
On the Quantitative Analysis of Deep Belief Networks

Ruslan Salakhutdinov RSALAKHU@CS.TORONTO.EDU

Iain Murray MURRAY@CS.TORONTO.EDU

Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3G4, Canada

Abstract

Deep Belief Networks (DBN’s) are generative
models that contain many layers of hidden vari-
ables. Efficient greedy algorithms for learning
and approximate inference have allowed these
models to be applied successfully in many ap-
plication domains. The main building block of
a DBN is a bipartite undirected graphical model
called a restricted Boltzmann machine (RBM).
Due to the presence of the partition function,
model selection, complexity control, and exact
maximum likelihood learning in RBM’s are in-
tractable. We show that Annealed Importance
Sampling (AIS) can be used to efficiently es-
timate the partition function of an RBM, and
we present a novel AIS scheme for comparing
RBM’s with different architectures. We further
show how an AIS estimator, along with approx-
imate inference, can be used to estimate a lower
bound on the log-probability that a DBN model
with multiple hidden layers assigns to thetest
data. This is, to our knowledge, the first step
towards obtaining quantitative results that would
allow us to directly assess the performance of
Deep Belief Networks as generative models of
data.

1. Introduction
Deep Belief Networks (DBN’s), recently introduced by
Hinton et al. (2006) are probabilistic generative models that
contain many layers of hidden variables, in which each
layer captures strong high-order correlations between the
activities of hidden features in the layer below. The main
breakthrough introduced by Hinton et al. was a greedy,
layer-by-layer unsupervised learning algorithm that allows
efficient training of these deep, hierarchical models. The
learning procedure also provides an efficient way of per-
forming approximate inference, which makes the values of

Appearing inProceedings of the25 th International Conference
on Machine Learning, Helsinki, Finland, 2008. Copyright 2008
by the author(s)/owner(s).

the latent variables in the deepest layer easy to infer. These
deep generative models have been successfully applied in
many application domains (Hinton & Salakhutdinov, 2006;
Bengio & LeCun, 2007).

The main building block of a DBN is a bipartite undirected
graphical model called the Restricted Boltzmann Machine
(RBM). RBM’s, and their generalizations to exponential
family models, have been successfully applied in collab-
orative filtering (Salakhutdinov et al., 2007), information
and image retrieval (Gehler et al., 2006), and time series
modeling (Taylor et al., 2006). A key feature of RBM’s
is that inference in these models is easy. An unfortunate
limitation is that the probability of data under the model is
known only up to a computationally intractable normaliz-
ing constant, known as the partition function. A good es-
timate of the partition function would be extremely helpful
for model selection and for controlling model complexity,
which are important for making RBM’s generalize well.

There has been extensive research on obtaining determin-
istic approximations (Yedidia et al., 2005) or determin-
istic upper bounds (Wainwright et al., 2005) on the log-
partition function of arbitrary discrete Markov random
fields (MRF’s). These variational methods rely critically
on an ability to approximate the entropy of the undirected
graphical model. However, for densely connected MRF’s,
such as RBM’s, these methods are unlikely to perform
well. There have also been many developments in the
use of Monte Carlo methods for estimating the partition
function, including Annealed Importance Sampling (AIS)
(Neal, 2001), Nested Sampling (Skilling, 2004), and many
others (see e.g. Neal (1993)). In this paper we show how
one such method, AIS, by taking advantage of the bipartite
structure of an RBM, can be used to efficiently estimate
its partition function. We further show that this estimator,
along with approximate inference, can be used to estimate a
lower bound on the log-probability that a DBN model with
multiple hidden layers assigns to training or test data. This
result allows us to assess the performance of DBN’s as gen-
erative models and to compare them to other probabilistic
models, such as plain mixture models.
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2. Restricted Boltzmann Machines
A Restricted Boltzmann Machine is a particular type of
MRF that has a two-layer architecture in which the visi-
ble, binary stochastic unitsv ∈ {0, 1}D are connected to
hidden binary stochastic unitsh ∈ {0, 1}M . The energy of
the state{v,h} is:

E(v,h; θ) = −
D

∑

i=1

M
∑

j=1

Wijvihj−
D

∑

i=1

bivi−
M
∑

j=1

ajhj , (1)

whereθ = {W,b,a} are the model parameters:Wij repre-
sents the symmetric interaction term between visible uniti
and hidden unitj; bi andaj are bias terms. The probability
that the model assigns to a visible vectorv is:

p(v; θ) =
p∗(v; θ)

Z(θ)
=

1

Z(θ)

∑

h

exp (−E(v,h; θ)), (2)

Z(θ) =
∑

v

∑

h

exp (−E(v,h; θ)), (3)

wherep∗ denotes unnormalized probability, andZ(θ) is the
partition function or normalizing constant. The conditional
distributions over hidden unitsh and visible vectorv are
given by logistic functions:

p(h|v) =
∏

j

p(hj |v), p(v|h) =
∏

i

p(vi|h) (4)

p(hj = 1|v) = σ(
∑

i

Wijvi + aj) (5)

p(vi = 1|h) = σ(
∑

j

Wijhj + bi), (6)

whereσ(x) = 1/(1+exp(−x)). The derivative of the log-
likelihood with respect to the model parameterW can be
obtained from Eq. 2:

∂ ln p(v)

∂Wij

= EP0
[vihj ] − EPModel

[vihj ],

where EP0
[·] denotes an expectation with respect to the

data distribution and EPModel
[·] is an expectation with re-

spect to the distribution defined by the model. The ex-
pectation EPModel

[·] cannot be computed analytically. In
practice learning is done by following an approximation
to the gradient of a different objective function, called the
“Contrastive Divergence” (CD) (Hinton, 2002):

∆Wij = ǫ
(

EP0
[vihj ] − EPT

[vihj]
)

. (7)

The expectation EPT
[·] represents a distribution of samples

from running the Gibbs sampler (Eqs. 5, 6), initialized at
the data, forT full steps. SettingT = ∞ recovers maxi-
mum likelihood learning, althoughT is typically set to one.

Even though CD learning may work well in practice, the
problem of model selection and complexity control still re-
mains. Suppose we have two RBM’s with parameter values

θA and θB. Suppose that each RBM has different num-
ber of hidden units and was trained using different learning
rates and different numbers of CD steps. On the validation
set, we are interested in calculating the ratio:

p(v; θA)

p(v; θB)
=

p∗(v; θA)

p∗(v; θB)

Z(θB)

Z(θA)
,

which requires knowing the ratio of partition functions.

3. Estimating Ratios of Partition Functions

Suppose we have two distributions defined on some space
V with probability density functions:pA(v) = p∗A(v)/ZA

and pB(v) = p∗B(v)/ZB . One way to estimate the ra-
tio of normalizing constants is to use a simple importance
sampling (IS) method. Suppose thatpA(v) 6= 0 whenever
pB(v) 6= 0:

ZB

ZA

=

∫

p∗B(v)dv

ZA

=

∫

p∗B(v)

p∗A(v)
pA(v)dv = EpA

[

p∗B(v)

p∗A(v)

]

.

Assuming we can draw independent samples frompA, the
unbiased estimate of the ratio of partition functions can be
obtained by using a simple Monte Carlo approximation:

ZB

ZA

≈
1

M

M
∑

i=1

p∗B(v(i))

p∗A(v(i))
≡

1

M

M
∑

i=1

w(i) = r̂IS, (8)

wherev
(i) ∼ pA. If pA and pB are not close enough,

the estimator̂rIS will be very poor. In high-dimensional
spaces, the variance ofr̂IS will be very large (or possibly
infinite), unlesspA is a near-perfect approximation topB.

3.1. Annealed Importance Sampling (AIS)

Suppose that we can define a sequence of intermediate
probability distributions:p0, ..., pK , with p0 = pA andpK

= pB, which satisfy the following conditions:

C1 pk(v) 6= 0 wheneverpk+1(v) 6= 0.

C2 We must be able to easily evaluate the unnormalized
probabilityp∗k(v), ∀v ∈ V , k = 0, ..., K.

