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Abstract
The Neural Autoregressive Distribution Estimator
(NADE) and its real-valued version RNADE are
competitive density models of multidimensional
data across a variety of domains. These models
use a fixed, arbitrary ordering of the data dimen-
sions. One can easily condition on variables at
the beginning of the ordering, and marginalize
out variables at the end of the ordering, however
other inference tasks require approximate infer-
ence. In this work we introduce an efficient pro-
cedure to simultaneously train a NADE model for
each possible ordering of the variables, by shar-
ing parameters across all these models. We can
thus use the most convenient model for each infer-
ence task at hand, and ensembles of such models
with different orderings are immediately available.
Moreover, unlike the original NADE, our train-
ing procedure scales to deep models. Empirically,
ensembles of Deep NADE models obtain state of
the art density estimation performance.

1. Introduction
In probabilistic approaches to machine learning, large col-
lections of variables are described by a joint probability
distribution. There is considerable interest in flexible model
distributions that can fit and generalize from training data
in a variety of applications. To draw inferences from these
models, we often condition on a subset of observed vari-
ables, and report the probabilities of settings of another
subset of variables, marginalizing out any unobserved nui-
sance variables. The solutions to these inference tasks often
cannot be computed exactly, and require iterative approxi-
mations such as Monte Carlo or variational methods (e.g.,
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Bishop, 2006). Models for which inference is tractable
would be preferable.

NADE (Larochelle & Murray, 2011), and its real-valued
variant RNADE (Uria et al., 2013), have been shown to be
state of the art joint density models for a variety of real-
world datasets, as measured by their predictive likelihood.
These models predict each variable sequentially in an arbi-
trary order, fixed at training time. Variables at the beginning
of the order can be set to observed values, i.e., conditioned
on. Variables at the end of the ordering are not required
to make predictions; marginalizing these variables requires
simply ignoring them. However, marginalizing over and
conditioning on any arbitrary subsets of variables will not
be easy in general.

In this work, we present a procedure for training a factorial
number of NADE models simultaneously; one for each
possible ordering of the variables. The parameters of these
models are shared, and we optimize the mean cost over
all orderings using a stochastic gradient technique. After
fitting the shared parameters, we can extract, in constant
time, the NADE model with the variable ordering that is
most convenient for any given inference task. While the
different NADE models might not be consistent in their
probability estimates, this property is actually something we
can leverage to our advantage, by generating ensembles of
NADE models “on the fly” (i.e., without explicitly training
any such ensemble) which are even better estimators than
any single NADE. In addition, our procedure is able to train
a deep version of NADE incurring an extra computational
expense only linear in the number of layers.

2. Background: NADE and RNADE
Autoregressive methods use the product rule to factorize
the probability density function of a D-dimensional vector-
valued random variable x as a product of one-dimensional



A Deep and Tractable Density Estimator

conditional distributions:

p(x) =

D∏
d=1

p(xod |xo<d
), (1)

where o is aD-tuple in the set of permutations of (1, . . . , D)
that serves as an ordering of the elements in x, xod denotes
the element of x indexed by the d-th element in o, and xo<d

the elements of x indexed by the first d− 1 elements in o.
This factorisation of the pdf assumes no conditional indepen-
dences. The only element constraining the modelling ability
of an autoregressive model is the family of distributions
chosen for each of the conditionals.

In the case of binary data, autoregressive models based
on logistic regressors and neural networks have been pro-
posed (Frey, 1998; Bengio & Bengio, 2000). The neu-
ral autoregressive density estimator (NADE) (Larochelle &
Murray, 2011), inspired by a mean-field approximation to
the conditionals of Equation (1) of a restricted Boltzmann
machine (RBM), uses a set of one-hidden-layer neural net-
works with tied parameters to calculate each conditional:

p(xod = 1 |xo<d
) = sigm(V ·,odhd + bod) (2)
hd = sigm(W ·,o<d

xo<d
+ c), (3)

where H is the number of hidden units, and V ∈ RH×D,
b ∈ RD, W ∈ RH×D, c ∈ RH are the parameters of the
NADE model.

