, b), we increase the stepsize slightly, multiplying it by a
factor ρ > 1, typically around 1.1. If, on the other hand, the value of the objective
function has increased compared to J(θ;n−1, b), we decrease the stepsize severely,
multiplying it by a factor 0 < σ < 1, typically around 0.5. It should be noted

50

CHAPTER 3. OPTIMIZATION METHODS EXAMINED 51

that in this version we don’t shuffle the dataset at the beginning of each epoch.
This is important, because otherwise direct comparison of the value of the error
function on the same minibatch in two consecutive epochs would be impossible.
Instead, we only do it once, in the beginning of the execution. The pseudocode
for this approach can be found in Algorithm 19.

Data: Xtrain, θinitial, α, ρ, σ
Result: θ
θ = θinitial; J(θ; b)prev =∞, for b = 1, 2, ..., B; e = 0 ;
Xtrain = SHUFFLE(Xtrain, ROWS);
while Termination Conditions Are Not Met do

e++;
for b = 1 : B do

[J(θ; b),∇J(θ; b)] =
COMPUTE OBJECTIVE AND GRADIENTS(Xtrain, θ);
θ = θ − α∇J(θ; b);
if J(θ; b) < J(θ; b)prev then

α = α ρ;
else if J(θ; b) > J(θ; b)prev then

α = ασ;
else

// Do Nothing...

end
J(θ; b)prev = J(θ; b);

end

end

Algorithm 19: The core pseudocode for the “Bold Driver” version of Mini-batch
Gradient Descent: MBGD bolddriver.

Chapter 4

Hyperparameter Selection

In the previous section we presented the methods we used in order to optimize the
parameters of the model we were working with. However, all these methods have,
in turn, parameters of their own, also known as hyperparameters, the choice of
which can greatly impact their performance both in terms of speed of convergence
and in terms of the quality of the resulting solution. But how do we choose the
values of these hyperparameters? After all this is a new optimization problem in
its own right. Certainly applying similar techniques to the ones discussed seems
too costly. Also, the new optimization problem poses new challenges as some
hyperparameters assume values not in R but in subsets of it e.g. in Z or in some
cases we have constraints involving the hyperparameter values, so such techniques
cannot even be used. Thus, we should seek other alternatives for hyperparameter
optimization.

So at this point we have to make some choices: Which hyperparameters should
we fix and at which values? Which ones should we try to optimize? What
search space should we explore and using what optimization technique? How
should we evaluate our choices for these hyperparameters? How much of our
resources should we allocate for this procedure? In this section we will discuss
these choices, as well as the reasons behind each one of these backing them up with
theoretical arguments or experimental results wherever appropriate. Main sources
of inspiration include [Hinton, 2010], [LeCun et al. , 1998] and [Bengio, 2012].

4.1 Step Size

A hyperparameter that is common to all the methods examined is the step size
α. A large step size can result to failure of the method to converge or even lead
to divergence. A small step size can lead to very slow convergence. So we need to
find a step size that balances between these cases. Although there are techniques
that allow us to select the (locally) optimal step size on every iteration (e.g. by
performing a line search). In the case of a quadratic objective function, the ideal
step size (i.e. individual step size for each partial derivative) would be the inverse

52

CHAPTER 4. HYPERPARAMETER SELECTION 53

of the Hessian of the objective wrt the parameters H−1, as demonstrated by Eq.
(3.7). It would allow us to reach the optimum in a single step. If our objective
function is an approximation of a quadratic (every function is quadratic in a small
enough region) we can still use this technique, however, it requires the expensive
computation of the Hessian (or an approximation of it) and in practice more than
one step.

A simpler and less time consuming common practice to setting the step size is
to start with a relatively big value and let it decrease. The idea is that initially,
we are likely to be far from a local minimum, so we have much ground to cover
towards reaching it, there is no big danger of overshooting it and thus a large
step size is beneficial as it allows us to get close to the minimum in relatively
few steps. As the optimization progresses and we get closer and closer to the
minimum, however, we should decrease the step size to avoid overshooting it.
This approach has the benefits we mentioned over optimizing the step size on
every iteration, but can yield poor convergence.

So how do we decide the initial value of the step size? And how should we set
its decrease schedule? We will start by answering the second question first. It
has been shown [Robbins et al. , 1951] that if we use a step size sequence {α(n)}
such that

∞∑
n=1

α(n) =∞ (4.1)

and

∞∑
n=1

α2(n) <∞ (4.2)

then {θ(n)} will converge.

In our implementation we chose the following schedule [Bengio, 2012], an illus-
tration of which is shown in Figure 4.1:

α(n) =
α0C

max{C, n}
(4.3)

The idea is to keep the step size constant for C iterations and then decrease it
inverse proportionately to the number of iterations.

So now we only need to set two hyperparameters: α0 and C. The most common
way to set these hyperparameters is to do a grid search on the 2-D hyperparameter
space. In other words, we try a number of discrete combinations of values for the
two parameters in a subset of the parameter space, since searching for continuous
values would be hopeless. As to what values we should include in the set, for α0

it makes more sense to use a logarithmic grid e.g. {0.01, 0.1, 1, 10, 100} in order

Figure 4.1: An illustration of the learning rate decrease as training progresses
Here we chose a starting value of 0.01 and a value of 400 for C. We run the
optimizer for 2000 iterations. As we can see, the step size remains constant for
the first 400 iterations and then decreases proportionately to the inverse of n.

to capture the order of magnitude of the scaling that needs to be applied by the
step size. Once we do that we can choose to adjust it more finely but here we
chose not to further optimize it.

In our implementation we searched within {5, 0.5, 0.05, 0.005, 0.0005} for α0. As
for C, for batch methods we searched within {0, 10, 25, 50, 80} × MAX ITERS

100
. So

we keep the step size constant until 0%, 10%, 25%, 50%, 80% of the maximum
iterations allowed have passed and then start decreasing it. So we range from
starting to decrease the learning rate right away (for option 0) to not decreas-
ing (almost) throughout the execution of the algorithm (most do not run for all
MAX ITERS terations). For stochastic methods we use a similar scheme, but
modify it a bit to start the decrease after a discrete number of epochs has passed,
mainly for aesthetic reasons: {0, 10, 25, 50, 80} × MAX EPOCHS×T

100
. We act simi-

larly for minibatch methods searching within {0, 10, 25, 50, 80}×MAX EPOCHS×B
100

.
We still update the step size on every iteration in both of these cases.

In case we have a tie of two or more parameter configurations (more on how we
evaluate them in subsection 4.7), we resolve it by picking the one with the largest
α0 and the smallest C, on the grounds that these will lead to faster convergence.
Further ties, e.g. (α0(i), C(i)) = (0.1, 1000) versus (α0(j), C(j)) = (1, 100) were
resolved by randomly selecting one configuration with equal probability. We
mention this for completeness, although such a situation never actually arose in
practice.

Here we should mention that there is also the problem of not terminating due

54

CHAPTER 4. HYPERPARAMETER SELECTION 55

to the updates becoming too small and decreasing without actually becoming
equal to zero. As we get closer and closer to a local minimum in a dimension
of the parameter space, the partial derivative of the objective function w.r.t.
that parameter will tend towards zero. We also haven’t mentioned a way to
explicitly set the learning rate to zero. So the updates might end up getting
smaller and smaller at each iteration but never actually reaching a zero value
as this “slowing down” prevents us from reaching the minimum (so ∂J(θ)

∂θi
6= 0).

We also never necessarily terminate (more precisely, we always terminate due to
MAX ITERS or MAX EPOCHS criteria), since a decrease on the value of the
objective function, albeit a minute one will occur, because (α(n) 6= 0). This
prevents early stopping from activating (for a detailed explanation see 4.6. We
avoid the problem of non-termination by forcing any step size less than 10−8 to
become zero. Hopefully the values selected for α(0), C will not let this occur
often.

4.2 Adaptive and Individual Step Sizes

Another idea for adjusting the step size is to use of adaptive step sizes. This is the
basis of heuristics such as Bold Driver and R-prop we described in the previous
section. Here, as we saw we have two more hyperparameters to handle: ρ > 1
(so as to increase the learning rate when it multiplies it) and 0 < σ < 1 (so as
to decrease the learning rate when it multiplies it). We want the increase to be
small and the decrease to be considerable. Initially we also included these hyper-
parameters on the grid search performed, searching in {1.3, 1.2, 1.1, 1.01, 1.001}
for σ and in {0.5, 0.6, 0.7, 0.8, 0.9} for ρ. In case of ties we favoured bigger values
for ρ and smaller for σ to encourage faster convergence. However, we ended up
choosing to use the fixed values of ρ = 1.01 and σ = 0.6. The reason was that
these were the choices of the hyperparameter selection algorithm in most cases
anyway and adding two more dimensions in our grid search would make compu-
tation time too much to bear, as it would raise the number of dimensions to 4 or
even 5.

Unless explicitly stated otherwise (i.e. in all cases except for methods using the
R-prop heuristic), each parameter uses the same stepsize. And even in R-prop,
we used the same global initial step size value for all parameters. These choices
were made mainly to keep the total number of hyperparameters involved small
(up to 3) so that the combinatorial search could be performed without adding a
substantial overhead to the entire process. Individual learning rates, individual
initializations, even individual update schemes for the learning rates are all con-
ceivable options, however. We can even opt for treating the parameters as blocks
(e.g. different learning rates for the biases and different for the weights). For the
same computational cost-related reasons we only included 5 values as options for
each hyperparameter.

4.3 Momentum

In applications of the Heavy Ball heuristic, the momentum term γ is another
hyperparameter of the method. We could choose a sequence of momentum values
{γ(n)}, i.e. a different one for each iteration n, using an update scheme for γ in
a similar fashion we did for the step size α. However this would involve extra
hyperparameters, so we opted for a fixed momentum term as most practitioners
do. We searched a logarithmic grid on this hyparameter dimension to select the
most appropriate value, as well, in particular {1, 0.1, 0.01, 0.001, 0.0001}. For
MBGD basic, in the final version of our algorithm, we have a fixed γ = 0.01 to
keep the total number of free hyperparameters small.

4.4 Batch Size

In minibatch methods the size of the minibatches is another hyperparameter of the
algorithm. For Tbatch = T we get a batch method and for Tbatch = 1 a stochastic
method so its choice can greatly affect the performance of the algorithm. The
values we selected the batch size from were {2, 4, 5, 8, 10} × T

100
. As one can see

we focused on relatively small values for Tbatch compared to T , as we want to lean
more towards a “stochastic but with more instances per iteration than actual
SGD” approach that would enable us to take advantage of the stochasticity of
the updates of SGD but moderate it and allow for vectorization to keep the cost
per iteration low.

4.5 Epsilon in Statistical Tests

In the Dynamically Increasing Batch Size approaches the probability 0 ≤ ε ≤ 0.5,
is another hyperparameter. It is the cutoff below which the probability that the
computed sign of a partial derivative is not the one we calculated is considered
not statistically significant and the statistical test passes, thus we accept the
update. If the probability that the sign is not the one we predicted exceeds ε,
then we consider it statistically significant and the test fails, thus we do not
accept the update. For ε = 0 we end up never passing a statistical test, thus
never accepting an update while for ε = 0.5 we end up never failing a statistical
test, therefore always accepting the parameter updates and never terminating (or
increasing the initial batch size for that matter). Obviously both of these extreme
cases would lead to completely useless optimizers, so we avoided them. We also
selected ε from a grid of values, in particular from {0.05, 0.1, 0.2, 0.3, 0.4} during
the hyperparameter selection step.

56

CHAPTER 4. HYPERPARAMETER SELECTION 57

4.6 Termination Criteria and Overfitting Con-

trol

We must specify under what conditions the optimization procedure should termi-
nate. In Dynamically Increasing Batch Size methods, a statistical test provided
us with a natural stopping criterion which also safeguarded against overfitting, so
in these cases, no further termination condition needed to be specified. However,
just to make sure that the optimizer wouldn’t get stuck in some extreme cases
where the parameters would take a very long time to all fail their respective tests
we imposed a slightly stricter condition: if the number of parameters that fail
the test does not change for MAX ITER SINCE MOST FAILED iterations on
the entire dataset, then terminate.

For all other methods we needed to impose some other types of termination
criteria. One shared across all methods is the maximum iterations allowed. If a
batch method has run for MAX ITERS iterations or a stochastic (or minibatch)
method has run for MAX EPOCHS epochs, then it should terminate. Again,
this criterion is more of a safeguard against infinite execution than a refined
termination condition. In our implementation we used MAX ITERS = 400 or
MAX EPOCHS = 400 for all methods examined.

The most meaningful termination method we used in every method implemented
except for the Dynamically Increasing Batch Size methods we discussed above (
i.e. all save for L-BFGS for which we used the pre-existing minfunc() implemen-
tation) was early stopping. At this point we should remember that our actual
goal is not optimization in its own right, but learning. And as we know learning
implies generalization. Our aim therefore is not to minimize the training error,
but the generalization error. In other words, our goal is not to find the parameter
values that minimize the value of the objective function on the training set, but
the expected loss on an unseen test set.

We use the value of the objective function on the validation set in order to estimate
this generalization error. We keep track of the current best solution and stop
training once we detect no improvement on the value of the objective function on
the validation set over the current best solution for MAX ITERS SINCE BEST
iterations (or MAX EPOCHS SINCE BEST epochs where applicable). From this
point on, further training would lead to a decrease in training error at the cost
of generalization, in other words, in overfitting. In Algorithms 20 and 21 we
can find two slightly different implementations of early stopping. The first one
was used for batch methods with MAX ITERS SINCE BEST = 5 and the second
one for stochastc methods with MAX EPOCHS SINCE BEST = 5 and minibatch
methods for MAX EPOCHS SINCE BEST = 5. The vector υ is the vector of
hyperparameters of the specific optimizer used.

