
Distilling Intractable Generative Models

George Papamakarios
School of Informatics

University of Edinburgh
g.papamakarios@ed.ac.uk

Iain Murray
School of Informatics

University of Edinburgh
i.murray@ed.ac.uk

Abstract

A generative model’s partition function is typically expressed as an intractable
multi-dimensional integral, whose approximation presents a challenge to numerical
and Monte Carlo integration. In this work, we propose a new estimation method
for intractable partition functions, based on distilling an intractable generative
model into a tractable approximation thereof, and using the latter for proposing
Monte Carlo samples. We empirically demonstrate that our method produces
state-of-the-art estimates, even in combination with simple Monte Carlo methods.

1 Introduction

A generative model is a probability distribution p(x) = p̄(x)/Z over a multi-dimensional random
variable x, where p̄(x) is a non-negative potential and Z =

∫
p̄(x) dx is the partition function. Apart

from ensuring that p(x) is properly normalized, Z is a quantity of interest in its own right; in Bayesian
inference [1], it is the marginal likelihood of the data, and as such it can be used for assessing model
fit and comparing models; in undirected graphical models [2], useful properties of the model can be
obtained from the derivatives of log Z w.r.t. the model parameters—for models in the exponential
family, these derivatives correspond to the expected sufficient statistics under the model.

However, Z is given by a multi-dimensional integral, which in all but the most trivial cases is
intractable to evaluate, even when the potential p̄(x) is tractable. Numerical integration can only be
used to approximate Z when x is low-dimensional, as it scales badly with dimensionality. Monte
Carlo methods [3, 4, 5] typically avoid the curse of dimensionality, but are often inaccurate or slow.
Variational inference [6] is a way to strictly lower-bound Z, but such lower bounds are often loose.

In this work, we propose a new method for estimating Z, based on model distillation. The term
“distillation” was pioneered by Hinton et al. [7] in the context of discriminative models, based on
earlier work by Bucilă et al. [8] on model compression. We propose a novel distillation framework
for generative models, whereby an intractable generative model is distilled into a tractable one, by
training the latter to mimic the former as closely as possible. We then use the distilled tractable
model in combination with simple Monte Carlo, to yield estimates that are as robust as those of
state-of-the-art Monte Carlo methods. We showcase our framework by distilling an intractable
Restricted Boltzmann Machine into a tractable Neural Autoregressive Distribution Estimator, and
then using the distilled NADE to robustly estimate the RBM’s intractable partition function.

This paper forms part of our more general work on “distilling model knowledge”, which can be found
in [9]. Chapter 4 of [9] contains further details, results and discussion on the work presented here,
and discusses the links between model distillation and alternatives such as variational inference.

2 The distillation framework

Assume we can construct a tractable generative model qθ(x), parameterized by θ, which is flexible
enough to represent complex distributions. Our goal is to distil p(x) = p̄(x)/Z into qθ(x); that is, to

1



train qθ(x) to mimic p(x) as closely as possible. We assume that the potential p̄(x) is tractable, but
the partition function Z and hence p(x) are not. Our approach is based on minimizing an appropriate
loss function E(θ) that measures the discrepancy between p(x) and qθ(x) w.r.t. θ. The challenge is
to specify a loss function that only involves tractable quantities but also captures as much information
about p(x) as possible, and find an efficient way to minimize it. In the following, we describe two
loss functions that achieve this goal, together with a stochastic method of minimizing them.

KL divergence. A natural measure of discrepancy between distributions is the KL divergence from
p(x) to qθ(x), which is defined as

EKL(θ) = DKL(p(x) ‖ qθ(x)) = 〈log p(x)〉p(x) − 〈log qθ(x)〉p(x) . (1)

It is well known that the KL divergence is non-negative, and is equal to zero if and only if p(x) =
qθ(x) [1, section 2.6]. Thus, if qθ(x) is capable of representing the distribution defined by p(x),
globally minimizing EKL(θ) will result in qθ(x) exactly matching p(x).

It is easy to see that minimizing EKL(θ) is equivalent to maximizing 〈log qθ(x)〉p(x). This can be
viewed as fitting qθ(x) using maximum likelihood to an infinite amount of data sampled from p(x).
This loss function is also used within expectation propagation updates [10]; variational inference [6]
and its stochastic versions [11, 12] use the “reverse” KL divergence DKL(qθ(x) ‖ p(x)) instead.

