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Abstract. We describe an approach to regression based on building a
probabilistic model with the aid of visualization. The “stereopsis” data
set in the predictive uncertainty challenge is used as a case study, for
which we constructed a mixture of neural network experts model. We
describe both the ideal Bayesian approach and computational shortcuts
required to obtain timely results.

1 Introduction

We describe our treatment of the “stereopsis” regression data set in the predic-
tive uncertainty challenge. Our aim was to construct an appropriate statistical
model of the data, and use Bayesian inference to form the required predictive
distributions given the data. Our starting point was some simple exploratory
visualization of the data.

The stereopsis data set is very amenable to visualization, as it has only
four input dimensions, and structure quickly reveals itself. For example plot-
ting various input dimensions against each other, as in Figure[[{a), shows some
clear clustering in the input space. There are 10 distinct branches of points,
each with some interesting substructure. Figure [[[b) shows a one dimensional
projection of the training inputs plotted against the training outputs. This
projection was made by doing a least squares linear fit to the training data,
W = argmin,, Zn(y(”) —w x(™)2 and plotting the targets y against projected
inputs w ' x. The training outputs also seem to be grouped into 10 discrete clus-
ters, so one might guess that there is a correspondence between the clustering in
input space, and the clustering in output space. Further visualization confirmed
that this was the case. Zooming in on a cluster in Figure[Il(b), it becomes clear
that there is also substructure relevant for regression within each output cluster.

When we see obvious structure from simple visualizations like Figure [ it
makes us curious about the data generating process. Are the input points sam-
pled from some natural distribution on the space of possible inputs? In which
case we might not worry about generalizing well to input points far away from
those already observed. Alternatively the clustering in input and output space
may be an artifact of a particular choice of experiments that have been done.
Then some new test positions may lie in other parts of the input space outside
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Fig. 1. Visualization of stereopsis dataset. (a) The first and third dimensions of the
input space are plotted against each other. (b) The training outputs are plotted against
W' x, the input points projected onto the least squares linear regression weight vector.
The test input projections onto the same weight vector are plotted as the vertical lines.

the regions observed in the training data. In which case, we would need to con-
centrate on building a global model that extrapolates well outside the observed
clusters with appropriate uncertainties. In a real world task we would probably
have information regarding the locations of future predictions.

Unknown to us, the ‘stereopsis’ task was to infer the depth of an object from
stereo image information [I]. The data were generated by attaching an LED to
a robot arm and recording the spatial location via the arm’s spatial encoders
and the LED image positions on two stereo cameras. The robot arm was then
moved in a structured way in different discrete planes of depth whilst data were
recorded. With this small amount of information it is clear where the almost
discrete nature of the outputs (the depths) comes from, and also the clustering
in the inputs. It is also clear that for a model to be useful it must be able to
extrapolate away from the training data clusters, as we will need to be able to
predict the whole range of depths well.

The nature of a machine learning competition is a little different. The data
are presented with no information except a slight clue in the title! Clearly with
all the structure visible, we could still make a good guess that this was caused
by a certain choice of experimental sampling. We are also given the test inputs;
a projection of these is shown in Figure [[[(b). From this it seems plausible, as
in most machine learning competitions, that the test data have been produced
from the same sampling distribution as the training data. Therefore, in order to
perform well in the competition it made sense to model the cluster structure.
This is described in the next section.



A Pragmatic Bayesian Approach to Predictive Uncertainty 35
2 Mixture of Experts Model

As described above, we based our model on intuitions gained from visualizing
the training data and the test input locations. Further visualization of each of
the ten clusters in figure[llshowed that the targets seemed to vary smoothly with
any linear projection of the input space. We chose to model the targets within
each cluster as noisy observations around a smooth function of the input space.
To complete the model we defined a conditional distribution for belonging to a
particular cluster given its input location. This is a mixture of experts model
[2], which we refer to as “H”:

p(y‘xa 9, H) = Zp(y|x7 Wi, Hk)p(k|x7 Wgatea Hgate)v (1)
k

where k indexes the experts and 8 = {wy, Wgate } Summarizes any free parameters
in the models. We wanted flexible models for both the gating model, Hgate,
specifying the conditional probability of choosing an expert given input location,
and for each expert’s regression model Hj. The groups over which the gating
model puts a distribution have a clear ordering, see figure [(b). This makes
learning p(k|x) an ordinal regression task, although for simplicity we considered
it to be a standard multi-way classification problem. We chose to use neural
networks [3] for both the regression and classification problems. Each neural
network had a single layer of 15 units; we thought this would be sufficiently
flexible while being manageable in the time available. Without further knowledge
about the data, any flexible models such as Gaussian processes would have been
equally sensible.