Other possible termination criteria we can use include the following:

(i) Terminate if the parameters do not change substantially. In this scenario,
we need to define ‘substantially’ which might turn out to be tricky since we

can’t guarantee that the effect of small changes in a parameter doesn’t bear
significant changes in the objective function. The surface of the objective
function can vary in steepness from dimension to dimension, so our definition
of ‘substantially’ should be different for each parameter to accommodate
that.

(ii) Terminate if the value of the objective function does not improve substan-
tially. In this case we also need to define ‘substantially’ but this task can be
more obvious, since the value of the objective function is what we are actu-
ally trying to minimize. We can set a tolerance constant of e.g. TOL = 10−3

and if |Jtrain(i)−Jtrain(i−1)
Jtrain(i)

| < TOL then we terminate. In L-BFGS runs we
used this exact criterion. The value of TOL would ideally have to be dif-
ferent for each problem (dataset) and we could have even compared it to

|Jvalid(i)−Jvalid(i−1)
Jvalid(i)

| instead, for a ‘stricter’ version of early stopping. We did
not do so, however.

Data: Xtrain, Xvalid, θinitial,υ, MAX ITERS, MAX ITERS SINCE BEST
Result: θbest
θ = θinitial; Jbest =∞; i = 1; terminate = 0; itersSinceBest = 0;
while i < MAX ITERS AND terminate == 0 do
θnew = BATCH OPTIMIZER(Xtrain, θ,υ);
J(θnew) = OBJFUNCEVAL(Xvalid, θnew);
if J(θnew)<Jbest then
θbest = θnew;
Jbest = J(θnew);

else
itersSinceBest++;
if itersSinceBest == MAX ITERS SINCE BEST then

terminate =1;
end

end
i++;

end

Algorithm 20: Early stopping incorporated into a batch optimization method.

58

CHAPTER 4. HYPERPARAMETER SELECTION 59

Data: Xtrain, Xvalid, θinitial,υ, MAX EPOCHS,
MAX EPOCHS SINCE BEST

Result: θbest
θ = θinitial; Jbest =∞; i = 1; terminate = 0; epochsSinceBest = 0;
while i < MAX EPOCHS AND terminate == 0 do
θnew = RUN OPTIMIZER FOR ONE EPOCH(Xtrain, θ,υ);
J(θnew;V alidation) = OBJFUNCEVAL(Xvalid, θnew);
if J(θnew)<Jbest then
θbest = θnew;
Jbest = J(θnew);

else
epochsSinceBest++;
if epochsSinceBest == MAX EPOCHS SINCE BEST then

terminate =1;
end

end
i++;

end

Algorithm 21: Early stopping incorporated into a mini-batch or a stochas-
tic optimization method. The only difference here is that we check for early
stopping after an entire epoch has passed instead of after every iteration.
RUN OPTIMIZER FOR ONE EPOCH() runs an optimization method for an
entire epoch and returns the values of parameters after the end of the last itera-
tion of the epoch.

4.7 Evaluation

Finally, let us discuss now how we actually evaluated our choices for the hyper-
parameters in order to select the most appropriate values. Run the optimization
algorithm for each hyperparameter configuration using the entire training set
and choosing the one that produces the smallest value of the objective function
would be far too costly computationally. For up to 3 free hyperparameters and 5
choices per each we would end up running each method on the entire dataset up
to 35 = 125 times. Instead, we randomly selected a small amount of each train-
ing set, in particular 10% on which to train for each of these configurations for a
small number (20) of iterations or epochs (wherever applicable). We used early
stopping with a stricter condition (MAX ITERS SINCE BEST = 2 for batch
methods, MAX EPOCHS SINCE BEST = 2 for minibatch and stochastic ones)
than in the actual optimization procedure to allow us to drop quickly bad hyper-
parameter choices and not waste time on them. We end up running each method
125 more times but (i) we do so using the 1

10
-th of the data, (ii) we run for far

fewer iterations, (iii) we are more strict in the early stopping condition. As a
result the computational cost is far smaller.

Selecting hyperparameters based only on the value of the objective function on
the training set will lead to overfitting. Instead of using the training set for
both training and hyperparameter selection, we should use a different set for the
second task. So we evaluated for each hyperparameter configuration the value
of the objective function on the validation set after training and selected the
configuration that produced the smallest one among them as the one to use in
the actual optimization procedure.

Table 4.1: The free hyperparameters of each method and their range of values in
the grid search, as well as those we fixed to specific values after experimentation.

Method Free Hyperparameters Fixed Hyperparameters

BGD basic α ∈ {5, 0.5, 0.05, 0.005, 0.0005} -
BGD heavyball α ∈ {5, 0.5, 0.05, 0.005, 0.0005}, -

γ ∈ {1, 0.1, 0.01, 0.001, 0.0001},
BGD bolddriver α ∈ {5, 0.5, 0.05, 0.005, 0.0005}, -

ρ ∈ {1.3, 1.2, 1.1, 1.01, 1.001},
σ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}

BGD rprop α0
(i) ∈ {5, 0.5, 0.05, 0.005, 0.0005},

with α0
(i) = α0

(j) ∀i, j,
ρ ∈ {1.3, 1.2, 1.1, 1.01, 1.001}, -
σ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}

CD basicGD α0 ∈ {5, 0.5, 0.05, 0.005, 0.0005} -
L-BFGS - (used default

minfunc() options)
DIBGD basic α ∈ {5, 0.5, 0.05, 0.005, 0.0005}, -

ε ∈ {0.05, 0.1, 0.2, 0.3, 0.4}
SGD basic α0 ∈ {5, 0.5, 0.05, 0.005, 0.0005}, -

C ∈ {0, 10, 25, 50, 80} × MAX EPOCHS×T
100

SGD heavyball α0 ∈ {5, 0.5, 0.05, 0.005, 0.0005},
C ∈ {0, 10, 25, 50, 80} × MAX EPOCHS×T

100 , -
γ ∈ {1, 0.1, 0.01, 0.001, 0.0001}

ASGD basic α0 ∈ {5, 0.5, 0.05, 0.005, 0.0005}, -
C ∈ {0, 10, 25, 50, 80} × MAX EPOCHS×T

100

IAGD basic α0 ∈ {5, 0.5, 0.05, 0.005, 0.0005}, -
C ∈ {0, 10, 25, 50, 80} × MAX EPOCHS×T

100

MBGD basic α0 ∈ {5, 0.5, 0.05, 0.005, 0.0005},
C ∈ {0, 10, 25, 50, 80} × MAX EPOCHS×B

100 -
batchsize ∈ {2, 4, 5, 8, 10} × T

100

MBGD heavyball α0 ∈ {5, 0.5, 0.05, 0.005, 0.0005},
C ∈ {0, 10, 25, 50, 80} × MAX EPOCHS×B

100 , γ = 0.01
batchsize ∈ {2, 4, 5, 8, 10} × T

100

MBGD bolddriver α0 ∈ {5, 0.5, 0.05, 0.005, 0.0005},
C ∈ {0, 10, 25, 50, 80} × MAX EPOCHS×B

100 , ρ = 1.01, σ = 0.6
batchsize ∈ {2, 4, 5, 8, 10} × T

100

60

CHAPTER 4. HYPERPARAMETER SELECTION 61

4.8 Alternative Ways to Search the Hyperpa-

rameter Space

As a closing note, before settling for a grid search on the hyperparameter space
(and keeping its dimensionality Nυ ≤ 4 by choosing fixed values for the rest
of the hyperparameters), we briefly experimented with another hyperparameter
selection scheme for methods that involved Nυ ≥ 4 hyperparameters (thus at
least 54 = 625 hyperparameter combinations).

We used a Genetic Algorithm to explore the parameter space, with an initial
population of 20 individuals, each of which represented a candidate vector of
hyperparameters υ(i) ∈ RNυ initialized using values selected uniformly at ran-
dom from the same set of values for each hyper parameter on which we per-
formed the grid search. We used each individual as a hyperparameter vector
for the method used and run 20 iterations with an early stopping lookahead
MAX ITERS SINCE BEST = 2 for batch methods, MAX EPOCHS SINCE BEST
= 2 for minibatch and stochastic ones. To evaluate each candidate hyperparam-
eter combination υ(i), we used as a fitness function F (υ(i)) = J(θ;υ(i))/Niter,
where J(θ;υ(i)) is the final value of the objective function on the validation set
and Niter the number of iterations until convergence. The 10 fittest individuals
would be selected for crossover and would move on to the next generation along
with their 10 offspring. For recombination we used single-point crossover among
5 randomly (with equal probability) chosen pairs of the selected individuals. In
other words, both parent vectors were cut in the same position ψ selected uni-
formly at random from {1, 2, ..., Nυ} and the four resulting parts were combined
to form 2 new individuals of length Nυ each, with one part from each parent. As
for the mutation operation, each element of the offspring would switch its value
with one of the other 4 possible ones in its corresponding hyperparameter set
with equal probability. We used a mutation rate of 0.1. The above describe one
generation of the algorithm, we run for 25 generations.

This method was faster than the grid search, since it was designed as a means
to reduce running time. The maximum number of iterations of the optimization
method would be 20× 25× 20 < 54 × 20 of the grid search. However, the result-
ing hyperparameter choices were usually poor. We found that by fixing certain
hyperparameters to specific values we get better results with a grid search on
the remaining dimensions and faster(up to 53×100 iterations of the optimization
method). The genetic algorithm also has hyperparameters and implementation
choices of its own we could have tweaked (mutation rate, definition of mutation
and recombination operations, initial population size, allowed values for each ele-
ment of the individual, selection scheme, fitness function, termination conditions
etc)̇. We did not experiment any further with these choices, since we risk entering
a vicious cycle. We started off trying to optimize the parameters θi of our model,
now we seek to optimize the hyperparameters υj of the optimization algorithms,
it is better if we do not do so using a method that involves hyperparameters of
its own in need of optimization.

Chapter 5

Gradient Code Debugging and
Verification

Gradient code is particularly error prone and, to make matters worse, these er-
rors can be hard to detect. This is so, because plotting the value of the objective
function per iteration usually gives us little information about whether our gradi-
ent code is correct. In batch methods this quantity is supposed to be decreasing
monotonically per iteration (as long as it does not overshoot the minimum) and in
stochastic methods it is supposed to decrease noisily as training progresses (i.e.
it is allowed to increase from last iteration as well). Indeed, the same can happen
even if we miscalculate the gradient. If we just get its sign right, we will take a
step in the correct direction although the size of the step is not the one intended.
If we use an individual learning rate per parameter, perhaps this scaling error can
be countered (given that the step sizes are allowed to be adapted to appropriate
values during training), however using a global step size (which might be the most
common practice) scaling errors can complicate matters. Furthermore, especially
when the model has many parameters, even missing some partial derivative signs
can lead to a decrease in the value of the objective function, since we might have
moved to better values in the rest of the parameter dimensions. The point of all
this is that e.g. using a batch method, the value of the objective can be decreasing
monotonically, the method might appear to be working, but at its core (gradient
computation) the code could still be wrong. So we cannot use the value of the
objective function as a means of testing our gradients.

5.1 The Finite Differences Method

One method to check whether the code that computes the gradient of the ob-
jective function is correct (or better: “agrees with the objective function”) is to
use the Finite Differences method. This technique is used to estimate derivatives
numerically using (first order) finite differences. From the Taylor series we have

62

CHAPTER 5. GRADIENT CODE DEBUGGING AND VERIFICATION 63

J(θ
(0)
i + h) = J(θ

(0)
i) + h

∂J(θ
(0)
i)

∂θi
+

1

2!
h2
∂J2(θ

(0)
i)

∂θi
2 +

1

3!
h3
∂J3(θ

(0)
i)

∂θi
3 +R(4) (5.1)

and

J(θ
(0)
i − h) = J(θ

(0)
i)− h∂J(θ

(0)
i)

∂θi
+

1

2!
h2
∂J2(θ

(0)
i)

∂θi
2 − 1

3!
h3
∂J3(θ

(0)
i)

∂θi
3 +R(4), (5.2)

where R(k) corresponds to the sum of terms involving derivatives of order k and
higher.

Figure 5.1: We wish to estimate the derivative of J(θ) wrt θ at θ0. It is the slope
of the curve at point P .

Image adapted from
http://staff.unila.ac.id/tiryono/files/2011/09/BedaHingga-FDM.pdf

We can then approximate each partial derivative
∂J(θ

(0)
i)

∂θi
(i.e. the slope at P in

Figure 5.1) using the forward difference formula, which corresponds to computing
the slope of PB in Figure 5.1,

∂J(θ
(0)
i)

∂θi
≈ J(θ

(0)
i + h)− J(θ

(0)
i)

h
(5.3)

http://staff.unila.ac.id/tiryono/files/2011/09/BedaHingga-FDM.pdf

the backward difference formula, which corresponds to computing the slope of
AP in Figure 5.1,

∂J(θ
(0)
i)

∂θi
≈ J(θ

(0)
i)− J(θ

(0)
i − h)

h
. (5.4)

or the central difference formula, which corresponds to computing the slope of
AB in Figure 5.1,

∂J(θ
(0)
i)

∂θi
≈ f(θ

(0)
i + h)− J(θ

(0)
i − h)

2h
(5.5)

We can obtain Eq.(5.3) and Eq.(5.4) by rearranging Eq.(5.1) and Eq.(5.2) respec-
tively and truncating the R(2) term (hence the approximation). To get Eq.(5.4)
we add Eq.(5.1) and Eq.(5.2) and truncate the R(2) term. The smaller h is the
better the approximation. Rememder, perhaps the most common definition of
the derivative of the function J(θi) at θ

(0)
i is

∂J(θ
(0)
i)

∂θi
= lim

h→0

J(θ
(0)
i + h)− J(θ

(0)
i)

h
(5.6)

We chose the (1) for simplicity and used h = 10−9. We approximated the par-
tial derivatives with respect to each θi, i = 1, 2, ..., N using this procedure. We
computed the mean absolute relative error

E =
1

N

N∑
i=1

|
∂J(θ

(0)
i)

∂θi
− J(θ

(0)
i +h)−J(θ(0)i)

h

∂J(θ
(0)
i)

∂θi

| (5.7)

of the approximation for parts of our datasets. In every case we examined it was
of order ≤ 10−7 which was deemed acceptable. Some of the models examined had
a large number of parameters (e.g. NADE has H + D + 2 ×H ×D, with H up
to 500 and D at least 112 in our datasets), which meant that using all features
(and many hidden variables in NADE) would mean computing partial derivatives
with respect to a large number of parameters using the finite differences method.
This made the computational cost prohibitive, so instead we checked the ap-
proximation using only a few features and H = 5 for NADE. Due to its high
computational cost, performing gradient checks during execution of the methods
was only used at this stage for sanity checks and it was subsequently deactivated
during the actual execution of the methods.

