
Supplementary material for
“Masked Autoregressive Flow for Density Estimation”

George Papamakarios
University of Edinburgh

g.papamakarios@ed.ac.uk

Theo Pavlakou
University of Edinburgh

theo.pavlakou@ed.ac.uk

Iain Murray
University of Edinburgh
i.murray@ed.ac.uk

A Equivalence between MAF and IAF

In this section, we present the equivalence between MAF and IAF in full mathematical detail. Let
πx(x) be the true density the train data {xn} is sampled from. Suppose we have a MAF whose base
density is πu(u), and whose transformation from u to x is f . The MAF defines the following density
over the x space:

px(x) = πu
(
f−1(x)

) ∣∣∣∣det(∂f−1

∂x

)∣∣∣∣ . (1)

Using the definition of px(x) in Equation (1), we can write the Kullback–Leibler divergence from
πx(x) to px(x) as follows:

DKL(πx(x) ‖ px(x)) = Eπx(x)(log πx(x)− log px(x)) (2)

= Eπx(x)

(
log πx(x)− log πu

(
f−1(x)

)
− log

∣∣∣∣det(∂f−1

∂x

)∣∣∣∣). (3)

The inverse transformation f−1 from x to u can be seen as describing an implicit IAF with base
density πx(x), which would define the following density over the u space:

pu(u) = πx(f(u))

∣∣∣∣det(∂f∂u
)∣∣∣∣ . (4)

By making the change of variables x 7→ u in Equation (3) and using the definition of pu(u) in
Equation (4) we obtain

DKL(πx(x) ‖ px(x)) = Epu(u)
(
log πx(f(u))− log πu(u) + log

∣∣∣∣det(∂f∂u
)∣∣∣∣) (5)

= Epu(u)(log pu(u)− log πu(u)). (6)

Equation (6) is the definition of the KL divergence from pu(u) to πu(u), hence
DKL(πx(x) ‖ px(x)) = DKL(pu(u) ‖πu(u)). (7)

Suppose now that we wish to fit the implicit density pu(u) to the base density πu(u) by minimizing the
above KL. This corresponds exactly to the objective minimized when employing IAF as a recognition
network in stochastic variational inference [7], where πu(u) would be the (typically intractable)
posterior. The first step in stochastic variational inference would be to rewrite the expectation in
Equation (6) with respect to the base distribution πx(x) used by IAF, which corresponds exactly to
Equation (3). This is often referred to as the reparameterization trick [6, 8]. The second step would be
to approximate Equation (3) with Monte Carlo, using samples {xn} drawn from πx(x), as follows:

DKL(pu(u) ‖πu(u)) = Eπx(x)

(
log πx(x)− log πu

(
f−1(x)

)
− log

∣∣∣∣det(∂f−1

∂x

)∣∣∣∣) (8)

≈ 1

N

∑
n

(
log πx(xn)− log πu

(
f−1(xn)

)
− log

∣∣∣∣det(∂f−1

∂x

)∣∣∣∣). (9)

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Using the definition of px(x) in Equation (1), we can rewrite Equation (9) as

1

N

∑
n

(log πx(xn)− log px(xn)) = −
1

N

∑
n

log px(xn) + const. (10)

Since samples {xn} drawn from πx(x) correspond precisely to the train data for MAF, we can
recognize in Equation (10) the training objective for MAF. In conclusion, training a MAF by
maximizing its total log likelihood

∑
n log px(xn) on train data {xn} is equivalent to variationally

training an implicit IAF with MAF’s base distribution πu(u) as its target.

B Batch normalization

In our implementation of MAF, we inserted a batch normalization layer [5] between every two
autoregressive layers, and between the last autoregressive layer and the base distribution. We did the
same for Real NVP (the original implementation of Real NVP also uses batch normalization layers
between coupling layers [3]). The purpose of a batch normalization layer is to normalize its inputs
x to have approximately zero mean and unit variance. In this section, we describe in full detail our
implementation of batch normalization and its use as a layer in normalizing flows.