Square error. Another way of measuring discrepancy is to directly measure how much the values of
qθ(x) differ from the values of p(x). A natural choice is the average square error of the logs

E0
SE(θ) =

〈
1
2
‖log qθ(x)− log p(x)‖2

〉
p(x)

. (2)

Obviously, directly working with the above is not possible, since we have assumed that directly
evaluating log p(x) is intractable. However, it is possible to circumvent this problem by using the
following tractable loss function instead

ESE(θ) =
〈

1
2
‖log qθ(x)− log p̄(x) + c‖2

〉
p(x)

, (3)

where c is an appropriately chosen constant. Proposition 1 (proof cam be found in [9]) establishes the
range of c values for which minimizing ESE(θ) correctly trains qθ(x) to match p(x).
Proposition 1. Assuming qθ(x) is capable of representing the distribution defined by p(x) and
c ≤ log Z, then ESE(θ) is globally minimized if and only if qθ(x) = p(x).

In order to set c, we do not necessarily need to know log Z, but we only need to lower bound it. If
x is discrete, this becomes trivial since log p̄(x) ≤ log Z for any x. Thus, setting c less or equal to
maxx log p̄(x) is guaranteed to work. More generally, lower bounding log Z can be done using the
variational free energy 〈log p̄(x)〉r(x) − 〈log r(x)〉r(x) ≤ log Z [6]. This inequality holds for any
distribution r(x), so r(x) can be freely chosen to be convenient. Finally, it is easy to show that in the
limit of c→ −∞, minimizing ESE(θ) becomes equivalent to minimizing EKL(θ).

Stochastic gradient training. Both loss functions discussed above exhibit a common pattern; they
contain a tractable quantity within an intractable expectation over p(x). That is, they are both of
the form E(θ) = 〈E(x, θ)〉p(x) for an appropriate instantiation of E(x, θ). We will now describe a
stochastic gradient learning procedure for optimizing loss functions of the above form. The gradient
of E(θ) w.r.t. θ, albeit intractable, can be stochastically approximated as follows

g(θ) =
〈

∂

∂θ
E(x, θ)

〉
p(x)

≈ 1
S

∑
s

∂

∂θ
E(xs, θ), (4)

where {xs} are samples generated from p(x). Typically, we can generate {xs} using Markov Chain
Monte Carlo. It is easy to see that, in expectation, the stochastic gradient is equal to the original
gradient. Using the stochastic gradient, we can minimize E(θ) by iterating the following three steps.

(i) Generate a minibatch {xs} of size S from p(x) using MCMC.

(ii) Calculate the stochastic gradient ĝ(θ) = 1
S

∑
s

∂
∂θ E(xs, θ).

(iii) Make an update on θ using ĝ(θ).

It is known that stochastic optimization algorithms of the above type—under certain regularity
conditions—converge almost surely to a stationary point of the objective function [13, 14].

2



Thousands of RBM samples
0 200 400 600

A
ve

ra
ge

 te
st

 lo
g 

pr
ob

ab
ili

ty
-110

-105

-100

-95

-90

1000 hidden units
750 hidden units
500 hidden units
250 hidden units

(a) Trained with KL divergence
Thousands of RBM samples

0 200 400 600

A
ve

ra
ge

 te
st

 lo
g 

pr
ob

ab
ili

ty

-110

-105

-100

-95

-90

1000 hidden units
750 hidden units
500 hidden units
250 hidden units

(b) Trained with square error

Figure 1: Training progress for each NADE, as measured by average log probability of the first 500
images of the MNIST test set. The training progress was measured every 200 iterations.

3 Distilling an RBM into NADE

The Restricted Boltzmann Machine [15] is a bipartite undirected graphical model, consisting of a
layer of binary visible variables and a layer of binary hidden variables. Calculating the partition
function of the RBM is intractable, since it involves a summation over an exponential number of
hidden variable states. Exact sampling from the RBM is also hard, even though approximate samples
can be easily drawn using block Gibbs sampling. In our experiments, we used an RBM with 500
hidden variables that was trained on a binarized version of the MNIST dataset of handwritten digits
[16]. This RBM was provided by Salakhutdinov and Murray [3], who referred to it as CD25(500).

The Neural Autoregressive Distribution Estimator [17] is a generative model for binary data that is
flexible enough to model complex distributions. NADE is an autoregressive neural network with a
single hidden layer. It is fully tractable, in that its likelihood and its derivatives can be easily calculated
using forward and backward propagation, and exact samples from it can be easily generated with
ancestral sampling. In our experiments, we used NADEs with 250, 500, 750 and 1000 hidden units.