A NADE can be trained by regularized gradient descent on
the negative log-likelihood given the training datasetX .

In NADE the activation of the hidden units in (3) can be
computed recursively:

hd = sigm(ad) where a1 = c (4)
ad+1 = ad + xodW ·,od . (5)

This relationship between activations allows faster training
and evaluation of a NADE model, O(DH), than autoregres-
sive models based on untied neural networks, O(D2H).

NADE has recently been extended to allow density esti-
mation of real-valued vectors (Uria et al., 2013) by using
mixture density networks or MDNs (Bishop, 1994) for each
of the conditionals in Equation (1). The networks’ hidden
layers use the same parameter sharing as before, with acti-
vations computed as in (5).

NADE and RNADE have been shown to offer better mod-
elling performance than mixture models and untied neural
networks in a range of datasets. Compared to binary RBMs
with hundreds of hidden units, NADEs usually have slightly
worse modelling performance, but they have three desirable
properties that the former lack: 1) an easy training proce-
dure by gradient descent on the negative likelihood of a

training dataset, 2) a tractable expression for the density of
a datapoint, 3) a direct ancestral sampling procedure, rather
than requiring Markov chain Monte Carlo methods.

Inference under a NADE is easy as long as the variables
to condition on are at the beginning of its ordering, and
the ones to marginalise over are at the end. To infer the
density of xoa...ob while conditioning on xo1...oa−1

, and
marginalising over xob+1...D

, we simply write

p(xoa...b
|xo1...a−1

) =

b∏
d=a

p(xod |xo<d
), (6)

where each one-dimensional conditional is directly available
from the model. However, as in most models, arbitrary prob-
abilistic queries require approximate inference methods.

A disadvantage of NADE compared to other neural network
models is that an efficient deep formulation (e.g., Bengio,
2009) is not available. While extending NADE’s definition
to multiple hidden layers is trivial (we simply introduce
regular feed-forward layers between the computation of
Equation 3 and of Equation 2), we lack a recursive expres-
sion like Equations 4 and 5 for the added layers. Thus,
when NADE has more than one hidden layer, each addi-
tional hidden layer must be computed separately for each
input dimension, yielding a complexity cubic on the size of
the layersO(DH2L), whereL represents the number of lay-
ers. This scaling seemingly made a deep NADE impractical,
except for datasets of low dimensionality.

3. Training a factorial number of NADEs
Looking at the simplicity of inference in Equation (6), a
naive approach that could exploit this property for any infer-
ence task would be to train as many NADE models as there
are possible orderings of the input variables. Obviously,
this approach, requiring O(D!) time and memory, is not
viable. However, we show here that through some careful
parameter tying between models, we can derive an efficient
stochastic procedure for training all models, minimizing the
mean of their negative log-likelihood objectives.

Consider for now a parameter tying strategy that simply
uses the same weight matrices and bias parameters across all
NADE models (we will refine this proposal later). We will
now write p(x |θ, o) as the joint distribution of the NADE
model that uses ordering o and p(x(n)od |x(n)

o<d ,θ, o<d, od) as
its associated conditionals, which are computed as specified
in Equations (2) and (3), or their straightforward extension
in the deep network case. Thus we explicitly treat the order-
ing o as a random variable. Notice that the dth conditional
only depends on the first d elements of the ordering, and is
thus exactly the same across NADE models sharing their
first d elements in o. During training we will attempt to
minimise the expected (over variable orderings) negative
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log-likelihood of the model for the training data:

JOA(θ) = E
o∈D!

− log p(X |θ, o) (7)

∝ E
o∈D!

E
x(n)∈X

− log p(x(n) |θ, o), (8)

where D! is the set of all orderings (i.e. permutations of D
elements). This objective does not correspond to a mixture
model, in which case the expectation over orderings would
be inside the log operation.