64

CHAPTER 5. GRADIENT CODE DEBUGGING AND VERIFICATION 65

5.2 Toy Problem: Optimizing a Logistic Regres-

sion Model

We tested some of our optimization methods on the toy problem of performing
logistic regression for binary classification on an artificially generated dataset
with D = 2. We chose a two-dimensional feature space in order to visualize and
present on paper more easily the results obtained.The data were generated by
two Gaussians, one with mean µ1 = (−1, 0) and covariance matrix Σ = I and
another one with mean µ0 = (3,−2) and covariance also Σ = I. The first one
generated the 1000 samples belonging to class 1 (positive examples, depicted with
a red ‘X’ in the figures below) and the second one the 1000 samples belonging to
class 0 (negative examples, depicted with a green ‘O’ in the figures below).

In Table 5.1 we can see the results after training on T = 1500 instances using a
test set of 500 instances. We used fixed values for all hyperparameters (α = 0.1
in every method, γ = 0.05 in BGD heavyball, batchsize = 100 in mbgd basic) in
this case, as the problem was trivial and its aim just to check our algorithms. All
methods ran once for 300 iterations/epochs (where applicable) each.

We also included Newton’s method in our experiments using a single iteration,
just to demonstrate its power relatively to the first order methods. More iterations
might actually have lead to overfitting since we took no measures to avoid it. We
used the rule based on Eq. (3.4) for Newton’s method with a step size of α = 1.
We calculated the Hessian1 as

H = −Xtrain
TBXtrain, (5.8)

whereXtrain is the data matrix (augmented by a column of 1s to accommodate
the bias terms), and B = σθ(Xtrain) ∗ (1 − σθ(Xtrain))T . In this scenario, we
have only 3 parameters, therefore the Hessian is a 3 × 3 matrix, which is cheap
to compute and work with.

On Figure 5.2 we can see a visualization of the data and the decision boundary
on both the training and the testing set before training. On Figures 5.3 to 5.9
we show the datapoints and the decision boundary, on both the training and the
testing set, after training with each method.

Note that this is a toy problem. The objective function is convex, the dataset
is small and it consists of only two features (so logistic regression needs only
three parameters). At this point our goal is not to compare the methods to
one another. We did not optimize their hyperparameters to do so, neither did
we employ early stopping, but rather to verify that they are working properly.

1We could use the finite differences method to check the second partial derivatives as well,

taking finite differences of first partial derivatives. So for every partial derivative∂J(θ)∂θi
, i =

1, 2, ..., N we must compute the approximate N partial derivatives ∂2J(θ)
∂θi∂θj

, j = 1, 2, ..., N . Now

the finite differences method was already expensive and this procedure will be N times more
expensive. We did not perform this check here.

Figure 5.2: Decision boundary before training on Training set (left) and Test set
(right).

Figure 5.3: Decision boundary after training with BGD basic on Training set
(left) and Test set (right).

Figure 5.4: Decision boundary after training with BGD heavyball on Training
set (left) and Test set (right).

Notice, however that CD basicGD performs as well as the other methods. This
will not be the case in the optimization of NADE’s objective function as we
will see in the next section. Also, notice that CD basicNewton gives a better
solution than CD basicGD. In fact this is so because it is faster. Unfortunately
we did not include CD basicNewton in further studies (i.e. on NADE or on
FVSBN) as we only implemented it during the final stages of this dissertation as
a viable alternative to CD basicGD. The results shown here indicate that indeed
CD basicNewton has an advantage over CD basicGD. As we see from Figures

66

CHAPTER 5. GRADIENT CODE DEBUGGING AND VERIFICATION 67

Figure 5.5: Decision boundary after training with SGD basic on Training set
(left) and Test set (right).

Figure 5.6: Decision boundary after training with CD basicGD on Training set
(left) and Test set (right).

Figure 5.7: Decision boundary after training with CD basicNewton on Training
set (left) and Test set (right).

5.3 to 5.9 and Table 5.1, we get decent results by all methods tested, which is a
strong indication that they are working properly.

Figure 5.8: Decision boundary after training with MBGD basic on Training set
(left) and Test set (right).

Figure 5.9: Decision boundary after training with Newton’s method on Training
set (left) and Test set (right). Note that this boundary was achieved after only 1
iteration while the results for all other methods are after 300 iterations.

Table 5.1: Logistic Regression Results

Value of Value of

Method Objective Function Objective Function
on Training Set on Test Set

Before Optimization 2.006824e+000 2.027101e+000
BGD basic 7.808466e-002 6.683343e-002 300

BGD heavyball 7.684857e-002 6.567788e-002 300
SGD basic 4.716319e-002 3.426209e-002 300

CD basicGD 7.828068e-002 6.699035e-002 300
CD basicNewton 4.744886e-002 3.623695e-002 300

MBGD basic 4.643823e-002 3.741856e-002 300
Newton 0.2699 0.2662 1

5.3 Simple Baselines for Density Estimation

Until now we discussed the case where the gradients of the parameters with
respect to the objective function were miscalculated. How can we detect if we have
the objective function right? After all, the finite differences method just verifies

68

CHAPTER 5. GRADIENT CODE DEBUGGING AND VERIFICATION 69

that the objective and the gradient codes “are consistent” with one another.
What if we got the objective wrong and consequently wrote correct gradient code
for the wrong objective function? Here the answer is somewhat more problem-
specific. We have to take into consideration the physical meaning of the objective
function: What range can its values assume? What value does it get given
particular extreme cases of inputs?

Since we use NADE to perform density estimation we need to make sure that the
values it computes for ln(p(xi)), i = 1, 2, ..., K, where K = 2D and xi ∈ {0, 1}D
assumes all possible values in {0, 1}D, corresponded to natural logarithms of
probability densities p(xi), i = 1, 2, ..., K. So we verified that indeed p(xi) =
eln(p(xi)) ∈ [0, 1], i = 1, 2, ..., K and

∑K
i=1 p(xi) =

∑K
i=1 e

ln(p(xi)) = 1. Thus
p(xi), i = 1, 2, ..., K are indeed probability densities. But are they “good” ones?

To answer that, at least preliminarily, we can compare NADE to some form of
elementary density estimation as a baseline, comparing the average negative log
likelihood of the models. The simplest baseline would be beating a “random
density estimator”. So we assume every bit of instance x(t) can be 0 or 1 with
equal probability (i.e. p(x

(t)
d = 0) = p(xd

(t) = 1) = 0.5, ∀d). Under this simplistic
assumption the ANLL is

J(X;θ) =
1

T

T∑
t=1

D∑
d=1

−ln(p(x
(t)
d)) =

1

T

T∑
t=1

− ln(0.5D) = − 1

T
T ln(0.5D) = −D ln(0.5)

(5.9)

We present the values obtained under this baseline for every dataset in Table 5.2 .
Usually, our parameter initialization led to average negative log likelihood values
in this region, so it is a good indication of the value of our objective function
before training. Of course, after training we always beat this unrefined “density
estimator”.

Yet another model for density estimation we can use as a baseline is to calculate
p(xd = 0) and p(xd = 1) for each d based on the count of occurrences of bit 1
(c1) and 0 (c0) in all T instances. This model can be viewed as a form of Naive
Bayes approach for Bernoulli variables. We used pseodocounts instead of actual
counts of occurrences so as to avoid the problem of zero probabilities in the case
of zero occurrences

p(x
(t)
d = 0) =

c0 + a

T + a+ b
, ∀t, (5.10)

where T = c0 + c1 and of course p(x
(t)
d = 1) = 1− p(x(t)d = 0) ,∀t.

We can adjust parameters α ∈ R+ (this has nothing to do with the learning rate
we use in the optimization methods, we just used the same symbol) and β ∈ R+

to increase or decrease the pseudocounts of each class (0 and 1 respectively), in

essence adjusting the prior probability of each. We chose α = β = 1, which
corresponds to Laplace Smoothing and treats the two classes as equiprobable.

Having done that, we can compute the average negative loglikelihood using these
probabilities

J(X;θ) =
1

T

T∑
t=1

D∑
d=1

−ln(p(x
(t)
d)) =

D∑
d=1

−ln(p(x
(t)
d)) (5.11)

In Table 5.2 we can see the ANLL computed under this model for each of the
datasets we will train NADE on (the datasets themselves are properly introduced
in section 6.1). As we will see, in section 6.3, we also beat this baseline as well.
We also calculated the percentage of 1’s in each dataset. We will use it here to
compare the two baselines, but it can also be thought of as a measure of density
of the dataset, with low values corresponding to sparse datasets.

Table 5.2: Baseline values of Average Negative Loglikelihood (ANLL) of simple
density estimation techniques. The last column is the percentage of 1’s in each
dataset. All refer to the corresponding test set.

Dataset ANLL ANLL Based % of 1’s
Random on Pseudocounts in Dataset

adult 84.5640 25.7602 11.37
mnist 542.7342 205.6319 13.27

connect-4 87.3365 35.3312 33.33
dna 124.7665 100.2841 25.14

mushrooms 77.6325 34.2084 18.75
nips-0-12 346.5736 293.9804 36.65
ocr-letters 88.7228 63.7293 21.87

rcv1 103.9721 58.3684 13.88
web 207.9442 39.7515 3.88

As we see in Figure 5.10. The farther away from 50% the percentage of 1s in the
dataset is, the less correct the assumption p(x

(t)
d = 0) = p(xd

(t) = 1) = 0.5, ∀d is

so the largest the relative difference
ANLLBASELINE1

−ANLLBASELINE2

ANLLBASELINE1
among these

two baselines becomes. This was to be expected, of course.

Having done these checks we are now confident that our code works as it is
supposed to and we can move on to applying our methods to training NADE.

70

CHAPTER 5. GRADIENT CODE DEBUGGING AND VERIFICATION 71

Figure 5.10: Relative difference of the two baselines presented in section 5.3 as a
function of the number of 1’s in the dataset.

Chapter 6

Experimental Results

6.1 The Datasets

The datasets used in the experiments are all from the LIBSVM database 1 except
for ocr-letter 2 and nips-0-12 3. They are all versions that have undergone prepro-
cessing (not performed by us, these are versions already available in the sources
mentioned above). Features with missing values have been removed and all fea-
tures,whether discrete or continuous, whether numerical, categorical or ordinal
have been converted into an appropriate binary form. The datasets are split in
3 subsets each: Training, Validation and Test. The training set was used during
training to optimize the parameters of the model. The validation set was used in
hyperparameter selection and in overfitting control by early stopping. The test
set was the one used for the final evaluation of this method (the one reported on
the tables that follow). In Table 6.1 we can see the size and number of features of
each dataset. We already saw that there is a different degree of sparsity in each
dataset in Table 5.2.

The datasets we used were the same ones used in [Larochelle et al. , 2011]. This
way we can verify that we get similar results to those reported by the authors for
NADE with H=500 using SGD basic and compare them to the other baselines
presented there. As we see in Table 6.3 we indeed get similar results, yet not
exactly the same due to the following reasons:

• The authors in [Larochelle et al. , 2011] use a slightly different learning rate
decrease scheme than the one used here.

• They use a lookahead of 10 iterations for early stopping. We use 5 instead.

• It is not entirely clear how they performed the hyperparameter selection
(e.g. did they use the entire validation set, did they train to the entire
training set, did they train until convergence, did they use early stopping

1Datasets available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
2Available at http://ai.stanford.edu/~btaskar/ocr/.
3Available at http://www.cs.toronto.edu/~roweis/data.html.

72

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://ai.stanford.edu/~btaskar/ocr/
http://www.cs.toronto.edu/~roweis/data.html

CHAPTER 6. EXPERIMENTAL RESULTS 73

Table 6.1: The datasets we used for our experiments. T is the number of in-
stances, D the number of features.