A batch normalization layer can be thought of as a transformation between two vectors of the same
dimensionality. For consistency with our notation for autoregressive and coupling layers, let x be
the vector closer to the data, and u be the vector closer to the base distribution. Batch normalization
implements the transformation x = f(u) defined by

x = (u− β)� exp(−γ)� (v + ε)
1
2 +m. (11)

In the above, � denotes elementwise multiplication. All other operations are to be understood
elementwise. The inverse transformation f−1 is given by

u = (x−m)� (v + ε)−
1
2 � expγ + β, (12)

and the absolute determinant of its Jacobian is∣∣∣∣det(∂f−1

∂x

)∣∣∣∣ = exp

(∑
i

(
γi −

1

2
log(vi + ε)

))
. (13)

Vectors β and γ are parameters of the transformation that are learnt during training. In typical
implementations of batch normalization, parameter γ is not exponentiated. In our implementation,
we chose to exponentiate γ in order to ensure its positivity and simplify the expression of the log
absolute determinant. Parameters m and v correspond to the mean and variance of x respectively.
During training, we set m and v equal to the sample mean and variance of the current minibatch (we
used minibatches of 100 examples). At validation and test time, we set them equal to the sample
mean and variance of the entire train set. Other implementations use averages over minibatches [5] or
maintain running averages during training [3]. Finally, ε is a hyperparameter that ensures numerical
stability if any of the elements of v is near zero. In our experiments, we used ε = 10−5.

C Number of parameters

To get a better idea of the computational trade-offs between different model choices versus the
performance gains they achieve, we compare the number of parameters for each model. We only
count connection weights, as they contribute the most, and ignore biases and batch normalization
parameters. We assume that masking reduces the number of connections by approximately half.

For all models, let D be the number of inputs, H be the number of units in a hidden layer and L be
the number of hidden layers. We assume that all hidden layers have the same number of units (as
we did in our experiments). For MAF MoG, let C be the number of components per conditional.
For Real NVP and MAF, let K be the number of coupling layers/autoregressive layers respectively.
Table 1 lists the number of parameters for each model.

For each extra component we add to MADE MoG, we increase the number of parameters by DH .
For each extra autoregressive layer we add to MAF, we increase the number of parameters by

2

Table 1: Approximate number of parameters for each model, as measured by number of connection
weights. Biases and batch normalization parameters are ignored.

of parameters

MADE 3
2DH + 1

2 (L− 1)H2

MADE MoG
(
C + 1

2

)
DH + 1

2 (L− 1)H2

Real NVP 2KDH + 2K(L− 1)H2

MAF 3
2KDH + 1

2K(L− 1)H2

3
2DH + 1

2 (L− 1)H2. If we have one or two hidden layers L (as we did in our experiments) and
assume that D is comparable to H , the number of extra parameters in both cases is about the same.
In other words, increasing flexibility by stacking has a parameter cost that is similar to adding more
components to the conditionals, as long as the number of hidden layers is small.

Comparing Real NVP with MAF, we can see that Real NVP has about 1.3 to 2 times more parameters
than a MAF of comparable size. Given that our experiments show that Real NVP is less flexible than
a MAF of comparable size, we can conclude that MAF makes better use of its available capacity.
The number of parameters of Real NVP could be reduced by tying weights between the scaling and
shifting networks.

D Additional experimental details

D.1 Models

MADE, MADE MoG and each autoregressive layer in MAF is a feedforward neural network (with
masked weight matrices), with L hidden layers of H hidden units each. Similarly, each coupling
layer in Real NVP contains two feedforward neural networks, one for scaling and one for shifting,
each of which also has L hidden layers of H hidden units each. For each dataset, we gave a number
of options for L and H (the same options where given to all models) and for each model we selected
the option that performed best on the validation set. Table 2 lists the combinations of L and H that
were given as options for each dataset.

In terms of nonlinearity for the hidden units, MADE, MADE MoG and MAF used rectified linear
units, except for the GAS datasets where we used hyperbolic tangent units. In the coupling layer
of Real NVP, we used hyberbolic tangent hidden units for the scaling network and rectified linear
hidden units for the shifting network.

Table 2: Number of hidden layers L and number of hidden units H given as options for each dataset.
Each combination is reported in the format L×H .

POWER GAS HEPMASS MINIBOONE BSDS300 MNIST CIFAR-10

1× 100 1× 100 1× 512 1× 512 1× 512 1× 1024 1× 1024

2× 100 2× 100 2× 512 2× 512 2× 512 2× 1024

1× 1024 2× 2048

2× 1024

D.2 Datasets

In the following paragraphs, we give a brief description of the four UCI datasets (POWER, GAS,
HEPMASS, MINIBOONE) and of the way they were preprocessed.

POWER. The POWER dataset [1] contains measurements of electric power consumption in a
household over a period of 47 months. It is actually a time series but was treated as if each example

3

were an i.i.d. sample from the marginal distribution. The time feature was turned into an integer for
the number of minutes in the day and then uniform random noise was added to it. The date was
discarded, along with the global reactive power parameter, which seemed to have many values at
exactly zero, which could have caused arbitrarily large spikes in the learnt distribution. Uniform
random noise was added to each feature in the interval [0, εi], where εi is large enough to ensure that
with high probability there are no identical values for the ith feature but small enough to not change
the data values significantly.