Using NADE’s autoregressive expression for the density of
a datapoint, (8) can be rewritten as:

JOA(θ) = E
o∈D!

E
x(n)∈X

D∑
d=1

− log p(x(n)od
|x(n)

o<d
,θ, o).

(9)
Where d indexes the elements in the order, o, of the dimen-
sions. By moving the expectation over orders inside the sum
over the elements of the order, the order can be split in three
parts: o<d standing for the index of the d−1 first dimensions
in the ordering; od the index of the d-th dimension in the
ordering, and o>d standing for the indices of the remaining
dimensions in the ordering. Therefore, the loss function can
be rewritten as:

JOA(θ) = E
x(n)∈X

D∑
d=1

E
o<d

E
od

E
o>d

− log p(x(n)od
|x(n)

o<d
,θ, o<d, od)

(10)

the value of each term does not depend on o>d. Therefore,
it can be simplified as:

JOA(θ) = E
x(n)∈X

D∑
d=1

E
o<d

E
od
− log p(x(n)od

|x(n)
o<d

,θ, o<d, od)

(11)
In practice, this loss function (11) will have a very high
number of terms and will have to be approximated by sam-
pling x(n), d, and o<d. The innermost expectation over
values of od can be calculated cheaply for a NADE given
that the hidden unit states hd are shared for all possible od.
Therefore, assuming all orderings are equally probable, we
will estimate JOA(θ) by:

ĴOA(θ) =
D

D − d+ 1

∑
od

− log p(x(n)od
|x(n)

o<d
,θ, o<d, od)

(12)

which provides an unbiased estimator of (8). Thus training
can be done by descent on the stochastic gradient of ĴOA(θ).
An implementation of this order-agnostic training procedure
corresponds to an artificial neural network withD inputs and
D outputs (or an MDN in the real-valued case), where the
input values in o≥d have been set to zero and gradients are

backpropagated only from the outputs in o≥d, and rescaled
by D

D−d+1 .

The end result is a stochastic training update costing
O(DH +H2L), as in regular multilayer neural networks.
At test time, we unfortunately cannot avoid a complexity
of O(DH2L) and perform D passes through the neural net-
work to obtain all D conditionals for some given ordering.
However, this is still tractable, unlike computing probabil-
ities in a restricted Boltzmann machine or a deep belief
network.

3.1. Improved parameter sharing using input masks

While the parameter tying proposed so far is simple, in
practice it leads to poor performance. One issue is that the
values of the hidden units, computed using (3), are the same
when a dimension is in xo>d

(a value to be predicted) and
when the value of that dimension is zero and conditioned on.
When training just one NADE with a fixed o, each output
unit knows which inputs feed into it, but in the multiple
ordering case that information is lost when the input is zero.

In order to make this distinction possible, we augment the
parameter sharing scheme by appending to the inputs a
binary mask vector mo<d

∈ {0, 1}D indicating which di-
mensions are present in the input. That is, the i-th element
of mo<d

is 1 if i ∈ o<d and 0 otherwise. One interpretation
of this scheme is that the bias vector c of the first hidden
layer is now dependent on the ordering o and the value of
d, thus slightly relaxing the strength of parameter sharing
between the NADE models. We’ve found in practice that
this adjustment is crucial to obtain good estimation perfor-
mance. Some results showing the difference in statistical
performance with and without training masks can be seen in
Table 2 as part of our experimental analysis (see Section 6
for details).

4. On the fly generation of NADE ensembles
Our order-agnostic training procedure can be thought of as
producing a set of parameters that can be used by a factorial
number of NADEs, one per ordering of the input variables.
These different NADEs will not, in general, agree on the
probability of a given datapoint. While this disagreement
might look unappealing at first, we can actually use this
source of variability to our advantage, and obtain better
estimates than possible with a set of consistent models.