C3 For eachk = 0, ..., K−1, we must be able to draw
a samplev′ givenv using a Markov chain transition
operatorTk(v′;v) that leavespk(v) invariant:

∫

Tk(v′;v)pk(v)dv = pk(v′). (9)

C4 We must be able to draw (preferably independent)
samples frompA.

The transition operatorsTk(v′;v) represent the probability
density of transitioning from statev to v

′. Constructing a
suitable sequence of intermediate probability distributions
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will depend on the problem. One general way to define this
sequence is to set:

pk(v) ∝ p∗A(v)1−βkp∗B(v)βk , (10)

with 0 = β0 < β1 < ... < βK = 1 chosen by the user.
Once the sequence of intermediate distributions has been
defined we have:

Annealed Importance Sampling (AIS) run:

1. Generatev1,v2, ..., vK as follows:

• Samplev1 from pA = p0

• Samplev2 givenv1 usingT1

• ...
• SamplevK givenvK−1 usingTK−1

2. Set

w(i) =
p∗

1(v1)

p∗

0(v1)

p∗

2(v2)

p∗

1(v2)
...

p∗

K−1(vK−1)

p∗

K−2(vK−1)

p∗

K(vK)

p∗

K−1(vK)

Note that there is no need to compute the normalizing con-
stants of any intermediate distributions. After performing
M runs of AIS, the importance weightsw(i) can be substi-
tuted into Eq. 8 to obtain an estimate of the ratio of partition
functions:

ZB

ZA

≈
1

M

M
∑

i=1

w(i) = r̂AIS. (11)

Neal (2005) shows that for sufficiently large number of in-
termediate distributionsK, the variance of̂rAIS will be
proportional to1/MK. ProvidedK is kept large, the total
amount of computation can be split in any way between the
number of intermediate distributionsK and the number of
annealing runsM without adversely affecting the accuracy
of the estimator. If samples drawn frompA are indepen-
dent, the number of AIS runs can be used to control the
variance in the estimate of̂rAIS:

Var(r̂AIS) =
1

M
Var(w(i)) ≈

ŝ2

M
= σ̂2, (12)

whereŝ2 is estimated simply from the sample variance of
the importance weights.

3.2. Ratios of Partition Functions of two RBM’s

Suppose we have two RBM’s with parameter valuesθA =
{WA,bA,aA} andθB = {WB,bB,aB} that define prob-
ability distributionspA andpB over V ∈ {0, 1}D. Each
RBM can have a different number of hidden unitsh

A ∈
{0, 1}MA andh

B ∈ {0, 1}MB . The generic AIS interme-
diate distributions (Eq. 10) would be harder to sample from
than an RBM. Instead we introduce the following sequence
of distributions fork = 0, ..., K:

pk(v) =
p∗k(v)

Zk

=
1

Zk

∑

h

exp (−Ek(v,h)), (13)

where the energy function is given by:

Ek(v,h) = (1 − βk)E(v,hA; θA) + βkE(v,hB ; θB), (14)

with 0 = β0 < β1 < ... < βK = 1. For i = 0, we have
β0 = 0 and sop0 = pA. Similarly, for i = K, we have
pK = pB. For the intermediate values ofk, we will have
some interpolation betweenpA andpB.

Let us now define a Markov chain transition operator
Tk(v′;v) that leavespk(v) invariant. Using Eqs. 13, 14,
it is straightforward to derive a block Gibbs sampler. The
conditional distributions are given by logistic functions:

p(hA
j = 1|v) = σ

(

(1 − βk)(
∑

i

WA
ij vi + aA

j )

)

(15)

p(hB
j = 1|v) = σ

(

βk(
∑

i

WB
ij vi + aB

j )

)

(16)

p(v′i = 1|h) = σ

(

(1 − βk)(
∑

j

WA
ij hA

j + bA
i )

+ βk(
∑

j

WB
ij hB

j + bB
i )

)

. (17)

Givenv, Eqs. 15, 16 are used to stochastically activate hid-
den unitshA andh

B. Eq. 17 is then used to draw a new
samplev′ as shown in Fig. 1 (left panel). Due to the special
structure of RBM’s, the cost of summing outh is linear in
the number of hidden units. We can therefore easily evalu-
ate:

p∗k(v) =
∑

hA,hB

e(1−βk)E(v,hA;θA)+βkE(v,hB;θB)

= e(1−βk)
∑

i
bA

i vi

MA
∏

j=1

(1 + e(1−βk)(
∑

i
W A

ij vi+aA
j ))

× eβk

∑

i
bB

i vi

MB
∏

j=1

(1 + eβk(
∑

i
W B

ij vi+aB
j )).