GAS. Created by Fonollosa et al. [4], this dataset represents the readings of an array of 16 chemical
sensors exposed to gas mixtures over a 12 hour period. Similarly to POWER, it is a time series but
was treated as if each example were an i.i.d. sample from the marginal distribution. Only the data
from the file ethylene_CO.txt was used, which corresponds to a mixture of ethylene and carbon
monoxide. After removing strongly correlated attributes, the dimensionality was reduced to 8.

HEPMASS. Used by Baldi et al. [2], this dataset describes particle collisions in high energy physics.
Half of the data are examples of particle-producing collisions (positive), whereas the rest come from
a background source (negative). Here we used the positive examples from the “1000” dataset, where
the particle mass is 1000. Five features were removed because they had too many reoccurring values;
values that repeat too often can result in spikes in the density and misleading results.

MINIBOONE. Used by Roe et al. [9], this dataset comes from the MiniBooNE experiment at
Fermilab. Similarly to HEPMASS, it contains a number of positive examples (electron neutrinos)
and a number of negative examples (muon neutrinos). Here we use the positive examples. These had
some obvious outliers (11) which had values at exactly −1000 for every column and were removed.
Also, seven of the features had far too high a count for a particular value, e.g. 0.0, so these were
removed as well.

Table 3 lists the dimensionality and the number of train, validation and test examples for all seven
datasets. The first three datasets in Table 3 were subsampled so that the product of the dimensionality
and number of examples would be approximately 10M. For the four UCI datasets, 10% of the data
was held out and used as test data and 10% of the remaining data was used as validation data. From
the BSDS300 dataset we randomly extracted 1M patches for training, 50K patches for validation and
250K patches for testing. For MNIST and CIFAR-10 we held out 10% of the train data for validation.
We augmented the CIFAR-10 train set with the horizontal flips of all remaining 45K train examples.

Table 3: Dimensionality D and number of examples N for each dataset.

N

D train validation test

POWER 6 1,659,917 184,435 204,928

GAS 8 852,174 94,685 105,206

HEPMASS 21 315,123 35,013 174,987

MINIBOONE 43 29,556 3,284 3,648

BSDS300 63 1,000,000 50,000 250,000

MNIST 784 50,000 10,000 10,000

CIFAR-10 3072 90,000 5,000 10,000

E Additional results

E.1 Pairwise comparison

On the MINIBOONE dataset, the model with highest average test log likelihood is MAF MoG (5).
However, due to the relatively small size of this dataset, the average test log likelihoods of some other
models have overlapping error bars with that of MAF MoG (5). To assess whether the differences are
statistically significant, we performed a pairwise comparison, which is a more powerful statistical
test. In particular, we calculated the difference in test log probability between every other model and
MAF MoG (5) on each test example, and assessed whether this difference is significantly positive,

4

Table 4: Pairwise comparison results for MINIBOONE. Values correspond to average difference in
log probability (in nats) from the best performing model, i.e. MAF MoG (5). Error bars correspond
to 2 standard deviations. Significantly positive values indicate that MAF MoG (5) performs better.

MINIBOONE

Gaussian 25.55± 0.88

MADE 3.91± 0.20
MADE MoG 0.59± 0.16

Real NVP (5) 1.87± 0.16
Real NVP (10) 2.15± 0.21

MAF (5) 0.07± 0.11
MAF (10) 0.55± 0.12
MAF MoG (5) 0.00± 0.00

which would indicate that MAF MoG (5) performs significantly better. The results of this comparison
are shown in Table 4. We can see that MAF MoG (5) is significantly better than all other models
except for MAF (5).

E.2 Bits per pixel

In the main text, the results for MNIST and CIFAR-10 were reported in log likelihoods in logit space,
since this is the objective that the models were trained to optimize. For comparison with other results
in the literature, in Table 5 we report the same results in bits per pixel. For CIFAR-10, different
colour components count as different pixels (i.e. an image is thought of as having 32×32×3 pixels).

In order to calculate bits per pixel, we need to transform the densities returned by a model (which
refer to logit space) back to image space in the range [0, 256]. Let x be an image of D pixels in logit
space and z be the corresponding image in [0, 256] image space. The transformation from z to x is

x = logit
(
λ+ (1− 2λ)

z

256

)
, (14)

where λ= 10−6 for MNIST and λ= 0.05 for CIFAR-10. If p(x) is the density in logit space as
returned by the model, using the above transformation the density of z can be calculated as

pz(z) = p(x)

(
1− 2λ

256

)D (∏
i

σ(xi)(1− σ(xi))

)−1

, (15)

where σ(·) is the logistic sigmoid function. From that, we can calculate the bits per pixel b(x) of
image x as follows:

b(x) = − log2 pz(z)

D
(16)

= − log p(x)

D log 2
− log2(1− 2λ) + 8 +

1

D

∑
i

(log2 σ(xi) + log2(1− σ(xi))). (17)

The above equation was used to convert between the average log likelihoods reported in the main text
and the results of Table 5.