A NADE with a given input ordering corresponds to a dif-
ferent hypothesis space than other NADEs with different
ordering. In other words, each NADE with a different or-
dering is a model in its own right, with slightly different
inductive bias, despite the parameter sharing.

A reliable approach to improve on some given estimator is to
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instead construct an ensemble of multiple, strong but differ-
ent estimators, e.g. with bagging (Ormoneit & Tresp, 1996)
or stacking (Smyth & Wolpert, 1999). Our training proce-
dure suggest a straightforward way of generating ensembles
of NADE models: generate a set of uniformly distributed
orderings {o(k)}Kk=1 over the input variables and use the
average probability 1

K

∑K
k=1 p(x|θ, o(k)) as our estimator.

Ensemble averaging increases the computational cost of
density estimation linearly with the size of the ensemble,
while the complexity of sampling doesn’t change (we pick
an ordering o(k) at random from the ensemble and sample
from the corresponding NADE). Importantly, the computa-
tional cost of training remains the same, unlike ensemble
methods such as bagging. Moreover, an adequate number
of components can be chosen after training, and can even
be adapted to the available computational budget on the fly.

5. Related work
As mentioned previously, autoregressive density/distribution
estimation has been explored before by others. For the bi-
nary data case, Frey (1998) considered the use of logistic re-
gression conditional models, while Bengio & Bengio (2000)
proposed a single layer neural network architecture, with
a parameter sharing scheme different from the one in the
NADE model (Larochelle & Murray, 2011). In all these
cases however, a single (usually random) input ordering was
chosen and maintained during training.

Gregor & LeCun (2011) proposed training a variant of the
NADE architecture under stochastically generated random
orderings. Like us, they observed much worse performance
than when choosing a single variable ordering, which mo-
tivates our proposed parameter sharing scheme relying on
input masks. Gregor & LeCun generated a single ordering
for each training update, and conditioned on contexts of all
possible sizes to compute the log-probability of an example
and its gradients. Our stochastic approach uses only a single
conditioning configuration for each update, but computes
the average log-probability for the next dimension under
all possible future orderings. This change allowed us to
generalize NADE to deep architectures with an acceptable
computational cost.

Goodfellow et al. (2013) introduced a procedure to train
deep Boltzmann machines by maximizing a variational ap-
proximation of their generalised pseudo likelihood. This
results in a training procedure similar to the one presented
in this work, where a subset of the dimension is predicted
given the value of the rest.

Our algorithm also bears similarity with denoising autoen-
coders (Vincent et al., 2008) trained using so-called “mask-
ing noise”. There are two crucial differences however. The
first is that our procedure corresponds to training on the

average reconstruction of only the inputs that are missing
from the input layer. The second is that, unlike denoising
autoencoders, the NADE models that we train can be used
as tractable density estimators.

6. Experimental results
We performed experiments on several binary and real-valued
datasets to asses the performance of NADEs trained using
our order-agnostic procedure. We report the average test
log-likelihood of each model, that is, the average log-density
of datapoints in a held-out test set. In the case of NADEs
trained in an order-agnostic way, we need to choose an or-
dering of the variables so that one may calculate the density
of the test datapoints. We report the average of the aver-
age test log-likelihoods using ten different orderings chosen
at random. Note that this is different from an ensemble,
where the probabilities are averaged before calculating its
logarithm. To reduce clutter, we have not reported the stan-
dard deviation across orderings. In all cases, this standard
deviation has magnitude smaller than the log-likelihood’s
standard error due to the finite size of our test sets. These
standard errors are also small enough not to alter the ranking
of the different models. In the case of ensembles of NADEs
the standard deviation due to different sets of orderings is,
as expected, even smaller. Every results table is partitioned
in two halves, the top half contains baselines and the bot-
tom half results obtained using our training procedure. In
every table the log-likelihood of the best model, and the
log-likelihood of the best ensemble are shown in bold.