Each cluster in the training data only contains a small number of data points
that will be useful for training that cluster’s regression model Hy. Therefore,
there is a danger of over-fitting if we optimized the many parameters of the
flexible models we chose. We could have chosen simpler models, but it might
have been difficult to capture the non-linear structure we observed within the
clusters. It is also possible that careful regularization could avoid over-fitting.
Instead we decided to take our model seriously, and as far as possible perform
the correct coherent inference given our assumptions; this is achieved by the
ideal Bayesian approach.

3 Ideal Bayesian Inference

Our target is p(y|z, D, H), the predictive distribution for an output y sampled
at a new location x given previously observed data D and our modeling assump-
tions, H. Our model has many free parameters, 6, corresponding to the weights
in the classifier Hgate and each of the regression neural networks Hy. As 6 are
unknown, we must marginalize these out:

p(ylz, D, H) = / p(y, 01, D, H) df = / p(ylz.0, H)p(6|D. 1) db.  (2)
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The integrand consists of two parts. The first, p(y|x, 8, H) from equation (),
describes the predictive distribution given known parameters. The second part
is the posterior over parameters from Bayes’ rule:

p(DI6 H)P(OH)

)

p(D|6, H)p(0]H), 3)
which requires a prior over parameters p(6|H) and a likelihood, which under our
i.i.d. model is a product of terms:

p(010.30 = [Tots 1070, (4)

Each term, specified in ({l), involves summing over the latent class assignment
k(™ In order to obtain results more quickly we chose to approximate @ by
assuming we knew the class assignments for the training data based on the
clusters in figure [[(b). While this is not the ideal procedure, it saved time and
seemed a reasonable approximation given how well separated the targets were.

For the prior over parameters p(f|H) we used the same hierarchical prior
as in the neural network regression and classification examples in Neal’s FBM
documentation []. It is possible that the regression experts p(y|x, wi, Hy,) should
be related, especially now we know how the data were generated. Therefore it
would make sense to introduce a priori correlations between the parameters,
wy, of the experts. We chose not to do this; we assume our experts obtained
parameters independently. As a result we probably did not make best use of the
data.

The above theory says that the predictive distribution (@) is available without
reference to how the input locations x were chosen, or what the predictions will
be used for. Normally a loss function would only be necessary if we wanted to
use the predictive distribution, eg for making a decision. Then, given the loss
function L£(Yguess; Yerue), Which specifies the penalty for predicting yguess When
the test target is Yirue, Wwe would minimize our expected loss:

Yguess = argmin/c(yguessv y) p(y|m7 Dv H) dyu (5)

where again, the predictive distribution is independent of the loss function. In
the challenge the loss function depended on the distribution itself and we had
to decide which quantiles to report. It turns out that both loss functions used
in this challenge, mean squared error (MSE) and negative log predictive density
(NLPD) have a consistency property: the expected loss is minimized by reporting
the predictive distribution that actually reflects our beliefs.

In practice we will experience computational difficulties. As is often the case,
the posterior in (@) has no simple form and the integral in () is intractable.
A variety of approximate approaches exist. When using an approximation, the
predictive distribution that results is, frankly, wrong: it does not correspond
to the correct rational inference for combining our model with the data. The
seriousness of this problem may depend on the loss function, although we did
not use this to guide our approximation.
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4 Monte Carlo Approximation

Here we present a standard Monte Carlo approach for predictive distributions.
The first step is to draw S samples from the posterior distribution over param-
eters ([B]). These could be used to approximate the integral in (2)):

p(yle, D H) = / p(yl, 0, H)p(6]D, M) A6

(6)
plylz, 0, H), 0 ~ p(0|D,H).

X
1Mo

However, this does not easily give us the quantiles required for reporting the
whole distribution. Draws from the predictive distribution, y*) ~ p(y|z, D, H),
will be more useful. These can be obtained by first drawing a set of parameters,
6*) ~ p(6| D, H), then drawing y*) ~ p(y|z,6*), H). Quantiles of the predictive
distribution may be approximated by drawing many samples and using the em-
pirical quantiles of the set of samples. For implementational reasons we found ap-
proximate quantiles for each expert’s distribution p(y|z, D, Hy) separately, and
then combined these distributions using the mixing fractions p(k|z, D, Hgate)-

All of these sampling procedures are frequentist not Bayesian in nature. They
give unbiased procedures, which are correct in the limit of an infinite number
of samples under fairly general conditions. If our procedures used independent
samples, then the errors in estimators of expectations are usually nearly Gaus-
sian distributed and estimators of quantiles are also well understood as Beta
distributed “order statistics”.