We will assume that the parameter values of each RBM
satisfy |θ| < ∞, in which casep(v) > 0 for all v ∈ V .
This will ensure that condition C1 of the AIS procedure is
always satisfied. We have already shown that conditions
C2 and C3 are satisfied. For condition C4, we can run
a blocked Gibbs sampler (Eqs. 5, 6) to generate samples
from pA. These sample points will not be independent, but
the AIS estimator will still converge to the correct value,
provided our Markov chain is ergodic (Neal, 2001). How-
ever, assessing the accuracy of this estimator can be diffi-
cult, as it depends on both the variance of the importance
weights and on autocorrelations in the Gibbs sampler.

3.3. Estimating Partition Functions of RBM’s

The partition function of an RBM can be found by finding
the ratio to the normalizer forθA = {0,bA,aA}, an RBM
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Figure 1. Left: The Gibbs transition operatorTk(v′;v) leavespk(v) invariant when estimating the ratio of partition functionsZB/ZA.
Middle: Recursive greedy learning consists of learning a stack of RBMs. Right: Two-layer DBN as a generative model.

with a zero weight matrix. From Eq. 3, we know:

ZA = 2MA

∏

i

(1 + ebi). (18)

Moreover,

pA(v) =
∏

i

pA(vi) =
∏

i

1/(1 + e−bi),

so we can draw exact independent samples from this “base-
rate” RBM. AIS in this case allows us to obtain anunbi-
asedestimate of the partition functionZB. This approach
closely resembles simulated annealing, since the interme-
diate distributions of Eq. 13 take form:

pk(v) =
exp((1−βk)vT

b
A)

Zk

∑

hB

exp(−βkE(v,hB ; θB)).

We gradually changeβk (or inverse temperature) from 0
to 1, annealing from a simple “base-rate” model to the final
complex model. The importance weightsw(i) ensure that
AIS produces correct estimates.

4. Deep Belief Networks (DBN’s)
In this section we briefly review a greedy learning algo-
rithm for training Deep Belief Networks. We then show
how to obtain an estimate of the lower bound on the log-
probability that the DBN assigns to the data.

4.1. Greedy Learning of DBN’s

Consider learning a DBN with two layers of hidden fea-
tures as shown in Fig. 1 (right panel). The greedy strategy
developed by Hinton et al. (2006) uses a stack of RBM’s
(Fig. 1, middle panel). We first train the bottom RBM with
parametersW 1, as described in section 2.

A key observation is that the RBM’s joint distribution
p(v,h1|W 1) is identical to that of a DBN with second-

layer weights tied toW 2 =W 1⊤. We now consider untying
and refiningW 2, improving the fit to the training data.

For any approximating distributionQ(h1|v), the DBN’s
log-likelihood has the following variational lower bound:

ln p(v|W 1, W 2) ≥
∑

h1

Q(h1|v)
[

ln p(h1|W 2) +

ln p(v|h1, W 1)
]

+ H(Q(h1|v)), (19)

whereH(·) is the entropy functional. We setQ(h1|v) =
p(h1|v, W 1) defined by the RBM (Eq. 5). Initially, when

W 2 = W 1⊤, Q is the DBN’s true factorial posterior over
h

1, and the bound is tight. Therefore, any increase in the
bound will lead to an increase in the true likelihood of the
model. Maximizing the bound of Eq. 19 with frozenW 1 is
equivalent to maximizing:

∑

h1

Q(h1|v) ln p(h1|W 2). (20)

This is equivalent to training the second layer RBM with
vectors drawn fromQ(h1|v) as data.