Training configuration details common to all datasets (ex-
cept where specified later on) follow. We trained all order-
agnostic NADEs and RNADEs using minibatch stochastic
gradient descent on JOA, (11). The initial learning rate,
which was chosen independently for each dataset, was re-
duced linearly to reach zero after the last iteration. For the
purpose of consistency, we used rectified linear units (Nair
& Hinton, 2010) in all experiments. We found that this
type of unit allow us to use higher learning rates and made
training converge faster. We used Nesterov’s accelerated
gradient (Sutskever, 2013) with momentum value 0.9. No
weight decay was applied. To avoid overfitting, we early-
stopped training by estimating the log-likelihood on a val-
idation dataset after each training iteration using the ĴOA

estimator, (12). For models with several hidden layers, each
hidden layer was pretrained using the same hyperparameter
values but only for 20 iterations, see recursive procedure in
Algorithm 1.

6.1. Binary datasets

We start by measuring the statistical performance of a NADE
trained using our order-agnostic procedure on eight binary
UCI datasets (Bache & Lichman, 2013).
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Table 1. Average test-set log-likelihood per datapoint (in nats) of different models on eight binary datasets from the UCI repository.
Baseline results were taken from Larochelle & Murray (2011).

Model Adult Connect4 DNA Mushrooms NIPS-0-12 Ocr-letters RCV1 Web

MoBernoullis −20.44 −23.41 −98.19 −14.46 −290.02 −40.56 −47.59 −30.16
RBM −16.26 −22.66 −96.74 −15.15 −277.37 −43.05 −48.88 −29.38
FVSBN −13.17 −12.39 −83.64 −10.27 −276.88 −39.30 −49.84 −29.35
NADE (fixed order) −13.19 −11.99 −84.81 −9.81 −273.08 −27.22 −46.66 −28.39
NADE 1hl −13.51 −13.04 −84.28 −10.06 −275.20 −29.05 −46.79 −28.30
NADE 2hl −13.53 −12.99 −84.30 −10.05 −274.69 −28.92 −46.71 −28.28
NADE 3hl −13.54 −13.08 −84.37 −10.10 −274.86 −28.89 −46.76 −28.29
EoNADE 1hl (2 ord) −13.35 −12.81 −83.52 −9.88 −274.12 −28.36 −46.50 −28.11
EoNADE 1hl (16 ord) −13.19 −12.58 −82.31 −9.68 −272.38 −27.31 −46.12 −27.87

Algorithm 1 Pretraining of a NADE with n hidden layers
on dataset X.

1: procedure PRETRAIN(n, X)
2: if n = 1 then
3: return RANDOM-ONE-HIDDEN-LAYER-NADE()
4: else
5: nade← PRETRAIN(n− 1)
6: nade← REMOVE-OUTPUT-LAYER(nade)
7: nade← ADD-A-NEW-HIDDEN-LAYER(nade)
8: nade← ADD-A-NEW-OUTPUT-LAYER(nade)
9: nade← TRAIN-ALL(nade,X, iters = 20)

10: return nade
11: end if
12: end procedure

Experimental configuration details follow. We fixed
the number of units per hidden layer to 500, following
Larochelle & Murray (2011). We used minibatches of
size 100. Training was run for 100 iterations, each con-
sisting of 1000 weight updates. The initial learning rate
was cross-validated for each of the datasets among values
{0.016, 0.004, 0.001, 0.00025, 0.0000675}.
Results are shown on Table 1. We compare our
method to mixtures of multivariate Bernoullis with
their number of components cross-validated among
{32, 64, 128, 256, 512, 1024}, tractable RBMs of 23 hid-
den units, fully visible sigmoidal Bayes networks (FVSBN),
and NADEs trained using a fixed ordering of the variables.
All baseline results are taken from Larochelle & Murray
(2011) and details can be found there. NADEs trained in an
order-agnostic manner obtain performances close to those of
NADEs trained on a fixed ordering. The use of several hid-
den layers offers no advantage on these datasets. However,
ensembles of NADEs obtain higher test log-likelihoods on
all datasets.