Using our distillation framework, we distilled the RBM into each of the four NADEs. During
stochastic gradient training, we used minibatches of 20 samples from the RBM, generated by block
Gibbs sampling with parallel chains. In particular, we maintained 2000 parallel Markov chains and,
in each iteration, we simulated each chain once and selected 20 of them (in sequence) to form the
minibatch. This way, all samples within a minibatch are independent and each chain is thinned
2000/20 = 100 times before contributing a sample. Empirically, we found that having independent
samples within the minibatch and thinning across minibatches improved learning. The learning rate
was adapted using ADADELTA [18], which uses a different learning rate for each parameter and is
fairly easy to tune. Stochastic gradient training was run for 30,000 iterations in total.

Figure 1 shows the progress of each NADE during training, as measured by the average log probability
each NADE assigns to the first 500 MNIST test images. We can see that more hidden units lead to a
higher log probability, with a significant difference between the NADEs with 250 and 500 hidden
units. This suggests that at least 500 hidden units are needed for NADE to have enough flexibility to
accurately mimic the RBM. Further results and relevant discussion are provided in [9].

4 Estimating the partition function

Salakhutdinov and Murray [3] provided state-of-the-art estimates for the above RBM’s partition
function, using annealed importance sampling [4] with 10,000 intermediate distributions. Here, we
show that, having access to a distilled NADE, we can achieve estimates that are as good as theirs
with simpler Monte Carlo methods, such as importance sampling and bridge sampling.

Importance sampling. Given a tractable proposal distribution qθ(x) that is non-zero wherever p(x)
is non-zero, importance sampling [1, section 29.2] rewrites the partition function as an expectation
over qθ(x) and then stochastically approximates it as follows

Z =
∑
x

p̄(x) =
∑
x

p̄(x)
qθ(x)

qθ(x) =
〈

p̄(x)
qθ(x)

〉
qθ(x)

≈ 1
S

∑
s

p̄(xs)
qθ(xs)

with xs ∼ qθ(xs). (5)

3



Sampling
method

Hidden
units

Loss function

KL divergence Square error

Importance
sampling

250 450.86 (450.06, 451.30) 450.81 (449.77, 451.31)
500 450.96 (449.94, 451.46) 450.96 (450.33, 451.34)
750 450.79 (450.47, 451.04) 450.95 (450.40, 451.30)
1000 450.79 (450.40, 451.07) 451.51 (450.09, 452.08)

Bridge
sampling

250 451.27 (451.14, 451.39) 451.24 (451.10, 451.38)
500 451.28 (451.16, 451.39) 451.30 (451.17, 451.43)
750 451.22 (451.11, 451.33) 451.21 (451.08, 451.33)
1000 451.24 (451.13, 451.35) 451.36 (451.23, 451.49)

Table 1: Estimates of RBM’s log partition function, using each trained NADE as proposal distribution.
Brackets show confidence intervals of 3 standard deviations.

For the above approximation to work well, qθ(x) must be as similar to p(x) as possible. In our
framework, NADEs that were trained by minimizing DKL(p(x) ‖ qθ(x)) will tend to mimic closely
the RBM and at the same time avoid at all costs not putting mass where the RBM has mass. Hence,
such NADEs align well with the requirements importance sampling has on its proposal distributions.

Bridge sampling. Importance sampling tends to fail when the proposal distribution has little mass in
some regions where the target distribution has significant mass. Bridge sampling [5, section 1] is an
improvement over importance sampling that tries to alleviate this problem. Bridge sampling uses
a “bridge distribution” pb(x) = p̄b(x)/Zb, which is constructed to be the overlap between p(x) and
qθ(x). Then, using standard importance sampling, the following two quantities are estimated

Zb =
〈

p̄b(x)
qθ(x)

〉
qθ(x)

and
Zb

Z
=
〈

p̄b(x)
p̄(x)

〉
p(x)

, with p̄b(x) =
qθ(x)p̄(x)

Cqθ(x) + p̄(x)
, (6)

where C is a user-specified constant. By construction, regions where pb(x) has significant mass are
also significant under p(x) and qθ(x), hence importance sampling works well in this case. Having
estimated Zb and Zb/Z, an estimate for Z can be trivially given by their ratio.

With the same number of samples from p(x) and qθ(x), pb(x) is the asymptotically optimal bridge
distribution when C =Z [19]. However, Z is what the method tries to estimate. Thus, the method
can be set up as a fixed point system; initialize C (e.g. to 1), calculate p̄b(x), set C to the resulting
estimate of Z, and repeat. In practice we found that a few iterations (e.g. 10) suffice for convergence.