This scheme can be extended by training a third RBM on
h

2 vectors drawn from the second RBM. If we initialize
W 3 =W 2⊤, we are guaranteed to improve the lower bound
on the log-likelihood, though the log-likelihood itself can
fall (Hinton et al., 2006). Repeating this greedy, layer-by-
layer training several times results in a deep, hierarchical
model.

Recursive Greedy Learning Procedure for the DBN.

1. Fit parametersW 1 of a 1-layer RBM to data.

2. Freeze the parameter vectorW 1 and use samples from
p(h1|v, W 1) as the data for training the next layer of
binary features with an RBM.

3. Proceed recursively for as many layers as desired.

In practice, when adding a new layerl, we typically do not

initialize W l = W l−1⊤, so the number of hidden units of
the new RBM does not need to be the same as the number
of the visible units of the lower-level RBM.

4.2. Estimating Lower Bounds for DBN’s

Consider the same DBN model with two layers of hidden
features shown in Fig. 1. The model’s joint distribution is:

p(v,h1,h2) = p(v|h1) p(h2,h1), (21)

wherep(v|h1) is defined by Eq. 6), andp(h1,h2) is the
joint distribution defined by the second layer RBM. Note
thatp(v|h1) is normalized.
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By explicitly summing outh2, we can easily evaluate an
unnormalized probabilityp∗(v,h1)=Zp(v,h1). Using the
approximating factorial distributionQ, which we get as a
byproduct of the greedy learning procedure, and the varia-
tional lower bound of Eq. 19, we obtain:

ln
∑

h1

p(v,h1) ≥
∑

h1

Q(h1|v) ln p∗(v,h1)

− lnZ + H(Q(h1|v)) = B(v). (22)

The entropy termH(·) can be computed analytically, since
Q is factorial. The partition functionZ is estimated by run-
ning AIS on the top-level RBM. And the expectation term
can be estimated by a simple Monte Carlo approximation:

∑

h1

Q(h1|v) ln p∗(v,h1) ≈
1

M

M
∑

i=1

ln p∗(v,h1(i)), (23)

whereh1(i) ∼ Q(h1|v). The variance of this Monte Carlo
estimator will be proportional to1/M provided the vari-
ance ofln p∗(v,h1(i)) is finite. In general, we will be in-
terested in calculating the lower bound averaged over the
test set containingNt samples, so

1

Nt

Nt
∑

n=1

B(vn) ≈
1

Nt

Nt
∑

n=1

[

1

M

M
∑

i=1

ln p∗(vn,h1(i)) +

H(Q(h1|vn))

]

− ln Ẑ = r̂B − ln Ẑ = r̂Bound. (24)

In this case the variance of the estimator induced by the
Monte Carlo approximation will asymptotically scale as
1/(NtM). We will show in the experimental results sec-
tion that the value ofM can be small providedNt is large.

The error of the overall estimator̂rBound in Eq. 24 will be
mostly dominated by the error in the estimate oflnZ. In
our experiments, we obtained unbiased estimates ofẐ and
its standard deviation̂σ using Eqs. 11, 12. We reportln Ẑ
andln (Ẑ ± σ̂).

Estimating this lower bound for Deep Belief Networks with
more layers is now straightforward. Consider a DBN with
L hidden layers. The model’s joint distribution and its ap-
proximate posterior distributionQ are given by:

p(
v,h1, ...,hL) = p(v|h1)...p(hL−2|hL−1)p(hL−1,hL)

Q(h1, ...,hL|v) = Q(h1|v)Q(h2|h1)...Q(hL|hL−1).

The bound can now be obtained by using Eq. 22. Note
that most of the computation resources will be spent on
estimating the partition functionZ of the top level RBM.

5. Experimental Results
In our experiments we used the MNIST digit dataset, which
contains 60,000 training and 10,000 test images of ten

handwritten digits (0 to 9), with 28×28 pixels. The dataset
was binarized: each pixel value was stochastically set to 1
in proportion to its pixel intensity. Samples from the train-
ing set are shown in Fig. 2 (top left panel). Annealed im-
portance sampling requires theβk that define a sequence
of intermediate distributions. In all of our experiments this
sequence was chosen by quickly running a few preliminary
experiments and picking the spacing ofβk so as to mini-
mize the log variance of the final importance weights. The
biasesbA of a base-rate model (see Eq. 18) were set by
maximum likelihood, then smoothed to ensure thatp(v) >
0, ∀ v ∈ V . Code that can be used to reproduce experimen-
tal results is available at www.cs.toronto.edu/∼rsalakhu.