We also present results on binarized-MNIST (Salakhutdi-
nov & Murray, 2008), a binary dataset of 28 by 28 pixel

images of handwritten digits. Unlike classification, density
estimation on this dataset remains a challenging task.

Experimental configuration details follow. Training was run
for 200 iterations each consisting of 1000 parameter updates,
using minibatches of size 1000. The initial learning rate
was set to 0.001 and chosen manually by optimizing the
validation-set log-likelihood on preliminary runs.

Results for MNIST are shown in Table 2. We compare our
method with mixtures of multivariate Bernoulli distributions
with 10 and 500 components, fixed-ordering NADEs, RBMs
(500 hidden units), and two-hidden-layer DBNs (500 and
2000 hidden units on each layer) whose performance was
estimated by Salakhutdinov & Murray (2008); Murray &
Salakhutdinov (2009). In order to provide a more direct
comparison to our results, we also report the performance
of NADEs trained using a fixed variable-ordering, mini-
batch stochastic gradient descent and sigmoid or rectified
linear units. We found the type of hidden-unit did not affect
statistical performance, while our minibatch SGD imple-
mentation seems to obtain slightly higher log-likelihoods
than previously reported.

One and two hidden-layer NADEs trained by minimizing
JOA obtain marginally lower (worse) test-likelihoods than a
NADE trained for a fixed ordering of the inputs, but still per-
form much better than mixtures of multivariate Bernoullis
and very close to the estimated performance of RBMs. More
than two hidden layers are not beneficial on this dataset.

Ensembles of NADEs obtained by using NADEs with dif-
ferent variable orderings but trained simultaneously with
our order-agnostic procedure obtain better statistical perfor-
mance than NADEs trained using a fixed ordering. These
EoNADEs can also surpass the estimated performance of
RBMs with the same number of hidden units, and even
approach the estimated performance of a (larger) 2-hidden-
layer deep belief network. A more detailed account of the
statistical performance of EoNADEs can be seen in Fig-
ure 1. We also report the performance on NADE trained by
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Table 2. Average test-set log-likelihood per datapoint of different
models on 28×28 binarized images of digits taken from MNIST.

Model Test LogL

MoBernoullis K=10 −168.95
MoBernoullis K=500 −137.64
RBM (500 h, 25 CD steps) approx. −86.34
DBN 2hl approx. −84.55
NADE 1hl (fixed order) −88.86
NADE 1hl (fixed order, RLU, minibatch) −88.33
NADE 1hl (fixed order, sigm, minibatch) −88.35
NADE 1hl (no input masks) −99.37
NADE 2hl (no input masks) −95.33
NADE 1hl −92.17
NADE 2hl −89.17
NADE 3hl −89.38
NADE 4hl −89.60
EoNADE 1hl (2 orderings) −90.69
EoNADE 1hl (128 orderings) −87.71
EoNADE 2hl (2 orderings) −87.96
EoNADE 2hl (128 orderings) −85.10

1 2 4 8 16 32 64 128
Models averaged
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Figure 1. Test-set average log-likelihood per datapoint for
RNADEs trained with our new procedure on binarized images
of digits.

minimizing JOA but without input masks. Input masks are
necessary for obtaining competitive results.

Samples from a 2 hidden layer (500 hidden units per layer)
NADE trained using the order-agnostic method are shown
in Figure 2. Most of the samples can be identified as digits.
Figure 4 shows some receptive fields from the model’s first
hidden layer (i.e. columns of W ). Most of the receptive
fields resemble pen strokes. We also show their associated
receptive fields on the input masks . These can be thought
of as biases that activate or deactivate a hidden unit. Most of
them will activate the unit when the input mask contains a

Figure 2. Top: 50 examples from binarized-MNIST ordered by
decreasing likelihood under a 2-hidden-layer NADE. Bottom: 50
samples from a 2-hidden-layer NADE, also ordered by decreasing
likelihood under the model.

region of unknown values (zeros in the input mask) flanked
by a region of known values (ones in the input mask).