Dataset Dimensions (T ×D) Brief
Name Training Validation Test Description
adult 5000× 123 1414× 123 26147× 123 Census data,

consisting of 14
features. (Ver. a5a).

binarized 50000× 784 10000× 784 10000× 784 28× 28 images
mnist of handwritten

digits 0, 1, ..., 9
connect-4 16000× 126 4000× 126 47557× 126 All legal positions

in a game of
connect-4 and
the player that
controls each.

dna 1400× 180 600× 180 1186× 180 Primate splice-junction
gene sequences (DNA)

mushrooms 2000× 112 500× 112 5624× 112 mushrooms de-
scribed in terms
of 21 physical
characteristics.

nips-0-12 1240× 500 500× 500 400× 500 Paper information
of NIPS proceedings
from volume 0 to 12.

ocr-letters 32152× 128 10000× 128 10000× 128 16× 8 images
of handwritten

English characters.
rcv1 40000× 150 10000× 150 150000× 150 Reuters Corpus

Volume I. Contains
manually categorized

newswire stories.
web 14000× 300 3188× 300 32561× 300 A subset of the

ICML-09 URL reputation.
dataset. (Ver. w6a).

and if yes was it use the same lookahead as in the final execution of the
algorithm or not). Most likely we have made some differences in this pro-
cedure, since it involves many decisions. Here, we are exploring a larger
range of hyperparameters (5 options per hyperparameter compared to 3 of
the authors), but most likely in more “hurried” way (i.e we run for only a
few iterations with stricter early stopping and training on only a subset of
the training set).

• The number of runs we did to obtain the statistics might differ, we used
Nruns = 5.

• The inherent stochasticity of the entire procedure. In Table 6.2 we can
see the sources of variance involved in each method group. In the case of
comparing our results to those of [Larochelle et al. , 2011] the ones for SGD
apply.

Table 6.2: Sources of variance for each method group examined for NADE. Even
if we use the same method with the same hyperparameters, these factors will
introduce variation among the results of different runs.

Source of Variance Method Groups
BGD CD SGD MBGD DIBGD

L-BFGS
Random initialization of

parameters θi. (Note:
√ √ √ √ √

NADE’s ALL is non-convex)
Ordering of features di. (Note:

√ √ √ √ √

NADE computes conditionals p(xdi |x<di))
Ordering of parameters θi

√

Ordering of instances ti
√

Ordering of minibatches bi
√

Instances within each minibatch
√ √

(MBGD) or within initial batch (DIBG)

6.2 Experimental Design

The final version of our code needs only three inputs specified: the dataset we
are working with, the optimization method we will use and the number of hidden
variables H. It returns the iterations spent for parameter selection, the iterations
needed for the actual execution of the optimization procedure and the Average
Log Likelihood (ALL) of the trained NADE model on the Test set.

We initialized the parameters of the model using random values θi
(0) ∈ U(−1, 1),

∀i = 1, 2, ..., N). We used a random permutation of the columns of the feature
vector thus shuffling the order of features. The ordering of the features affects
the result of NADE but not of models such as FVSBN. However the authors in
[Larochelle et al. , 2011] reported that the effect of the ordering on the ALL is not
statistically significant. In addition to that, stochastic and minibatch methods
shuffle instances in the beginning of their execution (exceptions MBGD basic,
MBGD momentum, which shuffle them in the beginning of every epoch) and
DIBG randomly selects a small subset of data for the initial batch.

In most cases we executed Nruns = 5 runs for each method on each dataset (for
each choice of H ∈ {5, 50, 500}) in order to obtain statistics. We present the
average of these runs as well as 95% confidence intervals in the form µ± σ√

Nruns
.

Each of the Nruns runs for all methods for the same dataset and number of hidden
variables H was performed using the same parameter initialization and shuffling
of features. In methods added in the last stages of this dissertation using the same
initialization and shuffling was impossible, since we kept no record of it. Also,
in a few cases Nruns < 5. Finally, for some methods, we only present results on
two datasets. These methods were deemed non-compettitive so we did not test
them on the remaining datasets. For example DIBGD basic and CD basicGD
gave poor ALL results (we will see possible explanations as to why this happens).
MBGD bolddriver and IAGD basic appear not to improve upon the basic versions
they are supposed to (MBGD basic amd SGD basic, respsctively), so we exclude

74

CHAPTER 6. EXPERIMENTAL RESULTS 75

them from future experiments.

We ran experiments on 3 different machines. In order to compare the value of the
objective function after optimization, we present the average (over all runs) value
of ALL attained after training NADE as well as 95% confidence intervals. To
compare the execution time of each method, we count the number of iterations.
In order to get a sense of how fast a method is, we should also factor in the
(average) time of 1 iteration for each method, since it changes dramatically from
one method to another. We computed the average time of a single iteration for
all methods on one of the machines, so as to allow direct comparison among
methods. The ALL results were rounded-off to 2 decimal digits and the averages
were normalized by subtracting them by the average ALL of the Mixture of
Bernoullis (MoB model), shown in 6.4. This was done to keep the same format
as in [Larochelle et al. , 2011] and facilitate the comparison of the results. The
iteration results were rounded to the nearest integer.

6.3 Results: Average Loglikelihood (ALL)

In the tables that follow we present the ALL results attained, as well as baseline
results from other models. In this subsection we only compare the methods in
terms of the value of the objective function. Therefore when we refer to the
“performance” of a method we mean “quality of optima it finds”.

Table 6.3: Average Log Likelihood (ALL) of NADE with H = 500 hidden units
trained by SGD. Results from our work and from [Larochelle et al. , 2011] for
verification. Averages were normalized by subtracting them by the average ALL
of the Mixture of Bernoullis (MoB model), shown in 6.4. Higher values correspond
to better density estimation.

NADE adult connect-4 dna mushrooms nips-0-12 ocr-letters rcv1 web binarized
Results mnist

by
Larochelle 7.25 11.42 13.38 4.65 16.94 13.34 0.93 1.77 48.78
& Murray ±0.05 ±0.01 ±0.57 ±0.04 ±1.11 ±0.21 ±0.11 ±0.20 −
Present 7.24 11.42 13.23 4.65 16.26 13.08 0.92 1.64 42.39∗

work ±0.04 ±0.01 ±0.40 ±0.04 ±1.20 ±0.37 ±0.09 ±0.18 −∗
Normalization −20.44 −23.41 −98.19 −14.46 −290.02 −40.56 −47.59 −30.16 −137.64
* Results for Nruns = 1 and with α = 2 throughout the execution (no hyperparameter optimization applied).

In [Larochelle et al. , 2011], NADE’s performance (in terms of mean ALL value)
is compared to that of some other models. We present here their results as well
to include them in our comparisons with the results obtained by training NADE
using the methods discussed here. These additional models are the following and
their mean ALL, as well as 95% confidence intervals, are shown in Figure 6.4 :

• MoB: a mixture of multivariate Bernoullis.

• RBM: a RBM (briefly described in Chapter 1) made tractable by using
only 23 hidden units and trained by contrastive divergence with up to 25
steps of Gibbs sampling.

• RBM mult: a RBM where units have been split into groups and within
each group only one unit can be active (equal to 1) at any time. This model
was proposed in [Larochelle et al. , 2010].

• RBForest: an RBM where the activation of hidden units within a group
obeys tree constraints. This model was proposed in [Frey, 1998].

• FVSBN: A Fully Visible Sigmoid Belief Network, as described in Chap-
ter 1.

Table 6.4: Average Log Likelihood (ALL) for other models in
[Larochelle et al. , 2011]. These results were not reproduced by us, but we
will use them in our comparisons. Averages were normalized by subtracting
them by the average ALL of the Mixture of Bernoullis (MoB model), shown in
the first row. Higher values correspond to better density estimation.

Model adult connect-4 dna mushrooms nips-0-12 ocr-letters rcv1 web binarized
mnist

MOB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
±0.10 ±0.04 ±0.53 ±0.10 ±1.12 ±0.32 ±0.11 ±0.23 −

RBM 4.18 0.75 1.29 −0.69 12.65 −2.49 −1.29 0.78 −
±0.06 ±0.02 ±0.48 ±0.09 ±1.07 ±0.30 ±0.11 ±0.20 51.3

RBM mult. 4.15 −1.72 1.45 −0.69 11.25 0.99 −0.04 0.02 −
±0.06 ±0.03 ±0.40 ±0.05 ±1.06 ±0.29 ±0.11 ±0.21 −

RBForest 4.12 0.59 1.39 0.04 12.61 3.78 0.56 −0.15 −
±0.06 ±0.02 ±0.49 ±0.07 ±1.07 ±0.28 ±0.11 ±0.21 −

FVSBN 7.27 11.02 14.55 4.19 13.14 1.26 −2.24 0.81 40.19
±0.04 ±0.01 ±0.50 ±0.05 ±0.98 ±0.23 ±0.11 ±0.20 −

Normalization −20.44 −23.41 −98.19 −14.46 −290.02 −40.56 −47.59 −30.16 −137.64

We will describe the main findings regarding the average ALL values found in
words. The comments there, unless stated otherwise refer to Tables 6.5 and 6.6:

• Low-order batch methods vs the rest: As expected, batch methods
below second order (BGD variants, DIBG and CD) give optima of lesser
quality than those found by L-BFGS, stochastic and minibatch methods.
First and lower order batch methods do not use the curvature of the objec-
tive function, nor do they gain from the stochasticity of stochastic and mini-
batch methods to escape local optima. There are, however some datasets
that appear to be “easy” (adult, mushrooms, connect-4) to train on. In
these cases, the relative difference in ALL between BGD variants and other
methods is considerably smaller. In fact for adult, the result for BGD
and MBGD even overlap. In some “difficult” datasets (binarized mnist,
ocr-letters, connect-4) we can also observe some overlapping between the
resulting ALL of batch and minibatch methods.

• Coordinate descent: In these runs we used the CD basicGD version as
we only implemented CD basicNewton in the last stages of the dissertation.
As a result the coordinate descent version here was slow. It terminated in
most cases due to MAX ITERS being reached. So it performs worse than
all other methods, especially for problems with many parameters (i.e. large
H and/or D). An indication for this, is that the relative performance of

76

CHAPTER 6. EXPERIMENTAL RESULTS 77

Table 6.5: Average Log Likelihood (ALL) for each optimization method training
NADE with H = 5 hidden units. Averages were normalized by subtracting them
by the average ALL of the Mixture of Bernoullis (MoB model), shown in 6.4.
Higher values correspond to better density estimation.

Method adult connect-4 dna mushrooms nips-0-12 ocr-letters rcv1 web binarized
mnist

BGD basic 5.90 5.92 1.23 1.91 2.27 1.24 0.31 0.19 20.31∗

±0.18 ±0.03 ±0.46 ±0.08 ±1.59 ±0.58 ±0.08 ±0.29 ±5.12∗
BGD heavyball 6.13 6.18 1.27 2.04 2.31 1.30 0.29 0.19 26.33∗

±0.17 ±0.03 ±0.45 ±0.08 ±1.47 ±0.60 ±0.07 ±0.31 ±4.73∗
BGD bolddriver 6.16 6.13 1.28 1.98 2.30 1.24 0.28 0.21 24.29∗

±0.23 ±0.05 ±0.46 ±0.08 ±1.49 ±0.62 ±0.08 ±0.33 ±3.45∗
BGD rprop 6.22 6.14 1.20 1.94 2.30 1.37 0.32 0.21 25.25∗

±0.21 0.05 ±0.44 ±0.07 ±1.63 ±0.55 ±0.08 ±0.30 ±4.87∗
CD basicGD 3.93 2.99 − − − − − − −

±0.24 ±0.3 − − − − − − −
L-BFGS 7.12 7.52 5.93 3.24 5.38 7.72 0.61 0.72 31.49∗

±0.11 ±0.02 ±0.51 ±0.06 ±1.66 ±0.06 ±0.29 ±0.29 ±4.29∗
DIBGD basic 5.09 5.11 − − − − − − −

±0.26 ±0.3 − − − − − − −
SGD basic 7.08 7.45 5.96 3.22 5.21 7.58 0.57 0.67 30.20∗

±0.06 ±0.01 ±0.40 ±0.06 ±1.60 ±0.57 ±0.07 ±0.27 ±3.53∗
SGD heavyball 7.08 7.57 6.02 3.20 5.33 7.58 0.60 0.70 29.34∗

±0.05 ±0.02 ±0.38 ±0.06 ±1.62 ±0.54 ±0.05 ±0.25 ±3.37∗
ASGD basic 7.10 7.59 6.02 3.23 5.36 7.61 0.59 0.72 30.06∗

±0.05 ±0.02 ±0.33 ±0.06 ±1.25 ±0.58 ±0.05 ±0.22 ±3.40∗
IAGD basic 7.02 7.42 − − − − − − −

±0.08 ±0.03 − − − − − − −
MBGD basic 6.22 7.01 3.92 1.99 3.84 2.05 0.34 0.55 24.64∗

±0.13 ±0.04 ±0.37 ±0.05 ±1.54 ±0.59 ±0.08 ±0.27 ±3.81∗
MBGD heavyball 6.27 7.07 3.99 2.03 3.93 2.04 0.33 0.59 25.15∗

±0.14 ±0.03 ±0.47 ±0.08 ±1.69 ±0.61 ±0.08 ±0.24 ±2.55∗
MBGD bolddriver 6.14 6.88 − − − − − − −

±0.23 ±0.06 − − − − − − −
Normalization −20.44 −23.41 −98.19 −14.46 −290.02 −40.56 −47.59 −30.16 −137.64

* Results for Nruns = 2.

CD basicGD compared to all other methods is lower in the case of connect-
4 than in adult and —more convincingly— from the fact that coordinate
descent gives worse ALL results for H=50 than for H=5. This result is
not normal and it happens only with this method. It is a result of the
method not getting enough time to converge. Again, this is perhaps mainly
a weakness of the implementation we used and we mention it mainly to
explain the results. A different implementation of Coordinate Descent might
have been on par with other methods. However, the large parameter space
suggests that Coordinate Descent might be a poor choice in these problems
in any form that doesn’t update parameters in blocks.

• Dynamically increasing batch Gradient Descent: Contrary to what
we hoped, DIBGD basic is the second-worst performing (in terms of ALL
attained) method. It even performs considerably worse than BGD basic,
the method to which it is supposed to be equivalent asymptotically. An
explanation for this is that DIBGD overfits on the initial batch, as we did
not perform any sort of regularization. Trapped in a local minimum, the
weights grow dramatically and subsequent increases of the minibatch could
not counter this effect.