5.1. Estimating partition functions of RBM’s

In our first experiment we trained three RBM’s on the
MNIST digits. The first two RBM’s had 25 hidden units
and were learned using CD (section 2) withT=1 andT=3
respectively. We call these models CD1(25) and CD3(25).
The third RBM had 20 hidden units and was learned using
CD with T=1. For all three models we can calculate the ex-
act value of the partition function simply by summing out
the 784 visible units for each configuration of the hiddens.
For all three models we used 500βk spaced uniformly from
0 to 0.5, 4,000βk spaced uniformly from 0.5 to 0.9, and
10,000βk spaced uniformly from 0.9 to 1.0, with a total of
14,500 intermediate distributions.

Table 1 shows that for all three models, using only 10 AIS
runs, we were able to obtain good estimates of partition
functions in just 20 seconds on a Pentium Xeon 3.00GHz
machine. For model CD1(25), however, the variance of
the estimator was high, even with 100 AIS runs. However,
figure 3 (top row) reveals that as the number of annealing
runs is increased, AIS can almost exactly recover the true
value of the partition function across all three models.

We also estimated the ratio of normalizing constants of
two RBM’s that have different numbers of hidden units:
CD1(20) and CD1(25). This estimator could be used to
do complexity control. In detail, using 100 AIS runs with
uniform spacing of 10,000βk, we obtainedln r̂AIS =
ln (ZCD1(20)/ZCD1(25)) = −24.49 with an error estimate
ln (r̂AIS ± 3σ̂) = (−24.19,−24.93). Each sample from
CD1(25) was generated by starting a Markov chain at the
previous sample and running it for 10,000 steps. Com-
pared to the true value of−24.18, this result suggests that
our estimates may have a small systematic error due to the
Markov chain failing to visit some modes.

Our second experiment consisted of training two more re-
alistic models: CD1(500) and CD3(500). We used exactly
the same spacing ofβk as before and exactly the same base-
rate model. Results are shown in table 1 (bottom row). For
each model we were able to get what appears to be a rather
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Training samples MoB (100) Base-rate β = 0 β = 0.5 β = 0.95 β = 1.0

� �

The course of AIS run for model CD25(500)

CD1(500) CD3(500) CD25(500) DBN-CD1 DBN-CD3 DBN-CD25

Figure 2. Top row: First two panels show random samples from the training set and a mixture of Bernoullis model with 100 components.
The last 4 panels display the course of 16 AIS runs for CD25(500) model by starting from a simple base-rate model and annealing to the
final complex model.Bottom row: Random samples generated from three RBM’s and corresponding three DBN’s models.

Table 1. Results of estimating partition functions of RBM’s along with the estimates of the average training and test log-probabilities.
For all models we used 14,500 intermediate distributions.

AIS True
Estimates

Time
Avg. Test log-prob. Avg. Train log-prob.

Runs lnZ ln Ẑ ln (Ẑ ± σ̂) ln (Ẑ ± 3σ̂) (mins) true estimate true estimate

100 CD1(25) 255.41 256.52 255.00, 257.10 0.0000, 257.73 3.3 −151.57 −152.68 −152.35 −153.46
CD3(25) 307.47 307.63 307.44, 307.79 306.91, 308.05 3.3 −143.03 −143.20 −143.94 −144.11
CD1(20) 279.59 279.57 279.43, 279.68 279.12, 279.87 3.1 −164.52 −164.50 −164.89 −164.87

100 CD1(500) — 350.15 350.04, 350.25 349.77, 350.42 10.4 — −125.53 — −122.86
CD3(500) — 280.09 279.99, 280.17 279.76, 280.33 10.4 — −105.50 — −102.81
CD25(500) — 451.28 451.19, 451.37 450.97, 451.52 10.4 — −86.34 — −83.10

accurate estimate ofZ. Of course, we are relying on an em-
pirical estimate of AIS’s accuracy, which could potentially
be misleading. Nonetheless, Fig. 3 (bottom row) shows that
as we increase the number of annealing runs, the value of
the estimator does not oscillate drastically.