Having at our disposal a NADE for each possible ordering
of the inputs makes it easy to perform any inference task.
In Figure 3 we show examples of marginalization and im-
putation tasks. Arbitrarily chosen regions of digits in the
MNIST test-set are to be marginalized or sampled from. An
RBM or a DBN would require an exponential number of
operations to calculate either the marginal density or the
density of the complete images. A NADE trained on a fixed
ordering of the variables would be able to easily calculate
the densities of the complete images, but would require
approximate inference to calculate the marginal densities.
Both an RBM and a fixed-order NADE require MCMC
methods in order to sample the hollowed regions. However,
with our order-agnostic training procedure we can easily
calculate the marginal densities and sample the hollowed
regions in constant time just by constructing a NADE with
a convenient ordering of the pixels.

6.2. Real-valued datasets

We also compared the performance of RNADEs trained
with our order-agnostic procedure to RNADEs trained for
a fixed ordering. We start by comparing the performance
on three low-dimensional UCI datasets (Bache & Lichman,
2013) of heterogeneous data, namely: red wine, white wine
and parkinsons. We dropped the other two datasets tested
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-61.21 -36.33

-84.40 -46.22

-96.68 -66.26

-86.37 -73.31

-93.35 -79.40

-45.84 -41.88

Figure 3. Example of marginalization and sampling. First column
shows five examples from the test set of the MNIST dataset. The
second column shows the density of these examples when a random
10 by 10 pixel region is marginalized. The right-most five columns
show samples for the hollowed region. Both tasks can be done
easily with a NADE where the pixels to marginalize are at the end
of the ordering.

Figure 4. Top:50 receptive fields (columns of W ) with the biggest
L2 norm. Bottom: Associated receptive fields to the input masks.

by Uria et al. (2013), because some of their dimensions
only take a finite number of values even if those are real-
valued. We report the test-log-likelihood on 10 folds of
the dataset, each with 90% of the data used for training
and 10% for testing. All experiments use normalized data.
Each dimension is normalized separately by subtracting its

training-set average and dividing by its standard deviation.

Experimental details follow. Learning rate and weight decay
rates were chosen by per-fold cross-validation; using grid
search. One ninth of the training set examples were used
for validation purposes. Once the hyperparameter values
had been chosen, a final experiment was run using all the
training data. In order to prevent overfitting, training was
stopped when observing a training likelihood higher than
the one obtained at the optimal stopping point in the corre-
sponding validation run. All RNADEs trained had a mixture
of 20 Gaussian components for output, and were trained by
stochastic gradient descent on JOA. We fixed the number of
hidden units to 50, following Uria et al. (2013). The learning
rate was chosen among {0.02, 0.005, 0.002, 0.0005} and
the weight decay rate among {0.02, 0.002, 0}.
The results are shown in Table 3. RNADEs trained using our
procedure obtain results close to those of RNADEs trained
for a fixed ordering on the red wine and white wine datasets.
On the Parkinsons dataset, RNADEs trained for a fixed
ordering perform better. Ensembles of RNADEs obtained
better statistical performance on the three datasets.

We also measured the performance of our new training pro-
cedure on 8 by 8 patches of natural images in the BSDS300
dataset. We compare the performance of RNADEs with
different number of hidden layers trained with our proce-
dure against a one-hidden layer RNADE trained for a fixed
ordering (Uria et al., 2013), and with mixtures of Gaussians,
which remain the state of the art in this problem (Zoran &
Weiss, 2012).

We adopted the setup described by Uria et al. (2013).
The average intensity of each patch was subtracted from
each pixel’s value. After this, all datapoints lay on a 63-
dimensional subspace, for this reason only 63 pixels were
modelled, discarding the bottom-right pixel.