We used bridge sampling with the distilled NADEs as proposal distributions. In order to obtain good
quality samples from the RBM, we took advantage of the fact that NADE samples are similar to
RBM samples, and, after sampling from NADE, we initialized parallel RBM Gibbs chains with them.

Results. Table 1 shows the estimates of log Z obtained by using each trained NADE as proposal
distribution with both Monte Carlo methods. We used 10,000 exact samples from NADE for each
estimate. For comparison, Salakhutdinov and Murray [3] report an estimate of 451.28, with a 3
standard deviation confidence interval of (450.97, 451.52). Compared to this, importance sampling
slightly underestimates log Z. On the other hand, bridge sampling with NADE provides accurate and
reliable estimates of log Z, and performs comparably to the more sophisticated method of [3].

5 Conclusions

In this work we have demonstrated that proposal distributions constructed by model distillation can
significantly improve the performance of simple Monte Carlo methods in estimating intractable
partition functions. Our experiments focused on partition functions that are given by an intractable
summation over an exponential number of states, rather than by a continuous integral. Nevertheless,
the framework is equally applicable to the continuous case as well, where the real-valued version of
NADE (i.e. RNADE [20]) can serve as the distilled tractable model.

4



Acknowledgments

George Papamakarios was supported in part by the EPSRC Centre for Doctoral Training in Data Sci-
ence, funded by the UK Engineering and Physical Sciences Research Council (grant EP/L016427/1)
and the University of Edinburgh, and by Microsoft Research through its PhD Scholarship Programme.
The authors would like to thank the anonymous reviewers for their constructive comments.

References
[1] David J. C. MacKay. Information Theory, Inference & Learning Algorithms. Cambridge University Press,

2002.

[2] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Techniques. The MIT
Press, 2009.

[3] Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of Deep Belief Networks. In
Proceedings of the 25th International Conference on Machine Learning, pages 872–879, 2008. Code and
data available from http://www.utstat.toronto.edu/˜rsalakhu/rbm_ais.html.

[4] Radford M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139, 2001.

[5] Radford M. Neal. Estimating ratios of normalizing constants using linked importance sampling. Technical
Report No. 0511, Department of Statistics, University of Toronto, 2005. arXiv:math/0511216v1.

[6] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends in Machine Learning, 1(1–2):1–305, 2008.

[7] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv:1503.02531v1,
2015.

[8] Cristian Bucilă, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 535–541,
2006.

[9] George Papamakarios. Distilling Model Knowledge. MScR thesis, Centre for Doctoral Training in Data
Science, University of Edinburgh, 2015. Available from http://arxiv.org/abs/1510.02437.

[10] Thomas P. Minka. Expectation propagation for approximate Bayesian inference. In Proceedings of the
17th Conference in Uncertainty in Artificial Intelligence, pages 362–369, 2001.

[11] Danilo J. Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In Proceedings of the 31st International Conference on Machine
Learning, pages 1278–1286, 2014.

[12] Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In Proceedings of the 2nd
International Conference on Learning Representations, 2013.

[13] Léon Bottou. On-line learning and stochastic approximations. In On-line Learning in Neural Networks,
pages 9–42. Cambridge University Press, 1998.

[14] Laurent Younes. On the convergence of Markovian stochastic algorithms with rapidly decreasing ergodicity
rates. In Stochastics and Stochastics Models, pages 177–228, 1999.

[15] Paul Smolensky. Information processing in dynamical systems: Foundations of harmony theory. In Parallel
Distributed Processing: Explorations in the Microstructure of Cognition, volume 1, pages 194–281. MIT
Press, 1986.

[16] Yann Le Cun, Corinna Cortes, and Christopher J. C. Burges. MNIST handwritten digit database. http:
//yann.lecun.com/exdb/mnist/. Accessed on 20 July 2015.

[17] Hugo Larochelle and Iain Murray. The Neural Autoregressive Distribution Estimator. JMLR: W&CP, 15:
29–37, 2011.

[18] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. arXiv:1212.5701v1, 2012.

[19] Xiao-Li Meng and Wing Hung Wong. Simulating ratios of normalizing constants via a simple identity: A
theoretical exploration. Statistica Sinica, 6:831–860, 1996.

[20] Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The real-valued neural autoregressive density-
estimator. In Advances in Neural Information Processing Systems 26, pages 2175–2183. 2013.

5

http://www.utstat.toronto.edu/~rsalakhu/rbm_ais.html
http://arxiv.org/abs/1510.02437
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	Introduction
	The distillation framework
	Distilling an RBM into NADE
	Estimating the partition function
	Conclusions