While performing these tests, we observed that contrastive
divergence learning withT=3 results in considerably better
generative model than CD learning withT=1: the differ-
ence of 20 nats is striking! Clearly, the widely used prac-
tice of CD learning withT=1 is a rather poor “substitute”
for maximum likelihood learning. Inspired by this result,
we trained a model by starting withT=1, and gradually
increasingT to 25 during the course of CD training, as
suggested by (Carreira-Perpinan & Hinton, 2005). We call
this model CD25(500). Training this model was computa-
tionally much more demanding. However, the estimate of
the average test log-probability for this model was about
−86, which is 39 and 19 nats better than the CD1(500) and
CD3(500) models respectively. Fig. 2 (bottom row) shows
samples generated from all three models by randomly ini-
tializing binary states of the visible units and running alter-
nating Gibbs for 100,000 steps. Certainly, samples gener-

ated by CD25(500) look much more like the real handwrit-
ten digits, than either CD1(500) or CD3(500).

We also obtained an estimate of the log ratio of two parti-
tion functionsr̂AIS = lnZCD25(500)/ZCD3(500) = 169.96,
using 10,000βk and 100 annealing runs. The estimates of
the individual log-partition functions wereln ẐCD25(500) =

451.28 and ln ẐCD3(500) = 280.09, in which case the log
ratio is451.28−280.09=171.19. This is in agreement (to
within three standard deviations) with the direct estimateof
the ratio,r̂AIS =169.96.

For a simple comparison we also trained several mixture of
Bernoullis models (see Fig. 2, top left panel) with 10, 100,
and 500 components. The corresponding average test log-
probabilities were−168.95, −142.63, and−137.64. The
data generated from the mixture model looks better than
CD3(500), although our quantitive results reveal this is due
to over-fitting. The RBM’s make much better predictions.

5.2. Estimating lower bounds for DBN’s

We greedily trained three DBN models with two hidden
layers. The first model, called DBN-CD1, was greedily
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Figure 3. Estimates of the log-partition functionsln Ẑ as we increase the number of annealing runs. The error bars show ln (Ẑ ± 3σ̂).

learned by freezing the parameter vector of the CD1(500)
model and learning the2nd layer RBM with 2000 hidden
units using CD withT=1. Similarly, the other two models,
DBN-CD3 and DBN-CD25, added 2000 hidden units on
top of CD3(500) and CD25(500), using CD withT=3 and
T=25 respectively. Training the DBN’s took roughly three
times longer than the RBM’s.

Table 2 shows the results. We used 15,000 intermediate
distributions and 500 annealing runs to estimate the parti-
tion function of the2nd layer RBM. This took 2.3 hours.
Further sampling was required for the simple Monte Carlo
approximation of Eq. 23. We usedM=5 samples from
the approximating distributionQ(h|v) for each data vec-
tor v. SettingM=100 did not make much difference. Ta-
ble 2 also reports the empirical error in the estimate of the
lower bound̂rBound. From Eq. 24, we have Var(r̂Bound) =
Var(r̂B) + Var(ln Ẑ), both of which are shown in table 2.
Note that models DBN-CD1 and DBN-CD3 significantly
outperform their single layer counterparts: CD1(500) and
CD3(500). Adding a second layer for those two models im-
proves model performance by at least 25 and 7 nats. This
corresponds to a dramatic improvement in the quality of
samples generated from the models (Fig. 2, bottom row).

Observe that greedy learning of DBN’s does not appear to
suffer severely from overfitting. For single layer models,
the difference between the estimates of training and test
log-probabilities was about 3 nats. For DBN’s, the corre-
sponding difference in the estimates of the lower bounds
was about 4 nats, even though adding a second layer intro-
duced over twice as many (or one million) new parameters.

Table 2. Results of estimating lower boundŝrBound (Eq. 24) on
the average training and test log-probabilities for DBN’s.On av-
erage, the total error of the estimator is about± 2 nats.