Table 6.6: Average Log Likelihood (ALL) for each optimization method training
NADE with H = 50 hidden units. Averages were normalized by subtracting
them by the average ALL of the Mixture of Bernoullis (MoB model), shown in
6.4. Higher values correspond to better density estimation.

Method adult connect-4 dna mushrooms nips-0-12 ocr-letters rcv1 web binarized
mnist

BGD basic 6.53 6.12 4.24 2.84 4.79 4.56 0.36 1.35 27.48∗

±0.07 ±0.03 ±0.46 ±0.05 ±1.26 ±0.45 ±0.19 ±0.22 ±5.13∗
BGD heavyball 6.78 6.41 4.76 2.93 4.77 4.70 0.34 1.41 26.82∗

±0.07 ±0.03 ±0.48 ±0.05 ±1.25 ±0.48 ±0.18 ±0.24 ±4.22∗
BGD bolddriver 6.89 6.32 4.72 2.98 4.89 4.50 0.42 1.45 24.46∗

±0.08 ±0.04 ±0.53 ±0.06 ±1.28 ±0.48 ±0.22 ±0.26 ±6.46∗
BGD rprop 6.74 6.47 4.71 3.06 4.79 4.56 0.33 1.45 28.17∗

±0.09 ±0.05 ±0.55 ±0.06 ±1.32 ±0.52 ±0.21 ±0.26 ±5.57∗
CD basicGD 2.17 1.41 − − − − − − −

±0.10 ±0.07 − − − − − − −
L-BFGS 7.22 9.15 9.13 4.15 10.79 10.98 0.62 1.79 36.27∗

±0.07 ±0.09 ±0.46 ±0.03 ±1.52 ±0.56 ±0.18 ±0.16 ±5.27∗
DIBGD basic 4.91 4.16 − − − − − − −

±0.11 ±0.07 − − − − − − −
SGD basic 7.17 9.18 9.04 4.06 10.60 9.97 0.70 1.75 41.11∗

±0.02 ±0.02 ±0.30 ±0.03 ±1.14 ±0.32 ±0.09 0.09 ±3.17∗
SGD heavyball 7.19 9.20 9.08 4.07 10.64 10.02 0.73 1.75 40.07∗

±0.02 ±0.02 ±0.27 ±0.03 ±1.17 ±0.37 ±0.09 ±0.11 ±3.25∗
ASGD basic 7.20 9.21 9.10 4.07 10.69 10.06 0.73 1.76 46.62∗

±0.02 ±0.02 ±0.33 ±0.03 ±1.14 ±0.33 ±0.10 ±0.09 ±3.40∗
IAGD basic 7.17 9.07 − − − − − − −

±0.05 ±0.04 − − − − − − −
MBGD basic 6.79 7.18 6.44 3.56 7.50 6.74 0.46 1.60 32.11∗

±0.05 ±0.03 ±0.39 ±0.04 ±1.23 ±0.39 ±0.14 ±0.16 ±4.83∗
MBGD heavyball 6.83 7.43 6.49 3.59 7.72 6.78 0.45 1.63 34.10∗

±0.07 ±0.02 ±0.33 ±0.02 ±1.26 ±0.36 ±0.17 ±0.15 ±3.99∗
MBGD bolddriver 6.17 7.13 − − − − − − −

±0.09 ±0.04 − − − − − − −
Normalization −20.44 −23.41 −98.19 −14.46 −290.02 −40.56 −47.59 −30.16 −137.64

* Results for Nruns = 2.

• Minibatch methods vs the rest: Minibatch methods achieve in all cases
better results than lower order batch methods and worse than stochastic
methods and L-BFGS. Thus, it appears that in this non-convex setting,
the stochasticity is an important contributor to finding good local optima.
A way to showcase this hypothesis more convincingly would have been to
plot the ALL value as a function of the batchsize, ranging from 1 (MBGD
becomes SGD) to T (MBGD becomes BGD) of MBGD methods for a given
dataset. Due to time constraints we did not include that in this study, but
it might be a good suggestion for further work. To the defense of these
methods (but not of our methodology), the way we used for setting the
minibatch size was somewhat naive and restrictive. We used 2%, 4%, 5%,
8%, 10% of the dataset in each batch, but did not factor in other param-
eters such as the redundancy of the data which would give an advantage
to the method. For big datasets even 2% of the dataset might correspond
to a large-sized batch, therefore MBGD looses due to averaging any big
advantage over batch methods. The decrease of the relative improvement
of MBGD over BGD can be observed, to some extent, on the three largest
datasets (binarized mnist, rcv1, ocr-letters), where for the two actually over-
lap.

78

CHAPTER 6. EXPERIMENTAL RESULTS 79

• Stochastic methods vs the rest: Stochastic methods give the best re-
sults among all lower order methods examined. They also demonstrate
a consistency in these results in that the variance of ALL values reached
is smaller than in any other group of methods. We did expect stochastic
methods to reach better optima due to the non-convexity of the objective.
The ALL of the stochastic methods is in most cases slightly lower than that
of L-BFGS, with a few cases even matching or exceeding that.

• L-BFGS vs the rest: In terms of ALL results, training NADE with L-
BFGS appears to outshine any other method. However, there is a caveat:
the variance of the ALL of NADE models trained by L-BFGS is generally
higher than that of stochastic methods (though not as high as in lower order
batch methods). The reason for this difference in variance is that L-BFGS
—at least in our case— is more prone to overfitting. In other words, L-
BFGS does indeed (almost) always find better local optima of the objective
function than SGD when training (i.e. on the training set), but this can
lead it to overfit on the training set and fail to generalize on the test set.
In fact, had we shown4 the results for ALL on both training and test set
for L-BFGS and SGD, we would have seen a much larger difference on the
training set in terms of ALL of the solution found. This all happens because
we took no measures to protect L-BFGS against overfitting. On the other
hand, SGD uses early stopping.

• Effect of heuristics (generally): The simple versions of each method
were in most cases outperformed by versions based on the various heuris-
tics. The “Heavy Ball” version nearly always improves upon the basic ver-
sion and “Bold Driver” and “R-prop” in BGD improve ALL significantly
over that of the basic version in many cases. Exceptions to this rule are
MBGD bolddriver and IAGD basic. Interestingly, the improvement that
the heuristics offer over the basic version is far more pronounced in batch
methods. To the other extreme, SGD seems little affected by the heuristic
modifications we applied to it, although the effect is consistently positive.

• Effect of heuristics (“Heavy Ball”): In nearly every case, a method
that uses the “Heavy Ball” heuristic achieves better performance than the
basic version. In batch methods this happens because the “memory of the
past updates ” can help the method avoid bad local optima (certainly not to
the extend that noise in SGD does, though) by “rolling over” them, to keep
up with the “ball” parallelism. On the other hand in stochastic methods
the “Heavy Ball” heuristic diminishes the stochasticity of the updates. In
minibatch methods it can potentially do either of these two (i.e. jump
over local minima and do a sort of weighted averaging over past updates)
depending on the minibatch size.

• Effect of heuristics (“Bold Driver” and “R-prop”): Although both
“Bold Driver” and “Resilient Backpropagation” generally improve over sim-

4Records were not retained to be included in this discussion, but we observed that during
our experiments.

ple BGD, they appear to be producing results of higher variance. Since
they are using more hyperparameters than BGD to produce adaptive learn-
ing rate (and in case of R-prop, individual learning rate for each param-
eter) the increase in variance is to be expected. MBGD bolddriver on
the other hand appears more unstable, exhibiting high variance in its re-
sults and consistently performing below MBGD basic. An explanation for
MBGD bolddriver’s poor performance is the fact that it adjusts the learn-
ing rate on each minibatch, therefore it is likely for subsequent increases
and especially subsequent decreases, to produce extreme (too high or to
low) values for the update. As a result, the algorithm will converge prema-
turely in either case. Perhaps our decision to fix hyperparameters ρ and σ
to particular values also contributed to the bad performance, however this
action was necessary at the time as we discussed in Chapter 4.

• Effect of heuristics (Averaged Stochastic Gradient Descent): ASGD
seems to be the most successful variant of SGD. The slight suppression of
its stochasticity seems to benefit SGD and ASGD does this more aggres-
sively than SGD heavyball. Note at this point that “Heavy Ball” in SGD
can be viewed as computing the next update as a weighted average of the
updates from previous time steps (plus the new step) with exponentially
decaying weights (the further back in time a gradient is, the smaller its
contribution). ASGD averages all past gradients and uses the average to
compute the update. The price of the decrease in stochasticity seems to be
a slight increase in variance of the resulting ALL.

• Effect of heuristics (Iterate Averaging Gradient Descent): IAGD
is based on the same principle as SGD using the “Heavy Ball” heuristic
and ASGD, i.e. “lowering the stochasticity” of the SGD updates. However,
although ASGD basic and SGD heavyball improve upon SGD basic, this
is not the case with IAGD basic. This seems strange at first. However,
one possible explanation is that, as IAGD averages over previous updates,
it also factors in the decrease in the stepsize that occurs over time. As
a result, older gradients are given a greater weight than newer ones since
α(n− i) > α(n), for all steps n, i. And older gradients generally correspond
to points farther away from the optimum than newer ones. On the other
hand in SGD heavyball, the farther back a gradient is the smaller (and
exponentially so) its contribution to the new update will be.

• Effect of the number of hidden units H: The largest H is the greater
the resulting ALL for every individual method (we saw that this does not
hold for CD basicGD and gave an explanation as to why). This is not
surprising, since NADE is more flexible when using more features and it
can better encode the information of the original data, thus produce better
density estimates.

• Effect of the number of features D: Generally, the higher D is, the
larger H we need to capture the information that lies within the dataset.
This is apparent from the fact that on the datasets with the largest num-

80

CHAPTER 6. EXPERIMENTAL RESULTS 81

ber of features (binarized mnist, nips-0-12, web, dna), NADE using fewer
hidden units performs considerably worse. On the other hand, on datasets
with a small number of features (adult, mushrooms, connect-4) NADE’s
performance seems little affected by H. Of course D is not the sole factor
that determines the number of hidden units needed to encode the dataset
with little loss. Another factor is the amount of redundancy (meaning inter-
feature dependencies in this case) of the data. As we saw above, adult and
mushrooms seem to be the easiest of the datasets, a fact that is apparent
from the small variance of the results obtained, not only per method of
training, but per model (as apparent in the results shown in Table 6.4).
Apparently the resulting ALL also exhibits small variance with respect to
the choice of H, which might imply a high amount of redundancy in these
datasets.

• Effect of the number of instances T : The only observation that we can
make regarding the effect of the size of the dataset on the ALL results is that
the advantage of mini-batch methods over batch methods diminishes as T
increases. In theory the contrary should happen, due to the stochasticity of
the MBGD updates allowing it to escape local optima. This inconsistency
in our case is most likely caused by the way we choose the batchsize (for
large datasets even 2% of them is still a large dataset).

• Comparison of NADE’s results to those of other models: If we
compare our results with those on 6.4 we will notice that in many cases
(e.g. in adult) NADE outperforms most of the baseline models there, even
trained by a lower order batch method, and even when using only as few as
H = 5 hidden units. The only exception is FVSBN which generally achieves
a performance comparable to that of NADE trained with H = 500 hidden
units using SGD (and presumably L-BFGS, although we did not train a
NADE with H = 500 hidden units using L-BFGS in these experiments).

• Comments on variance: The variance on ALL attained seems to be
greater for batch methods than for minibatch methods and greater for mini-
batch methods than for stochastic methods. This gives rise to an interesting
observation: The more noisy the updates of an optimization method are, the
more robust the method is in a non-convex setting. This appears counter-
intuitive at first but is based on the fact that by using noisy updates we
can escape poor local optima, thus the possible outcomes in terms of ALL
become fewer.

6.4 Results: Execution Times

Now we will present the average number of iterations needed for each method
to converge and the number of iterations spent on hyperparameter optimization
for each of the datasets. These numbers are not to be directly compared as the
computational cost per iteration differs dramatically across methods and across

datasets. It is interesting, however, to compare in each case the number of it-
erations spent on hyperparameter optimization and on optimization itself. It
gives us a nice picture of what price we pay computationally for adding extra
hyperparameters.

Below we give results only for the runs for H = 50. For H = 5 and H = 500
the parameter space of the objective function becomes significantly smaller and
bigger, respectively. As a result, the number of iterations a method will need until
it converges will be different. It is therefore not safe to make any assumptions
about the number of iterations needed for H = 5 and H = 500 based on the
results below for H = 50. That said, there are some observations we can make
regarding the number of iterations which are likely to hold even for different
values of H:

• Observations about methods: Notice that CD basicGD always uses
the full number of iterations (i.e. terminates due to reaching MAX ITERS
without converging) in its optimization run. This explains its bad perfor-
mance and we already attributed it to our poor choice for the line search
(BGD step).

BGD bolddriver and BGD rprop take fewer iterations than BGD basic to
terminate. They mainly do so due to the learning rate(s) assuming an
extreme value. This effect on MBGD bolddriver might explain its worse
average ALL compared to MBGD basic.

“Heavy Ball” methods converge in fewer iterations than their “basic” coun-
terparts. The parameter space is large, the objective function non-convex
so differences in curvature along different directions are to be expected.
The result is the “zig-zagging problem” we discussed in Chapter 3 and the
“Heavy Ball” heuristic helps counter that and speed up convergence.

ASGD basic and IAGD basic also converge in fewer iterations than SGD basic.
They require the same numbers of hyperparameters as SGD basic, contrary
to SGD heavyball that also has the momentum parameter.