In this case, independent sampling is intractable. Markov Chain Monte Carlo
(MCMC) methods allow drawing correlated samples from p(6|D,H) [5]. Also,
given a valuable parameter sample, #(%) | it makes sense to draw multiple samples
from p(y|z, #), H), which are correlated samples from p(y|z, D, H). Diagnosing
the errors from these approximations remains a difficult problem; our approach
was pragmatic. We ran a trial run of MCMC using only the training set and
checked our results made reasonable predictions on the validation set. We then
performed a longer run using both the training and validation sets for our final
results. Strictly the Bayesian framework does not need a separate validation set
at any stage, but we wished to check that the approximate inference procedure
gave sensible results.

All of the above approximations were performed on neural networks with
hierarchical priors by Radford Neal’s FBM software [4].

5 Discussion

We exploited an artificial cluster structure of the stereopsis data, which should
not necessarily be done in a real world modeling situation, eg [I]. This suggests
some alternative formats for future competitions. Firstly, the standard assump-
tion that the test data should come from the same input distribution as the
training data could be relaxed. Secondly some information about the data could
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be given to competitors to guide modeling. This goes somewhat against a com-
mon view that a machine learning algorithm should be a general purpose black
box. Competitors would need to tailor their methods using the information given
about the training and test data generating processes. From this format it may
be more difficult to achieve a consensus as to which machine learning algorithm
performs best generally, but it may be more realistic, and some useful modeling
approaches may come out of it.

These reservations aside, the approach outlined in the previous sections per-
formed well in the competition, although was the mixture of experts approach
really necessary? Initially we had tried to construct predictive distributions us-
ing only a single, global neural network regression model (we also tried Gaussian
processes). Our visualizations indicated that the resulting error bars were too
conservative. The added flexibility in the mixture model gave better NLPD scores
on the validation set.

The ideal Bayesian approach assumes that all dependence on the data is con-
tained in the likelihood. By looking at the data before constructing our model
we were effectively using the data twice and risked over-fitting. As a result it
is likely that we would not perform well on points drawn from a different in-
put distribution. Fortunately for us, the competition did not reflect what often
happens when a system is deployed: the input distribution changes.

It is unlikely we would have considered the model we used without any vi-
sualization. In a real application we would still recommend looking at the data
to suggest suitable models. However, choosing one model by hand, as we did,
is potentially dangerous. Better would be to consider a range of possibilities as
well, eg: other settings for k and some simpler models. Predictions from different
models can be combined quantitatively by Bayesian model averaging:

p(ylz, D) = Zp(y\w, D, H;)p(H;| D). (7)

This could be more robust than our approach using one model, if the clustering
assumptions of our model turned out to be inappropriate for the test set.

Our approach scored an NLPD score considerably higher than other entrants
to the competition. We believe the (nearly) Bayesian approach we followed was
largely responsible. Firstly when regressing the individual clusters we integrated
over uncertainty in the neural net parameters using MCMC, which avoided over-
fitting. Secondly we were able to integrate over uncertainty in our classification
parameters. This resulted in predictive distributions with ten modes, one for each
expert, Hy. Putting probability mass in all of these locations makes us robust
to classification errors. If we had chosen to use only one expert for predictions
we would risk obtaining an arbitrarily bad NLPD score.

Figure 2] shows on a log scale a typical predictive distribution given a new
test input, from our competition submission. One of the experts H;, is favored
over the others; it contributes the sharp spike close to y = 220. Notice how the
predictions from the experts far from the most probable spike give broader, less
certain predictions. This is because the new test input is far from the training
inputs for those particular experts. The constant density between the spikes
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Fig. 2. A predictive log probability density constructed from quantiles submitted to
the competition by us for a typical point in the test set. The vertical bar shows the
corresponding mean of the predictive distribution.

results from an artifact of the way we combined the quantiles from each expert.
The tail masses from adjacent experts was spread uniformly across the gap
between them. We hoped that such artifacts would have low enough densities
not to matter.

Also notice that the mean of the distribution in figure 2l does not coincide with
any of the predictive spikes. This happens on most of our test set predictions,
resulting in a poor mean squared error score; in fact we scored last on MSE score.
The mean of a predictive distribution is fairly sensitive to small changes in the
probability mass assigned to extreme predictions. In this case, small changes in
the distribution of mass amongst the experts, p(k|z, D, Hgate), can have a large
effect. We made ourselves robust for NLPD score by placing mass on all modes,
but at the expense of poor MSE score. The MSE score would have been most
likely much improved if we had done hard classification.

6 Conclusions

This case study illustrated some of our opinions on how to construct models that
capture predictive uncertainty:

— Visualization helps in understanding data when constructing probabilistic
models, especially in the absence of any further domain knowledge.

— Bayesian inference provides a natural framework for finding predictive dis-
tributions given modeling assumptions. It can help avoid overfitting when
limited data are available.

— Looking at the data before specifying modeling assumptions and using ap-
proximations both fall outside the Bayesian framework. By checking on a val-
idation set, we found approximate Bayesian procedures still behaved robustly.
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