Avg. AIS error
bound Error̂rB ln (Ẑ ± 3σ̂)

Model log-prob ±3 std − ln Ẑ

Test DBN-CD1 −100.64 ±0.77 −1.43, +0.57
DBN-CD3 −98.29 ±0.75 −0.91, +0.31
DBN-CD25 −86.22 ±0.67 −0.84, +0.65

Train DBN-CD1 −97.67 ±0.30 −1.43, +0.57
DBN-CD3 −94.86 ±0.29 −0.91, +0.31
DBN-CD25 −82.47 ±0.25 −0.84, +0.65

The result of our experiments for DBN-CD25, however,
was very different. For this model, on the test data we ob-
tainedr̂Bound = −86.22. This is comparable to the esti-
mate of−86.34 for the average test log-probability of the
CD25(500) model. Clearly, we cannot confidently assert
that DBN-CD25 is a better generative model compared to
the carefully trained single layer RBM. This peculiar result
also supports previous claims that if the first level RBM al-
ready models data well, adding extra layers will not help
(LeRoux & Bengio, 2008; Hinton et al., 2006). As an ad-
ditional test, instead of randomly initializing parameters of
the2nd layer RBM, we initialized it by using the same pa-
rameters as the1st layer RBM but with hidden and visible
units switched (see Fig. 1). This initialization ensures that
the distribution over the visible unitsv defined by the two-
layer DBN isexactly the sameas the distribution overv
defined by the1st layer RBM. Therefore, after learning
parameters of the2nd layer RBM, the lower bound on the
training data log-likelihood can only improve. After care-
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fully training the second level RBM, our estimate of the
lower bound on the test log-probability was only−85.97.
Once again, we cannot confidently claim that adding an ex-
tra layer in this case yields better generalization.

6. Discussions
The original paper of Hinton et al. (2006) showed that for
DBN’s, each additional layer increases a lower bound (see
Eq. 19) on the log-probability of thetraining data, pro-
vided the number of hidden units per layer does not de-
crease. However, assessing generalization performance of
these generative models is quite difficult, since it requires
enumeration over an exponential number of terms. In this
paper we developed an annealed importance sampling pro-
cedure that takes advantage of the bipartite structure of the
RBM. This can provide a good estimate of the partition
function in a reasonable amount of computer time. Further-
more, we showed that this estimator, along with approx-
imate inference, can be used to obtain an estimate of the
lower bound on the log-probability of thetestdata, thus al-
lowing us to obtain some quantitative evaluation of the gen-
eralization performance of these deep hierarchical models.

There are some disadvantages to using AIS. There is a
need to specify theβk that define a sequence of interme-
diate distributions. The number and the spacing ofβk will
be problem dependent and will affect the variance of the
estimator. We also have to rely on the empirical estimate of
AIS accuracy, which could potentially be very misleading
(Neal, 2001; Neal, 2005). Even though AIS provides an
unbiased estimator ofZ, it occasionally gives large overes-
timates and usually gives small underestimates, so in prac-
tice, it is more likely to underestimate of the true value of
the partition function, which will result in an overestimate
of the log-probability. But these drawbacks should not re-
sult in disfavoring the use of AIS for RBM’s and DBN’s:
it is much better to have a slightly unreliable estimate than
no estimate at all, or an extremely indirect estimate, such
as discriminative performance (Hinton et al., 2006).

We find AIS and other stochastic methods attractive as they
can just as easily be applied to undirected graphical models
that generalize RBM’s and DBN’s to exponential family
distributions. This will allow future application to mod-
els of real-valued data, such as image patches (Osindero &
Hinton, 2008), or count data (Gehler et al., 2006).

Another alternative would be to employ deterministic ap-
proximations (Yedidia et al., 2005) or deterministic upper
bounds (Wainwright et al., 2005) on the log-partition func-
tion. However, for densely connected MRF’s, we would
not expect these methods to work well. Indeed, preliminary
results suggest that these methods provide quite inaccurate
estimates of (or very loose upper bounds on) the partition
function, even for small RBM’s whentrained on real data.
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