Finally, to state the obvious, L-BFGS requires the least number of iterations
to converge, and it requires no hyperparameter optimization which is a huge
advantage over the other methods examined. Of course, BGD methods
take more iterations than L-BFGS but fewer than MBGD and SGD and
SGD methods require the most iterations. Still this means nothing without
factoring in the individual costs per iteration.

• Observations about datasets: The datasets that need the fewest itera-
tions are adult, mushrooms, dna and nips-0-12 the first two are apparently
“easy” to train on, as a result the optimizers find a good local optimum
quickly. The other two appear to be among the most difficult datasets.
Here we have fast termination due to getting stuck quickly in —not neces-
sarily good— local optima and early stopping triggering.

Also, we can notice that in “easy” datasets, the hyperparameter optimiza-

82

CHAPTER 6. EXPERIMENTAL RESULTS 83

tion procedure takes more time. This happens because the outcome of
the optimization in these datasets is less sensitive to the hyperparameters
than in more difficult ones. As a result, more hyperparameter configura-
tions are executed all (or at least closer to) 20 times (the MAX ITERS
or MAX EPOCHS value for hyperparameter optimization) without early
stopping being triggered. For example compare the iterations spent in hy-
perparameter selection for adult and mushrooms (“easy”) to those of dna
and nips-0-12 (“difficult”) in Table 6.7. This, combined with the fact that
the optimization itself requires fewer iterations increases the gap in itera-
tions between hyperparameter selection and the optimization process. See,
for instance the extreme cases of BGD bolddriver and BGD rprop for mush-
rooms, where the optimizer needs an overhead of about 20× the iterations
it will spent in optimization just to set its hyperparameters. A lesson from
this observation is that in such “easy” cases, we should not dedicate a large
part of our resources in hyperparameter optimization, since (i) a large range
of configurations will offer reasonably good results, (ii) hyperparameter op-
timization will take more iterations than in more “difficult” datasets, since
it will quickly reject hyperparameter combinations less often.

Now we present the average time per iteration for each method group on each
dataset. In this case, getting a rough estimate of the corresponding average time
per iteration for the case of H = 5 and H = 500 is simpler. Since the cost of train-
ing NADE is O(HD) we simply need to multiply the results below by 0.1 and 10
respectively. Again, this is an idealized projection that disregards constant com-
putational overheads, different for each method and subject to implementation
details.

Finally, multiplying the number of iterations from Table 6.7 by the corresponding
time from Table 6.8 we can get the total time the execution of each method takes
on average. The results are shown in Table of Appendix C, where again we show
times for hyperparameter selection (top row), times for optimization (middle row)
and total times (bottom row). In Table we show only the total times normalized
(all times divided by 19021.1438 = maximum× 10−1) to enhance readability.

Again, we can see that LBFGS

6.5 Results: Closing Remarks

As expected, L-BFGS and SGD and its variants outperform all other methods in
terms of quality of optima they find. L-BFGS gives us the best ALL results its
iterations are the slowest among the methods we examined here, but it has the
benefit that it does not require fine tuning of hyperparameters such as the step
size. This and the fact that it requires fewer iterations than any other method
also makes it the fastest among the methods examined. Its main drawback is
that it is more prone to overfitting than SGD. Evidence for this is its greater
variance in average ALL attained and its larger “gap” between the value of the

Table 6.7: Average number of iterations until termination for each optimization
method training NADE with H = 50 hidden units. First row shows average
number of iterations for the hyperparameter optimization step, second row shows
average number of iterations for the parameter optimization step (the execution
of the optimizer) and third row is the sum of these two. The numbers were
computed based on average iterations or epochs until termination, rounded up
to integers and then multiplied by batchsizes and number of instances where
appropriate.

Method adult connect-4 dna mushrooms nips-0-12 ocr-letters rcv1 web binarized
mnist

BGD basic 56 44 24 61 27 35 44 42 39
112 276 103 88 81 386 380 309 382
168 320 127 149 108 421 424 351 421

BGD heavyball 287 212 197 298 142 187 221 219 228
99 260 98 79 69 367 347 298 130
386 472 295 377 211 554 568 517 358

BGD bolddriver 1379 928 642 1426 727 862 1059 1112 652
84 228 90 67 73 362 349 275 351

1463 1156 732 1493 800 1224 1408 1387 1003
BGD rprop 1254 976 626 1404 703 843 1102 1002 454

89 194 88 69 59 351 346 263 340
343 1170 714 1473 762 1194 1448 1265 794

CD basicGD 44 38
400 400 − − − − − − −
444 438

L-BFGS − − − − − − − − −
44 64 33 32 39 97 125 114 137

DIBGD basic 102 81
91 204 − − − − − − −
193 285

SGD basic 125000 304000 21000 62200 17112 546550 313600 856000 725000
150000 512000 19600 42000 17360 1093168 1680000 812000 2450000
275000 816000 40600 104200 34472 1639718 1993600 1668000 3175000

SGD heavyball 575000 1520000 21000 302400 87668 2813125 4256000 4132000 2625000
145000 49600 94500 40000 14880 1093168 1640000 81200 2400000
720000 1569600 115500 342400 102548 3906293 5896000 4213200 5025000

ASGD basic 115000 328000 18200 60800 17484 562625 303800 896000 575000
135000 432000 18200 34000 13640 996712 1560000 756000 2150000
250000 760000 36400 94800 31124 1559337 1863800 1652000 2725000

IAGD basic 115000 336000
120000 400000 − − − − − − −
235000 736000

MBGD basic 25500 21500 13000 29380 17760 17940 22460 21240 13020
1660 2640 1300 1300 1260 5820 4980 3120 5280
27160 24140 14300 30680 19020 23760 27440 24360 183000

MBGD heavyball 26500 22500 13500 29040 17640 17840 21800 20300 13120
1580 2560 1280 1240 1220 5640 4640 3060 5180
28080 25060 14780 30280 18860 23480 26440 23360 18300

MBGD bolddriver 23000 20000
1240 2040 − − − − − − −
24240 22040

objective function after optimization on the training and the test set. More likely
this should be the method of choice for training NADE, provided that a heuristic
is applied to it to protect it from overfitting, such as early stopping.

SGD is therefore more robust. We could say that L-BFGS is more suitable when
the goal is optimization itself, while SGD is better suited for learning tasks ,
where the goal is to generalize. Pure SGD is fairly slow, but its variants help

84

CHAPTER 6. EXPERIMENTAL RESULTS 85

Table 6.8: Average time (in seconds ×10−5) for 1 iteration for each method group,
on each dataset. These times were all computed on the same machine.

Method adult connect-4 dna mushrooms nips-0-12 ocr-letters rcv1 web binarized
mnist

BGD basic
BGD heavyball
BGD bolddriver 10814 69831 10806 10490 8698 138826 187445 209378 1453730

BGD rprop
CD basicGD

L-BFGS 121842 310195 61563 44306 61693 619730 819849 771647 6932125
DIBGD basic 4796 21816 − − − − − − −
SGD basic

SGD heavyball 33 35 49 30 147 35 40 88 213
ASGD basic
IAGD basic
MBGD basic

MBGD heavyball 10814 3305 806 755 568 8105 12532 21310 103941
MBGD bolddriver

Table 6.9: Average time (in seconds ×10−5) until termination for each optimiza-
tion method training NADE with H = 50 hidden units. First row shows average
time for the hyperparameter optimization step, second row shows average time for
the parameter optimization step (the execution of the optimizer) and third row
is the sum of these two. All times are divided by 190211438 = maximum× 10−1

Method adult connect-4 dna mushrooms nips-0-12 ocr-letters rcv1 web binarized
mnist

BGD basic 28 117 11 7 13 316 539 462 4993
BGD heavyball 32 173 17 21 14 404 560 569 2736
BGD bolddriver 83 424 42 82 37 893 1388 1527 7666

BGD rprop 76 430 41 81 35 871 1427 1392 6068
CD basicGD 25 161 − − − − − − −

L-BFGS 10 104 7 8 5 307 418 386 3218
DIBGD basic 5 33 − − − − − − −

SGD basic 48 150 10 16 27 302 419 772 3555
SGD heavyball 125 289 30 54 79 719 1240 1949 5627

ASGD basic 43 140 9 15 24 287 392 764 3051
IAGD basic 42 132 − − − − − − −
MBGD basic 1544 420 61 122 57 1012 757 2729 10000

MBGD heavyball 1597 436 63 120 56 1001 1742 2617 10000
MBGD bolddriver 327 383 − − − − − − −
Normalization: All times divided by 19021.1438 = maximum× 10−1

speed up its convergence. In particular, ASGD seems to speed up convergence
as well as slightly improve the quality of optima found. It is to be preferred over
other methods that try to decrease the noisiness of the SGD updates, such as
SGD heavyball and IAGD basic. SGD heavyball needs one extra hyperparam-
eter to be set5 and this proves detrimental to the overall execution times, the
improvements it offers on both execution time and the value of the objective

5Of course we can also imagine versions of ASGD that use a weighted average of past
gradients to make updates, with the weights being controlled by additional hyperparameters.
Here we refer to the simple version of ASGD we presented.

function attained are small compared to those that ASGD offers. IAGD on the
other hand seems to be problematic, at least in the non-convex, high-dimensional
parameter space, relatively large scale task we examine. SGD methods lead to
faster optimization than BGD methods and this effect becomes more pronounced
the larger the dataset is, as a result of redundancies (i.e. many similar instances)
within the dataset.

Generally, the various heuristics seem to improve upon the basic versions and do
so both on speed of convergence and on the quality of optima found. “Heavy
Ball” method appears to be more effective on batch methods and minibatch
methods with large batch sizes, than on SGD. “Bold Driver” and “R-prop” help
mainly in terms of speeding up convergence, in some cases significantly. In fact,
in some datasets the fastest methods prove to be BGD rprop (more often) and
BGD bolddriver. Of course they do not match the quality of optima found by
SGD and L-BFGS.

We had hopes that MBGD would match the performance of SGD. In general
they did not, however a different choice of batchsizes, might have helped them
become more competitive. They do improve upon batch methods, though only
in terms of the optima found. Their execution times, however, suffer from the
additional hyparameter that needs to be set (batchsize). Had we fixed, however,
the batchsize to any of the values of the grid, MBGD would most likely still
perform better than BGD both in terms of optima found (see in Tables 6.5 and
6.6 the big difference in ALL between BGD and MBGD methods) and in terms of
execution times (compare only the optimization times in Table C.1 of Appendix
C, ignoring hyperparameter optimization, generally, the larger the dataset, the
faster MBGD methods are compared to BGD).

To close our discussion regarding the methods, DIBGD basic, although promising
as an idea, seems to have not been properly implemented here. No measure was
taken to prevent it from overfitting and the non-convexity of the objective function
of NADE appears to make the optimizer get stuck early in local optima.

As for the hyperparameters selected in each case, although we did not keep proper
records of the hyperparameter vectors selected we made some general observa-
tions during the experimentations that might be useful in further studies. In
“easy” datasets (the extremes being adult and mushrooms) we observed more
variation in the choice of hyperparameters per run than in “difficult” ones (the
extremes being dna and nips-0-12). The (initial) learning rate α0 and to a lesser
extent parameter C that controls its decay exhibited the highest variation among
datasets. Experimentation showed that further tweaking the learning rate to
values not on the grid we searched, could lead to improved performance (faster
convergence/better optima). The 20 epoch/20 iteration limit might have been
harsher for batch methods, forcing them to terminate hyperparameter optimiza-
tion runs far away from the optimum, as a result choosing suboptimal learning
rates and particularly favouring larger values. The momentum hyperparameter
γ appeared to be less important than the stepsize and vales within the same
scale did not affect considerably the end result. As we said, the way we picked

86

CHAPTER 6. EXPERIMENTAL RESULTS 87

the batchsize in MBGD was probably not the ideal. In retrospect, by fixing the
batchsize to –say– 2% of the full batch, MBGD methods could have achieved
similar or better performance in terms of ALL, without paying the heavy compu-
tational price of an extra free hyperparameter. Similarly the hyperparameters σ
and ρ of ‘Bold Driver” and “R-prop” in the BGD methods should have been set
to the “rule of thumb” values ρ = 1.1 and σ = 0.5 to remove the hyperparameter
optimization overhead for BGD bolddriver and BGD rprop. However these too
methods were very sensitive to σ and ρ so we should first experiment to select
appropriate values for them on each dataset separately.

In this project we did not go into a detailed study of the properties of the indi-
vidual datasets beforehand, as our goal was to build a framework that could be
applied to any dataset, allowing us to compare the methods. Hence the broad
range of hyperparameters on the grid (5 choices per each hyperparameter) and
the “universality” of the termination criteria across datasets. It is generally a
good idea to “get a feel” of the dataset first, perhaps use only parts of it to see
how easy it is to train on (how sensitive it is to the choice of method or the
setting of hyperparameters, how different results we get by training on different
subsets of it or by using different initializations). If we detect high variances in
the results, this is an indication that we need careful fine-tuning of the hyper-
parameters. If the variances are small we could perhaps afford to dedicate little
resources to hyperparameter optimization. Early stopping conditions in “diffi-
cult to optimize” hyperparameter spaces should be more forgiving, allowing for
more iterations without exceeding the best solution found so far, while for “easy”
datasets we can be stricter. The size of the parameter space (in many models,
such as in NADE this depends on the dimensionality of the dataset) should also
affect the parameter initialization.