Experimental details follow. The dataset’s 200 training
image set was partitioned into a training set and a validation
set of 180 and 20 images respectively. Hyperparameters
were chosen by preliminary manual search on the model
likelihood for the validation dataset. We used a mixture
of 10 Gaussian components for the output distribution of
each pixel. All hidden layers were fixed to a size of 1000
units. The minibatch size was set to 1000. Training was run
for 2000 iterations, each consisting of 1000 weight updates.
The initial learning rate was set to 0.001. Pretraining of
hidden layers was done for 50 iterations.

The results are shown in Table 4. RNADEs with less than
3 hidden layers trained using our order-agnostic procedure
obtained lower statistical performance than a fixed-ordering
NADE and a mixture of Gaussians. However RNADEs with
more than 3 layers are able to beat both baselines and obtain
what are, to the extent of our knowledge, the best results
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Table 3. Average test log-likelihood for different models on three real-valued UCI datasets. Baselines are taken from (Uria et al., 2013).

Model Red wine White wine Parkinsons

Gaussian −13.18 −13.20 −10.85
MFA −10.19 −10.73 −1.99
RNADE (fixed) −9.36 −10.23 −0.90
RNADE 1hl −9.49 −10.35 −2.67
RNADE 2hl −9.63 −10.23 −2.19
RNADE 3hl −9.54 −10.21 −2.13
RNADE 1hl 2 ord. −9.07 −10.03 −1.97
RNADE 2hl 2 ord. −9.13 −9.84 −1.42
RNADE 3hl 2 ord. −8.93 −9.79 −1.39
RNADE 1hl 16 ord. −8.95 −9.94 −1.73
RNADE 2hl 16 ord. −8.98 −9.69 −1.16
RNADE 3hl 16 ord. −8.76 −9.67 −1.13

Table 4. Average test-set log-likelihood for several models trained
on 8 by 8 pixel patches of natural images taken from the BSDS300
dataset. Note that because these are log probability densities they
are positive, higher is better.

Model Test LogL

MoG K=200 (Zoran & Weiss, 2012) 152.8
RNADE 1hl (fixed order) 152.1
RNADE 1hl 143.2
RNADE 2hl 149.2
RNADE 3hl 152.0
RNADE 4hl 153.6
RNADE 5hl 154.7
RNADE 6hl 155.2
EoRNADE 6hl 2 ord. 156.0
EoRNADE 6hl 32 ord. 157.0

ever reported on this task. Ensembles of RNADEs also show
an improvement in statistical performance compared to the
use of single RNADEs.

No signs of overfitting were observed. Even when using
6 hidden layers, the cost on the validation dataset never
started increasing steadily during training. Therefore it may
be possible to obtain even better results using more hidden
layers or more hidden units per layer. Samples from the 6
hidden layers NADE trained in an order-agnostic manner
are shown in Figure 5.

7. Conclusions
We have introduced a new training procedure that simul-
taneously fits a NADE for each possible ordering of the
dimensions. In addition, this new training procedure is able
to train deep versions of NADE with a linear increase in
computation, and construct ensembles of NADEs on the fly
without incurring any extra training computational cost.

Figure 5. Top: 50 examples of 8× 8 patches in the BSDS300
dataset ordered by decreasing likelihood under a 6-hidden-layer
NADE. Bottom: 50 samples from a 6-hidden-layer NADE.

NADEs trained with our procedure outperform mixture mod-
els in all datasets we have investigated. However, for most
datasets several hidden layers are required to surpass or
equal the performance of NADEs trained for a fixed order-
ing of the variables. Nonetheless, our method allows fast
and exact marginalization and sampling, unlike the rest of
the methods compared.

Models trained using our order-agnostic procedure obtained
what are, to the best of our knowledge, the best statistical
performances ever reported on the BSDS300 8×8-image-
patches datasets. The use of ensembles of NADEs, which
we can obtain at no extra training cost and have a mild effect
on test-time cost, improved statistical performance on most
datasets analyzed.
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