E.3 Generated images

Figures 1, 2 and 3 show generated images and real examples for BSDS300, MNIST and CIFAR-10
respectively. Images were generated by the best performing model for each dataset, which is MAF
MoG (5) for BSDS300, conditional MAF (5) for MNIST and conditional MAF (10) for CIFAR-10.

The BSDS300 generated images are visually indistinguishable from the real ones. For MNIST
and CIFAR-10, generated images lack the fidelity produced by modern image-based generative
approaches, such as RealNVP [3] or PixelCNN++ [10]. This is because our version of MAF has

5

Table 5: Bits per pixel for conditional density estimation (lower is better). The best performing model
for each dataset is shown in bold. Error bars correspond to 2 standard deviations.

MNIST CIFAR-10

unconditional conditional unconditional conditional

Gaussian 2.01± 0.01 1.97± 0.01 4.63± 0.01 4.79± 0.02

MADE 2.04± 0.01 2.00± 0.01 5.67± 0.01 5.65± 0.01
MADE MoG 1.41± 0.01 1.39± 0.01 5.93± 0.01 5.80± 0.01

Real NVP (5) 1.93± 0.01 1.94± 0.01 4.53± 0.01 4.50± 0.01
Real NVP (10) 2.02± 0.02 2.02± 0.08 4.54± 0.01 4.58± 0.01

MAF (5) 1.89± 0.01 0.59± 0.01 4.36± 0.01 3.02± 0.01
MAF (10) 1.91± 0.01 0.61± 0.01 4.31± 0.01 2.98± 0.01
MAF MoG (5) 1.52± 0.01 1.51± 0.01 4.37± 0.01 4.36± 0.01

(a) Generated images (b) Real images

Figure 1: Generated and real images from BSDS300.

no knowledge about image structure, as it was designed for general-purpose density estimation and
not for realistic-looking image synthesis. However, if the latter is desired, it would be possible to
incorporate image modelling techniques in the design of MAF (such as convolutions or a multi-scale
architecture as used by Real NVP [3]) in order to improve quality of generated images.

References
[1] Individual household electric power consumption data set. http://archive.ics.uci.edu/ml/

datasets/Individual+household+electric+power+consumption. Accessed on 15 May 2017.

[2] P. Baldi, K. Cranmer, T. Faucett, P. Sadowski, and D. Whiteson. Parameterized machine learning for
high-energy physics. arXiv:1601.07913, 2016.

[3] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP. Proceedings of the 5th
International Conference on Learning Representations, 2017.

6

http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption
http://archive.ics.uci.edu/ml/datasets/Individual+household+electric+power+consumption

(a) Generated images (b) Real images

Figure 2: Class-conditional generated and real images from MNIST. Rows are different classes.
Generated images are sorted by decreasing log likelihood from left to right.

(a) Generated images (b) Real images

Figure 3: Class-conditional generated and real images from CIFAR-10. Rows are different classes.
Generated images are sorted by decreasing log likelihood from left to right.

7

[4] J. Fonollosa, S. Sheik, R. Huerta, and S. Marco. Reservoir computing compensates slow response of
chemosensor arrays exposed to fast varying gas concentrations in continuous monitoring. Sensors and
Actuators B: Chemical, 215:618–629, 2015.

[5] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal
covariate shift. Proceedings of the 32nd International Conference on Machine Learning, pages 448–456,
2015.

[6] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. Proceedings of the 2nd International
Conference on Learning Representations, 2014.

[7] D. P. Kingma, T. Salimans, R. Jozefowicz, X. Chen, I. Sutskever, and M. Welling. Improved variational
inference with Inverse Autoregressive Flow. Advances in Neural Information Processing Systems 29, pages
4743–4751, 2016.

[8] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approximate inference in
deep generative models. Proceedings of the 31st International Conference on Machine Learning, pages
1278–1286, 2014.

[9] B. P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, and G. McGregor. Boosted decision trees as an alternative to
artificial neural networks for particle identification. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 543(2–3):577–584, 2005.

[10] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma. PixelCNN++: Improving the PixelCNN with
discretized logistic mixture likelihood and other modifications. arXiv:1701.05517, 2017.

8

	Equivalence between MAF and IAF
	Batch normalization
	Number of parameters
	Additional experimental details
	Models
	Datasets

	Additional results
	Pairwise comparison
	Bits per pixel
	Generated images