Having seen how the individual methods perform, we suggest as a first option to
use L-BFGS, since it is faster and it does not require any hyperparameters to be
set. Ideally, measures should be taken to prevent it from overfitting. In the case
of large datasets (judging from our results this means ≥ 30000 instances) SGD
methods might be a better choice, especially ASGD. In any case each dataset
is different (so each parameter space is different) and other factors —such as
redundancy— can give an advantage to SGD. In large scale non-convex problems
we should probably avoid using BGD.

Chapter 7

Conclusion and Future Work

In this study we examined optimization in the context of machine learning. We
covered the basic steps of implementing and using optimization algorithms from
understanding the ideas behind the basic algorithms themselves, to optimizing
the hyperparameters involved, from checking the gradient code and protecting
the methods from overfitting to evaluating methods and choosing the most suit-
able among them. We focused on a non-convex objective function, with a high
dimensional parameter space and used datasets of small to fairly large size, how-
ever, most of this work carries on to general optimization problems in machine
learning.

Among the methods we examined the ones better suited for our task are L-
BFGS and SGD. L-BFGS is faster in most cases and always finds slightly better
local optima, but is more likely to overfit the training data than SGD. The most
successful variant of SGD was ASGD improving both the speed, in large datasets
being even faster than LBFGS and the quality of optima found by SGD without
adding any additional hyperparameters.

We also verified the power of the NADE model showing that even using first order
batch methods, despite the objective function being non-convex, even with a small
number of hidden units it can outperform simpler models. An interesting factor to
explore in further studies could be finding the minimal value for H in NADE that
leads to the optimal density estimation results on each of the dataset. The optimal
value of H could also demonstrate the amount of redundancy (interdependencies
among features) within the datasets.

This study was far from exhaustive. We did not cover higher order stochastic
methods such as Stochastic Quasi-Newton [Bordes et al. , 2009]. We also did not
cover many popular batch methods such as Conjugate Gradient and members of
the Quasi-Newton family like Barzilai-Borwein [Barzilai et al. , 1988] (Barzilai-
Borwein approximates the Hessian by a diagonal matrix to obtain a step size for
gradient descent). Both are implemented in the minfunc() package and compar-
isons could be easily extended to include them as well.

There are possible directions to explore even with the methods we experimented

88

CHAPTER 7. CONCLUSION AND FUTURE WORK 89

with. We could combine different methods in different stages of the optimiza-
tion. For example we could start with stochastic methods and once the training
progresses (and we are nearing a local optimum), then we can switch to a batch
method for the few remaining iterations. A simple way to mimic this approach
could be to use a minibatch method with batch sizes that increase in size every
few epochs. The Dynamically Increasing Batch size methods are doing something
similar but as we saw they did not perform well in our task. We hypothesized
that the poor performance was due to the absence of regularization combined
with the non-convexity of the objective function.

An interesting experiment here would be to use DIBG basic to optimize a con-
vex objective function. If the method proves successful, we would have another
indication that our hypothesis that it gets trapped in local optima and overfits
the training data on a non-convex setting is correct. Furthermore, we could also
explore other methods of the Dynamically Increasing Batch Size family by ap-
plying its idea of growing the batch size based on the result of a statistical test
on other batch methods. These could be methods we already examined here, e.g.
BGD rprop or L-BFGS, which proved better suited to the problem than simple
BGD.

Another heuristic we can use, is executing the optimization algorithms starting
from various initializations and keeping the best one as evaluated on the validation
set. This idea could be used to give us a good initialization of the parameters and
we could also compare how well different methods perform as “initializers” for
others. Another unexplored idea would be to use a minibatch version of L-BFGS,
this might help improve both speed (by exploiting redundancy in the dataset) and
quality of optima (by adding some amount of stochasticity to the updates).

Finally, since our results indicated that LBFGS is prone to overfitting, a good
idea would be to try to modify L-BFGS to include some form of overfitting
control. A simple example would be to use early stopping. Another approach
would be to use a regularized objective (using e.g. L1 -regularization) and combine
it with a variant of L-BFGS like Orthant-wise limited-memory quasi-Newton
(OWL-QN). OWL-QN is specifically designed for fitting L1-regularized models
[Galen et al. , 2007].

We also saw that variants of stochastic gradient descent such as ASGD work very
well and appear to offer more consistent results. However, they are in most cases
slower than L-BFGS and require fine-tuning their learning rate. We could modify
ASGD to increase its speed by exploiting the sparsity of the datasets (and the
resulting update vectors). A version of ASGD that takes sparsity into account is
presented in [Xu, 2012]. Another interesting variant to explore is the version of
SGD proposed in [Schaul et al. , 2012] which automatically adjusts the step size
on every iteration so as to minimize the expected error after the next update.
The same method can be applied to individual (or even grouped) learning rates
per parameter. Using this version of SGD, there is no longer need to fine-tune
the step size (and parameter C that controls its decay in our version). This
would effectively remove all need for hyperparameter optimization in our SGD

implementation.

As for hyperparameter optimization in general, we saw that for many of the meth-
ods examined, it plays an important role. We also saw that performing a combi-
natorial search in a grid of the hyperparameter space can become the bottleneck
of the entire procedure (for more than 2 hyperparameters with 5 options for each).
In [Bergstra et al. , 2012] the authors propose random search as an alternative to
grid-search. They argue that only a few of the hyper-parameters really matter for
most data sets (not the same in all). When doing a —say— n×n grid search we
only examine n values per hyperparameter. If on the other hand we examine n2

random hyperparameter configurations we can cover up to n2 different values per
hyperparameter at the same computational cost. Thus, by doing a random search
we can find hyperparameter configurations that are as good or better than those
found by a grid search, but much faster. In [Bergstra et al. , 2011] the authors
present two greedy sequential hyperparameter optimization techniques capable of
dealing with both discrete and continuous hyperparameters. Both methods take
into account priors over the hyperparameters and are based in the optimization
of the criterion of Expected Improvement [Jones, 2001]. When compared to ran-
dom search in the hyperparameter space and the manual grid-aided search they
outperform both. It would be a good idea to explore alternative schemes such as
this one to automatically select the optimal hyper-parameter configuration.

90

Bibliography

[Barzilai et al. , 1988] Barzilai J. & Borwein J. M. (1988) Two-point step size
gradient methods. IMA Journal of Numerical Analysis, 8 (1988), 141–148.

[Bengio et al. , 2007] Bengio Y. , Lamblin P. , Popovici P. & Larochelle H. (2007)
Greedy Layer-Wise Training of Deep Networks. Advances in Neural Informa-
tion Processing Systems 19, MIT Press, Cambridge, MA.

[Bengio, 2009a] Bengio Y. (2009). Learning deep architectures for AI. Founda-
tions and Trends in Machine Learning, vol. 2, iss. 1, pp. 1 – 127.

[Bengio, 2009b] Bengio Y. , Louradour J. , Collobert R. & Weston J. (2009).
Curriculum Learning. Proceedings of the Twenty-sixth International Confer-
ence on Machine Learning (ICML 2009), ACM.

[Bengio et al. , 2000] Bengio, Y. & Bengio, S. (2000). Modeling high-dimensional
discrete data with multi-layer neural networks. Advances in Neural Information
Processing Systems 12 (NIPS 1999) pp. 400 – 406. MIT Press.

[Bengio, 2012] Bengio Y. 2012. Practical Recommendations for Gradient-Based
Training of Deep Architectures. CoRR abs/1206.5533.

[Bergstra et al. , 2011] Bergstra J. , Bardenet R. , Bengio Y. and Kegl B. (2011).
Algorithms for Hyper-parameter Optimization. NIPS 2011.

[Bergstra et al. , 2012] Bergstra J. & Bengio Y. (2012). Random Search for
Hyper-Parameter Optimization. Journal of Machine Learning Research, 13(281
– 305).

[Bishop, 1995] Bishop C. (1995). Neural Networks for Pattern Recognition. Ox-
ford University Press.

[Bordes et al. , 2009] Bordes A. , Bottou L. & Patrick G. (2009). SGD-QN: Care-
ful Quasi-Newton Stochastic Gradient Descent. Journal of Machine Learning
Research, 10: 1737 – 1754.

[Bottou et al. , 2004] Bottou L. & LeCun Y. (2004). Large Scale Online Learn-
ing. Advances in Neural Information Processing Systems 16, MIT Press, Cam-
bridge, MA.

[Bottou et al. , 2007] Bottou L. & Bousquet O. (2007). The Tradeoffs of Large
Scale Learning. In Proceedings of NIPS 2007.

91

[Broyden, 1970] Broyden, C. G. (1970). The convergence of a class of double-
rank minimization algorithms. Journal of the Institute of Mathematics and Its
Applications 6: 76 – 90.

[Boyd et al. , 2004] Boyd S. P. & Vandenberghe L. (2004). Convex Optimization.
Cambridge University Press. p. 129. ISBN 978-0-521-83378-3.

[Boyles et al. , 2011] Boyles L. , Korattikara A. , Ramanan, D. and Welling, M.
(2011). Statistical Tests for Optimization Efficiency. NIPS 2011.

[Collobert et al. , 2009] Collobert R. & Weston J. (2009). A unified architecture
for natural language processing: Deep neural networks with multitask learning.
Proceedings of the Twenty-sixth International Conference on Machine Learning
(ICML 2009), ACM.

[Deng et al. , 2011] Deng L. & Yu D. (2011). Deep Convex Network: A Scalable
Architecture for Deep Learning. Interspeech 2011, pp. 2285–2288.

[Fletcher, 1970] Fletcher, R. (1970). A New Approach to Variable Metric Algo-
rithms. Computer Journal 13 (3): 317 – 322.

[Frey, 1998] Frey B. J. (1998). Graphical models for machine learning and digital
communication. MIT Press.

[Galen et al. , 2007] Galen A. & Jianfeng G. (2007). Scalable Training of L1-
Regularized Log-Linear Models. 24th Annual International Conference on Ma-
chine Learning (ICML 2007).

[Goldfarb, 1970] Goldfarb, D. (1970). A Family of Variable Metric Updates De-
rived by Variational Means. Mathematics of Computation 24 (109): 23 – 26.

[Hahn et al. , 2011] Hahn S. , Lehnen P. & Ney H. (2011). Powerful extensions to
CRFS for grapheme to phoneme conversion. In Proceedings of ICASSP. 2011,
4912 – 4915.

[Heigold et al. , 2009] Heigold G. , Rybach D. , Schlüter R. & Ney H. (2009). In-
vestigations on Convex Optimization Using Log-Linear HMMs for Digit String
Recognition. Interspeech 2009.

[Hestenes et al. , 1952] Hestenes M. R. & Stiefel E. (1952). Methods of Conjugate
Gradients for Solving Linear Systems. Journal of Research of the National
Bureau of Standards 49 (6).

[Hinton et al. , 2006a] Hinton G. E. & Salakhutdinov R. R. (2006) Reducing the
Dimensionality of Data with Neural Networks. Science, 28 July 2006, Vol. 313.
no. 5786, pp. 504 – 507.

[Hinton et al. , 2006b] Hinton G. E. , Osindero S. & Teh, Y. (2006) A fast learning
algorithm for deep belief nets. Neural Computation 18, pp 1527 – 1554.

[Hinton, 2010] Hinton G. E. (2010). A Practical Guide to Training Restricted
Boltzmann Machines. Technical report.

92

BIBLIOGRAPHY 93

[Huck et al. , 2010] Huck M. , Ratajczak M. , Lehnen P. & Ney H. (2010). A
comparison of various types of extended lexicon models for statistical machine
translation. AMTA 2010: the Ninth conference of the Association for Machine
Translation in the Americas.

[Jones, 2001] Jones D. R. (2001). A taxonomy of global optimization methods
based on response surfaces. Journal of Global Optimization, 21:345–383.

[Larochelle et al. , 2010] Larochelle, H. , Bengio, Y. & Turian, J. (2010). Tractable
multivariate binary density estimation and the restricted Boltzmann forest.
Neural Computation, 22, pp. 2285 – 2307.

[Larochelle et al. , 2011] Larochelle H. & Murray I. (2011). The Neural Autore-
gressive Distribution Estimator. JMLR: W&CPl 15, pp. 29 – 37.

[Le et al. , 2011] Le Q. V. , Ngiam J. , Coates A. , Lahiri A. , Prochnow B. & Ng
A. Y. (2011). On optimization methods for deep learning. ICML 2011: 265 –
272.

[LeCun et al. , 1998] LeCun Y. , Bottou, L. , Orr G. & Muller K. (1998). Lecture
Notes in Computer Science In Neural Networks–Tricks of the Trade. Vol. 1524,
pp. 5 – 50.

[Lee et al. , 2009] Lee H. , Largman Y. , Pham P. & Ng A. Y. (2009). Unsu-
pervised feature learning for audio classification using convolutional deep belief
networks. Advances in Neural Information Processing Systems 23 (NIPS 2009).

[Lee et al. , 2011] Lee H. , Grosse R. , Ranganath R. & Ng A. Y. (2011) Unsu-
pervised learning of hierarchical representations with convolutional deep belief
networks. Commun. ACM 54(10): 95 – 103.

[Le Roux et al. , 2012] Le Roux N. , Schmidt M. & Bach, F. (2012). A Stochastic
Gradient Method with an Exponential Convergence Rate for Strongly-Convex
Optimization with Finite Training Sets. Submitted.

[Morrone et al. , 1988] Morrone M. C. & Burr D. C. (1988). Feature detection in
human vision: a phase dependent energy model. Proc. R. Soc. (Lond) B235,
221 – 245.

[Murray, 2010] Murray W. (2011). Newton-Type Methods. Wiley Encyclopedia of
Operations Research and Management Science.

[Nesterov, 2010] Nesterov Y. (2010). Efficiency of coordinate descent methods on
huge-scale optimization problems. CORE Discussion Paper, 2010/2.

[Nocedal, 1980] Nocedal J. (1980). Updating Quasi-Newton Matrices with Limited
Storage. Mathematics of Computation 35, pp. 773 – 782.

[Polyak, 1964] Polyak B. T. (1964). Some methods of speeding up the convergence
of iteration methods. Z. Vycisl. Mat. i Mat. Fiz. , 4, pp. 1 – 17.

[Polyak et al. , 1992] Polyak B. T. & Juditsky A. B. (1992). Acceleration of
Stochastic Approximation by Averaging. SIAM Journal on Control and Op-
timization 30, No. 4. pp. 838 – 855.

[Ranzato et al. , 2007] Ranzato M. , Huang F. J. , Boureau Y. & LeCun Y. (2007)
Unsupervised Learning of Invariant Feature Hierarchies with Applications to
Object Recognition. Proc. of Computer Vision and Pattern Recognition Con-
ference (CVPR 2007).

[Riedmiller et al. , 1993] Riedmiller M. & Braun H. (1993). A Direct Adaptive
Method for Faster Backpropagation Learning: The RPROP Algorithm. IEEE
International Conference On Neural Networks, pp. 586 – 591.

[Robbins et al. , 1951] Robbins H. & Monro S. (1951). A Stochastic Approxima-
tion Method. Annals of Mathematical Statistics 22, #3 , pp. 400 – 407.

[Salakhutdinov et al. , 2007b] Salakhutdinov R. R. & Hinton G. E. (2007). Se-
mantic Hashing. In Proceedings of the SIGIR Workshop on Information Re-
trieval and Applications of Graphical Models, Amsterdam.

[Salakhutdinov et al. , 2007a] Salakhutdinov R. R. , Mnih A. & Hinton G. E.
(2007). Restricted Boltzmann Machines for Collaborative Filtering. Interna-
tional Conference on Machine Learning (ICML 2007).

[Schaul et al. , 2012] Schaul T. , Zhang S. & LeCun Y. (2012) No More Pesky
Learning Rates. Technical Report, arXiv:1206.1106v1

[Shanno, 1970] Shanno D. F. (1970). Conditioning of quasi-Newton methods for
function minimization. Mathematics of Computation 24 (111): 647 – 656.

[Smolensky, 1986] Smolensky P. (1986). Information processing in dynamical sys-
tems: Foundations of harmony theory. Parallel Distributed Processing: Volume
1: Foundations, pages 194–281. MIT Press, Cambridge, MA.

[Sutskever et al. , 2007] Sutskever I. & Hinton, G. E. (2007) Learning Multilevel
Distributed Representations for High-dimensional Sequences. AI and Statistics,
2007.

[Sutskever et al. , 2008] Sutskever I. & Hinton G. E. (2008). Deep Narrow Sig-
moid Belief Networks are Universal Approximators. Neural Computation, Vol
20, pp 2629 – 2636.

[Taylor et al. , 2007] Taylor G. W. , Hinton G. E. & Roweis S. (2007) Modeling
human motion using binary latent variables. Advances in Neural Information
Processing Systems 19, MIT Press, Cambridge, MA.

[Vishwanathan et al. , 2006] Vishwanathan S. , Schraudolph N. , Schmidt M. &
Murphy K. (2006). Accelerated Training of Conditional Random Fields with
Stochastic Gradient Methods. ICML 2006.

[Vogl et al. , 1988] Vogl T. P. , Mangis J. W. , Rigler A. K. , Zink W. T. & Alkon
D. L. (1988). Accelerating the convergence of the back-propagation method. Bi-
ological Cybernetics 59, pp. 257 – 63.

94

BIBLIOGRAPHY 95

[Watson, 2000] Watson A. B. (2000). Visual detection of spatial contrast patterns:
Evaluation of five simple models Optics Express, (6):12 – 33.

[Wulsin et al. , 2011] Wulsin D. F. , Gupta J. R. , Mani R. , Blanco J. A. & Litt B.
(2011). Modeling electroencephalography waveforms with semi-supervised deep
belief nets: fast classification and anomaly measurement. J Neural Eng. 2011
Apr 28;8(3):036015.

[Xu, 2012] Xu W. (2011) Towards Optimal One Pass Large Scale Learning with
Averaged Stochastic Gradient Descent. CoRR abs/1107.2490.

[Zoran et al. , 2011] Zoran D. & Weiss Y. (2011). From learning models of natural
image patches to whole image restoration. ICCV, pp. 479 – 486.

[Zweig et al. , 2010] Zweig G. & Nguyen P. (2010). SCARF: a segmental con-
ditional random field toolkit for speech recognition. Interspeech 2010: 2858 –
2861.

Appendix A

Notational Conventions

• Vectors are denoted by lowercase boldface letters or sometimes (mainly in
pseudocodes) variables written in bold starting with a lowercase letter (e.g.
θ, pass).

• Matrices are denoted by uppercase boldface letters or sometimes (mainly
in pseudocodes) variables written in bold starting with an uppercase letter
(e.g. H , Batch).

• We use the notation A(1, ∗) in pseudocodes and A1,∗ in formulae to refer
to the of the first row of A (i.e. A(1, ∗) ≡ A1,∗ and is a vector).

• We use the notation x(T) to denote the T -th instance x(t). We use xT to
denote the transpose of a vector x.

• When defining a D-dimensional vector a by “a ∈ RD” without specifying
whether it is a column or a row vector, assume it is whichever of the two is
required by the operations a is involved in to be defined.

• We use {a(n)} to refer to the series a(0), a(1), a(2), ..., a(n).

• We use f(x) interchangeably with f(x0), when it is clear from the context
that we refer to the value of f(x) for x = x0. Similarly, we might even just
use f in some cases to denote the same thing (especially in pseudocodes)
when doing so adds no ambiguity. This notational slip carries on to partial
derivatives, the gradient and the Hessian of f as well.

• In pseudocodes, constants are usually written in plain uppercase characters
(e.g. N , MAX ITERS). Their values are always explained in the main
text and —whenever deemed necessary— in the algorithms themselves in
commends or by an explicit value assignment. So if some symbol or term
is not specified in a pseudocode, then it is a constant and it is bound to
be explained in the main text, most likely in the subsection describing the
pseudocode.

• In pseudocodes, functions are also written in uppercase (e.g. OBJFUNCE-
VAL(), COMPUTE OBJECTIVE AND GRADIENT()). Most of these are

96

APPENDIX A. NOTATIONAL CONVENTIONS 97

defined in other pseudocodes. Exceptions include ZEROS(), SIZE() and
SHUFFLE().

• In pseudocodes, we assume predefined functions ZEROS() and SIZE() that
work the same way their counterparts in Matlab/Octave do. So ZEROS(m,n)
will create a m× n matrix with all its elements equal to zero. SIZE(θ) re-
turns the length of vector θ and SIZE(A) the dimensions of matrix A.
We use SIZE(A, ROWS) to get the number of rows of A and SIZE(A,
COLUMNS) to get the number of columns of A. Conversely, we use
SHUFFLE(A, ROWS) to get a random permutation of the rows of A and
SHUFFLE(A, COLUMNS) to get a random permutation of the columns of
A.

• We use A(∗) to denote the column vector that we get by concatenating all
columns of matrix A.

• We use the notation 1 : T to denote 1, 2, ..., T just like in Matlab/Octave.

• We use the notation a = ++ as a shorthand for a = a + 1 , as in many
programming languages (but not Matlab).

• We use the “=” operator to denote value assignment and the “==” operator
to denote equality, as is done in most programming languages.

Appendix B

Table of Method Names

Table B.1: The methods discussed here, a brief description of each and a reference
to the algorithm that describes it.

Method Brief Description Algorithm Implemented Comments

BGD basic The simple version of 4 Yes
batch gradient descent

BGD heavyball Batch gradient descent using 5 Yes
the “Heavy Ball” heuristic

BGD bolddriver Batch gradient descent using 6 Yes
the “Bold Driver” heuristic

BGD rprop Batch gradient descent using the 7 Yes
“Resilient Backpropagation” heuristic

CD basicGD Coordinate Descent using
a batch gradient descent step 8 Yes
to update each parameter

CD basicNewton Coordinate Descent using Only used in
an inexpensive Newton step 9 Yes logistic regression
to update each parameter toy problem

Newton Newton’s Method Not given. Update step Yes Only used in
described by Eq. (3.4) logistic regression

toy problem
No. Used

L-BFGS Limited Memory BFGS 10 minfunc()
implementation

DIBGD basic Dynamically increasing batch size 12 Yes
version of batch gradient descent

SGD basic The simple version of 13 Yes
stochastic gradient descent

SGD heavyball Stochastic gradient descent 14 Yes
using the “Heavy Ball” heuristic

ASGD basic Averaged stochastic gradient descent 15 Yes
descent

IAGD basic Iterate averaging stochastic 16 Yes
gradient descent

MBGD basic The simple version of 13 Yes
minibatch gradient descent

MBGD heavyball Minibatch gradient descent 18 Yes
using the “Heavy Ball” heuristic

MBGD bolddriver A version of minibatch gradient 19 Yes
descent using the “Bold Driver” heuristic

98

Appendix C

Average Execution Times Table

Table C.1: Average time (in seconds ×10−5) until termination for each optimiza-
tion method training NADE with H = 50 hidden units. First row shows average
time for the hyperparameter optimization step, second row shows average time
for the parameter optimization step (the execution of the optimizer) and third
row is the sum of these two.

Method adult connect-4 dna mushrooms nips-0-12 ocr-letters rcv1 web binarized
mnist

BGD basic 605584 3072564 259344 639890 234846 4858910 8247580 8793876 56695470
1211168 19273356 1113018 923120 704538 53586836 71229100 64697802 555324860
1816752 22345920 1372362 1563010 939384 58445746 79476680 73491678 612020330

BGD heavyball 3103618 14804172 2128782 3126020 1235116 25960462 41425345 45853782 331450440
1070586 18156060 1058988 828710 600162 50949142 65043415 62394644 188984900
4174204 32960232 3187770 3954730 1835278 76909604 106468760 108248426 520435340

BGD bolddriver 14912506 64803168 6937452 14958740 6323446 119668012 198504255 232828336 947831960
908376 15921468 972540 702830 634954 50255012 65418305 57578950 510259230

15874952 80724636 7909992 15661570 6958400 169923024 263922560 290407286 1458091190
BGD rprop 13560756 68155056 6764556 14727960 6114694 117030318 206564390 209796756 659993420

962446 13547214 950928 723810 513182 48727926 64855970 55066414 494268200
14523202 81702270 7715484 15451770 6627876 165758244 271420360 264863170 1154261620

CD basicGD 475816 2653578
4325600 27932400 − − − − − − −
4801416 30585978

L-BFGS − − − − − − − − −
5361048 19852480 2031579 1417792 2406027 60113810 102481125 87967758 949701125

DIBGD basic 489192 1767096
436436 4450464 − − − − − − −
925628 6217560

SGD basic 4125000 10640000 1029000 1866000 2515464 19129250 12544000 75328000 154425000
4950000 17920000 960400 1260000 2551920 38260880 67200000 71456000 521850000
9075000 28560000 1989400 3126000 5067384 57390130 79744000 146784000 676275000

SGD heavyball 18975000 53200000 1029000 9072000 12887196 98459375 170240000 363616000 559125000
4785000 1736000 4630500 1200000 2187360 38260880 65600000 7145600 511200000
23760000 54936000 5659500 10272000 15074556 136700000 235840000 370761600 1070325000

ASGD basic 3795000 11480000 891800 1824000 2570148 19691875 12152000 78848000 122475000
4455000 15120000 891800 1020000 2005080 34884920 62400000 66528000 457950000
8250000 26600000 1783600 2844000 4575228 54576795 74552000 145376000 580425000

IAGD basic 3795000 11088000
4200000 14000000 − − − − − − −
7995000 25088000

MBGD basic 275800000 71100000 10500000 22200000 10100000 145400000 81500000 452600000 1353300000
17951240 8725200 1047800 981500 715680 47171100 62409360 66487200 548808480
293751240 79825200 11547800 23181500 10815680 192571100 143909360 519087200 1902108480

MBGD heavyball 286600000 74400000 10900000 21900000 10000000 144600000 273200000 432600000 1363700000
17086120 8460800 1031680 936200 692960 45712200 58148480 65208600 538414380
303686120 82860800 11931680 22836200 10692960 190312200 331348480 497808600 1902114380

MBGD bolddriver 248722000 66100000
13409360 6742200 − − − − − − −
62131360 72842200

99

	Introduction and Outline of the Dissertation
	Introduction
	Outline of the Dissertation

	Background
	Optimization and its Role in Machine Learning
	Deep Belief Networks
	Restricted Boltzmann Machines
	Density Estimation
	Models Examined

	Optimization Methods Examined
	Categorization of Optimization Methods
	Order of Optimization Methods
	Batch vs Stochastic Optimization Methods
	Some Intuitions Regarding Our Optimization Problem
	Gradient Computation
	Batch Methods
	Stochastic Methods
	Mini-Batch Methods

	Hyperparameter Selection
	Step Size
	Adaptive and Individual Step Sizes
	Momentum
	Batch Size
	Epsilon in Statistical Tests
	Termination Criteria and Overfitting Control
	Evaluation
	Alternative Ways to Search the Hyperparameter Space

	Gradient Code Debugging and Verification
	The Finite Differences Method
	Toy Problem: Optimizing a Logistic Regression Model
	Simple Baselines for Density Estimation

	Experimental Results
	The Datasets
	Experimental Design
	Results: Average Loglikelihood (ALL)
	Results: Execution Times
	Results: Closing Remarks

	Conclusion and Future Work
	Bibliography
	Notational Conventions
	Table of Method Names
	Average Execution Times Table

